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Chapter 6

Summary, lessons learned, perspectives, 
and overall conclusions 
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Chapter 6

6.1 Summary

Invasive fungal diseases (IFDs) are hidden killers, particularly for immunocompromised 
patients. Despite recent advances in the diagnosis and treatment of IFDs, the 
mortality from these diseases remains high. Developing a new antifungal drug is 
often lengthy and costly, suggesting that maximizing the efficacy of currently available 
medications is key. 

In Chapter 1, we provided an overview of the current treatment options for the IFDs 
[1]. An exposure-response relationship has been demonstrated for all triazoles. Even 
so, clinicians still encounter various issues regarding safety and/or (lack of) efficacy 
in practice, which – among others -  result from the highly variable drug exposure 
levels. To better address them, it is essential to understand the pharmacokinetics 
(PK) of these triazole agents. This thesis investigated the population PK profiles of 
two commonly used triazole antifungals, i.e., posaconazole and fluconazole, with 
a special focus on oral absorption and oral bioavailability (F), to provide scientific 
evidence on optimal dosing.

Chapter 2 summarized the existing knowledge on posaconazole PK, 
pharmacodynamics (PD), toxicity, resistance, clinical experience in special 
populations, and new therapeutic strategies. Posaconazole shows high variability in 
exposure within patients, but also between the three available formulations, between 
healthy volunteers and patients, and between different patient populations. Despite 
administration of a lower daily dose, the two newest formulations, i.e., delayed-
released tablet (DR-tablet) and intravenous (IV) formulation, yield higher and more 
stable exposure than the oral suspension. For this reason, the DR-tablet is often 
preferred over suspension in practice. However, an integrated analysis comparing 
posaconazole PK differences among various formulations and populations is still 
lacking. 

To bridge the knowledge gaps identified in Chapter 2, we first characterized the 
population PK, including the absolute F, of all posaconazole formulations with a 
focus on healthy volunteers, to circumvent the potentially confounding influence of 
pathological and clinical factors, in Chapter 3. For the oral suspension, the impact 
of food on both F and absorption rate, as well as a dose-nonlinearity in F, were 
quantified, resulting in lower F under fasted conditions or when given in a higher 
dose. Food intake also significantly boosts the F of DR-tablet. The tested concomitant 
medications, including antacid, ranitidine, esomeprazole, and metoclopramide, had 
no statistically significant impact on the absorption of the DR-tablet. With a higher 
and more stable F, the PK superiority of the posaconazole DR-tablet, compared with 
the oral suspension, was demonstrated. Administering the DR-tablet under fasted 
conditions however results in a lower-than-expected F, suggesting that administering 
the DR-tablet with food should be considered, to enhance absorption and ensure 
sufficient exposure. Model-based simulations in healthy volunteers illustrate that 
when administered under fasted conditions, more than 35% of individuals receiving 



121

Summary, lessons learned, perspectives, and overall conclusions

6

the licensed prophylactic dose of the oral suspension or DR-tablet are at risk of 
suboptimal exposure.

As considerable differences between healthy volunteers and patients are known, 
we expanded the integrated PK analysis from the healthy population to (mainly) 
hematological patients in Chapter 4. In patients, the F of the DR-tablet is overall 
higher than the dose-dependent nonlinear F of the oral suspension and is unaffected 
by the tested covariates. Five clinical characteristics were found to significantly reduce 
the F of the oral suspension, including mucositis, diarrhea, administration through a 
nasogastric tube, and concomitant use of proton pump inhibitors or metoclopramide. 
Additionally, patients showed a larger peripheral volume of distribution and lower inter-
compartmental clearance compared to healthy volunteers, resulting in decreased 
trough concentrations for all formulations. Patients with hypoalbuminemia showed 
lower clearance (CL). No racial differences in PK could be found between Chinese 
and Caucasian patients, suggesting that Chinese patients do not require a different 
dose compared to Caucasian patients. Though superior to the oral suspension, the 
F of the DR-tablet is lower than previously reported, meaning that exposure upon 
administration of the same dose is not equivalent to IV. Switching to IV or increasing 
the dose of the DR-tablet coupled with therapeutic drug monitoring, should therefore 
be considered to ensure optimal exposure. 

Posaconazole is most widely used for mould-active prophylaxis. Yet fluconazole 
remains the most widely used antifungal agent in patients suspected or diagnosed 
with yeast infections such as candidiasis. It is used in a wide variety of individuals, 
including in patients with obesity. As a special population, subjects who are obese 
are often left out of pre- or post-marketing clinical trials. To close the knowledge gap 
of fluconazole prescription in the obese, in Chapter 5, we performed a prospective 
PK study in obese subjects and non-obese healthy controls who received a semi-
simultaneous fluconazole oral capsule and IV dose. Based on the population PK, 
obesity had no impact on the F of the fluconazole oral capsule. Nevertheless, 
participants with higher total bodyweight were found to have both higher CL and 
volume of distribution. In addition to total bodyweight, we found sex also statistically 
significantly impacted the volume of distribution, resulting in a larger volume 
of distribution in males compared with female subjects of the same weight. As a 
result, male subjects with high total bodyweight may need increased loading doses 
to compensate for the slower accumulation of the drug in reaching steady state. 
The commonly used fluconazole oral dosing regimens illustrate high variability 
in exposure, likely putting large proportions of obese individuals at higher risk of 
underexposure. To facilitate the clinical implementation of our findings, we proposed 
dosing tables for female and male subjects of various total bodyweight. 
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6.2 Lessons learned

In this section, we summarize and discuss the lessons learned during the development 
and refinement of the population PK models from Chapters 3-5. Our objective is to 
contribute to the advancement of modeling practices by sharing our experiences 
and insights, thereby improving the efficiency and effectiveness of future modeling 
efforts.

6.2.1 Integrated population PK analysis

Integrated population PK analyses combining data on different formulations 
and populations should be advocated when feasible. Analyzing all data together, 
will maximize the benefit of shared information in the data and thereby allow 
identification of PK differences attributable to the formulations or/and populations. 
Such integrated population PK analysis can provide several benefits during drug 
development and for post-marketing studies. First, it can improve our understanding 
of drug behavior by providing a comprehensive understanding of how a drug 
behaves in different conditions, such as different dosing regimens or patients with 
different characteristics and it can avoid wrong conclusions being drawn based 
on partial data. Second, it can increase the efficiency of drug development, as an 
integrated analysis of healthy volunteer data in the early stages can help identify 
areas where further research is needed and allow for more efficient development 
of formulations or dosing regimens. This can save time and resources by avoiding 
unnecessary research efforts. Third, it may have a greater regulatory acceptance, as 
regulatory agencies often require integrated analyses when evaluating new drugs or 
applications [2]. Going beyond PK, it is expected that integrated analyses can also 
enhance safety and efficacy evaluations, by pooling data from multiple studies and 
thereby providing a more robust evaluation of safety and efficacy, particularly for 
rare adverse events or subpopulations that may not be adequately represented in 
individual studies. Unfortunately, such integrated analysis is not always implemented 
during drug development, while performing such analysis after marketing requires 
the industry to share its data which is typically a time-consuming effort. Facilitating 
post-marketing open data sharing might be a potential solution.

6.2.2 Using prior knowledge to inform population PK models

When quantifying PK features with limited data, one can either constrain the model 
based on existing data or broaden its applicability by incorporating prior knowledge 
from the literature. Literature data could also be used for the model evaluation. For 
example, in Chapter 3, dosing scenarios for the oral posaconazole suspension were 
limited to 100 mg under fed and fasted conditions and 400 mg under fed conditions 
only. During model development for the oral suspension, the available data could 
therefore only support a linear F with a binary food effect. However, the model 
obtained with this purely data-driven approach, overpredicted exposure for a dose 
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of 400 mg under fasted conditions by more than 100% compared with the exposure 
levels reported in the literature. Moreover, the impact of food was reported to increase 
with the increasing dose in the healthy volunteers, which cannot be captured by a 
binary food effect. To expand the applicability of our model to commonly used dosing 
scenarios, we used a decreasing sigmoidal function to characterize a continuous 
dose-nonlinear function for F with different parameter values for the sigmoidal 
function under fasted and fed conditions, to describe the dose-nonlinear impact of 
food. To deal with the limited available data in the dataset, literature information 
was included to inform the complex nonlinear functions for F, allowing parameter 
estimation. In addition to the regular internal model evaluation, we subsequently also 
compared the simulated area under the concentration-time curve (AUC) values and 
the ratio of AUC values to the reported literature values under different scenarios of 
doses and food intake. Using this approach, we were confident that the nonlinear 
functions for F, informed by both the available data and the meta-data from literature, 
could be used for both interpolation and extrapolation to clinically relevant dosing 
scenarios, which also facilitated the extension to the patient’s PK in Chapter 4.

6.2.3 Simulation and re-estimation to assess parameter identifiability

Simulation and re-estimation approaches can help to assess parameter identifiability 
when there is a suspicion of limited information regarding certain model parameters 
in the data as a result of the associated study design. Model identifiability is 
categorized into two types; structural identifiability related to the structure of the 
model and deterministic identifiability related to the study design [3]. In Chapter 5, 
the absorption profiles after administration of the oral tablet in the semi-simultaneous 
oral and IV study showed absorption to not be fully completed when the IV dose 
was administered (Figure 1), leading to the suspicion that the sampling duration of 
the absorption phase might have been too short to support an accurate estimation 
of F. This would comprise deterministic identifiability issues. While there are limited 
software tools that are specifically created to evaluate structural identifiability, there 
is currently no dedicated software available for assessing deterministic identifiability 
[3]. In Chapter 5, we therefore performed a simulation and re-estimation analysis to 
assess the deterministic identifiability. To implement the simulation and re-estimation 
approach, we simulated the design of the original study under scenarios of two 
different values for F, one scenario in which F was 50% and another in which F was 
90%, in both cases, interindividual variability was 1.69 (variance) in the logit domain. 
Subsequently, the model was re-estimated based on the simulated datasets. The 
re-estimated F obtained with these datasets was 57% and 92.5%, indicating a 
percentage bias of 14% and 3%, respectively. This confirmed that in this case, the 
applied study design was sufficient to obtain an accurate estimate of F despite the 
limited observation period after oral dosing before the intravenous dose was given. 
Even though this approach allowed us to confirm the identifiability of fixed effect 
parameters in our analysis, parameter identifiability should be ideally considered 
in the design phase of a study. In addition to the existing software that has been 
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developed for an optimal design of experiments [4, 5], this proposed simulation 
and re-estimation approach can also be considered in helping select a design that 
fulfills the requirements for deterministic identifiability. It has to be noted that an 
appropriate model structure and appropriate parameter values are prerequisites for 
any approach, otherwise, the results can be misleading. A recently released design 
evaluator in NONMEM ($DESIGN) provides parameter estimability or expected 
model parameter uncertainty by assessing the Fisher Information Matrix [6], which 
can be a more efficient approach compared with the simulation re-estimation 
approach to investigate deterministic variability.

6.2.4 Close inspection of diagnostic plots

During model development, close inspection of diagnostic plots, including appropriate 
subsets of the data, is an indispensable addition to numerical diagnostics in model 
selection. In Chapter 5, we investigated the model fit when using the different numbers 
of transit compartments in describing the absorption profile of the fluconazole capsule. 
As shown in Figure 1 below, the lowest objective function value (OFV) was obtained 
with the model with six or seven absorption transit compartments. As expected, 
the parameter estimate of the first-order rate constant between absorption transit 
compartments (ktr) increased with the increasing number of transit compartments, 
Yet during the absorption phase, these two models also showed time-related trends 
in the diagnostic plot of conditional weighted residuals versus the time after dose, 
which was not present in the model with three transit compartments. Based on these 
plots, the model with three transit compartments was selected, even though it had 
not reached the lowest statistically significant objective function value (see Figure 1). 
Of note is that the bias in the 2.5-hour absorption phase is easily overlooked when 
only examining the plots of the entire 48-hour time span of the study. This illustrates 
the importance of a detailed investigation of subsets of the data, as the absorption 
model selected based on a detailed investigation of the data in the absorption phase 
not only yielded an optimal description of the data in the absorption phase but also 
yielded more realistic estimates of the remaining PK parameters. For other drugs for 
which rich data is available in the absorption phase, it may be equally important to 
investigate and optimize the absorption model to achieve an unbiased fit, in which a 
lower OFV value does not always mean a more precise model fit and close inspection 
in diagnostic plots, like Figure 1, should be performed. 
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Figure 1 Overview of obtained fluconazole PK fixed effect parameter estimates 
(top) and the corresponding conditional weighted residuals versus the time after 
dose plots (bottom) in a first-order absorption model without transit compartment 
(Base) compared with those in models incorporating absorption delay using two 
to eight transit absorption compartments. 

No.Trans = number of transit compartments, OFV = objective function value, ktr = first-order rate constant between absorption transit 
compartments (h-1), Vc = volume of distribution in the central compartment (L), CL = clearance (L/h), F = bioavailability (-).

Stratifying diagnostic plots across different subgroups or strata of a population is 
also important to inspect for possible bias both during model development as well 
for final model validation. This is to ascertain an accurate description of the data 
obtained across the entire population. Incorporating stratification into the eta and 
goodness-of-fit (GOF) plots is crucial. Splitting the eta and GOF for separate strata 
or using different colors for data points of individuals or observations with specific 
characteristics, can expose bias in subgroups at an early stage during model 
development and indicate the direction for model improvement. If we find that the 
model fits well across all subgroups, then we can confirm a good description of the 
model for the population as a whole. If, on the other hand, we find that the model 
fits well in some subgroups, but not in others, we may need to modify the model or 
investigate further to understand why this is the case. Visual predictive check (VPC) 
and normalized prediction distribution errors (NPDE) plots are often used to provide 
a more comprehensive assessment of the final model’s ability to predict the data and 
may not only reveal issues in the structural model but also in the stochastic model. In 
this context, these plots can also be stratified for subpopulations. 

It is even more important in an integrated analysis to stratify the diagnostic plots, 
because the bias can be easily overlooked when data from various subgroups 
are assembled in the same diagnostic plot. In Chapter 3, we stratified our GOF 
and NPDE results into 3 separate figures based on formulation, and in Chapter 4, 
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we stratified them based both on formulation and population (healthy population 
vs. patients). In Chapter 5, we found that both total bodyweight and sex have a 
significant influence on fluconazole PK, therefore we wanted to look at the residuals 
separately for men and women, and obese and non-obese groups (Figure S1). By 
doing this, we confirmed that the model fits equally well across different subgroups. 

6.2.5 The added value of shark-plot in a covariate analysis

In a covariate analysis, the goal is to identify patient or treatment-specific variables, 
such as demographics, disease-related variables, or concomitant treatments, that 
are correlated with the variability in PK parameters. These covariates are typically 
included in the PK model as fixed effects. However, not all patients contribute to the 
covariate relationship in the same way. In exceptional cases, one or two patients 
may have extreme covariate values or have a low-frequency covariate, while their 
individual PK parameters deviate from the rest of the patients. As a result, it may 
seem that the tested covariate is statistically significant, while in reality it can be 
ascribed to a multi-factor influence or other (unknown) reasons. In the covariate 
analysis, the OFV provides statistical evidence based on the whole population but 
does not take the sensitivity of the individual contributions to the OFV difference into 
account. Shark-plot can be used to illustrate the contribution of each individual to the 
overall OFV differences between the model with the new covariate included and the 
reference model without the covariate and establish how many individuals drive the 
statistical significance of the difference [7]. 

Identifying influential individuals that drive covariate selection, with shark-plot 
can be useful in two ways. It can pinpoint the influential individuals who largely 
contributed to the statistical significance during the covariate analysis, opening the 
opportunity for further investigation. When a shark-plot shows only one or very few 
individuals are driving the statistical significance, in many cases, one should not 
include such a covariate relationship. It can either be that the causal relationship is 
missing (otherwise the other individuals would follow the same trend), or the study 
design/included individuals are not sufficient to differentiate between true correlation 
and spurious patterns, whereby the data are not sufficient to support conclusions 
Ignoring the influential individual during covariate analysis may lead to a final model 
with a weakly supported covariate relationship, which may yield unnecessary 
recommendations for dose adjustments. For this reason, we urge modelers to 
consider using a shark-plot during the covariate analysis. 

6.3 Perspectives

In this thesis, we fill a few PK knowledge gaps of posaconazole and fluconazole 
using a population modeling approach. While our work covers solely PK, during the 
analysis and literature study, we identified a few crucial components that are not 
adequately addressed in current antifungal PK/PD analyses, such as free target site 
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drug concentration, antifungal drug resistance, and host immunity. Furthermore, we 
recognize the potential utility of another PK modeling approach, i.e., physiologically-
based PK (PBPK) modeling, in characterizing oral drug absorption and PK in obese 
individuals. Our objective in this section is to draw attention to these underexplored 
areas in antifungal PK/PD analysis and emphasize the unique value of PBPK 
modeling in exploring drug absorption and PK in special populations. Eventually, we 
can have a more comprehensive understanding of the pharmacology of antifungal 
therapy and improve treatment outcomes across diverse patient populations.

6.3.1 Free target site drug concentration

The free drug concentration at the site of action is the main determinant of drug 
activity and is therefore considered to be a more relevant measure of drug exposure 
than the total plasma concentration. In many cases, total drug concentration in 
blood or plasma is a good proxy for the free fraction at the target site, for instance 
when there is no saturation of plasma protein binding or specific tissue binding or 
accumulation at the target site. Therefore, they are commonly used to establish the 
total PK profile of a drug in plasma. 

In the context of antifungal treatment, sufficient free drug concentration at the 
site of infection is a key determinant of antifungal efficacy. This is because only 
the free drug can penetrate the fungal cell wall and reach the target site to exert 
its fungicidal or fungistatic activity. Some antifungal agents (e.g. itraconazole, 
posaconazole, micafungin) exhibit significant drug accumulation in pulmonary 
epithelial lining fluid and alveolar cells which are common infection sites for invasive 
aspergillosis, causing plasma levels to be unpredictive for target-site exposure [8, 
9]. For posaconazole, free posaconazole also accumulates and persists within the 
membranes and the endoplasmic reticulum of the A. fumigatus cells where the azole 
target enzyme CYP51a is located [10]. In this case, significant drug accumulation 
with high variability was observed in the target tissue, meaning drug concentrations 
in the plasma cannot reliably serve as a surrogate of the exposure at the target site. 
Compared with the free plasma drug concentrations, which have received increasing 
recognition in clinical practice [11, 12], measuring free target site drug concentration 
can be more challenging. Fortunately, recent advances in technology, such as 
microdialysis facilitating sample collection in the respiratory tract or subcutaneous 
tissues, as well as ultrafiltration, ultracentrifugation, and equilibrium dialysis, 
facilitating quantifying unbound concentrations, together enabled more accurate and 
sensitive measurements of free drug concentrations. Incorporating these measured 
free target site drug concentrations in future PK/PD and PBPK studies can be a 
viable and effective resolution to better predict antifungal efficacy and understand 
the antifungal mechanism. 
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6.3.2 Antifungal drug resistance 

Antifungal drug resistance is a growing concern, while the antifungal treatment options 
are rather limited [13]. PK/PD indices based on minimum inhibitory concentration 
(MIC), such as AUC/MIC, peak concentration versus MIC (Cmax/MIC), and duration of 
time during which the concentration exceeds MIC (T>MIC), link the fungal sensitivity 
to antifungal exposure and are widely used to predict the clinical effectiveness and 
required dose of the antifungals in treating IFDs. The MIC measurement obtained 
by the conventional broth dilution method, while still widely used, relies on a limited 
number of tested concentrations of antifungal agents, which can limit its accuracy. 
With this approach, a static threshold of one single value is provided to represent 
the sensitivity of the pathogen colony against antifungals, which does not account 
for the diversity of the fungal population nor for changes over time resulting from the 
dynamics of fungal growth. Additionally, using a static summary of exposure such 
as the AUC, Cmax, or T>MIC in the PK/PD indices, precludes the investigation of 
how the dynamic changes in antifungal exposure affect susceptibility and resistance 
development. 

The recent progress of more advanced and dynamic assays, such as impedance-
based assays, in determining antibiotic susceptibility, provides more accurate results 
within hours and therefore allows real-time monitoring, which cannot be achieved 
by the static broth dilution method [14]. The impedance-based assays utilize the 
change in impedance caused by bacterial growth or death as an indicator of antibiotic 
susceptibility and provide faster detection with higher sensitivity of microbial activity 
and the bacterial response to antibiotics, which allows monitoring bacterial growth 
in real-time [14]. Although primarily tested in bacterial infections, this approach has 
exhibited promising potential for application in fungal infections [15]. By incorporating 
dynamic antibiotic susceptibility data, as well as the dynamic systemic and target site 
drug exposure and response profile, into a mechanistic PK/PD model, the dynamic 
drug-pathogen interaction can be captured. This model enables valuable insights 
into effective antifungal treatment against resistance.

6.3.3 Host immunity in antifungal treatment

In Chapter 2, we pointed out that host immunity plays an indispensable role 
in controlling and eradicating fungal infections. Most of the pathogenic fungi 
are opportunistic and as a result, they mainly cause IFDs in individuals under 
immunocompromised conditions. Many antifungal exposure-response relationships 
are developed based on data from in vivo neutropenic animals aiming to mimic 
human immunosuppression [16]. In practice, while neutropenia is a common 
feature of many immunocompromising conditions, such as chemotherapy-induced 
immunosuppression or prior to stem cell transplantation, it is not a universal feature. 
Moreover, the level of immune response in a patient can vary widely. For example, 
some patients may have only a mild decrease in their neutrophil count with remaining 
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function, while others may have severe neutropenia with functional loss of immune 
response. Consequently, the findings based on the neutropenic murine models only 
cover one subgroup of immune suppression seen in actual patients, thereby they 
have their limits when extrapolating to humans. To address this issue, incorporating 
host immunity into in vivo antifungal PK/PD analysis is the key. 

Some researchers have proposed using mechanism-based models to integrate the 
time courses of the host immune response (such as IL6, IL8, and TNF-alfa profiles) 
with the infection biomarkers and real-time antimicrobial PK exposure. Such an 
integrated approach not only captures the interaction between the antimicrobials 
and the invading pathogen, i.e., the conventional PK/PD model but also incorporates 
the interaction between the pathogen and host immune system [17, 18], allowing the 
quantification of the dynamic change in the infection biomarkers and the variability 
from host immune response and antimicrobial PK. This concept has already been 
applied in the field of antibacterial treatment, with one approach being to include 
measures of host immune status, such as the patient’s neutrophils, white blood cell 
count, or immune biomarkers including cytokines and chemokines, in the model 
[19-21]. In a manner akin to bacterial resistance, the immune system can also 
interfere with the emergence and progression of antifungal drug resistance. This is 
because the immune system does not distinguish between a resistant fungus and 
a susceptible one, thereby eliminating the residual pathogenic fungus aside from 
the elimination via antifungal agents, irrespective of their susceptibility level, which 
should be considered in future antifungal drug resistance studies as well. 

Overall, incorporating host immunity into antifungal PK/PD models has the potential 
to improve our understanding of how antifungal drugs exert their antifungal 
efficacy in patients exhibiting diverse immune system conditions. Consequently, 
this advancement may facilitate the optimization of treatment strategies for fungal 
infections.

6.3.4 PBPK modeling in characterizing oral absorption and PK in obese 
population

PBPK modeling takes into account both the physicochemical properties of the drug 
and the physiological characteristics of different tissues and organs in the body, to 
predict drug disposition [22]. It can account for intestinal and hepatic enzyme activity, 
transporters, and other permeability-limited processes, which can be highly valuable 
in predicting the rate and extent of drug absorption, as well as the impact of food and 
other factors on these processes [23, 24]. Additionally, this modeling approach can 
also account for the free antifungal drug accumulation at the target site, which is a 
viable solution for the challenge discussed in section 6.3.1. Early PBPK modeling 
can help researchers make more informed decisions by identifying potential issues 
with the drug’s absorption and making necessary chemical modifications (e.g. 
prodrug design), or modifications in formulation or dosing regimen. As a result, it can 
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facilitate the drug development process and help get effective treatments to patients 
more quickly. While PBPK modeling of drug absorption processes provides multiple 
advantages, it is highly complex and requires the collection of data regarding drug 
characteristics and physiological data. Although the physiological data are system-
specific and therefore transferable to different scenarios, missing, incomplete, or 
unreliable drug-specific parameters, e.g., total unbound intrinsic CL by one microgram 
of metabolic microsomes, significantly impede the development of PBPK models. 
To address this challenge, it is imperative to consider mandating the acquisition of 
these drug-specific measurements as a standard practice within drug development 
or routine experimental protocols, ensuring the availability of pertinent and reliable 
drug-specific properties. Furthermore, the PBPK modeling methodology should be 
continually refined in alignment with the evolving knowledge in the field.

The influence of obesity on drug PK exhibits substantial variability across drugs 
with different drug properties, rendering it impractical to make predictions for this 
population using a single overarching principle [25-27]. While the global incidence of 
obesity keeps increasing, the obese population is often underrepresented in clinical 
trials compared to other special populations such as patients with renal or hepatic 
impairment. In this particular case, PBPK modeling which quantifies the physiological 
changes in body composition, blood flow, and organ function, in obese individuals 
compared to non-obese individuals, can be employed to conduct in silico clinical 
trials for drugs lacking clinical data in obese individuals. Pioneer researchers have 
taken the lead in developing the PBPK modeling framework for the obese population 
based on existing knowledge and investigating the parameter sensitivity of the drug 
dispositions in a few representative drugs [28]. Promising validation results on drug 
exposure have been obtained in several drug classes [29]. As promising as this 
approach may sound, certain critical parameters identified by the sensitivity analysis 
are still not accurately quantified in this special population, such as adipose tissue 
distribution, the abundance, and potency of metabolic enzymes and transporters in 
different tissues and organs, gastric emptying, and intestinal motility. This increases 
uncertainty in model prediction and therefore still limits its current application in this 
population. Future studies filling these knowledge gaps are essential to expanding 
the application of drugs associated with more complicated PK features.

6.4 Conclusions

This thesis investigated the PK of two triazole antifungal drugs, i.e., posaconazole 
and fluconazole, using a population modeling approach. The study began with a 
comprehensive review of existing knowledge on posaconazole PK, PD, major 
toxicity, resistance patterns, clinical experiences in special populations, and new 
therapeutic strategies. Identifying gaps in this knowledge, we proceeded to compare 
the PK profiles of all available pharmaceutical formulations of posaconazole in 
healthy volunteers through an integrated analysis. The analysis demonstrated 
DR-tablet’s superiority compared with the oral suspension under both fed and 
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fasted conditions. To minimize the potential risk of inadequate drug exposure, we 
recommend administering both posaconazole oral suspension and DR-tablet with 
food. When extending the analysis to patients, we found that even though the DR-
tablet exhibited higher and more stable F than the suspension, it did not achieve 
exposure levels equivalent to the intravenous form. A substantial risk of inadequate 
exposure was identified in a considerable proportion of hematological patients 
receiving oral posaconazole at the standard dose, irrespective of prophylaxis 
or treatment. To mitigate this risk, the option of switching to the IV formulation or 
increasing the DR-tablet dose, alongside therapeutic drug monitoring, should be 
considered to ensure sufficient drug exposure in these patients. Furthermore, our 
analysis revealed that obesity alters fluconazole PK. Consequently, we proposed a 
dosing table for clinicians to treat Candida infections in obese adults, which adds to 
the growing body of evidence on optimal dosing strategies for this underrepresented 
special population. Based on the modeling and simulation results of posaconazole 
and fluconazole, we identified high-risk scenarios for ineffective antifungal treatment 
and provided alternative treatment options and dosing advice. This may contribute to 
improving patient outcomes, aligning with the overarching goal of all pharmacometric 
modeling exercises.

Throughout the analysis, we learned new lessons and shared our insights to serve as 
a reference for other modelers in their decision-making processes during PK analysis. 
Free target site drug concentration, antifungal drug resistance, and host immunity 
are all essential yet unexplored, elements in antifungal treatment. Incorporating 
them into PK/PD modeling frameworks may provide insight into effective antifungal 
treatment. Additionally, PBPK modeling may provide valuable insights into drug 
absorption and disposition in the obese population by accounting for physiological 
changes, which can be a powerful tool to facilitate early-stage drug development 
and support decision-making regarding the selection of drug formulation or dosage 
regimens for further clinical studies. 
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