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Abstract: Micro- and nano-plastics (MNPs) pollution has become a pressing global environmental 1 

issue, with growing concerns regarding its impact on human health. However, evidence of the 2 

effects of MNPs on human health remains limited. This paper reviews the three routes of human 3 

exposure to MNPs, which include ingestion, inhalation, and dermal contact. It further discusses the 4 

potential routes of translocation of MNPs in human lungs, intestines and skin, and analyses the 5 

potential impact of MNPs on the homeostasis of human organ systems, and provides an outlook on 6 

future research priorities for MNPs in human health. There is growing evidence that MNPs are 7 

present in human tissues or fluids. Lab studies, including in vivo animal models and in vitro human-8 

derived cell cultures, revealed that MNPs exposure could negatively affect human health. MNPs 9 

exposure could cause oxidative stress, cytotoxicity, disruption of internal barriers like the intestinal, 10 

the air-blood and the placental barrier, tissue damage, as well as immune homeostasis imbalance, 11 

endocrine disruption, and reproductive and developmental toxicity. Limitedly available 12 

epidemiological studies suggest that disorders like lung nodules, asthma, and blood thrombus might 13 

be caused or exacerbated by MNPs exposure. However, direct evidence for the effects of MNPs on 14 

human health is still scarce, and future research in this area is needed to provide quantitative support 15 

for assessing the risk of MNPs to human health. 16 

Keywords: Micro- and nano-plastics; Environmental exposure; Human system homeostasis; Health 17 

effects; Risk assessment 18 
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1. Introduction 20 

Microplastics (MPs) are plastic fragments with a particle size of ≤5 mm, while nanoplastics 21 

(NPs) are typically considered to have a particle size of ≤1 μm [1]. Despite consistent efforts to 22 

reduce plastic manufacturing and enhance plastic recycling, an estimated 250 million metric tons 23 

(Mt) of plastic waste will enter the aquatic system and 460 million Mt will enter the soil system 24 

from 2016 to 2040 [2]. Plastic waste that enters the environment includes primary micro- and 25 

nanoplastics (MNPs), such as those added to personal care and cosmetic products [3], as well as 26 

secondary MNPs produced by the fragmentation of larger plastics through physical, chemical and 27 

biological processes [4]. MNPs are ubiquitous in the global biosphere and can be found in oceans 28 

[5], lakes [6], rivers [7], indoor air [8], outdoor air [9], and soil [10], as well as in seafood [11], 29 

drinking water [12], beverages [13], and salt [14].  30 

Humans are inevitably and continuously exposed to MNPs, raising concern about their 31 

potential risk to human health [15-19]. However, it is unclear whether MNPs directly affect human 32 

health, due to limitations in human tissue sampling, lack of epidemiological investigations and of 33 

in situ detection methods. Current studies have shown that MNPs not only exhibit particulate 34 

toxicity to organisms but also induce chemical toxicity [20, 21]. The toxicity of particles with similar 35 

sizes to MNPs, such as PM10 (aerodynamic equivalent diameter less than 10 μm), PM2.5 36 

(aerodynamic equivalent diameter less than 2.5 μm), and engineered nanoparticles, has extensively 37 

been studied [22]. Epidemiological studies have shown a significant correlation between PM2.5 and 38 

human respiratory morbidity and mortality [22]. In addition, long-term exposure to engineered 39 

nanoparticles can cause lung damage and cardiovascular disease [23]. To date, there is a paucity of 40 

epidemiological studies examining the potential health effects of MNPs in humans. However, 41 

available evidence from in vitro studies using human cells and in vivo studies using animal models, 42 

such as mice and rats, indicates that exposure to MNPs may induce inflammation, oxidative stress, 43 

cytotoxicity and respiratory disease [24, 25]. Moreover, it is important to note that MNPs not only 44 

contain a range of plastic additives, including dyes, plasticizers, and antioxidants, but also serve as 45 

carriers of persistent organic chemicals, heavy metals, and pathogenic microorganisms, all of which 46 
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can be toxic and have potential carcinogenic and mutagenic effects on human health [20, 26]. There 47 

is thus an urgent need to understand the potential impact of MNPs on human health. 48 

We collected and analyzed the available literature mostly published before June 2023 based on 49 

the database of Web of Science, ScienceDirect and Google Scholar using the keyword 50 

“microplastics” OR “nanoplastic”, and the articles were grouped with different categories including 51 

“atmosphere or air”, “seafood, drinking water, salt, sugar or honey”, “translocation or 52 

accumulation”, “system, lung, intestinal or placenta”, and “toxicity, human, cell or rat” to 53 

summarize the new progresses. We found that MNPs have been detected not only in human feces 54 

[27], urine [28], and sputum [29] but also in the lungs [30] and intestines [31]. Moreover, they have 55 

been found to enter the blood [32], thrombus [33], closed body fluids [34], liver [35], and even the 56 

placenta [36]. Meanwhile, the number of studies on the impact of MNPs on the health of model 57 

animals or human cells has exponentially increased, yielding fresh insights into our understanding 58 

of the effects of MNPs on human health. This review aims to discuss the exposure pathways of 59 

MNPs, the potential uptake, transport, and accumulation mechanisms of MNPs in the human body, 60 

and the potential toxicity to human organ systems. By summarizing current knowledge, this review 61 

hope to provide insights for further research to better understand the impact of MNPs on human 62 

health.  63 

2. Pathways of exposure of MNPs to humans 64 

In order to evaluate the impact of MNPs on human health, it is crucial to elucidate the pathways 65 

and levels of human exposure. The three primary routes of human exposure to MNPs are inhalation, 66 

ingestion, and dermal contact. Therefore, it is imperative to thoroughly investigate these pathways 67 

and their associated exposure levels to accurately assess the potential risks and hazards of MNPs to 68 

human health. 69 

2.1. Inhalation 70 

2.1.1. Indoor air  71 
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It is estimated that individuals spend approximately 89% of their daily time indoors, 72 

highlighting the significance of MNPs concentration in indoor air to human health [8]. The different 73 

functions of indoor spaces affect the abundance of MNPs. In Paris, the abundance of MPs ranged 74 

1.1–18.2 fibers/m3 in apartment air and 4.0–59.4 fibers/m3 in offices [9]. In nail salons, the 75 

abundance of MPs in the environment is 46 particles/m3 [37]. The deposition rate of MPs also varies 76 

in different indoor environments, with the highest in the home [up to 1.96 × 104 particles/(m2·day)] 77 

and lowest in the classroom [6.20 × 103 particles/(m2·day)] [38]. Zhang et al. [8] detected 5.5 times 78 

as many MPs in the dormitory air [9.9 × 103 particles/(m2·day)] as in the office [1.8 × 103 79 

particles/(m2·day)]. The abundance or deposition rate of MPs in indoor air can vary significantly 80 

from room to room. This variation is primarily influenced by factors such as the room’s function, 81 

the flow of people, and the concentration of MPs in the outdoor air [8]. The variability can be 82 

attributed to differences in the detection methods employed by researchers [8, 9]. Additionally, Zhan 83 

et al. [39] detected an abundance of MPs in the indoor air of electronic waste dismantling facilities, 84 

ranging from 2.6 to 11 particles/m3. These MNPs pose a greater risk to human health, as they may 85 

contain flame retardants, heavy metals, or poly-brominated diphenyl ethers (PBDEs). Currently, 86 

researchers mainly used two methods of collection, active and passive sampling, but the data from 87 

both methods cannot be compared because passive sampling can only respond to the amount of 88 

MNPs that can be deposited in the air [40]. At present, the majority of MPs in indoor air are fiber 89 

with sizes >20 μm [41]. Future research needs to focus on MNPs with particle sizes <2.5 μm, as 90 

suspended MNPs with smaller particle sizes are more easily inhaled by people.  91 

Infants or children tend to spend more time indoors compared to adults [42]. However, the 92 

abundance of MPs in indoor air below 1 m is very poorly documented. In addition, infants and 93 

children are more likely to inhale or ingest indoor dust, which also contains high levels of MPs. 94 

Concentrations of polyethylene terephthalate (PET) and polycarbonate (PC) in indoor dust in 12 95 

countries ranged from 38 to 1.2 × 105 μg/g and < 0.11 to 1,700 μg/g, respectively [43]. In Shiraz, 96 

the abundance of MPs in school dust was 195 particles/g [44]. Therefore, different living situations 97 

and ages need to be considered when assessing the health risks of MNPs in indoor air to humans. 98 
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2.1.2. Outdoor air 99 

The outdoor environment is more extensive, and the air is more mobile than indoors. The 100 

concentration of MNPs is generally lower in the outdoor environment compared to indoors. In 101 

Wenzhou, China, the outdoor abundance of MPs (189 ± 85 particles/m3) was one order of magnitude 102 

lower than indoors (1,583 ± 1,180 particles/m3) [45]. Similarly, in Paris, France, the abundance of 103 

MPs in indoor and outdoor air range 1–60 particles/m3 and 0.3–1.5 particles/m3, respectively [9]. 104 

The abundance of MPs in outdoor air exhibited regional differences, with MPs being more abundant 105 

in urban air than in rural air, and in northern Chinese cities than in southern cities [45, 46]. For 106 

example, Liu et al. [47] estimated that Shanghai residents inhaled approximately 21 particles/day 107 

outdoors, while in Wenzhou, urban residents inhaled 3,360 particles/day from outdoor air, and 1,515 108 

particles/day for rural residents [45]. MPs in outdoor air have a considerably smaller impact on 109 

human health than in indoor air. However, further investigation of the concentrations of MNPs in 110 

the air around sites such as roads, construction sites or landfills is needed to assess the potential 111 

health risks of MNPs to people living or working in these environments. 112 

Based on the above information, people are constantly inhaling MNPs, but the amount of 113 

MNPs inhalation into the body remains uncertain. Zhang et al. [48] roughly estimated the annual 114 

human inhalation of MPs through indoor and outdoor air to be 1.9×103–1.0×105 and 0–3.0×107 115 

particles, respectively. However, they overlooked the variations in daily respiration rates among 116 

different demographic groups, including men and women, as well as adults and children. Cox et al. 117 

[42] further subdivided the population, with the highest amount of MPs inhaled annually by adult 118 

males at 6.2 × 104 particles and the lowest amount by female children at 3.9 × 104 particles. However, 119 

there is still a great gap between the current estimate and the actual amount of MNPs inhaled by 120 

human beings. On the one hand, human beings will still exhale some of the MNPs when they breathe 121 

out, and on the other hand, the concentration of NPs in the air is still unknown in general. 122 

2.2. Ingestion 123 

2.2.1. Seafood 124 
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MNPs have been found in over 690 marine species, including the seafood humans regularly 125 

consume, such as fish, mollusks, and crustaceans [49-51]. Nearly half of the 338 fish species 126 

investigated contained MPs, with an average abundance of 3.5 ± 0.8 particles/fish [52]. MPs are 127 

predominantly detected in fish intestines but rarely in fish meat [52]. In contrast, mollusks such as 128 

oysters, mussels, and clams are consumed whole by humans. The highest abundance of MPs in 129 

oysters is 99.9 particles/individual in some waters with high MP contamination [53]. Mollusks 130 

obtained on the market contain fewer MPs than mollusks caught directly, presumably because the 131 

marketed soft-bodied creatures have been cleaned [54]. Crustaceans, such as crabs and shrimp, also 132 

have edible and inedible parts. The inedible parts (4.4 particles/animal) primarily consist of the 133 

stomach and gills, which contain an average concentration of MPs four times that of the edible parts 134 

(1.2 particles/animal) [55]. To minimize exposure, it is advisable not to consume the intestines and 135 

stomachs of shrimp or crab. Additionally, when assessing human exposure to MPs through seafood 136 

consumption, it is crucial to focus on the edible portion of the seafood for a more accurate evaluation. 137 

2.2.2. Drinking water and beverages 138 

There are significant differences in the abundance of MPs found in tap and bottled water (Table 139 

1). Oßmann et al. [56] detected that the abundance of MPs in bottled water is up to 2,649 ± 2,857 140 

particles/L in single-use PET bottles and 6,292 ± 10,521 particles/L in glass bottles, which is by far 141 

the highest abundance of MPs in bottled water [57]. Therefore, in addition to the packaging itself, 142 

other sources of contamination must also be considered, such as cleaning, packaging, and transport. 143 

The majority of MPs in bottled water have a particle size between 1 and 5 μm [57]. Overall, the 144 

abundance of MPs in tap water was lower than in bottled water, with the current maximum 145 

abundance of MPs in tap water being 930 particles/L [58]. The effort of boiling tap water before 146 

drinking fails to diminish the number of MNPs in the water [59]. Based on the available data, 147 

Danopoulos et al. [12] estimated that the maximum annual intake of MPs for adults from consuming 148 

tap water and bottled water was 4.58 × 105 and 3.57 × 107 particles, respectively.  149 

MNPs also have been detected in beer, tea, soft drink, and milk [13, 60, 61]. The most essential 150 

component of beverages is water, and the presence of MNPs in water can lead to beverage 151 
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contamination. Shruti et al. [60] investigated four beverage categories, and the most contaminated 152 

with MPs was beer (less than 28 ± 5.29 particles/L). Li et al. [13] investigated 15 brands of beer 153 

from various nations and detected that the abundance of MPs ranged from 1.2 × 104 to 9.7 × 104 154 

particles/L. This is mainly due to the different identification methods used. Shuri et al. [60] did not 155 

count MPs <100 μm using microscopy, whereas Li et al. [13] counted all MPs <5 mm using 156 

microscopic Raman. In addition, tea also contains MPs, especially when brewed in tea bags. During 157 

the brewing process, around 50 plastic particles per tea bag will detach from the tea bags and fall 158 

into the tea [62]. Milk and related dairy derivatives are one of the human body’s primary sources of 159 

protein and calcium, but are currently contaminated with MPs [63, 64]. The abundance of MPs in 160 

milk varies considerably from country to country, with 3–11 particles/L in Brazil [63], 164–427 161 

particles/L in India [64], and 2.04 × 103–1.0 × 104 particles/L in Switzerland [61]. In the future, 162 

continuous monitoring of MNPs in drinking water and beverages will be of utmost importance. 163 

Equally vital will be the establishment of appropriate standards for bottled water to effectively 164 

regulate the levels of MNPs. 165 

2.2.3. Salt, sugar, and honey 166 

MNPs are present not only in food, but also in food spices like salt, sugar, and honey (Table 1) 167 

[14, 65, 66]. MNPs are commonly found in different types of salt, including sea salt, rock salt, and 168 

lake salt, with an abundance range from 0 to 39.8 particles/g and predominantly presenting a fibrous 169 

and fragmented shape [67, 68]. The annual intake of MPs through salt consumption by adults ranges 170 

from 35.8 to 36,172 particles [68]. Sugar and honey also have been found to be contaminated with 171 

MNPs. In Bangladesh, MPs were detected in all sugar samples, with a mean abundance of 344 ± 32 172 

particles/g [65]. The abundance of MPs in honey was relatively low at 22–114 particles/L [66]. 173 

Other food spices (cooking oil, monosodium glutamate and soy sauce) also need to be examined for 174 

the presence of MNPs to ensure food safety.  175 

2.2.4. Crops and livestock 176 

At present, MNP contamination in crops and livestock remains unknown. However, laboratory 177 
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studies have shown that crops can take up MNPs. In hydroponic experiments, wheat (Triticum 178 

aestivum L.), lettuce (Lactuca sativa), and carrots (Kurodagosun) could take up MNPs [69, 70]; 179 

Moreover, in soil experiments, MNPs were taken up by lettuce (Lactuca sativa), rice (Oryza sativa 180 

L.) and peanut (Arachis hypogaea L.) and accumulated in the stems and leaves of lettuce, the seeds 181 

of rice and the peanut [71, 72]. These results raise concerns about crops in heavily MNP-182 

contaminated soils. Although crops tend to absorb few MNPs under natural exposure, long-term 183 

consumption of crops containing MNPs may adversely affect human health. Livestock is not 184 

immune to MNP contamination, with about 46 particles/gizzards in chicken in the family yard [73]. 185 

MPs were also detected in edible snails (Helix pomatia) [74]. Therefore, it is crucial to pay attention 186 

to the risk of human exposure to MNPs through the food chain, particularly to NPs, which are more 187 

likely to be transmitted through the food chain and have biomagnification effects. 188 

Furthermore, the rice or meat that we purchase in our daily lives is directly sourced from the 189 

market, making them susceptible to MNP contamination during production, packaging, or 190 

transportation processes [75, 76]. Dessì et al. [75] detected MPs in all 52 rice samples from Australia, 191 

and the average concentration of MPs in rice was 67 ± 26 μg/g dry weight. Kedzierski et al. [76] 192 

also detected MPs in packaged meat with abundances ranging from 4.0 to 18.7 particles/kg. The 193 

researchers also discovered that rinsing rice with water was effective in significantly reducing MP 194 

contamination [75]. However, it was observed that MPs on the surface of packaged meat were more 195 

difficult to remove through simple rinsing due to their stronger adhesion to the meat [76]. Therefore, 196 

washing food before consumption is necessary, especially for packaged meats that need to be 197 

carefully cleaned. 198 

The assessment of MNPs ingested via the ingestion exposure pathway is inherently more 199 

complex than inhalation, mainly due to the wide range of food types consumed by humans. A recent 200 

review has attempted to extrapolate to human exposures, reporting annual ingestion of (0–5.5)×104 201 

particles (seafood) [77], (0–4.7)×103 particles (drinking water) [48], (0–7.3)×104 particles (table 202 

salt) [48] and a mean amount of 1.9×1010 particles (fruit and vegetables) [78]. Furthermore, the 203 

ingestion of MPs through dust should not be overlooked. According to estimates, adults have an 204 
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annual intake of 4.0 × 102–2.5 × 104 particles, while infants and young children have an annual 205 

intake of 7.2×102–4.5×104 particles [79]. However, there is a lack of investigations on the 206 

concentration of MNPs in foods such as vegetables, fruits, rice, wheat or meat. Moreover, these 207 

foods are essential components of the human diet, making it challenging to accurately estimate the 208 

amount of MNPs ingested through dietary intake at present. Therefore, it is crucial to take into 209 

account the dietary composition of the local population and the concentration of MNPs in food when 210 

evaluating the MNP intake among individuals. 211 

2.3. Dermal contact 212 

Human skin is directly exposed to MNPs, which can be detected in personal care products, 213 

such as toothpaste, hand soap, face wash, and sunscreen [80, 81]. Prior to 2018, MNPs were used 214 

in large quantities in personal protective equipment to replace natural substances such as pumice, 215 

oatmeal, or almonds in order to exfoliate and deep cleanse the skin [82]. Concerns were raised about 216 

the presence of <100 nm particles in personal skin care products that might breach the dermal barrier 217 

and pose health risks [83]. In addition, plastic components in human protheses generate MNPs as a 218 

result of normal wear and tear, thereby putting them into direct contact with the skin [84]. Moreover, 219 

airborne MNPs can settle with dust and come into contact with the skin [85]. To date, there are no 220 

literature estimates of the amount of MNPs absorbed by dermal contact. However, due to the current 221 

lack of investigation of NPs, the effects of NPs on human skin are still not negligible, especially in 222 

cases where there are wounds or infections on the skin surface. 223 

3. Tissue accumulation and translocation of MNPs in the human body  224 

In recent years, MNPs have been increasingly detected in various human body fluids and 225 

organs, suggesting that they can escape the body’s immune cells and translocate across the 226 

biological barriers into the circulatory system, eventually accumulating in organs or tissues (Table 227 

2). However, restricted by ethical considerations and limited detection techniques, the translocation 228 

and accumulation of MNPs in humans were scarcely investigated. This review thus refers to existing 229 

knowledge of other kinds of particles which should help understand the properties of MNPs that 230 
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affect accumulation in the human body (Fig.1).     231 

3.1. Accumulation and translocation of MNPs in the lung 232 

Inhalation might be the most likely pathway to the human body for MNPs [48]. Various types 233 

and shapes of MNPs have been found in the respiratory system, including those in the alveoli, with 234 

abundance ranging from 0.56 to 1.42 particles/g [30, 86]. The mean size of these particles was 235 

reported to be 1,730 ± 150 μm [87]. These findings were obtained despite the fact that MNPs can 236 

be eliminated by nasal hair blockage, mucus cilia adhesion or macrophage phagocytosis, and 237 

subsequently cleared out by coughing or sputum. However, some MNPs are still able to evade these 238 

clearance mechanisms, and can adhere or embed themselves, eventually accumulating in the 239 

respiratory system and even translocating into circulation. [29, 88, 89]. Particle size plays a 240 

significant role in the clearance, accumulation, and translocation of MNPs. Particles with sizes 241 

ranging from 0.5 to 5 μm can be easily cleared through alveolar macrophages and mucus villi, while 242 

larger fibers and fragments (15–20 μm) are more difficult to clear. [84, 90]. As a result, larger fibers 243 

and fragments tend to accumulate in lung tissue, and the researchers detected MPs in human lung 244 

tissue in the particle size range of 1.6–1,450 μm [30, 86]. Additionally, the thin and lengthy natures 245 

of fibers enable their decreased mobility and increased adhesion to the lungs, consequently causing 246 

lung accumulation. Respirable particles typically have a size smaller than 10 μm, whereas fibers 247 

that enter the lungs can reach lengths of thousands of microns, posing a long-term health hazard that 248 

cannot be overlooked.  249 

A small fraction of MNPs may be able to cross the alveolar wall, enter the capillaries, and 250 

ultimately the bloodstream. The translocation of particles could be size-dependent. For instance, 251 

studies in mice have shown that nanoparticles with sizes of up to 200 nm can pass through the air-252 

blood barrier (ABB) [91]. Similarly, human exposure experiments have found that carbon particles 253 

with sizes below 100 nm can penetrate across the ABB [92]. In addition, aging can affect the 254 

translocation of nanoparticles across the air-blood barrier. In neonates, the transport of gold 255 

nanoparticles is not size-dependent, while in adult animals, smaller nanoparticles (5 nm) can cross 256 

the ABB more efficiently than larger nanoparticles (100 nm) [93]. The ABB also can be influenced 257 
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by the surface charge of nanoparticles, and negatively charged particles easier cross the barrier [91]. 258 

NPs might cross the ABB through the large gaps formed between alveolar epithelial cells or through 259 

the endocytosis of cells (Fig.1B) [94]. Further investigation is needed to determine whether MPs 260 

can cross the ABB. The mechanisms by which MNPs in the environment cross the ABB are more 261 

complex due to their different forms, particle size range, and surface charge. 262 

3.2. Accumulation and translocation of MNPs in the intestine 263 

MNPs that enter the digestive system are subject to a similar pathway as those entering the 264 

respiratory system. When water and food containing MNPs enter the human digestive tract, the 265 

intestinal tract are exposed to MNPs directly or indirectly. However, MNPs are difficult to digest 266 

and degrade in the body [95]. The majority of MNPs in the human digestive tract could be excreted 267 

by the body. Schwabl et al. [96] reported nine distinct types of MPs in human feces with sizes 268 

ranging from 20 to 500 μm. The abundance of MPs in human feces ranged from 1 to 36 particles/g 269 

[96, 97]. Surprisingly, the concentration of MNPs in infant feces was higher than in adults [98], 270 

suggesting that infants and children are exposed more to MNPs than adults.  271 

The researchers further found that MNPs accumulate in the human intestine and can even 272 

translocate into the circulatory system. The abundance of MPs in the dead human colon was 28 ± 273 

15 particles/g, indicating accumulation of MPs in the intestine over a long period of time [31]. MNPs 274 

in the intestine could be translocated into the circulatory system through three main channels (Fig.1 275 

A) [99]. The first channel involves the endocytosis of epithelial cells, which is mainly capable of 276 

translocating nanoscale particles. In vitro experiments have demonstrated that plastic particles <100 277 

nm can permeate the barrier of Caco-2 (human colon cancer)/HT29 (human cell line)+Raji-B 278 

(lymphoblast-like cell line) cells and even traverse the intestinal barrier [100]. The ecological corona 279 

generated by particles of plastic exposed to the environment is more conducive to the passage of 280 

NPs across the intestinal barrier [101]. The second channel involves the transcytosis transport of 281 

microfold (M) cells in the Peyer’s patches of the ileum, which is thought to be the main mode of 282 

translocation of MNPs [84, 99]. M cells can translocate particles smaller than <10 μm to the mucosal 283 

lymphoid tissue and concentrate them on the plasma membrane side of the Peyer’s patch [84, 102]. 284 
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In in vitro experiments, M cells co-cultured with Caco-2 cells were more likely to take up fluorescent 285 

MPs than a single Caco-2 culture [103]. The third channel is the persorption process, which involves 286 

the shedding of intestinal epithelial cells from their villi-like tips, and generates pores that allow big 287 

particles to pass through. The experiment showed that PVC particles of 5–110 μm can pass through 288 

the intestinal barrier via persorption [104].  289 

However, a gap still exists between current in vitro cellular experiments and the actual human 290 

intestinal absorption mechanism of MNPs. For instance, it is uncertain whether MNPs in the gut are 291 

completely detached from food and irregular MNPs have the same fate in the gut as spherical 292 

particles. Additionally, further research is needed to determine the distribution of MNPs in different 293 

regions of the gastrointestinal tract, such as the small intestine, colon, duodenum, jejunum, and 294 

ileum. The translocation rate of MNPs in the intestine should be further estimated through in vivo 295 

models. 296 

3.3. Accumulation and translocation of MNPs in the skin 297 

The skin, being the largest organ of the human body, serves as a barrier that prevents the 298 

penetration of particulate matter. However, there is currently a lack of research on the accumulation 299 

and transfer of MNPs on the skin. Alvarez-Roman et al. [105] observed that PS microspheres (20 300 

and 200 nm) preferentially accumulate in the follicular openings of porcine skin and increase over 301 

time. Whereas the mechanism by which these NPs penetrate the skin barrier remains unclear. Based 302 

on previous advances in nanoparticle research, NPs have the potential pathways to penetrate the 303 

skin barrier [106, 107]. Currently, there are three pathways by which NPs are transferred from the 304 

outer skin to the body: ⅰ) via cellular bypass (<1–4 nm); ⅱ) via sweat glands and hair follicles (4–20 305 

nm) and ⅲ) damaged skin (21–45 nm) [106]. Indeed, when the skin is severely damaged, there is a 306 

possibility that larger-sized NPs can penetrate through.  307 

3.4. MNPs accumulation in organs 308 

After crossing the intestinal barrier and the air-blood barrier, MNPs enter the circulation system. 309 
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The largest blood vessel in the human body, the aorta, has a diameter of about 25,000 μm and the 310 

smallest capillary is about 8 μm [108], which allows convenient transfer of different sizes of MNPs 311 

through the bloodstream circulation in the human body and eventually accumulation in organs, 312 

tissues and body fluids (Table 2). Researchers detected the presence of PET and PC-type plastics in 313 

human blood for the first time [32], although their size was not determined. More investigations are 314 

needed to reveal the kinetics of MNPs in blood. Recently, MPs also have been found in human 315 

thrombosis (~5 μm), the liver (4–30 μm) and even the placenta (5–10 μm) [33, 35, 36], by Raman 316 

or infrared spectroscopy. In the future, it is necessary to observe MNPs in vivo by labeling them 317 

with radioisotopes or upconversion fluorescence, and in situ image their location using positron 318 

emission computed tomography or photoacoustic imaging techniques. 319 

4. Potential effects of MNPs on human organ systems  320 

The potential impact of MNPs on health is a major concern. The human body mainly consists 321 

of nine organ systems, namely the digestive, respiratory, circulatory, reproductive, nervous, immune, 322 

endocrine, urinary, and locomotor systems, whose functional balances are required for human well-323 

being. In this paper, the effects of MNPs on these nine organ systems are summarized through 324 

knowledge derived from in vivo and in vitro toxicological studies (Fig. 2). 325 

4.1. Digestive system 326 

The digestive system plays a vital role in breaking down food, absorbing nutrients, and 327 

eliminating waste [109]. However, MNPs might have adverse effects on the intestinal tract. MNPs 328 

can potentially impact nutrient absorption in the human intestine, disrupt intestinal homeostasis, and 329 

ultimately lead to intestinal diseases [110-117].   330 

Preliminary experiments have shown that MNPs inhibit lipid digestion and reduce the 331 

absorption of vitamin D3 [110, 111], causing nutritional imbalances. The main reason is that MNPs 332 

can agglomerate nutrients and reduce their bioavailability or affect the activity of the corresponding 333 

enzymes. Additionally, fibrous MPs featured honeycomb-like pores that competitively absorb 334 
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nutrients [112].  335 

A stable intestinal microbiota is essential for human health. MNPs altered the human intestinal 336 

microbiota and caused an imbalance in intestinal microecology. In vivo exposure experiments in 337 

model animals showed that MPs alter bacterial abundance in the intestine of mice, feeding 338 

polyethylene (PE) MPs showed significant increased abundances in Staphylococcus alongside with 339 

a decrease in Parabacteroides [113], and feeding polystyrene (PS) MPs decreased Actinobacteria 340 

abundance [114]. The concentration of MPs also affected the intestinal microbiota, and a high 341 

concentrations of PE MPs (600 μg/day) increased intestinal microbial species, bacterial abundance, 342 

and flora diversity in mice [113]. Considering the possible access of environmental MNPs that carry 343 

microorganisms and even pathogenic bacteria to the human digestive system, their impacts on the 344 

stabilization of the intestinal flora deserve carefully examination.  345 

MNPs negatively affect human intestinal cells. In human colonic epithelial cells CCD841CoN 346 

and small intestinal epithelial cells HIEC-6, 0.1 μm PS microspheres caused cellular oxidative stress 347 

and 5 μm PS exposure resulted in higher levels of mitochondrial depolarization [115]. Therefore, 348 

MNPs exposure in the intestine causes intestinal barrier dysfunction, metabolic disorders, immune 349 

response, inflammation, and ultimately to the development of related diseases [113-117]. 350 

Risks from co-interactions of MNPs and other contaminants such as heavy metals also should 351 

be cautiously considered. Once these contaminants have entered the human body through MNPs as 352 

the carrier, their release could greatly impair human health. In an in vitro human digestive model, 353 

both lead (Pb) and chromium (Cr) could be desorbed from MPs into simulated gastric and intestinal 354 

fluids. This is indicative of increased risk of the metals to human health [118, 119]. On the other 355 

hand, no significant desorption of benzophenone-3 from MNPs occurred in the simulated human 356 

gastrointestinal fluid [120]. Desorption behaviors of pollutants from MNPs in the human 357 

gastrointestinal system should be differential, based on the type/size of MNPs, as well as pH and 358 

the presence of surfactants in the surrounding intestinal environment. 359 

4.2. Respiratory system 360 
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MPs have been detected in both the upper respiratory tract (sputum, nasal cavity) [88] and 361 

lower respiratory tract (alveoli, lung tissue) [87, 121] of humans, which raises concerns about their 362 

potential health effects on the respiratory system. Although there is still no direct link between 363 

MNPs and human respiratory disease, recent research suggests that MNPs may alter endogenous 364 

surfactants of human lungs, impair lung cells, and increase their susceptibility to lung disorders such 365 

as pulmonary fibrosis, pulmonary frosted glass nodules, and asthma [122-127].  366 

Lung surfactants play an important role in reducing alveolar surface tension and preventing 367 

invasion by exogenous particles [122]. Researchers discovered an abundance of 9.18 particles/100 368 

mL in alveolar lavage fluid, 97.06% of which were fibers [87]. Shi et al. [123] found that MPs 369 

modify the phase behavior, surface tension, and membrane structure of simulated lung surfactants, 370 

as well as increase the amount of reactive oxygen species (ROS) in lung surfactants by in vitro 371 

simulations. MNPs were more accessible to lung cells by altering the composition of the pulmonary 372 

surfactants, and ROS damaged DNA and caused lung damage [123]. The toxicity of MPs to human 373 

lung cells could be correlated to the concentration and size of MPs [124, 125]. Low doses of PS 374 

particles (10 μg/cm2) cause cytotoxic, inflammatory effects in lung epithelial cells (BEAS-2B) and 375 

disrupt lung barrier function, while high concentrations (1,000 μg/cm2) increase the risk of 376 

occurrence of chronic obstructive pulmonary disease [125]. The smaller sized MNPs are more toxic 377 

to human lung cells, which could be attributed to the higher bioactivity and greater intracellular 378 

accumulation of smaller NPs [124].  379 

MNPs might be able to cause lung diseases. In mice, 5 μm PS MPs were found to persist in 380 

lungs, initiated oxidative stress and chronically damaged epithelial tissues, elicited inflammation 381 

and consequently activated the Wnt/-catenin signaling that led to lung fibrosis. In addition, inhaled 382 

tire wear plastic (<1 μm) induced pulmonary fibrosis injury [126]. Moreover, fibrous MPs may be 383 

associated with the formation of ground glass nodules in the lung. By comparison with human lung 384 

tumors and normal tissue, fibrous MPs were more frequently detected in tumor tissues (58%) than 385 

in normal tissues (42%). In people more exposed to MPs in their living or working environment, 386 

fibrous MPs were detected in 72% of tumor tissues [127]. To date, the toxicity of MNPs on the 387 
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respiratory system is not well understood and requires further investigations.  388 

4.3. Circulatory system  389 

The circulatory system supplies oxygen and nutrients to the various tissues in the body and 390 

removes waste products. A recent study has identified the presence of PET, PS, PE and poly (methyl 391 

methacrylate) (PMMA) plastics (>700 nm) in the blood of 22 healthy individuals, with an average 392 

concentration of 1.6 μg/mL of MNPs [32]. Moreover, MNPs have been identified in human 393 

thrombus [128], raising concerns about their potential impact on the human circulatory system. 394 

Current evidence suggests that MNPs may be harmful to red blood cells and could potentially affect 395 

angiogenesis and platelet function, even leading to thrombosis in humans [129-133].  396 

Once entering the circulation, MNPs interact with different components of the blood such as 397 

plasma proteins, red blood cells, platelets, and peripheral blood lymphocytes. On the one hand, 398 

MNPs absorb plasma proteins to form a multilayer corona on the exterior, resulting in an 399 

aggregation effect [129]. On the other hand, MNPs adsorb to the surface of blood erythrocytes, and 400 

certain NPs (amino-modified) induce erythrocyte hemolysis [130]. Particulate matter also causes 401 

the aggregation and activation of platelets and ultimately the formation of blood thrombosis [131]. 402 

In addition, MNPs cause cytotoxicity and genotoxicity in human peripheral blood lymphocytes 403 

[132]. Moreover, PS MPs reduce the biological activity of endothelial cells, which in turn inhibits 404 

angiogenic and wound-healing signaling pathways, thus impacting the development of new blood 405 

vessels and wound healing [133]. When blood vessels are injured, endothelial cells promote 406 

coagulation and thrombosis by synthesizing and secreting a variety of coagulation-related molecules. 407 

These effects are also related to the particle size, shape, and surface charge of MNPs.  408 

Current research on the effects of MNPs on the human circulatory system is still limited, and 409 

there are several research deficiencies to be addressed. Firstly, most studies have been conducted in 410 

vitro, and there is a lack of in vivo studies that can provide more conclusive evidence. Moreover, 411 

most studies have focused on the acute effects of MNPs, while chronic exposure studies are needed 412 

to understand the long-term effects of MNPs on the circulatory system. Another research deficiency 413 
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is the lack of standardized protocols for such studies. There is a need for standardized methods for 414 

the characterization and quantification of MNPs in blood samples to facilitate comparison between 415 

studies. In addition, there is a need for standardized protocols for assessing the effects of MNPs on 416 

blood components, including red blood cells, platelets, and peripheral blood lymphocytes. 417 

4.4. Reproductive system  418 

Researchers have recently paid increasing attention to the potential impact of MNPs on the 419 

human reproductive system since MPs were discovered in the human placenta [36]. One of the 420 

concerns is the potential threat to future generations posed by MNP effects on reproductive health. 421 

In vivo animal research has demonstrated that MNPs can cause reproductive toxicity and may also 422 

have health effects on the offspring [134-139]. 423 

Studies on mice and rats have shown that MNPs can cause reproductive toxicity in both males 424 

and females [134-136]. PS particle exposure at high levels (30 mg/kg body weight) produced 425 

ovarian inflammation and decreased oocyte quality in mice [135]. PS particles similarly induced 426 

testicular inflammation, decreased sperm quality, and damaged the blood-testis barrier in mice [134]. 427 

In addition, the reproductive system of female rats is more susceptible to MNPs than that of males 428 

[136]. Moreover, Deng et al. [137] demonstrated that exposure to MNPs at a concentration of 50 429 

mg/kg of food also influenced the testicular and sperm quality of mice. The underlying mechanisms 430 

behind the reproductive toxicity of MNPs are not yet fully understood, but inflammation and lipid 431 

metabolic abnormalities may play a significant role [137]. Future research could focus on 432 

identifying the specific pathways through which MNPs exert their effects on reproductive health, 433 

such as changes in gene expression or disruption of hormonal signaling. 434 

To further investigate the effects of MNPs on mouse offspring, Deng et al. [137] found that 435 

prolonged exposure of male mice to MNPs decreased body weight and liver mass in the offspring, 436 

as well as causing disorders of lipid metabolism. In addition, prolonged maternal exposure to MNPs 437 

can cause impaired energy metabolism in the offspring [138]. Recent research detected significantly 438 

higher MPs in the placentas of pregnant women with intrauterine growth restriction (302 439 
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particles/13 placentas) than in normal placentas (6 particles/13 placentas) [139]. As mentioned 440 

earlier, MNPs have been shown to have transgenerational effects on reproductive health in animal 441 

models. Future research could investigate whether these effects are also present in humans, and 442 

whether they are passed down through multiple generations. 443 

4.5. Nervous system 444 

The nervous system is a complex network of neurons that regulates the body’s physiological 445 

activities [140, 141]. However, there is a paucity of research on the effects of MNPs on the human 446 

nervous system. Currently, in vivo animal tests have demonstrated that 2 μm PS particles can cross 447 

the blood-brain barrier and aggregate in the brain of mice [142]. Qi et al. [143] also discovered 448 

exogenous fine particles (such as malayaite and anatase TiO2) in human cerebrospinal fluids, but no 449 

micron-level particles have been identified in the human brain. This suggests that NPs have likely 450 

permeated the human brain.  451 

Lee et al. [142] further found that MPs affected learning and memory in the brains of mice 452 

continuously fed with 2 μm of PS MPs (0.016 mg/g) for eight weeks. This may be mainly due to 453 

the fact that PS particles entering the brain cause neuroinflammation in the hippocampus, which in 454 

turn alters genes and proteins that contribute to synaptic plasticity [142]. In addition, Wang et al. 455 

[144] also found that PS particles (5 μm) induced oxidative stress and reduced acetylcholine levels 456 

in mice, resulting in learning and memory impairment. The neurotoxicity of MPs was also 457 

dependent on dose, size, composition, and shape [144].   458 

Based on current research advances, future in vivo and epidemiological research is needed to 459 

investigate the potential long-term effects of long-term exposure to MNPs on the human nervous 460 

system, including cognitive function and behavior. Additionally, there is a need to explore the effects 461 

of MNPs on neural networks and specialized neurons in the human brain by examining changes in 462 

neurotransmitter levels, gene expression, and synaptic plasticity following exposure to MNPs，and 463 

to study the effects of MNPs on specific populations, such as children, the elderly and individuals 464 

with pre-existing neurological disorders. This will help to identify potential vulnerabilities and 465 

Jo
urn

al 
Pre-

pro
of



 

 

inform targeted interventions to protect these populations. 466 

4.6. Immune system 467 

The immune system is a network of lymphoid organs, tissues, cells, humoral substances, and 468 

cytokines that work together to defend the body [145]. An important function of the immune system 469 

is to eliminate invading bacteria, foreign cells, macromolecular compounds (antigens), and 470 

extraneous particles. MNPs trigger a local or systemic immunological response when entering an 471 

organism, and some MNPs generate a protein corona on their surface that enables them to escape 472 

the immune system [129]. Experiments on animals or cells have shown that MNPs can lead to 473 

increased secretion of pro-inflammatory cytokines, disrupting immune homeostasis and ultimately 474 

leading to immune system disorders such as autoimmune diseases [146-152].  475 

Secretion of pro-inflammatory cytokines is essential for maintaining homeostasis of the 476 

immune system. In in vitro human peripheral blood mononuclear cell experiments, Han et al. found 477 

that both acrylonitril-butadiene-styrene (ABS) and polyvinylchloride (PVC) particles induced the 478 

release of interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) and that the particle size and 479 

concentration of plastic particles affected the release of IL-6 and TNF-α [147]. Larger PVC (75–480 

200 μm) tended to induce the release of IL-6 and TNF-α; And smaller ABS (25–75 μm) particles 481 

resulted in the elevated release of IL-6 at higher concentrations (1,000 μg/mL). Conversely, larger 482 

ABS (75–200 μm) particles showed a tendency to induce the release of TNF-α across all 483 

concentrations(10–1,000 μg/mL) [147]. In addition, mice were exposed to PE particles through the 484 

diet and the PE particles were found to induce an intestinal immune response. This resulted in 485 

increased levels of interleukin‐1α (IL-1α) and decreased levels of interleukin 2 (IL-2) [113]. 486 

Moreover, PS particles cause a maternal-fetal immunological imbalance in mice, which might 487 

ultimately result in abortion due to reduced immune cells and the proportion of macrophages [148]. 488 

An immune system overreacting to MNPs can lead to massive inflammation, resulting in an 489 

imbalance in the homeostasis of the immune response.  490 

Autoimmune diseases are a group of diseases in which an immune response to an autoantigen 491 

Jo
urn

al 
Pre-

pro
of



 

 

leads to damage or dysfunction of the tissues and organs. In addition to genetic factors, autoimmune 492 

diseases can be triggered by environmental factors [149]. Numerous studies have demonstrated that 493 

air pollution might exacerbate autoimmune disorders. Particularly, ambient fine particulate matter 494 

may raise the incidence of systemic lupus erythematosus [150], type 1 diabetes [151], and 495 

rheumatoid arthritis [152]. Similarly, environmental MNPs have a strong propensity to induce 496 

autoimmune disorders.  497 

The immune system is present in various organs throughout the body, including the spleen, 498 

lymph nodes, and bone marrow, among others. Future research should investigate the impact of 499 

MNP exposure on immune system function in different organs and even overall immune system 500 

health. Research is also needed to investigate the effects of MNP exposure on different immune cell 501 

populations, including T cells, B cells, macrophages, and dendritic cells. 502 

4.7. Endocrine system 503 

The endocrine system is responsible for regulating the normal physiological activities of the 504 

body through hormones. Despite limited toxicity to the endocrine system, MNPs can carry and 505 

desorb some endocrine-disrupting chemicals (EDCs), such as bisphenol A, phthalates, or steroid 506 

hormones [26, 153]. There is growing evidence from laboratory animal studies and epidemiological 507 

studies that EDCs can interfere with the development of the endocrine system and affect the function 508 

of organs that respond to hormonal signals [153], leading to a variety of health problems such as 509 

reduced sperm quality and sex hormone concentrations, effects on child development, type 2 510 

diabetes, obesity, etc [154, 155]. Furthermore, Deng et al. [156] showed that the presence of MNPs 511 

significantly increased the absorption of EDCs in the intestine and increased their reproductive 512 

toxicity. It is therefore necessary to focus on the interaction between MNPs and EDCs in organisms 513 

and to further investigate their combined toxicity to organisms. In addition, other endocrine 514 

disruptors such as polychlorinated biphenyls (PCBs) and dioxins are also present in the environment 515 

and can enter the body through adsorption on the surface of MNPs, and their release in the body and 516 

combined toxicity with MNPs require more attention. 517 
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4.8. Urinary system 518 

The urinary system is the main metabolic pathway of the body and maintains stability within 519 

the organism. Unquestionably, MNPs can also penetrate the urinary system and harm the kidneys 520 

and bladder. At the cellular level, exposure of human embryonic kidney cells (HEK 293) to PS 521 

particles drastically reduces cell proliferation and causes cellular oxidative stress [157]. In addition, 522 

PS particles cause mitochondrial dysfunction, endoplasmic reticulum stress, inflammation and 523 

autophagy in kidney cells [158]. At the organ level, PS particles (50–400 μm) can accumulate in the 524 

kidney, with 600 nm PS particles aggregating while 4 μm PS particles appearing as single particles 525 

[159]. MNPs also cause significant kidney quality decrease, histopathological lesions, kidney 526 

inflammation, and endoplasmic reticulum stress [158, 159]. In addition, PS particles produce 527 

bladder epithelial necrosis and inflammation, with 1–10 μm particles causing the most severe 528 

necrosis and 50–100 μm particles causing the most severe inflammatory damage [160].  529 

Animal studies have shown that MNPs (100 nm, 3 μm) are excreted in mouse urine [161], and 530 

recent studies have shown that MPs are also present in human urine [28]. Pironti et al. detected 531 

seven irregular MPs with particle sizes of approximately 4–15 μm in urine samples from six 532 

individuals, the main types being PP, PE, polyvinyl acetate, and PVC [28]. Based on the 533 

aforementioned studies, future research needs to focus on improving the detection methods for the 534 

concentration and particle size range of MNPs in human urine to accurately assess the glomerular 535 

filtration rate. Furthermore, future studies should investigate the potential effects of MNP exposure 536 

on urinary protein filtration and reabsorption. 537 

4.9. Locomotor system 538 

MNPs have been shown to inhibit the mobility of fish, soil animals, and birds [162-164], but 539 

their effect on the human locomotor system is negligible. However, individuals who use prostheses 540 

need to be aware that wear and tear can produce MNPs that may cause inflammation and possible 541 

rejection, thereby affecting mobility [165]. MNPs may also affect movement by influencing the 542 

central nervous system. For example, one study found that feeding mice food containing MPs 543 
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resulted in shorter walking distances and slower locomotion [166]. 544 

5. Future research recommendations 545 

Based on the above discussion, research on the effects of MNPs on mammalian and, in 546 

particular, human health is still in its early stages. There are significant gaps regarding the 547 

quantification of the concentrations of MNPs in different foods, the intake of MNPs by different 548 

routes of exposure in humans, the absorption and transfer of MNPs in the human body, and the 549 

mechanisms of the health effects of MNPs on humans after ingestion. Therefore, systematic and in-550 

depth studies on the effects of MNPs on human health are needed. Recommendations for future 551 

research are as follows. 552 

ⅰ. Standardize MNPs detection methods and establish quality control and quality assurance 553 

systems to avoid contamination and facilitate comparison between studiesBased on the nature of 554 

MNPs, a standard formula for converting MNPs from abundance to mass concentration needs to be 555 

established, which allows for a more realistic and ]comparable assessment of daily human exposure. 556 

ⅱ. Develop in vitro models that simulate the complexity of human tissues and organs to better 557 

understand the accumulation and transfer of MNP in the human body. There is a further need to 558 

develop innovative techniques for characterizing and studying MNPs, including advanced imaging 559 

techniques and novel analytical tools for better in situ imaging and characterization. 560 

ⅲ. Standardize in vitro cellular and model animal experiments for dose-response studies of 561 

MNPs. Evaluate and compare the toxicity and mechanism of action of different types and particle 562 

sizes of MNPs. And conduct long-term epidemiological studies to assess the chronic effects of 563 

MNPs on human health. Particularly vulnerable populations, including pregnant women, children, 564 

and the elderly, may be more susceptible to the toxic effects of MNPs. 565 

ⅳ. Based on the one health framework, the issue of MNPs requires interdisciplinary 566 

collaboration and scientific and technological innovation [162]. There is a need to strengthen 567 

communication and cooperation between professionals in different fields, explore new research 568 
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methods and technologies, and promote the solution to MNPs problems. 569 
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 1071 

Figure 1. The possible absorption, transfer and accumulation mechanisms of micro- and nanoplastics in 1072 

human intestines (A) and lungs (B). 1073 

 1074 

Figure 2. Potential health risks of micro- and nano-plastics to nine human organ systems. 1075 

Jo
urn

al 
Pre-

pro
of



 

 

Table 1. Presence of micro- and nano-plastics in the daily human diets. 

Species Location Abundance Size (μm) Type Shape Detection method Reference 

Skipjack Tuna 

(Euthynnus affinis) 

Southern Coast of 

Java, Indonesia 

4 particles/fish 500–5,000 / Filament (84%), 

angular (11%), 

Stereomicroscope [167] 

Deep-sea fish South China Sea Stomachs: 1.53±1.08 

particles/g 

intestines: 4.82±4.74 

particles/g 

0–1,000 (68.9%–76.7%) / Film, fiber Optical microscope [168] 

Oysters  South Australia 0.09±0.01 particles/g 

wet weight 

/ LDPE, PE Fiber (61.8%), 

fragment (37.7%), 

FTIR [169] 

Mussel (Perna 

Viridis) 

Hong Kong 0.21–1.83 particles/g 

wet weight 

40–1,000 PP (56%), PE 

(25%), PET 

(10%) 

Fragment, fiber Raman [51] 

Brown shrimp 

(Metapenaeus 

monocerous) 

Bangladesh coast 3.40±1.23 particles/g 

digestive tract 

1,000–5,000 (40%) 

500–1,000 (17%) 

PA, rayon Fiber (57%), particle 

(29%), fragment 

(14%) 

μ-FTIR [170] 

Tiger shrimp 

(Penaeus monodon) 

Bangladesh coast 3.87±1.05 particles /g 

digestive tract 

1,000–5,000 (70%) 

500–1,000 (27%) 

PA, rayon Fiber (32%), particle 

(16%), fragment 

(26%) 

μ-FTIR [170] 

Whiteleg shrimp 

(Litopenaeus 

vannamei) 

Malaysia 20.8±3.57 particles /g 

wet weight 

/ / Film (93%–97%) Microscope [50] 

Argentine red 

shrimp (Pleoticus 

Argentina 

Southwest Atlantic, 

7,050±4,178 particles/g 

wet weight 

/ / Sphere (70%) Microscope [50] 
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muelleri) FAO 41 

Dried fish  Taiwan, Thailand, 

Japan , China, 

South Korea, 

Vietnam  and Sri 

Lanka 

 

0–0.56 particles/g 

(dried fish) 

/ PE (35%), PET 

(26%), PS 

(18%) 

Fiber, fragment, film μ-Raman, FTIR [11] 

Tap water China 440±275 particles/L 1–50 (31.25%–100%) 

50–100 (1.47%–31.25%) 

100–300 (1.72%–31.25%) 

PE (26.8%), PP 

(24.4%), 

PE+PP 

(22.0%) 

Fragment: 53.85%– 

100%, 

fiber: 1.18%–

30.77%. 

sphere: 2.27%– 

36.36%. 

μ-Raman [171] 

Tap watera Barcelona 

Metropolitan Area 

1 ng/L–9 μg/L 0.7–20  PE. PP  HPLC–HRMS [172] 

Drinking water  Mexico City 18±7 particles/L 100–1,000 (75%) PTT, EP Fibers μ-Raman [173] 

Bottled water 

Mineral water 

Kermanshah , Iran 8.5±10.2 particles/L 1,280–4,200 PET, PS, PP fragment (93 %), 

fiber (7%) 

FTIR, Raman [174] 

Bottled water China 2–23 particles/bottle 25–5,000 Cellulose 

(71.16%), 

PET (6.98%), 

PE (6.05%)  

Fiber, fragment μ-FTIR [175] 

Soft drinks Mexico ND–7 particles/L 100–3,000  PA Fiber Microscope [60] 

Cold tea Mexico 1–6 particles/L 100–2,000 PA Fiber Microscope  

Beer Mexico ND–28 particles/L 100–3,000 PA Fiber, fragment Microscope  

Milk Switzerland; France 2,040–10,040 ≥5, <20  PE (31%), PS / μ-Raman [61] 
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(27%), PES 

(23%) 

Table salts Africa 1.68±1.83 particles/kg >50, <5000 PVA, PP, PE fragment, fiber, 

granule 

FTIR [176] 

Table salts India 115–575 particles/kg 100–200 (37.7%), 200–

500 (31.2%), 500–1,000 

(16.2%) 

>1000 (15%) 

PE (78%), PE 

(19%), PVC 

(3%) 

Fibers (88.5%), film 

(4.9%), pellet (2.9%) 

μ-FTIR [14] 

Sugar Bangladeshi 343.7±32.08 

particles/kg 

<300 (64%) ABS (25%), 

PVC (18%), 

PET (15%) 

Fiber (38.4%), 

fragment (28.4%), 

film (25.2%) 

FTIR [65] 

a mass concentrations. LDPE, low-density polyethylene; PP, polypropylene; EP, epoxy resin; PET, polyethylene terephthalate; PE, polyethylene; PA, polyamide; PES, 

polyester; PVC, polyvinyl chloride; PVA, polyvinyl acetate; ABS, acrylonitrile butadiene styrene; FTIR, fourier transform infrared; HPLC–HRMS, high performance 

liquid chromatography- high-resolution mass spectrometry.  
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Table 2. Presence of micro- and nano-plastics in human tissues or fluids. 

Human body 

sample 

Digestion 

methods 

Detection 

method 

Sample 

Number 

Type Shape Abundance Size (μm) Reference 

Lung H2O2 (30%, 

v/v) 

μ-FTIR, Raman 100 Cotton, rayon, PE Fiber (>90%) Tumor tissues: 

38 particles/50 samples,  

normal tissues: 27   

particles/50 samples 

1,450±980 [86] 

Lung Enzymatic Raman 20 PP (35.1%), PE 

(24.3%), cotton 

(16.2%) 

Fragment (87.5%), 

fiber (12.5%),  

0.56 particles/g of lung 

tissue 

Fragment : 1.60-

5.56  

fiber: 8.12-16.80 

[30] 

Lung 30% H2O2 μ-FTIR 13 PP (23%), PET 

(18%), resin (15%) 

Fragment (67%), 

fiber (22%) 

1.42±1.50 particles/g 12–2,475  [121] 

Bronchoalveolar 

lavage fluid 

No μ-FTIR 44 Rayon (40.48%), 

PE (19.05%), 

cellulose (16.67%) 

Fiber (97.06%) 9.18±2.45 particles/100 mL 1,730±150 [87] 

Sputum HNO3, 

NaOH 

FTIR 22 PU, PE, PVC - 18.75−91.75 particles/10 

mL 

20−500  [29] 

Sputum 30% KOH Polarized light 

microscopy 

16 Couriers: PC 

(24.2%), PVC 

(23.0%);  

office staff: PVC 

(39.1%), PA 

(24.8%) 

Couriers: fiber 

(94.3%),  

office staff: fiber 

(83.3%) 

Couriers:26.9−161.5  

particles/g 

Office staff: 0.4−1.4  

particles/g 

- [88] 

Nasal lavage fluid 30% KOH FTIR 16 Couriers: PA Couriers: Fiber Couriers:17.6−728.6  - [88] 
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(25.3%), PE 

(22.9%);  

office staff: PVC 

(41.1%), PA 

(31.6%) 

(83.8%); 

office staff: fiber 

(87%) 

particles/g; 

office staff: 0.9−3.3  

particles/g 

Human blooda Proteinase K Py-GC/MS 22 PET, PE - 1.6 μg/ml ≥0.7 [32] 

Thrombi 30%KOH Raman 26 LDPE Fragment 1 particle/26 sample ~5 [33] 

 Liver, spleen, 

kidney 

KOH Raman Liver(11), 

spleen(3), 

kidney(3) 

PS, PVC, PET - 1.4 particles/g 4−30 [35] 

Placenta 10% KOH Raman 43 PE, PS Film, fiber, fragment Normal:6 particles/30 

sample 

IUGR:302 particles/13 

sample 

Normal:7.3−27.6 

IUGR: 2.9−34.5 

[139] 

Placenta 10% KOH Raman 6 PP Fragment 4 particles/6 placentas ~5−10  [36] 

Breast milk 

 

10% KOH 

 

Raman 

 

34 

 

PE (38%), PVC 

(21%), PP (17%) 

Fragment 

 

26 particles/34 samples 

 

2−12 

 

[177] 

 

Human colectomy 10% KOH FTIR 11 PC, PA, PP Fiber (96.1%), 28.1±15.4 particles/g 800−1,600  [31] 

Adult stoola H2O2 30%, FTIR 26 PET, PP, PS - 1−36 particles/g  20−800  [178] 

Infant stoola KOH LC–MS/MS 6 PET, PC - PET: 5,700−82,000 ng/g 

PC: 49−2,100 ng/g  

-  

[98] 

Meconiuma KOH LC–MS/MS 3 PET, PC - PET: 3,200−12,000 ng/g 

PC: 110 ng/g  

- 

Adult stool  FTIR 8 PP (62.8%), PET 

(17.0%), 

PS (11.2%) 

 20 particles/10g 50−500 [96] 
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a mass concentrations. PP, polypropylene; PET, polyethylene terephthalate; PE, polyethylene; PU, polyether urethane; LDPE, low-density polyethylene; PC, 

polycarbonate; PA, polyamide; PVC, polyvinyl chloride; PVA, polyethylene vinyl acetate; FTIR, Fourier-transform infrared spectroscopy; Py-GC/MS, pyrolysis gas 

chromatography-mass spectrometry; LC–MS/MS, liquid chromatography-tandem masa spectrometry. IUGR, intrauterine growth restriction.  

Adult stoola KOH LC–MS/MS 10 PET, PC - PET: <16,000 ng/g 

PC: 37−620 ng/g 

- [98] 

Urine KOH Raman 6 PP, PE, PVC, PVA fragment - 4−15 [34] 
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Highlights 

Human exposure to micro- and nano-plastics (MNPs) via inhalation, ingestion and dermal contact 

are summarized. 

MNPs have an intrinsic capability to escape and to translocate to the circulatory system. 

MNPs have the potential to disrupt homeostasis, leading to oxidative stress, cytotoxicity, tissue 

damage, and systemic dysfunction. 
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