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A B S T R A C T   

A fundamental shift in neuroscience suggests bidirectional interaction of gut microbiota with the healthy and 
dysfunctional brain. This microbiota-gut-brain axis has mainly been investigated in stress-related psychopa-
thology (e.g. depression, anxiety). The hippocampus, a key structure in both the healthy brain and psychopa-
thologies, is implicated by work in rodents that suggests gut microbiota substantially impact hippocampal- 
dependent learning and memory. However, understanding microbiota-hippocampus mechanisms in health and 
disease, and translation to humans, is hampered by the absence of a coherent evaluative approach. We review the 
current knowledge regarding four main gut microbiota-hippocampus routes in rodents: through the vagus nerve; 
via the hypothalamus-pituitary-adrenal-axis; by metabolism of neuroactive substances; and through modulation 
of host inflammation. Next, we suggest an approach including testing (biomarkers of) the four routes as a 
function of the influence of gut microbiota (composition) on hippocampal-dependent (dys)functioning. We argue 
that such an approach is necessary to proceed from the current state of preclinical research to beneficial 
application in humans to optimise microbiota-based strategies to treat and enhance hippocampal-dependent 
memory (dys)functions.   

1. Introduction 

Learning and memory are central processes in shaping cognition and 
behaviour, defining who we are and what we do. These processes 
crucially depend on synaptic plasticity in the hippocampus, a brain 
structure that contributes to episodic declarative memory in humans 
through the establishment of cognitive maps as representations of 
spatial and episodic contexts (Lisman et al., 2017). A recent fundamental 
shift in neuroscience, supported by an ever-growing body of studies, 
suggests a bidirectional interaction of trillions of gut organisms that 
together constitute the gut microbiota with the brain (Burokas et al., 
2015; Cryan and Dinan, 2012; Longo et al., 2023; Mayer et al., 2014). 
This microbiota-gut-brain axis has mainly been investigated in relation 
to potential therapeutic effects of the microbiota on well-being, in 
relation to stress-related psychopathology (e.g. depression, anxiety). 
Here, the beneficial effects of gut microbial symbiosis, facilitated by pre- 
and probiotics, and detrimental effects of dysbiosis (e.g. 
antibiotics-induced) have been established in rodents with evidence of 

positive translation to humans (Sarkar et al., 2016; Steenbergen et al., 
2015; Wang et al., 2016). The role of the hippocampus in both healthy 
learning and stress regulation, as well as being a key centre in the 
development of stress-related psychopathologies (Larosa and Wong, 
2022; Toda et al., 2019), combined with the emerging influence of the 
microbiota on these processes (Shoubridge et al., 2022), raises the 
question of how gut microbiota impact hippocampal-dependent mem-
ory and learning mechanisms and how these integrate with affective 
processing to achieve therapeutic outcomes. However, there is no 
coherent scientific approach to these gut microbiota-hippocampus in-
teractions. We argue in this narrative review that such an approach is 
necessary to build bridges between the current state of the 
microbiota-gut-brain axis field and beneficial application in human 
hippocampal-dependent functioning in health and psychopathology. 

The function and assessment of the hippocampus in rodents and to 
lesser extent humans is well established. The hippocampus regulates 
memory encoding and spatial navigation. Hippocampal lesions in both 
humans and animals result in a failure to learn new episodic memories 
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(Neves et al., 2008). The unique contribution of the hippocampus to 
declarative learning and memory resides in the capacity of the hippo-
campus to create and strengthen synaptic contacts i.e., synaptic plas-
ticity (Neves et al., 2008). On a behavioural level, 
hippocampus-dependent memory function in rodents is typically 
assessed through memory-guided behavioural tasks probing episodic 
memory, context-dependent spatial navigation, or non-spatial object 
recognition memory (Lisman et al., 2017; Moscovitch et al., 2006; Opitz, 
2014). This has allowed elucidation of underlying neural mechanisms 
through molecular markers such as translation of immediate early gene 
c-Fos, which is upregulated after neuronal activity, and brain-derived 
neurotrophic factor (BDNF), which can transform synaptic activity 
into long-term synaptic memories. Furthermore, strengthened neural 
connections after synaptic activity can directly be assessed through 
electrophysiological measurements such as long-term potentiation 
(LTP). In humans, information about the structure and function of the 
hippocampus was initially gleaned from clinical subjects (Augustinack 
et al., 2014) but can now be assessed through functional magnetic 
resonance imaging (fMRI). To date there are few established gut 
microbiota-hippocampus interactions in humans and we argue these are 
necessary and feasible. This would allow for novel, microbiota-derived, 
markers of hippocampal function facilitating translation from rodents to 
humans. 

Evidence for the microbiota effects on hippocampal structure and 
plasticity and related behaviours comes historically from rodent studies 
showing effects of antibiotics, probiotics (living organisms with bene-
ficial effects for the host), prebiotics (often fibres that improve the host’s 
health by stimulating growth and/or activity of the host’s probiotic 
strains), synbiotics (combination of pre- and probiotics), and microbiota 
composition, suggesting a key role for gut microbiota in regulating 
hippocampus-dependent learning and memory, but findings are pre-
liminary, and mechanisms unclear (for review see (Tang et al., 2020)). 
In humans, research into the interaction of the microbiota with 
hippocampal-dependent processing is in its infancy, but prebiotic sup-
plementation has been shown to improve hippocampus-related cogni-
tion (for review (Serra et al., 2019)), antibiotic-induced dysbiosis has 
been found to impair hippocampal function (Çalışkan et al., 2022), and 
microbiota composition correlates with hippocampal functioning in 
older adults (Manderino et al., 2017; Renson et al., 2020), to state a few 
examples. To add, Alzheimer’s disease (AD), the most common neuro-
degenerative disorder resulting in memory loss and eventually demen-
tia, is characterized by changes in hippocampal structure and function 
and by alterations in gut microbiota. That is, both animal and human 
studies show significantly altered gut microbial composition in animal 
models and humans suffering from AD (Tang et al., 2020; Verhaar et al., 
2021) and transplanting gut microbiota of AD patients into healthy mice 
resulted in microglia activation in the hippocampus and severe cognitive 
impairment: effects that could be rescued by transplantation of healthy 
human faeces (Shen et al., 2020). Further, patients suffering from irri-
table bowel syndrome (IBS), characterised by dysfunctional microbiota 
(Carding et al., 2015), show subtle hippocampal-mediated visuospatial 
working memory deficits (Kennedy et al., 2014). Conversely, differences 
in hippocampal-dependent working- or episodic memory in IBS patients 
are not always apparent (Berrill et al., 2013). And, although one would 
hypothesize gut microbial interventions may have therapeutic potential 
for such disorders, probiotic supplementation (Lactobacillus casei) in 
healthy participants unexpectedly impaired episodic memory recall 
(Benton et al., 2007). 

Although gut microbiota is implicated in memory deficits in clinical 
populations and a wealth of fundamental animal research does indicate 
a profound effect of gut microbiota on hippocampal functioning in 
memory and learning (for review see Tang et al., 2020), the discrep-
ancies between rodent and human studies and the equivocal findings 
and relative paucity of studies in humans demand critical evaluation of 
preclinical knowledge. Supported by a recent review concluding that gut 
microbiota intervention-effects on hippocampal functions are 

preliminary and their mechanisms unclear (Tang et al., 2020), we argue 
the paradigm shift is currently hampered by a focus on the gut micro-
biota and the brain, rather than on the ‘axis’ (or axes, as we will argue). 
That is, a lack of a more targeted and coherent approach to 
microbiota-gut-brain interactions hamper fundamental understanding 
of microbiota-hippocampus effects in health and disease. This in turn 
impedes evaluation and optimisation of targeting gut microbiota for 
enhancement and/or treatment of hippocampal-dependent memory 
performance and dysfunction, and translation of these effects to 
humans. 

To address these difficulties, rather than reviewing microbiota ef-
fects on hippocampal structure, function, and -related behaviour that 
have been the subject of recent reviews (Tang et al., 2020), we sum-
marize four established main routes through which gut microbiota 
interact with rodent hippocampal functioning in memory and learning; 
through 1) modulating tenth cranial or vagus nerve activity, 2) altering 
the adaptive stress response of the hypothalamus-pituitary-adrenal 
(HPA)-axis, 3) metabolism of potentially neuroactive substances and 
4) affecting host inflammatory tone. It should be noted that microbiota 
modulation of host gut epithelial and endothelial blood brain barrier is 
regarded as a separate route of interaction by some researchers. How-
ever, we argue both gut and brain barriers should be considered as 
moderating and/or mediating the four main routes and, as such, do not 
discuss barrier function as a separate route; the barriers do not provide 
main routes of interaction themselves. Further, although we report 
mainly on preclinical rodent research that can seemingly distinguish the 
routes, we consider the four routes as integrated entities that closely 
interact and overlap with each other in vivo, see Fig. 1. This complexity 
is even more evident in humans. After making the case for evaluation of 
these four main routes and their components in hippocampal-dependent 
learning and memory, to enhance understanding, optimisation, and 
translation of microbiota-induced effects on hippocampal-dependent 
learning and memory in (dys)functioning, we conclude by suggesting 
a structural approach for future studies. 

2. Gut-microbiota hippocampal route 1: tenth cranial or vagus 
nerve 

One direct neuroanatomical route between the gut microbiota and 
the brain is the vagus nerve (VN; 10th cranial nerve), which coordinates 
a range of parasympathetic functions, such as respiration, cardiac 
function, inflammation, and gut motility in digestion. The VN consists of 
sensory and motor—or afferent and efferent—components in a ratio of 
9:1 (Forsythe et al., 2014). The vagal afferent nerves (VANs) can 
(indirectly) sense microbiota, and transfer gut information into higher 
CNS structures eventually resulting in autonomic responses, executed by 
the vagal efferent nerves (for review (Fülling et al., 2019)). 

2.1. Microbiota putatively activates gut VANs, affecting upstream 
hippocampal processing 

The importance of the VN in mediating microbiota effects on hip-
pocampal processing is illustrated by studies where faecal microbiota 
transplantation rescued hippocampal-dependent spatial learning defi-
cits in septic mice, critically dependent on an intact VN signalling (Li 
et al., 2018). Furthermore, application of probiotic L. rhamnosus (JB-1) 
in an ex vivo jejunal segment increased in VAN firing rate (Bharwani 
et al., 2020), also dependent on an intact VN (Perez-Burgos et al., 2013), 
and when orally administered in vivo could induce cFOS expression in 
different brain regions including the ventral, but not dorsal, hippo-
campus (Bharwani et al., 2020). The VN promotes hippocampal episodic 
and spatial memory (Suarez et al., 2018) and activating VANs through 
vagus nerve stimulation (VNS) correlates with activation of hippocam-
pal regions and can enhance memory (Broncel et al., 2018; Clark et al., 
1999; Ghacibeh et al., 2006). There is no direct anatomical connection 
between the VN and the HPC, as the signal enters the brainstem through 
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the medial nucleus of the solitary tract (mNTS) after which it is relayed 
through the locus coeruleus (LC) and medial septum (MS) that innervate 
hippocampal regions (Broncel et al., 2018; Castle et al., 2005; Suarez 
et al., 2018). Rodent studies have confirmed electrophysiological cor-
relations between VNS and the hippocampus. For example, in 
urethane-anesthetised rats VNS was shown to enhance hippocampal LTP 
(Shen et al., 2012; Ura et al., 2013) and to induce a CA1 type II theta 
rhythm, which is implicated in memory consolidation (Broncel et al., 
2017, 2018). In freely moving rats, VNS enhanced LTP in the dentate 
gyrus (Zuo et al., 2007), as well as hippocampal BDNF, neurogenesis, 
and epigenetic changes (Biggio et al., 2009; O’Leary et al., 2018; Sanders 
et al., 2019), which together improved hippocampal memory as assessed 
by behaviour (A. Liu et al., 2016; Y.-W. Liu et al., 2016; Sanders et al., 
2019; Smith et al., 2005). It should be noted that even though external 
activation of the vagus nerve by VNS enhances memory, and the vagus 
nerve is a key mediator between the microbiota and 
hippocampal-dependent memory in septic rodents, the extent to which 
the microbiota induces vagal activity in vivo has not been tested, nor to 
what degree VNS is representative of this. 

How might microbiota affect vagal activity? VAN activity might be 
altered by microbiota in healthy conditions through enteroendocrine 
cells (EECs) (for reviews Bonaz et al., 2018; Yu et al., 2020). EECs make 
up 1% of the gut epithelium but together are considered one of the 
largest mammalian endocrine systems (Sternini et al., 2008). Anatomi-
cally, EECs are located between the terminal endings of the VANs and 
the gut lumen where the microbiota resides. EECs can sense microbiota 
both directly and indirectly through their metabolites. Directly, EEC 
recognise microbiota through, amongst others, toll-like receptor (TLR) 
binding of e.g. bacterial lipopolysaccharides (LPS) (Abreu et al., 2005). 
Indirectly, EECs express an array of members of the G protein-coupled 
receptor (GPCR) superfamily that can sense microbiota metabolites 
such as short chain fatty acids (SCFAs), nutrients, and bitter and sweet 
tastants (for reviews (Sternini et al., 2008; Yu et al., 2020)). EECs are 
thought to relay this information to the VANs either indirectly via 
release of signalling molecules, or directly though synapse-like 

structures. Indirectly, EECs release of a variety of signalling molecules 
such as serotonin, or gut satiety peptides, such as cholecystokinin (CCK), 
glucagon-like peptide 1 (GLP-1), peptide tyrosine-tyrosine (PYY), and 
ghrelin (for reviews Han et al., 2022; Kuwahara et al., 2020). Interest-
ingly, of these, ghrelin has been shown to mediate hippocampal 
contextual episodic memory in a vagal-dependent way (Davis et al., 
2020). However, it has not been demonstrated that microbiota produce 
ghrelin that can exert a similar effect. Secondly, another way of EEC-VN 
transmission is directly through recently described synapse-like struc-
tures that protrude from the EEC basal membrane and connect with the 
VN; these ‘neuropods’ release glutamate in response to luminal signals 
(Kaelberer et al., 2018, for review Liddle, 2019). Taken together, the VN 
reacts to, at least, certain probiotic strains, such as JB-1, and electro-
physiological activity of the VN correlates with hippocampal processing. 
However, the exact mechanism how the VN receives microbiota-related 
information and how this all comes together to define the 
microbiota-VN-hippocampus axis is unknown. Furthermore, how this 
might differ between strains remains to be characterised. 

Importantly, not all studies indicating a protective effect of micro-
biota on hippocampal-dependent learning suggest that this is exclusively 
vagally mediated (Mayer et al., 2015; Sarkar et al., 2016). For example, 
the protective effects of Lactobacillus rhamnosus and Bifidobacterium 
infantis on intestinal inflammation—of which the detrimental effects on 
hippocampal-dependent learning will discussed in Section 4—have also 
been shown to be independent of an intact vagal nerve in a model of 
dextran sulfate sodium colitis (van der Kleij et al., 2008). 

2.2. Microbiota-gut-VN-hippocampus axis in humans 

Human studies indicating memory-improving effects of pre- and 
probiotics rarely assess the contribution of vagal activity. This may be 
explained by the fact that to date there are no direct non-invasive 
measures for afferent (ascending gut-to-brain) vagal activity (but see 
(Usami et al., 2013)), despite the ability to assess efferent vagal tone 
using heart reflexes (Schrezenmaier et al., 2007) and heart rate 

Fig. 1. Microbiota-gut-hippocampus axes. The 
gut microbiota can interact with the hippo-
campus through four bidirectional routes. From 
left to right: through metabolism of neuroactive 
substances, or their precursors (blue), for 
example LNAAs (large neutral amino acids) and 
SCFAs (short chain fatty acids); through the 
vagus nerve (yellow); via modulation of host 
inflammation (red) that determines local 
release of inflammatory factors, for example 
such as those indicated; and through the 
hypothalamus-pituitary-adrenal-axis (black). 
These axes can interact and overlap with each 
other (examples are indicated by dotted grey 
lines). Abbreviations: ACTH (adrenocorticotro-
pic hormone); BDNF (brain derived neurotropic 
factor); CORT (corticosterone); HPA (hypo-
thalamus-pituitary-adrenal); IL1β (interleukin 
1β); IL6 (interleukin 6); LNAAs (large neutral 
amino acids); SCFA (short chain fatty acid); 
TNFα (tumor necrosis factor α).   
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variability (Thayer and Lane, 2000). One case study with recordings 
from an implanted intracranial electrode into the hippocampus of a 
17-year-old epileptic patient reported that VNS can affect hippocampal 
electrophysiology in an intensity-dependent way, although memory 
function was not assessed (Olejniczak et al., 2001). Scalp-recorded vagus 
evoked potentials may provide a potential marker for ascending 
gut-to-brain vagal tone (de Gurtubay et al., 2021; Usami et al., 2013). To 
our knowledge, very limited studies have evaluated the relation between 
gut microbiota composition and such vagus-evoked potentials, although 
ascending vagal activity, as measured by 24 h cardiac vagal activity, 
correlated with microbiota composition in an exploratory pilot (Mörkl 
et al., 2022). 

VN effects on human hippocampal functions have however been 
reported. For example, hippocampal hyperactivity is a biomarker of 
cognitive dysfunction in schizophrenia patients, and VNS seems to 
decrease this hyperactivity across clinical and healthy populations, pu-
tatively enhancing cognition (Smucny et al., 2015) (for review see 
(Vonck et al., 2014)). In epileptic patients, short term VNS enhances 
declarative and verbal recognition memory (Clark et al., 1999; Ghacibeh 
et al., 2006), potentially in part through enhancement of hippocampal 
long term potentiation (LTP). Although there is no consensus on the 
effect of chronic VNS on cognition across clinical populations, it seems 
to enhance cognition in AD patients (Vonck et al., 2014). Importantly, 
non-invasive VN stimulation by transcutaneous VNS (tVNS) in patients 
with mild cognitive impairment, an early stage of AD, modified amongst 
others hippocampal functional activity (Murphy et al., 2023), and subtly 
increased explicit recollection-based memory performance in healthy 
participants (Giraudier et al., 2020; see for review Colzato and Beste, 
2020). Overall, stimulating the VN seems to be particularly beneficial 
for improving hippocampal impairments in clinical populations, but 
how the microbiota might tap into this remains poorly understood. 

2.3. Summarising microbiota-gut-VN-hippocampus effects 

Taken together, rodent and human studies support the premise that 
the microbiota can enhance hippocampal memory, and this may be 
achieved through activating VANs. Indeed, VNS to depolarise VANs 
induces characteristic electrophysiological changes of hippocampal- 
dependent memory, at least in rodents. It must be noted that 
microbiota-induced vagal activity is poorly defined, and it is unknown to 
what extent VNS might be representative of this, and both are avenues 
for future research. Comparing in vivo hippocampal electrophysiology 
in animals performing hippocampal-dependent behavioural memory 
tasks where the microbiota may be manipulated in combination with 
VNS or vagotomy, using an improved protocol (Diepenbroek et al., 
2017), should give profound insights. Importantly, the positive effect of 
the microbiota on hippocampal function is not always crucially 
vagal-dependent, indicating the participation of non-vagal mechanisms 
(Sarkar et al., 2016). 

3. Gut-microbiota hippocampal route 2: HPA-axis: adaptive 
stress response 

Stress can either be induced by threats to homeostasis (i.e., stressors) 
or by the absence of safety signals (Brosschot et al., 2018) and can be 
observed behaviourally and physiologically at the affective level as well 
as in cellular and molecular changes. The stress response consists 
broadly of disinhibition of two main adaptive systems: (i) the fast-acting 
sympathetic system, and (ii) the slower acting 
hypothalamic-pituitary-adrenal (HPA) axis that culminates in the 
release of adrenal glucocorticoid hormone (cortisol in humans, corti-
costerone (CORT) in rodents) into the systemic circulation. Glucocorti-
coids can cross the blood-brain barrier (BBB) and exert relatively fast 
non-genomic actions as well as slower genomic effects (Joëls and 
Baram, 2009). Chronic stress and glucocorticoid exposure, which might 
both be induced by and result in dysbiosis and infection 

(Bermúdez-Humarán et al., 2019; Dinan and Cryan, 2012), usually im-
pairs memory and depends on reversible structural neuronal remodel-
ling (McEwen et al., 2016). 

3.1. Microbiota plays a key role in normal HPA axis functioning: lessons 
from psychopathology 

Important lessons can be learned from the influence of the micro-
biota on the (dysfunctional) HPA response in studies of stress-related 
psychopathology, which gives a starting point to hypothesise on puta-
tive altered hippocampal functioning in learning and memory. In 2004, 
seminal work by Sudo and colleagues demonstrated early-life microbe 
exposure is essential for adaptive HPA-axis development; germ-free 
mice exhibit an exaggerated HPA stress response and an altered limbic 
system, including the prefrontal cortex, hippocampus, and amygdala 
(Sudo et al., 2004). Furthermore, the effect of gut microbiota on HPA 
axis functioning is not confined to early life, but extends into adulthood 
(Eutamene and Bueno, 2007). These effects are not limited to stressed 
populations: supplementation of the probiotic JB-1 to non-stressed mice 
downregulated HPA-axis activity, whilst differentially affecting GABA 
expression over different brain regions including the hippocampus 
(Bravo et al., 2011). Taken together, these studies indicate robust effects 
of gut microbiota in the establishment and maintenance of the normal 
stress response, mediated by the HPA-axis and the limbic system 
including the hippocampus (for review see (Foster et al., 2017)). 

3.2. Microbiota affects cognitive functioning and memory through stress- 
related mechanisms 

Hippocampal functioning is sensitive to alterations of the HPA-axis 
(Farrell et al., 2015), which is not surprising given the high density of 
glucocorticoid and mineralocorticoid receptors (GR and MRs, respec-
tively) in the hippocampus (Reul and de Kloet, 1985). Specifically, 
hippocampal pyramidal cells, which have a crucial role in the systems 
consolidation of long term memory, highly express GRs, which can be 
downregulated by chronic microbiota depletion (Hoban et al., 2016). 
Furthermore, GR and MR function is modulated by chronic exposure to 
glucocorticoids (Kim et al., 2006; Krugers et al., 2010), and the gut 
microbiota can affect serum glucocorticoid concentrations. Several 
probiotics, especially Lactobacillus strains, have been shown to reduce 
both levels of serum CORT (Bravo et al., 2011; Gareau et al., 2011; Liang 
et al., 2015; Wang et al., 2015) (however, see also (Barrera-Bugueño 
et al., 2017; Kelly et al., 2017)) and adrenocorticotropic hormone 
(ACTH) (Liang et al., 2015; Wang et al., 2015), which was associated 
with improved hippocampal-dependent spatial (Ohland et al., 2013; 
Wang et al., 2015) and non-spatial memory (Gareau et al., 2011; Liang 
et al., 2015). Bifidobacterium supplementation can also decrease serum 
CORT levels (H.M. Jang et al., 2018; S.-E. Jang et al., 2018; Moya-Pérez 
et al., 2017; Desbonnet et al., 2010, Tian et al., 2019, 2020), normalise 
anxious behaviour (Desbonnet et al., 2010; H.M. Jang et al., 2018; S.-E. 
Jang et al., 2018; Moya-Pérez et al., 2017; Savignac et al., 2014; Tian 
et al., 2019, 2020), and improve both spatial and non-spatial memory 
(Savignac et al., 2015) although not replicated for all Bifidobacteria 
strains (Savignac et al., 2014). 

Taken together, specific probiotic strains may plausibly improve 
hippocampal-dependent memory by reducing plasma stress hormone 
levels. Left untreated, psychological or dietary stress can negatively alter 
the gastrointestinal microbiota (Bailey et al., 2011; Bailey and Coe, 
1999; Lyte et al., 2011; Park et al., 2013; Tannock and Savage, 1974; 
Vlisidou et al., 2004). Furthermore, elevated levels of corticosterone can 
affect gut permeability by changing the intestinal mucosal barrier 
(Santos et al., 2001; Söderholm and Perdue, 2001), potentially exacer-
bating microbiota dysbiosis (Bailey et al., 2011; O’Mahony et al., 2009), 
which can induce hippocampal dysfunction (H.M. Jang et al., 2018; S.-E. 
Jang et al., 2018). For example, dietary stress induced by infection of the 
gut with C rodentium exacerbates corticosterone levels induced by 
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behavioural stress, which impairs c-Fos and BDNF expression in the 
CA1-region of the hippocampus, and disrupts non-spatial hippo-
campal-dependent memory, all of which could be rescued by probiotics 
(Gareau et al., 2011). 

3.3. Microbiota-gut-HPA-hippocampus axis in humans 

Translation from rodents to humans of how microbiota-induced ef-
fects on the HPA-axis influence cognitive performance has met with 
difficulties (for review see Reis et al., 2018). One study trying to repli-
cate the ameliorating effects of Lactobacillus rhamnosus (JB-1) which 
reduced stress-induced HPA activity and anxiety- and depression-related 
behaviour in rodents (Bravo et al., 2011) failed to reproduce improve-
ment of the HPA-axis and anxiolytic effects of JB-1 in humans (Kelly 
et al., 2017). This could potentially be due to the anxiolytic effects of 
probiotics being only effective in anxious populations, as suggested in 
rodent studies by the strain specificity of JB-1, which was effective in 
innately anxious BALB/c (Bravo et al., 2011), but not in non-anxious 
Swiss Webster mice (Neufeld et al., 2018). 

To our best knowledge, only two studies have investigated the in-
fluence of microbiota on hippocampal-dependent cognition through 
HPA-mediated mechanisms in healthy humans. The first showed that 
four weeks of multi-strain probiotic supplementation could buffer 
against acute stress impairment of working memory (Papalini et al., 
2018). In the second, Allen and colleagues reported beneficial effects of 
the probiotic Bifidobacterium longum 1714, which reduced stress to an 
acute stressor and improved performance on the 
hippocampal-dependent Paired Associate Learning task (Allen et al., 
2016). Considering probiotics can improve hippocampal-dependent 
memory by normalising the HPA-response to heightened stress, and 
the hippocampus playing a key role in establishing therapeutic efficacy 
in stress-related disorders (Toda et al., 2018), the paucity of studies 
using probiotics to enhance hippocampus-dependent memory in anxious 
patients is surprising. 

3.4. Summarising microbiota-gut-HPA-hippocampus effects 

Taken together, gut microbes play a key role in the establishment 
and maintenance of the normal stress response in rodents. Certain 
bacterial strains can enhance or decrease CORT and/or ACTH levels in 
later life, which modulates hippocampal learning processes. Further-
more, the causality between bacterial strains and HPA-axis activity 
seems to be bidirectional with the composition of the microbiota itself 
being sensitive to CORT and ACTH levels. In humans, the study of 
probiotic effects on the hippocampus through stress-related mechanisms 
is still in its infancy. The state of study subjects, whether rodent or 
human, appears important in understanding microbial effects; either 
being stressed (e.g. by study design) or exhibiting altered stress 
responsivity (e.g. by psychopathology) which suggests that microbiota 
(probiotics) can control the (hyper)active adaptive stress response. On a 
final note, it is currently unknown how microbiota affect the hippo-
campus through stress-related mechanisms over time, which would 
benefit from rodent in vivo electrophysiological probe approaches. 

4. Gut-microbiota hippocampal route 3: gut microbiota 
metabolism 

One of the principal roles of the gut microbiota is to metabolise host- 
indigestible nutritional substances. Notably, as the diversity of the gut 
microbiota composition is highly dependent on the diet it is supplied 
with (Bibbò et al., 2016) and microbial disbalances are associated with 
metabolic disorders (Santacruz et al., 2009). The gut microbiota is 
essential for the metabolism of several neuroactive substances, such as 
short-chain fatty acids (SCFAs) and neurotransmitter precursors (for 
reviews see e.g. (Flint et al., 2015; Nicholson et al., 2012; Tremaroli and 
Bäckhed, 2012)). 

4.1. Short-chain fatty acids (SCFAs) 

SCFAs are small organic monocarboxylic acids with a carbon chain 
up to six carbon atoms that are produced through anaerobic fermenta-
tion of dietary fibres and resistant starch, such as oligo- and poly-
saccharides, by a range of anaerobic commensal bacteria in the gut (Koh 
et al., 2016; Morrison and Preston, 2016; Pascale et al., 2018). The three 
main SCFAs are acetate, butyrate, and propionate (Cummings et al., 
1987). Acetate and propionate are produced by e.g. Bacteriodetes, 
whereas e.g. Firmicutes, Bifidobacterium, Lactobacillus, and Clostridium 
produce butyrate (LeBlanc et al., 2017; Macfarlane and Macfarlane, 
2012). SCFAs can influence the CNS and the hippocampus through two 
main routes: first, by interacting with gut mucosal enteroendocrine cells 
to release gut hormones such as PYY, GLP-1, and ghrelin of which the 
vagal-dependent satiety inducing and putative mnemonic effects have 
previously been described, and secondly, by directly affecting the CNS 
after crossing the BBB via endothelial monocarboxylate transporters 
(Oldendorf, 1973; see for review Silva et al., 2020). 

SCFAs in the CNS are considered to exert a direct effect on memory 
by enhancing BNDF and modulating histone lysine (de)acetylase. Hip-
pocampal BDNF is associated with neurogenesis and is critically implied 
in memory, as hippocampus-specific deletion of BDNF in mice impairs 
both novel object recognition and spatial learning (Heldt et al., 2007). 
BDNF is sensitive to microbiota changes, as its levels are decreased by 
antibiotic treatment-induced dysbiosis (Bistoletti et al., 2019; Desbonnet 
et al., 2015) and enhanced by supplementation of probiotics, especially 
Bifidobacterium longum (Leung and Thuret, 2015). SCFAs, specifically 
butyrate, mediate these effects. For example, an interesting study sup-
plemented germ-free mice with gut microbiota from either older donors 
or from their peers and found that donation from older donors increased 
BDNF and neurogenesis, an effect specifically attributed to enrichment 
of butyrate-producing microbes following exposure to older donor 
microbiota (Kundu et al., 2019). Furthermore, probiotic administration 
of Clostridium butyricum increases butyrate, enhances CA1 BNDF, and 
can counteract cognitive decline (Liu et al., 2015). Synbiotic treatment 
of a probiotic (E. faecium) and a prebiotic (agave inulin) enhances 
butyrate production and improves specifically hippocampal-dependent 
performance in the Morris water maze, whilst not affecting a 
hippocampal-independent Pavlovian autoshaping procedure 
(Romo-Araiza et al., 2018), implying hippocampal sensitivity for 
synbiotic-induced butyrate. 

Butyrate can also influence BDNF levels by inhibiting the inflam-
matory agent NF-κβ, which can disrupt BDNF concentrations through 
regulation of IL-1β (Carlos et al., 2017). In addition, rats subjected to 
bilateral common carotid artery occlusion to induce compromised 
cognition and gut barrier function, demonstrated decreased abundance 
of SCFA producers along with decreased hippocampal SCFAs. Recolo-
nizing these rats using faecal microbiota transplantation improved gut 
barrier function and levels of hippocampal SCFAs, along with improving 
cognitive impairments (Xiao et al., 2022). Anti-inflammatory in-
teractions with hippocampal functioning are further discussed in Section 
5. 

In addition to enhancing BDNF, butyrate also inhibits histone lysine 
deacetylase, which can enhance memory through manipulation of the 
epigenome (Gräff and Tsai, 2013; Reddy et al., 2018). The epigenome 
regulates the expression of genes, including those that encode proteins 
involved in memory processes. Intrahippocampal butyrate promotes 
both consolidation and reconsolidation of spatial memory in mice 
through these acetylating properties (Villain et al., 2016) and has been 
found to enhance long term contextual fear memory (Blank et al., 2014, 
2015; Garcez et al., 2018; Levenson et al., 2004; Zhong et al., 2014) 
(however, see (Castellano et al., 2014)). A recent study further 
demonstrated that histone lysine acetylation was altered in germ-free 
mice, contributing to mitochondrial dysfunction in the hippocampus 
which may play a key role in regulating brain function and behaviour 
(Yu et al., 2021). In addition, Keogh and colleagues reported 
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antibiotic-induced dysbiosis administered at birth caused anxiolytic 
behaviour in adulthood, possibly explained by the reported dysregu-
lated myelination in the PFC and decreased hippocampal neurogenesis. 
Interestingly, butyrate administration reversed disturbances in myeli-
nation and behavioural impairments (Keogh et al., 2021). 

Summarising these studies provide evidence that microbiota-derived 
SCFAs can exert powerful mnemonic effects through distinct mecha-
nisms but human studies are lacking, which may be explained by 
experimental SCFA doses being excessively higher than any dietary fibre 
induced SCFA-change used in preclinical research (Kim et al., 2013; 
Stilling et al., 2016). Nevertheless, some indirect evidence links SCFAs 
with hippocampal functioning, as patients suffering from major 
depressive disorder (MDD) show faecal alterations in 
butyrate-producing bacteria (Jiang et al., 2015; Zheng et al., 2016), as 
well as decreased hippocampal volume and functioning (Travis et al., 
2015). On a final note, it is important to mention that conversely, SCFAs 
can modulate microbiota composition. Dietary produced SCFAs lower 
the pH which promotes certain Clostridia and impairs Bacteroidetes spp, 
which are associated with a dysbiotic and healthy composition, 
respectively (Duncan et al., 2009). It remains to be addressed how 
microbiota regulates this, and whether and when harmful effects of 
low-pH induced dysbiosis counterbalance the protective effects of SCFAs 
on hippocampal-dependent memory. 

4.2. Neurotransmitters 

Certain microbiota strains produce large quantities of substances 
identified as neurotransmitters, or their precursors, used in many 
multicellular organisms (Strandwitz, 2018). Microbiota-generated neu-
rotransmitters in the lumen mainly interact with the host ENS. These 
substances are typically unable to cross the BBB, and lumen-produced 
neurotransmitters have often not been assessed for CNS effects. How-
ever, microbiota-derived neurotransmitter precursors could have an 
impact on CNS neurotransmitter synthesis. Indeed, seminal work indi-
cated that germ-free mice show an elevated turnover of norepinephrine, 
dopamine, and serotonin in the striatum compared to SPF mice, how-
ever, no hippocampal differences were found and the origin (i.e. lumen 
or CNS) of neurotransmitters was not assessed (Diaz Heijtz et al., 2011). 
Recent interest has focussed on large neutral amino acids (LNAA) which 
are derived from many high-protein foods (Portune et al., 2016), such as 
tryptophan, a serotonin (5-HT) precursor; tyrosine, a catecholamine 
precursor; and glutamine, the precursor of glutamate and GABA. 

4.2.1. Tryptophan and serotonin 
The microbiota are considered to play a major role in tryptophan and 

serotonin metabolism (Yano et al., 2015) and early serotonergic CNS 
development (for review (Gao et al., 2018)). The microbiota can 
modulate tryptophan metabolism which dictates the amount of circu-
lating tryptophan and metabolites. Dietary-derived tryptophan can cross 
the BBB through the large amino acid transporter and participate in the 
synthesis of serotonin (5-HT) and also melatonin (Mawe and Hoffman, 
2013; Ruddick et al., 2006). Dysbiosis can decrease hippocampal 5-HT 
levels and impairs specifically hippocampal-dependent spatial memory 
(Hoban et al., 2016). Furthermore, tryptophan that accesses the CNS via 
the BBB can also exert neuroactive effects though the 
tryptophan-kynurenine pathway. Its metabolites act upon the N-meth-
yl-D-aspartate (NMDA) receptor, which mediates excitatory neuro-
transmission. Tryptophan-kynurenine metabolites, such as quinolinic 
acid (a neurotoxic NMDAR agonist) and kynurenic acid (a neuro-
protective NMDAR antagonist) can directly affect neuronal excitability 
through their NMDAR-modulating properties (O’Mahony et al., 2015; 
Schwarcz and Stone, 2017), which has been loosely associated with 
hippocampal functioning (Zwilling et al., 2011). Interestingly, 
LPS-induced inflammatory tone has been associated with the neurotoxic 
branch of kynurenine metabolism, impairing non-spatial recognition 
memory (Heisler and O’Connor, 2015), which makes it tempting to 

speculate that inflammatory tone induced by dysbiosis might exert 
similar memory-impairing effects through neurotoxic kynurenine me-
tabolites, at least in part. Conversely, probiotics can exert beneficial 
effects through tryptophan metabolites: Bifidobacterium can enhance 
plasma tryptophan and kynurenic acid (Desbonnet et al., 2008), which 
can enhance hippocampal-dependent learning (Haider et al., 2007; 
Yousefzadeh et al., 2020), and L. helveticus has been shown to restore 
hippocampal 5-HT in chronically stressed animals (Liang et al., 2015). 

In humans, several clinical populations show alterations in trypto-
phan metabolism. Patients with irritable bowel syndrome (IBS), char-
acterised by dysfunctional microbiota (Carding et al., 2015), are 
reported to have enhanced tryptophan degradation to kynurenine 
(Clarke et al., 2009), and interestingly, acutely depleting peripheral 
tryptophan enhances episodic visuospatial hippocampal-dependent 
memory in female IBS patients, but not in healthy controls (Kennedy 
et al., 2015). In patients with bipolar disorder, a higher kynurenic 
acid/3-hydroxykynurenine ratio, which is assumed to be neuro-
protective, correlates with enhanced verbal memory (Platzer et al., 
2017). In patients with depression, this ratio correlates with enhanced 
memory recall and less activity in the left hippocampus, indicating 
increased hippocampal efficiency (Young et al., 2016). In summary, 
neuroprotective tryptophan metabolites show memory-enhancing po-
tential in human clinical populations, however, therapeutic effects of 
probiotics remain to be assessed. 

4.2.2. Tyrosine and catecholamines 
Tyrosine is a catecholamine precursor, and can be produced by gut 

microbiota, in addition to many high-protein foods (Portune et al., 
2016). After crossing the BBB, tyrosine can be converted in catechol-
aminergic neurons to L-DOPA which can be decarboxylated to dopa-
mine, which can be further metabolised into norepinephrine (NE) in the 
locus coeruleus (Fernstrom, 2013). Both dopamine and NE are impli-
cated in hippocampal functioning. 

The dopaminergic system is well known for its role in fine motor 
control and reward-motivated behaviour, but dopaminergic signalling 
in the prefrontal cortex and hippocampus is also critically implicated in 
spatial working memory (Wilkerson and Levin, 1999), and is sensitive to 
microbiota (for review (González-Arancibia et al., 2019)). Microbiota 
present during early life is considered to be important for hippocampal 
dopaminergic development, although there is no consensus on the exact 
effects (Diaz Heijtz et al., 2011; Pan et al., 2019). In adult life, dysbiosis 
by chronic antibiotics induces a 2.5-fold L-DOPA increase in rats, asso-
ciated with decreased hippocampal-dependent spatial memory (Hoban 
et al., 2016). However, it remains elusive through what mechanism the 
microbiota affects dopaminergic neurochemistry. 

Noradrenergic neurons, whose cell bodies are mainly localised to the 
locus coeruleus, project densely to the hippocampus, facilitating spatial 
learning (Hansen and Manahan-Vaughan, 2015) (for review (Bor-
odovitsyna et al., 2017)). Research on microbiota effects in learning 
through NE-mechanisms has been minimal, but one study indicated that 
probiotics (L. helveticus) can restore hippocampal NE in chronically 
stressed animals (Liang et al., 2015). It is important to determine to what 
extent the microbiota can influence human hippocampal memory 
through dopaminergic and NE mechanisms, as these are implicated in 
several psychopathologies, such as addiction and schizophrenia, 
respectively. 

4.2.3. Glutamine and glutamate and gamma-aminobutyric acid (GABA) 
Glutamine is the most prevalent non-essential amino acid in the 

human body, and is found in high concentrations in the gut. Humans can 
synthesise glutamine, notably in the muscles, but it can also be diet- 
derived, or produced by bacteria, mainly by Firmicutes (Ma and Ma, 
2019). The effects of microbiota-derived glutamine have received scant 
attention, but oral glutamine supplementation can positively affect 
microbiota composition, suppress inflammation, and enhance gut apical 
tight junctions (for review (Rao and Samak, 2012)). Thus, it could be 
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speculated that synbiotic supplementation targeted at enhancing 
glutamine could also exert rescuing effects in dysbiosis, potentially 
rescuing the possible associated impaired hippocampal processing. 

Glutamine can cross the BBB through multiple transporters, that are 
thought to include system A, L, and N transporters (Albrecht and Zie-
lińska, 2019; Xiang et al., 2003). In the CNS it can be converted into 
glutamate, the main excitatory neurotransmitter of the CNS with major 
involvement in memory mechanisms. In humans, preliminary evidence 
was found using magnetic resonance spectroscopy that IBS patients 
suffering from dysbiosis have a reduced hippocampal glutamate/glut-
amine (Glx) ratio (Niddam et al., 2011), and higher Glx intensity has 
been correlated with better performance on a hippocampal-dependent 
word recall test, specifically in older adults (Nikolova et al., 2017). 
While intriguing, these observations do not demonstrate a causal rela-
tionship and more work is needed to obtain a clear understanding of the 
mechanistic impact of microbiota-derived glutamine. 

In the brain, somewhat paradoxically, glutamate is the precursor of 
GABA, the main inhibitory neurotransmitter of the CNS. GABA is 
implicated in stress-related psychopathologies and epilepsy, as well as 
having important roles in hippocampal-dependent learning (Sibbe and 
Kulik, 2017). GABA is not a dietary amino acid so its synthesis from 
glutamate is paramount. However, certain probiotic species, including 
Lactobacillus, Bifidobacterium, and Bacteroides, can produce GABA in the 
gut (Barrett et al., 2012; Strandwitz et al., 2019), but it is debated 
whether peripheral GABA can cross the BBB (for review (Boonstra et al., 
2015)). What is known is that the expression of the receptors to which 
GABA binds in the CNS can be modulated by microbiota, as probiotic 
supplementation of JB-1 altered hippocampal GABA-Aα2 and 
GABA-B1b mRNA expression (Bravo et al., 2011). Furthermore, another 
study showed that early life gut dysbiosis decreased hippocampal 
expression of GABA-A receptor α5 and δ subunits, and spatial memory in 
rodents, both of which could be rescued by a probiotic mix of Lactoba-
cillus rhamnosus and Bifidobacterium longum (Liang et al., 2017). On a 
final note, a dietary supplement of GABA with a meal has been shown to 
activate vagal afferent nerves in mice (Nakamura et al., 2022), puta-
tively providing an unexplored alternative route of microbiota-derived 
GABA on hippocampal functions. 

4.3. Summarising microbiota-metabolites-hippocampus effects 

The key message from this section is that microbes in the gut can 
produce a wide array of potentially neuroactive substances or their 
precursors. For some, such as SCFAs, the contribution of the microbiota 
and their mnemonic properties are starting to become relatively well 
described. For others, such as LNAAs—the precursors of certain 
important neurotransmitters—their production depends, at least in part, 
on microbiota composition, but precise neuroactive properties of spe-
cifically microbiota-derived LNAAs remain unknown. Furthermore, this 
is not an exhaustive list as other potentially neuroactive microbiota- 
generated substances may be recognised. Concluding, the ability of 
microbiota-derived substances to influence rodent hippocampal func-
tion, either directly or via developmental effects, is intriguing. 
Compelling evidence of how, and to what extent, they may affect human 
hippocampal-dependent learning and memory remains to be addressed. 

5. Gut-microbiota hippocampal route 4: host immunity and 
inflammation 

The gut, and therefore the microbiota, is close to the mucosal im-
mune system and key for systemic immune system development (Fung 
et al., 2017). In fact, germ-free mice show immature mucosal and sys-
temic immune systems with reduced expression of B- and T-lymphocytes 
(Macpherson and Harris, 2004). This is accompanied by significant 
behavioural consequences that can often be attributed to altered hip-
pocampal function (for a review see (Foster et al., 2017)). For example, 
immunodeficient mice show impaired hippocampal learning (Brynskikh 

et al., 2008; Smith et al., 2014) which can be ameliorated by early life 
probiotics (Smith et al., 2014). This may not be surprising given that 
microbiota and the immune systems serve to recognize potential path-
ogens and evoke an adaptive (i.e., restoring homeostasis) inflammatory 
response by eliminating the pathogenic source; which can extend into an 
inflammatory response within the brain, including the hippocampus (for 
review see (Domínguez-Rivas et al., 2021)). Furthermore, the impor-
tance of brain inflammation in the pathogenesis of cognitive decline in 
AD has become well-established (Green et al., 2020). These, together 
with other findings, have established a gut microbiota-immune-brain 
axis that is potentially relevant to hippocampal learning and memory 
(for a detailed review see also (Tang et al., 2020)). 

5.1. Microbiota supports immune system and memory function 

Commensal microbes play a crucial role in immune system devel-
opment and this effect is mediated by SCFAs, as discussed in Section 3.1 
(Erny et al., 2015; Furusawa et al., 2013). Once fully mature, the im-
mune system is activated after recognising microbial pathogens through 
specific Toll-like receptors (TLRs). TLRs are expressed on macrophages 
and dendritic cells and detect conserved molecular motifs of microor-
ganisms, such as lipopolysaccharide (LPS), which trigger the 
TLR-MyD88 signalling pathway, initiating the inflammatory response 
and result in antigen-specific immunity (Takeda et al., 2003). More 
specifically, in both human patient populations and rodents, TLR2 and 
TLR4 have been identified as key factors in recognizing microbial 
components of Gram-positive bacteria and LPS of Gram-negative bac-
teria, respectively (Cario, 2005; Takeuchi et al., 1999). Interestingly, 
inhibiting TLR2 and TLR4 expression in the hippocampus of rodents 
results in improved memory function (Kwilasz et al., 2021), indicating 
that neuroinflammatory responses can impair hippocampal functioning. 

Under normal steady-state conditions, the low-grade inflammatory 
tone maintained by commensal bacteria is crucial for baseline epithelial 
homeostasis and host protection (Rakoff-Nahoum et al., 2004; Yirmiya 
and Goshen, 2011). Of particular relevance to hippocampal function, 
gut bacteria stimulate the gut mucosal immune system, activate T 
lymphocyte function (i.e., regulate T cells) (Gaboriau-Routhiau et al., 
2009; Talham et al., 1999; Umesaki et al., 1995, 1999), and promote 
maturation, morphology, and function of microglia, which are the 
resident macrophages of the CNS and are critically implicated in hip-
pocampal functioning and neuroinflammation (Rodríguez-Iglesias et al., 
2019). As a result, gut microbiota and mucosal- and neuroinflammation 
are closely related. That is, mucosal T cell activation is associated with 
microglial activation (Nakajima et al., 2021) and microglia in the hip-
pocampus can release inflammatory cytokines, including TNFα and 
IL1β, which contribute to neurodegeneration as for example implicated 
in AD (Fang et al., 2019; Leng and Edison, 2021). 

The immunologic effects of commensal bacteria extend to the gen-
eral systemic immune system, as, for example, the microbiota can 
enhance systemic T cell responses (Hooper et al., 2012) which can 
control hippocampal LTP, neurogenesis, and memory by inducing 
cytokine activity, most notably IL6, IL1β, and TNFα (del Rey et al., 2013; 
Derecki et al., 2010; Wolf et al., 2009; for review see Tang et al., 2020). 
In the absence of infection, a low physiological baseline immune 
response activation supports hippocampal function through balancing 
levels of hippocampal excitability, plasticity-related factors, and neu-
rogenesis (Yirmiya and Goshen, 2011). 

5.2. Gut dysbiosis can induce inflammation which ultimately can impair 
memory 

Dysbiosis can lead to the impairment of hippocampal-dependent 
memory by inducing neuroinflammation through extensive mucosal- 
systemic-neuroimmunological interactions. Dysbiosis combined with 
inflammation is a hallmark of inflammatory bowel disease (IBD), such as 
ulcerative colitis and Crohn’s disease, that includes ulcers and bleeding 
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of the gut. IBD is closely related but distinct from IBS, which is a func-
tional disorder of the gastrointestinal tract with seemingly normal mu-
cosa (Spiller and Major, 2016). A rodent model of IBD exhibited reduced 
hippocampal adult neurogenesis both acutely (Takahashi et al., 2019) as 
chronically (Zonis et al., 2015) but see also (Gampierakis et al., 2020). 
Dysbiosis, caused by disease and/or stress (Bailey et al., 2011), can 
induce inflammation and macrophage dysfunction, which contribute to 
pathogenesis through inefficient clearance of pathogenic microbial 
products, dysfunctional pro- and anti-inflammatory responses, and loss 
of the intestinal barrier integrity (Fung et al., 2017), through which 
potentially pathological LPS can enter the systemic circulation 
(DeGruttola et al., 2016). This further induces the peripheral immune 
response, culminating in systemic inflammation and further gut 
dysfunction (Borre et al., 2014), which can ultimately induce neuro-
inflammation (Baizabal-Carvallo and Alonso-Juarez, 2020; Sharon 
et al., 2016) and affect hippocampal-dependent memory (Emge et al., 
2016) (however, see also (Fröhlich et al., 2016)). Mimicking dysbiosis 
by stimulating the peripheral innate immune system with LPS induces 
cytokines such as IL1β (Bilbo et al., 2005) and activates microglia 
through TLR4 signalling (Jiamvoraphong et al., 2017; Lyman et al., 
2014; Zhang et al., 2018). This inflammatory response impairs 
hippocampal-dependent LTP (Yirmiya and Goshen, 2011) and memory 
(Bilbo et al., 2005; Pugh et al., 1998; Sell et al., 2001; Zhang et al., 
2018). Importantly, the immune response is furthermore shaped by the 
HPA-axis: LPS-induced hippocampal neuroinflammation can be modu-
lated by glucocorticoids (for review (Bolshakov et al., 2021)). The 
detrimental effects of neuroinflammation seem to be especially evident 
in aged animals, as these show increased inflammatory cytokine mRNA 
expression in hippocampal regions and exhibit impaired spatial memory 
(Chen et al., 2008). 

Although the investigation of the effects of dysbiosis in experimental 
animals achieved by peripheral LPS exposure has provided key insights, 
it may not be fully representative of clinical dysbiosis; for example it 
does not mimic the altered epithelial dysregulation and metabolism. 
Inducing dysbiosis by a high-fructose diet addresses these limitations 
and causes alteration of the gut microbiome along with epithelial 
dysfunction (Kawabata et al., 2019) triggering hippocampal neuro-
inflammation and hippocampal-dependent place recognition (Fierro-
s-Campuzano et al., 2022; Hsu et al., 2015). Interestingly, diet-induced 
memory deficits correlated with both microbiota composition and hip-
pocampal expression of inflammatory markers such as IL1β and TLR4 
(Beilharz et al., 2016). Furthermore, high-fructose diet-induced hippo-
campal neuroinflammation and associated memory impairment could 
be rescued by SCFAs (Li et al., 2019). It must be noted that effects of a 
high-fructose diet on hippocampal-dependent recognition memory as 
assessed by the Morris Water Maze are still equivocal, as one study found 
an impairment (Cisternas et al., 2015), whilst others found no effect (Li 
et al., 2019; Sangüesa et al., 2018; Woodie and Blythe, 2018). These 
discrepancies might arise through subtle protocol and strain differences. 
In summary, however, it seems that gut dysbiosis can trigger systemic 
inflammation, which when left untreated can escalate into neuro-
inflammatory cytokine infiltration and/or expression in the hippocam-
pus, with impairment of hippocampal functioning. 

5.3. Prebiotics and probiotics can enhance immune function and learning 

Probiotics can produce beneficial immunomodulatory effects in 
health and disease, overall enhancing memory. Supplementation of 
probiotics, e.g. from strains of Bifidobacterium and/or Lactobacillus, de-
creases pro-inflammatory markers through systemic mechanisms (Caz-
zola et al., 2010; Groeger et al., 2013; Wagar et al., 2009), and rescue 
epithelial dysfunction (Ait-Belgnaoui et al., 2012; Hsiao et al., 2013; 
Miyauchi et al., 2012) (for review (Yousefi et al., 2019)). This may, in 
turn, reduce the inflammatory response within the hippocampus and 
improve related cognition and behaviour. For example, a specific Bifi-
dobacterium strain was found to reduce TLR2 expression in the 

hippocampus of obese mice (Agusti et al., 2018). Probiotic administra-
tion or TLR stimulation can normalise dysbiosis and rescue hippocampal 
memory through cytokines across disease models, such as 
hyperammonaemia-induced neuroinflammation (Luo et al., 2014) and 
AD (Pourbadie et al., 2018). In addition, prebiotics (Su et al., 2018) or 
synbiotics (Romo-Araiza et al., 2018) can reduce inflammatory markers 
and enhance hippocampal-dependent memory. 

Furthermore, anti-inflammatory effects have been found to be 
induced by efferent VN activity on a systemic and local level through 
activation of the “cholinergic anti-inflammatory pathway” of the 
efferent VN. The active VN stimulates acetylcholine (ACh) release in 
efferent vagal neurons, that interacts with α7 nicotinic ACh receptors on 
macrophages to inhibit the release of pro-inflammatory cytokines, 
mainly tumor necrosis factor-α (TNF α) and interleukin 1β (IL1β) (Alen, 
2022; Borovikova et al., 2000; Mizrachi et al., 2021). To our best 
knowledge, the interaction of VN activity with specifically microbiota 
composition and subsequent memory effects have not been described. 
But taken together, it seems likely that certain probiotic strains, such as 
JB-1 (Bercik et al., 2011; Bravo et al., 2011; Perez-Burgos et al., 2013), 
will decrease pro-inflammatory cytokines and thus tend to normalise 
systemic inflammation (Bonaz et al., 2018) by enhancing vagal efferent 
tone. Normalisation of inflammatory tone could enhance the gut 
epithelial apical junctional complex (Bonaz et al., 2018; Bruewer et al., 
2003; Yu et al., 2012), and potentially rescue both immune-driven 
dysbiosis (Hooper et al., 2012), and related impaired 
hippocampal-dependent memory (H.M. Jang et al., 2018; S.-E. Jang 
et al., 2018). These hypotheses warrant further studies to assess the 
contribution of probiotic strains, such as JB-1, to 
hippocampal-dependent learning mediated by the cholinergic 
anti-inflammatory pathway. 

Lastly, ‘inflammaging’, i.e., age-related increases in inflammatory 
activity (Franceschi et al., 2018) and -related spatial memory deficits 
have been found to be reversed by probiotics (e.g., a mixture of 
L. plantarum and L. curvatus (Jeong et al., 2015)). Indeed, antibiotic 
dysbiosis-induced negative effects on hippocampal neurogenesis and 
hippocampal-dependent novel object recognition can be rescued by a 
combination of exercise and a probiotic mixture, (partially) mediated by 
brain-residing Ly6Chi monocytes of the innate immune system (Möhle 
et al., 2016). These studies indicate enticing probiotic-immune-memory 
enhancing effects; however, the exact mechanistic pathways remain to 
be identified. A potential mechanism could involve a reduction in hip-
pocampal expression of IL1β and TNFα by probiotics: a herbal extract of 
New Zealand spinach reportedly prevented increases in hippocampal 
IL1β and TNFα mRNA expression in a rat model of AD, as well as 
modulating BDNF and ciliary neurotrophic factor (CNTF) (Kim et al., 
2020). 

5.4. Microbiota-gut-immune-hippocampus axis in humans 

A clinical population exhibiting pathological alterations in micro-
biota, inflammation, and impaired hippocampal-dependent learning 
includes humans defined as obese (Beilharz et al., 2015; Das, 2001). 
Microbiota composition is drastically altered in obese patients: a healthy 
human gut is dominated by a high Bacteriodetes:Firmicutes ratio, whereas 
obese patients show an inverse ratio (Jumpertz et al., 2011). Obesity is 
associated with a dysbiosis-induced inflammatory tone, which can have 
developmental impact with obese children having a decreased hippo-
campal volume (Bauer et al., 2015) and also increases probability of 
developing cognitive decline such as dementia and Alzheimer’s disease 
(AD) in later life (Bruce-Keller et al., 2009). The profound effect of 
dysbiosis is emphasised by a study showing that post mortem AD pa-
tients show three times more bacteria-derived LPS in their hippocampus, 
with more advanced cases exhibiting up to a 26-fold increases compared 
to age-matched controls (Zhao et al., 2017). Furthermore, patients 
suffering from irritable bowel syndrome (IBS) show microbial dysbiosis, 
increased gut permeability, and low-grade mucosal inflammation 
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(Holtmann et al., 2016) and lower hippocampal volumes (Labus et al., 
2014). Even in healthy humans, the medial temporal lobe (where the 
hippocampus is located) may be especially susceptible to 
bacterial-induced inflammation, as systemic inflammation induced by 
the Salmonella typhi vaccine decreases parahippocampal glucose meta-
bolism and impairs object location memory (Harrison et al., 2014). 
Taken together microbiota disruption in humans can induce systemic 
inflammation, which can profoundly affect hippocampal functioning 
through the inflammatory response. Potential immune-normalising and 
memory-protective effects of probiotics remain to be addressed. 

5.5. Summarising microbiota-gut-immune-hippocampus effects 

It is evident that pathologic or therapeutic microbiota compositions, 
by dysbiosis or probiotics respectively, influence the immune system on 
different levels. In normal conditions, the microbiota plays a key role in 
maintaining immune system homeostasis, supporting normal 
hippocampal-dependent learning and memory. Deviations through 
dysbiosis can result in epithelial dysfunction and systemic translocation 
of bacterial products, such as LPS, enhancing inflammatory tone, which 
when left untreated can culminate in neuroinflammation, impairing 
hippocampal-dependent memory. Interestingly, probiotic supplemen-
tation can exert rescuing effects, and through immune-normalising ef-
fects, improve hippocampal function. The exact underlying mechanisms 
are unknown but TLR2 and TLR4 and cytokines such as IL6, IL1β and 
TNF-α (see Tang et al., 2020), are proposed to play a key role in the 
complex dialogue between beneficial microbiota, immune function, 
epithelial integrity, neural inflammation, and neuronal plasticity. 

6. Future challenges 

In this review we have attempted to demonstrate considerable evi-
dence for multiple gut-immune-brain axes that impact on hippocampal 
function. What is apparent from this body of work is the limited 
mechanistic detail, paucity of human studies and lack of substantive 
evidence of how this interaction could be promoted for positive or 
therapeutic effects. However, based on current state of knowledge, we 
argue that the most promising strategy to enhance hippocampal learning 
and memory by manipulating the microbiota would hypothetically be to 
provide a synbiotic combination that enhances multiple—preferably 
all—routes described above, capitalising on enhancing vagal tone, 
normalising the HPA-axis, increasing SCFAs, especially butyrate, and 
decreasing inflammation. Based on interventions that improve 
hippocampal-dependent memory through these routes—that is pre-, 
probiotics, and VNS—a combination of intake of dietary fibre, Lacto-
bacillus, Bifidobacterium (Allen et al., 2016), and (t)VNS would be hy-
pothesized to have promising potential. Although this is easily testable, 
the scientific field would benefit from studies evaluating more than just 
intervention-outcome effects. 

That is, to understand, evaluate, optimise, and translate the 
microbiota-gut-brain axis in hippocampal-dependent memory (dys) 
functioning, future clinical and preclinical studies would benefit from a 
more coherent and structured approach. Based on the above, three 
major challenges in microbiota-hippocampus research seem to hamper 
progress: 1) heterogeneity of individuals with respect to microbiota 
composition and/or function and the variation this may produce in 
distribution between routes; 2) a relatively poor understanding, espe-
cially in humans, of the complex dialogue between composition, routes 
of interaction, and hippocampal functioning for specific microbiota- 
based interventions, and, as a consequence, 3) overall small effect 
sizes of microbiota-based interventions (i.e. variance in behavioural 
outcome measure explained by intervention). 

First, in current approaches, individual variability along each of the 
above 4 summarized pathways is seen as something that needs to be 
controlled for. But to eventually establish strategies for microbiota- 
based memory enhancement across individuals, perhaps individual 

variability in composition and the four routes is in fact the key. That is, 
current studies often only assess the effect of, for example, probiotic 
supplementation on hippocampal memory, but ignore two major in-
termediate steps: effect on microbiota composition and/or function, and 
modulation of the four routes. We argue that these two steps should be 
assessed per intervention. Specific antibiotic, prebiotic, or probiotic ef-
fects on alteration of microbiota composition could non-invasively be 
estimated using faecal next-generation sequencing methods, such as 
whole genome shotgun sequencing (Ranjan et al., 2016). 

Secondly, but related, future studies should specifically address how 
an intervention affects each of the four proposed routes of interaction. 
Although not each route has easily obtainable markers, and routes may 
interact: based on rodent studies plasma can be monitored throughout 
the intervention for stress response, such as cortisol/corticosterone, 
metabolic markers, especially butyrate, 5-HT and kynurenine metabo-
lites, and host immune system by expression of TLR2 and TLR4 and pro- 
and anti-inflammatory markers, such as IL-1β, IL-6, and TNFα. To the 
best of our knowledge, there are no robust plasma biomarkers for vagal 
tone, but a molecular candidate could be pancreatic polypeptide, as this 
exclusively enteroendocrine cell (EEC)-expressed peptide is critically 
regulated by the vagus (Holzer et al., 2012; Schwartz et al., 1978). A 
robust alternative in rodents would be to measure tone invasively in vivo 
or ex vivo (e.g. as per (Buckley and O’Malley, 2018)). In humans, efferent 
(i.e., descending) vagal tone can be monitored non-invasively, albeit 
indirectly, by heart rate variability (e.g. as per (Pellissier et al., 2014)). 
Afferent (i.e., ascending gut-to-brain) vagal tone may be marked by 
scalp-recorded vagus-evoked potentials (Usami et al., 2013). Overall, 
these biomarkers should be confirmed, and establishing a plasma 
biomarker for vagal tone over time would be particularly practical. 
Combining information per specific microbiota-based intervention on 
changes of gut composition, route-markers, and performance of a bat-
tery of hippocampal-dependent cognitive tests would not only aid in 
allowing more variation in outcome measures to be explained, but also 
aid in the establishment of pre- and probiotics as personalised medicine 
based on composition and route-markers at baseline. 

A note on diet. Contrary to cage-kept rodents, human diet is difficult 
to assess and/or control reliably. On the one hand, a standardised uni-
form diet enhances comparability between studies and labs for rodent 
studies, but on the other, uniform nutrition can be argued to impair 
translation to humans, who typically follow diverse eating habits. 
Importantly, diet significantly affects both microbiota composition 
(Bibbò et al., 2016; Magnusson et al., 2015) and hippocampal func-
tioning (Magnusson et al., 2015; Proctor et al., 2017; Provensi et al., 
2019; Pyndt Jørgensen et al., 2014), thus unvarying provision of a 
standard diet can be regarded as a restricting factor. For example, mice 
fed with 50% lean ground beef show increased microbiota diversity, 
physical activity, and hippocampal-dependent memory performance (Li 
et al., 2009) and even the beneficial effects of probiotics can be 
diet-dependent (Beilharz et al., 2018; Ohland et al., 2013). 

The characterisation of the effects of specific dietary variations is an 
important challenge for future research and could help establish a 
standardised diet that includes variety. A standardised yet diverse diet 
would enhance the translatability of rodent microbe-gut-brain studies 
whilst ensuring comparability between labs. Whilst this is no easy 
endeavour, diet is an intrinsic part of the microbiota-gut-brain axis 
paradigm shift, and hence we argue that the time is overdue for dis-
cussing the standardisation of a diverse diet within microbiota- 
hippocampus animal research. In fact, diet and food-related behaviour 
may be key to understanding why gut microbiota would affect learning 
and memory. For example, taking an evolutionary perspective, if one 
assumes microbiota are sensitive to dietary changes (Conlon and Bird, 
2014; Scott et al., 2013), such changes will logically enhance 
hippocampal-dependent episodic and spatial memory as this would 
improve remembering beneficial food-predicting cues and food source 
locations, which are essential to survival. 
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6.1. Conclusion 

The human brain, with its 86 • 109 neurons, is considered the most 
complex structure in the universe. The incredible amount of 100 • 1012 

prokaryotic organisms colonising the human gut, which across in-
dividuals consists of tens of thousands of different species that together 
express 10 million genes, appears to be serious competition. Converging 
evidence indicates that these two highly complex systems interact. In 
studies of psychopathology, the beneficial effects of probiotics, and 
detrimental effects of dysbiosis have generally translated relatively well 
to humans (Sarkar et al., 2016; Wang et al., 2016). Interestingly, capi-
talising specifically on hippocampal memory and learning, animal 
studies have also provided evidence that overall, memory can be 
enhanced or impaired by pre- and probiotics or dysbiosis, respectively. 

However, this interaction is poorly understood, which hampers 
optimisation of microbiota-based memory enhancing effects and trans-
lation of these effects to humans. This review aimed to provide a 
structured understanding of microbe-hippocampus interaction and 
argue that this should be understood in four main routes in rodents: 
through the tenth cranial or vagus nerve, modulation of the adaptive 
stress hypothalamus-pituitary-adrenal axis, through production of 
neuroactive substances and their precursors, and by modulation of host 
immunity and inflammation. These routes should not be interpreted as 
isolated concepts, as processes and key molecules can overlap, painting 
an overall complex and variable picture, see Fig. 1. Importantly, major 
questions as to specific underlying mechanisms and interactions be-
tween these routes, and microbiota-strain specific effects, which might 
critically depend on host-specific characteristics (e.g. psychopathology, 
but also microbiota composition at baseline and diet), remain to be 
answered. And even though enthusiasm and optimism for beneficial 
effects of microbiota-based interventions are likely well-placed, impor-
tant questions as to the precise underlying mechanisms, avenues for 
optimisation, and true translational value remain to be addressed in 
order to ultimately develop tailored strategies for microbiota-based 
enhancement of hippocampal-dependent memory and learning across 
human populations. 
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Bohórquez, D.V., 2018. A gut-brain neural circuit for nutrient sensory transduction. 
Sci. (N. Y., N. Y. ) 361 (6408), eaat5236. https://doi.org/10.1126/science.aat5236. 

Kawabata, K., Kanmura, S., Morinaga, Y., Tanaka, A., Makino, T., Fujita, T., Arima, S., 
Sasaki, F., Nasu, Y., Tanoue, S., Hashimoto, S., Ido, A., 2019. A high‑fructose diet 
induces epithelial barrier dysfunction and exacerbates the severity of dextran sulfate 
sodium‑induced colitis. Int. J. Mol. Med. 43 (3), 1487–1496. https://doi.org/ 
10.3892/ijmm.2018.4040. 

Kelly, J.R., Allen, A.P., Temko, A., Hutch, W., Kennedy, P.J., Farid, N., Murphy, E., 
Boylan, G., Bienenstock, J., Cryan, J.F., Clarke, G., Dinan, T.G., 2017. Lost in 
translation? The potential psychobiotic Lactobacillus rhamnosus (JB-1) fails to 
modulate stress or cognitive performance in healthy male subjects. Brain, Behav., 
Immun. 61, 50–59. https://doi.org/10.1016/j.bbi.2016.11.018. 

Kennedy, P.J., Clarke, G., O’Neill, A., Groeger, J.A., Quigley, E.M.M., Shanahan, F., 
Cryan, J.F., Dinan, T.G., 2014. Cognitive performance in irritable bowel syndrome: 
Evidence of a stress-related impairment in visuospatial memory. Psychol. Med. 44 
(7), 1553–1566. https://doi.org/10.1017/S0033291713002171. 

Kennedy, P.J., Allen, A.P., O’Neill, A., Quigley, E.M.M., Cryan, J.F., Dinan, T.G., 
Clarke, G., 2015. Acute tryptophan depletion reduces kynurenine levels: 
Implications for treatment of impaired visuospatial memory performance in irritable 
bowel syndrome. Psychopharmacology 232 (8), 1357–1371. https://doi.org/ 
10.1007/s00213-014-3767-z. 

Keogh, C.E., Kim, D.H.J., Pusceddu, M.M., Knotts, T.A., Rabasa, G., Sladek, J.A., 
Hsieh, M.T., Honeycutt, M., Brust-Mascher, I., Barboza, M., Gareau, M.G., 2021. 
Myelin as a regulator of development of the microbiota-gut-brain axis. Brain, Behav., 
Immun. 91, 437–450. https://doi.org/10.1016/j.bbi.2020.11.001. 

Kim, D.S., Ko, B.-S., Ryuk, J.A., Park, S., 2020. Tetragonia tetragonioides protected 
against memory dysfunction by elevating hippocampal amyloid-β deposition 
through potentiating insulin signaling and altering gut microbiome composition. Int. 
J. Mol. Sci. 21 (8), 2900. https://doi.org/10.3390/ijms21082900. 

Kim, J.J., Song, E.Y., Kosten, T.A., 2006. Stress effects in the hippocampus: synaptic 
plasticity and memory. Stress (Amst., Neth. ) 9 (1), 1–11. https://doi.org/10.1080/ 
10253890600678004. 

Kim, S.W., Hooker, J.M., Otto, N., Win, K., Muench, L., Shea, C., Carter, P., King, P., 
Reid, A.E., Volkow, N.D., Fowler, J.S., 2013. Whole-body pharmacokinetics of HDAC 
inhibitor drugs, butyric acid, valproic acid and 4-phenylbutyric acid measured with 
carbon-11 labeled analogs by PET. Nucl. Med. Biol. 40 (7), 912–918. https://doi. 
org/10.1016/j.nucmedbio.2013.06.007. 

Koh, A., De Vadder, F., Kovatcheva-Datchary, P., Bäckhed, F., 2016. From dietary fiber to 
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Bifidobacterium CECT 7765 modulates early stress-induced immune, 
neuroendocrine and behavioral alterations in mice. Brain, Behav., Immun. 65, 
43–56. https://doi.org/10.1016/j.bbi.2017.05.011. 

Murphy, A.J., O’Neal, A.G., Cohen, R.A., Lamb, D.G., Porges, E.C., Bottari, S.A., Ho, B., 
Trifilio, E., DeKosky, S.T., Heilman, K.M., Williamson, J.B., 2023. The effects of 
transcutaneous vagus nerve stimulation on functional connectivity within semantic 
and hippocampal networks in mild cognitive impairment. Neurotherapeutics 20 (2), 
419–430. https://doi.org/10.1007/s13311-022-01318-4. 

Nakajima, S., Tanaka, R., Yamashiro, K., Chiba, A., Noto, D., Inaba, T., Kurita, N., 
Miyamoto, N., Kuroki, T., Shimura, H., Ueno, Y., Urabe, T., Miyake, S., Hattori, N., 
2021. Mucosal-associated invariant T cells are involved in acute ischemic stroke by 
regulating neuroinflammation. J. Am. Heart Assoc.: Cardiovasc. Cerebrovasc. Dis. 10 
(7), e018803 https://doi.org/10.1161/JAHA.120.018803. 

Nakamura, U., Nohmi, T., Sagane, R., Hai, J., Ohbayashi, K., Miyazaki, M., Yamatsu, A., 
Kim, M., Iwasaki, Y., 2022. Dietary gamma-aminobutyric acid (GABA) induces 
satiation by enhancing the postprandial activation of vagal afferent nerves. Nutrients 
14 (12). https://doi.org/10.3390/nu14122492. 

Neufeld, K., Kay, S., Bienenstock, J., 2018. Mouse strain affects behavioral and 
neuroendocrine stress responses following administration of probiotic lactobacillus 
rhamnosus JB-1 or traditional antidepressant fluoxetine. Front. Neurosci. 12, 294. 
https://doi.org/10.3389/fnins.2018.00294. 

Neves, G., Cooke, S.F., Bliss, T.V.P., 2008. Synaptic plasticity, memory and the 
hippocampus: a neural network approach to causality. Nat. Rev. Neurosci. 9 (1), 
65–75. https://doi.org/10.1038/nrn2303. 

Nicholson, J.K., Holmes, E., Kinross, J., Burcelin, R., Gibson, G., Jia, W., Pettersson, S., 
2012. Host-gut microbiota metabolic interactions. Sci. (N. Y., N. Y. ) 336 (6086), 
1262–1267. https://doi.org/10.1126/science.1223813. 

Niddam, D.M., Tsai, S.-Y., Lu, C.-L., Ko, C.-W., Hsieh, J.-C., 2011. Reduced hippocampal 
glutamate-glutamine levels in irritable bowel syndrome: Preliminary findings using 
magnetic resonance spectroscopy. Am. J. Gastroenterol. 106 (8), 1503–1511. 
https://doi.org/10.1038/ajg.2011.120. 

Nikolova, S., Stark, S.M., Stark, C.E.L., 2017. 3T hippocampal glutamate-glutamine 
complex reflects verbal memory decline in aging. Neurobiol. Aging 54, 103–111. 
https://doi.org/10.1016/j.neurobiolaging.2017.01.026. 

O’Leary, O.F., Ogbonnaya, E.S., Felice, D., Levone, B.R., C Conroy, L., Fitzgerald, P., 
Bravo, J.A., Forsythe, P., Bienenstock, J., Dinan, T.G., Cryan, J.F., 2018. The vagus 
nerve modulates BDNF expression and neurogenesis in the hippocampus. Eur. 
Neuropsychopharmacol.: J. Eur. Coll. Neuropsychopharmacol. 28 (2), 307–316. 
https://doi.org/10.1016/j.euroneuro.2017.12.004. 

O’Mahony, S.M., Marchesi, J.R., Scully, P., Codling, C., Ceolho, A.-M., Quigley, E.M.M., 
Cryan, J.F., Dinan, T.G., 2009. Early life stress alters behavior, immunity, and 
microbiota in rats: Implications for irritable bowel syndrome and psychiatric 
illnesses. Biol. Psychiatry 65 (3), 263–267. https://doi.org/10.1016/j. 
biopsych.2008.06.026. 

O’Mahony, S.M., Clarke, G., Borre, Y.E., Dinan, T.G., Cryan, J.F., 2015. Serotonin, 
tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 277, 
32–48. https://doi.org/10.1016/j.bbr.2014.07.027. 

Ohland, C.L., Kish, L., Bell, H., Thiesen, A., Hotte, N., Pankiv, E., Madsen, K.L., 2013. 
Effects of Lactobacillus helveticus on murine behavior are dependent on diet and 
genotype and correlate with alterations in the gut microbiome. 
Psychoneuroendocrinology 38 (9), 1738–1747. https://doi.org/10.1016/j. 
psyneuen.2013.02.008. 

Oldendorf, W.H., 1973. Carrier-mediated blood-brain barrier transport of short-chain 
monocarboxylic organic acids. Am. J. Physiol. 224 (6), 1450–1453. https://doi.org/ 
10.1152/ajplegacy.1973.224.6.1450. 

Olejniczak, P.W., Fisch, B.J., Carey, M., Butterbaugh, G., Happel, L., Tardo, C., 2001. The 
effect of vagus nerve stimulation on epileptiform activity recorded from 
hippocampal depth electrodes. Epilepsia 42 (3), 423–429. https://doi.org/10.1046/ 
j.1528-1157.2001.10900.x. 

Opitz, B., 2014. Memory function and the hippocampus. Front. Neurol. Neurosci. 34, 
51–59. https://doi.org/10.1159/000356422. 

Pan, J.-X., Deng, F.-L., Zeng, B.-H., Zheng, P., Liang, W.-W., Yin, B.-M., Wu, J., Dong, M.- 
X., Luo, Y.-Y., Wang, H.-Y., Wei, H., Xie, P., 2019. Absence of gut microbiota during 
early life affects anxiolytic Behaviors and monoamine neurotransmitters system in 
the hippocampal of mice. J. Neurol. Sci. 400, 160–168. https://doi.org/10.1016/j. 
jns.2019.03.027. 

Papalini, S., Michels, F., Kohn, N., Wegman, J., van Hemert, S., Roelofs, K., Arias- 
Vasquez, A., Aarts, E., 2018. Stress matters: Randomized controlled trial on the effect 
of probiotics on neurocognition. Neurobiol. Stress 10. https://doi.org/10.1016/j. 
ynstr.2018.100141. 

Park, A.J., Collins, J., Blennerhassett, P.A., Ghia, J.E., Verdu, E.F., Bercik, P., Collins, S. 
M., 2013. Altered colonic function and microbiota profile in a mouse model of 
chronic depression. Neurogastroenterol. Motil.: Off. J. Eur. Gastrointest. Motil. Soc. 
25 (9), 733–e575. https://doi.org/10.1111/nmo.12153. 

Pascale, A., Marchesi, N., Marelli, C., Coppola, A., Luzi, L., Govoni, S., Giustina, A., 
Gazzaruso, C., 2018. Microbiota and metabolic diseases. Endocrine 61 (3), 357–371. 
https://doi.org/10.1007/s12020-018-1605-5. 

Pellissier, S., Dantzer, C., Mondillon, L., Trocme, C., Gauchez, A.-S., Ducros, V., 
Mathieu, N., Toussaint, B., Fournier, A., Canini, F., Bonaz, B., 2014. Relationship 
between Vagal Tone, Cortisol, TNF-Alpha, Epinephrine and Negative Affects in 
Crohn’s Disease and Irritable Bowel Syndrome. PLoS ONE 9 (9). https://doi.org/ 
10.1371/journal.pone.0105328. 

Perez-Burgos, A., Wang, B., Mao, Y.-K., Mistry, B., McVey Neufeld, K.-A., Bienenstock, J., 
Kunze, W., 2013. Psychoactive bacteria Lactobacillus rhamnosus (JB-1) elicits rapid 
frequency facilitation in vagal afferents. Am. J. Physiol. Gastrointest. Liver Physiol. 
304 (2), G211–220. https://doi.org/10.1152/ajpgi.00128.2012. 

Platzer, M., Dalkner, N., Fellendorf, F.T., Birner, A., Bengesser, S.A., Queissner, R., 
Kainzbauer, N., Pilz, R., Herzog-Eberhard, S., Hamm, C., Hörmanseder, C., 
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