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Abstract
Purpose Examining epigenetic patterns is a crucial step in identifying molecular changes of disease pathophysiology, with 
DNA methylation as the most accessible epigenetic measure. Diet is suggested to affect metabolism and health via epigenetic 
modifications. Thus, our aim was to explore the association between food consumption and DNA methylation.
Methods Epigenome-wide association studies were conducted in three cohorts: KORA FF4, TwinsUK, and Leiden Lon-
gevity Study, and 37 dietary exposures were evaluated. Food group definition was harmonized across the three cohorts. 
DNA methylation was measured using Infinium MethylationEPIC BeadChip in KORA and Infinium HumanMethylation450 
BeadChip in the Leiden study and the TwinsUK study. Overall, data from 2293 middle-aged men and women were included. 
A fixed-effects meta-analysis pooled study-specific estimates. The significance threshold was set at 0.05 for false-discovery 
rate-adjusted p values per food group.
Results We identified significant associations between the methylation level of CpG sites and the consumption of onions 
and garlic (2), nuts and seeds (18), milk (1), cream (11), plant oils (4), butter (13), and alcoholic beverages (27). The signals 
targeted genes of metabolic health relevance, for example, GLI1, RPTOR, and DIO1, among others.
Conclusion This EWAS is unique with its focus on food groups that are part of a Western diet. Significant findings were 
mostly related to food groups with a high-fat content.
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Introduction

Examining epigenetic modifications is a crucial step in 
exploring the effects of diet on human metabolism. Such 
modifications can occur at different biological levels, includ-
ing DNA methylation, modification of histones and noncod-
ing RNAs. The availability of precise measurement tools, 
the level of inter-individual variation and the expected effect 
sizes make DNA methylation the most appropriate research 
tool for diet and epigenetics studies [1].

DNA-methyl-transferase enzymes (DNMT) catalyze 
the generation of 5-methylcytosine, the main contributor 
of DNA methylation patterns, by utilizing methyl groups. 
Since 5-methylcytosine is degradable and insufficient activ-
ity of a maintenance DNMT enzyme can lead to loss of 
methylation with each cell division [2], there is a steady 
need for methyl group supply. Dietary intake represents the 
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main source for methyl groups. Methionine, choline and its 
metabolite betaine [3], are all embedded in the C1 metabo-
lism, contributing to the synthesis of the main methyl donor 
in human metabolism: s-adenosylmethionine. This makes 
the C1 metabolism the hypothesized primary link between 
diet and DNA methylation. However, research examining 
this link showed inconclusive results [4, 5], thus indicat-
ing that dietary methyl group donors and vitamins involved 
in the C1 metabolism are not major determinants for DNA 
methylation pattern changes. Analysis of food consumption 
data may better reflect synergistic effects of various food 
components as compared to single nutrients. Another link 
between diet and DNA methylation could be through modu-
lation of inflammatory processes. Dietary compounds have 
been shown to be associated with systemic inflammation [6], 
which in turn can lead to disturbances in the balance of DNA 
methylation patterns [3].

So far, some analyses on the link between diet and global 
DNA methylation patterns [7], as well as diet and site-spe-
cific epigenetic changes [3], have been performed. In terms 
of site-specific analysis, the main focus of nutri-epigenomic 
research has been on epigenome-wide association studies 
(EWAS) of nutrients involved in human C1 metabolism [3, 
4]. EWAS have also been carried out with dietary patterns 
and few single food groups [8–10]. However, a comprehen-
sive EWAS at the food group level is lacking. Thus, our 
aim was to explore the association between food consump-
tion and DNA methylation in population-based studies. We 
aimed to identify DNA methylation associations with food 
groups that (i) provide nutrients involved in the human C1 
metabolism, (ii) are known in the literature for being asso-
ciated with systemic inflammation (like red meat, cabbage 
or nuts), or (iii) were shown to be associated with cardio-
metabolic disease risks (like sugar-sweetened beverages or 
vegetables) previously. The results of the EWAS conducted 
in three cohorts, KORA FF4 (KORA), TwinsUK (TUK) 
and Leiden Longevity Study (LLS), were included in this 
meta-analysis.

Methods

The “Strengthening the Reporting of Observational Studies 
in Epidemiology—Nutritional Epidemiology (STROBE-
nut)” checklist was used to report the findings of the present 
study [11]. For an overview of key points of methodology 
used in respective cohorts, see Table 1. 

Populations

The KORA (Cooperative Health Research in the Region of 
Augsburg) FF4 study is the second follow-up of the pop-
ulation-based KORA S4 examination. It was conducted Ta
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between 1999 and 2001 in the city of Augsburg and two 
surrounding counties in Germany. 4261 subjects aged 
25–74 years were randomly drawn and agreed to participate 
in the S4 baseline study. 2279 of them also participated in 
the FF4 follow-up study (2013/2014). Details regarding the 
recruitment procedure have been published elsewhere [12]. 
Methylation data was available for 1928 subjects, and after 
exclusion of outliers (as described in the DNA methylation 
section), 1888 subjects remained. Further we excluded cases 
without available nutrition data (n = 541) or with blood can-
cer (n = 4). All participants met the criteria of acceptable 
caloric intake (500 kcal/d < x < 5000 kcal/d). Finally, 1322 
subjects had full information on all covariates and were 
included in the EWAS.

The LLS consists of 1671 members of long-lived fami-
lies (mean age 60 years) and their 744 partners (mean age: 
60 years) as population controls. Dietary intake data in 
grams per day was collected from 1716 individuals. Mem-
bers of long-lived families are very similar to the general 
population, although they have more favorable glucose toler-
ance [13], more favorable lipid parameters [14], and a lower 
prevalence of type-2 diabetes and myocardial infarction [15]. 
We analyzed them as one cohort of middle-aged people, 
and the current study was restricted to unrelated individuals. 
EWAS data and nutritional data was available on 507 indi-
viduals. All LLS participants met the criteria of acceptable 
caloric intake (500 kcal/d < x < 5000 kcal/d). Finally, 485 
subjects had full information on all covariates and therefore 
were included in the EWAS.

The TwinsUK registry included over 14,000 research 
volunteer twin participants from the United Kingdom 
since 1992 [16]. Volunteers are monozygotic and dizygotic 

same-sex twins, predominately female (82%), middle-aged 
(mean age 59) and over 18  years-old. Volunteers were 
recruited without selecting for any particular disease or 
trait and are mostly of European descent. Data on volun-
teers were collected through longitudinal questionnaires 
and clinical visits. The registry collected biological sam-
ples and further data through analysis of biological sam-
ples. Dietary data was collected for > 3000 female twins, 
and blood DNA methylation data obtained within two years 
of food frequency questionnaires was available for 493 of 
the female twins. The caloric intake of all twins included in 
this study was within the 500–5000 kcal/day range. A total 
of 487 female twins had information on all covariates and 
were included in the food group EWASs. A flowchart for the 
study samples and final analysis sample is given in Fig. 1.

Dietary intake

In the KORA FF4 study, dietary data was collected via 
repeated 24 h food lists, comprising 246 items and a food 
frequency questionnaire (FFQ), including 148 items. The 
24 h food list was derived from the NAKO Health study 
[17] and subjects were asked to report the type of food 
they consumed. The FFQ was adapted from the German 
version of the multilingual European Food Propensity 
Questionnaire [18]. Usual dietary intake was modeled 
with the amount consumed (if consumed at all) based on 
portion sizes from the Bavarian consumption study II [19], 
multiplied by the probability of consumption for an indi-
vidual subject from at least two non-consecutive 24 h food 
lists. This was done to reduce measurement error, which 
is prominent in surveyed dietary data. Further information 

Fig. 1  Flow chart of participant selection
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regarding assessment of dietary intake data and estimation 
of usual dietary intake is provided elsewhere [20]. The die-
tary data is classified in 17 main food groups and 71 food 
subgroups according to the EPIC SOFT classification [21]. 
Nutrient intake data was calculated based on the German 
food composition database, Bundeslebensmittelschlüssel, 
version 3.01 [22].

As part of the LLS study, participants were sent a 218-
item FFQ constructed from the 104-item VetExpress FFQ, 
combined with the Dutch National Food Survey [23]. Food 
items were categorized into 17 main food groups and 67 
subgroups, with combination formulae used to split intake 
where appropriate.

Dietary data in TwinsUK was collected through a 131-
item FFQ comprising the food and drink items originally 
included in the EPIC Norfolk study [24]. The processing of 
this data was first described elsewhere [25]. Here, the daily 
intake of each item was calculated in g/day using the FETA 
software [26], and the default nutritional database used was 
McCance and Widdowson’s The Composition of Foods (5th 
edition) [27]. Food items were then allocated to food groups 
following the EPIC-Soft classification, matching items suc-
cessfully to 32 of 33 food groups.

After regressing food group intake against energy intake, 
the predicted food group intake was added for the mean 
energy intake of the study population to the residuals in all 
three cohorts to improve interpretability. Furthermore, two 
dietary patterns were calculated in each study: the Alter-
nate Healthy Eating Index 2010 (AHEI 2010) [28] and the 
Mediterranean Diet Score (MDS) [29]. The AHEI scoring 
system assesses foods and nutrients predictive of chronic 
disease risk (e.g. vegetables, nuts, alcohol). A lower score 
is associated with higher risk of chronic diseases of major 
importance for public health. Due to a lack of data, trans fats 
had to be excluded in the calculation of AHEI, resulting in a 
maximum of 100 points instead of 110. Usual dietary intake 
was transformed to servings per day with references reported 
in [28]. A high MDS reflects high adherence to a dietary pat-
tern followed by people living in Mediterranean countries, 
relative to the sex-specific population median, except for 
alcohol, where a moderate amount of consumption is ranked 
highest. The MDS emphasizes the consumption of fish, leg-
umes, fruits and nuts, cereals, and a high ratio of unsaturated 
to saturated lipids. The modification of the MDS is depicted 
in the fat ratio as a sum of monounsaturated and polyunsatu-
rated fatty acids divided by saturated fatty acids. The MDS 
is a population-based dietary score. The definition of food 
groups was harmonized based on the EPIC-Soft classifica-
tion that was used to classify each food in all three cohorts, 
ensuring that individual food items were attributed to the 
same food (sub-) group. Harmonization was not entirely 
possible for mushrooms, milk, yogurt, eggs and plant oils, 
because at least one study did not capture these items.

DNA methylation data

KORA FF4: Using the EZ-96 DNA Methylation Kit (Zymo 
Research, Orange, CA, USA) in two separate batches 
(N = 488, N = 1440), genomic DNA from white blood cells 
(750 ng) from 1928 participants of the KORA FF4 study 
was bisulfite-converted. According to standard protocols 
provided by Illumina, subsequent methylation analysis was 
performed on an Illumina (San Diego, CA, USA) iScan 
platform using the Infinium MethylationEPIC BeadChip. 
For initial quality control and to generate methylation data 
export files, GenomeStudio software version 2011.1 with 
Methylation Module version 1.9.0 was used.

Further preprocessing and quality control of the data were 
performed in R v3.5.1 [30] with the package minfi v1.28.3 
[31] and following primarily the CPACOR pipeline [32]. 
Raw intensities were read into R (command read.metharray) 
and background corrected (bgcorrect.illumina). Hereafter 
probes with detection p values > 0.01 were set to missing.

We removed problematic samples and probes before nor-
malization. Forty samples were removed: 33 had median 
intensity < 50% of the experiment-wide mean, or < 2000 
arbitrary units, 9 (overlap of 4 with previous) had > 5% 
missing values on the autosomes and 2 showed a mismatch 
between reported sex and that predicted by minfi. A total of 
59,631 probes were removed (some overlapping multiple 
categories): 5786 with > 5% missing values, cross-reactive 
probes as given in published lists (N = 44,493) [33, 34] 
and probes with SNPs with minor allele frequency < 5% at 
the CG position (N = 11,370) or the single base extension 
(N = 5597) as given by minfi. Finally, probes from the Y 
chromosome (N = 379) and the X chromosome (N = 17,743, 
following quality control) were excluded from the analysis. 
A total of 788,106 probes remained.

Quantile normalization was then performed separately 
on the signal intensities divided into the 6 probe types: type 
I green unmethylated, type I green methylated, type I red 
unmethylated, type I red methylated, type II red, type II 
green [32]. For the X and Y chromosomes, men and women 
were processed separately; for the autosomes, Quantile nor-
malization was performed for all samples together. Methyla-
tion beta values, a measure from 0 to 1 indicating the per-
centage of cells methylated at a given locus, were generated 
out of the transformed intensities. The threshold for exclu-
sion of beta-value outliers was set at ± 3* interquartile range.

The Infinium MethylationEPIC Manifest file (available 
at www. illum ina. com via product files) was used to map 
probes to genes and chromosomes using genome build 37. 
The Manifest file uses the gene database of the University of 
California Santa Cruz (UCSC). Informed consent for genetic 
studies was obtained from all subjects. The protocol for each 
study was approved by the institutional review board of each 
cohort.

http://www.illumina.com
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LLS: Venous blood samples were taken from 732 unre-
lated individuals aged between 40 and 75 for whole blood 
DNA methylation profiling. The Zymo EZ DNA methylation 
kit (Zymo Research, Irvine, CA, USA) was used to bisulfite-
convert 500 ng of genomic DNA, and 4 μl of bisulfite-con-
verted DNA was measured on the Illumina HumanMethyla-
tion450 array using the manufacturer’s protocol (Illumina, 
San Diego, CA, USA). Preprocessing and normalization of 
the data were done as described in the DNAmArray work-
flow (https:// molepi. github. io/ DNAmA rray_ workfl ow/).

In brief, IDAT files were read using the minfi, while sam-
ple-level quality control (QC) was performed using Methy-
lAid. Filtering of individual measurements was based on 
detection p value (p < 0.01), number of beads available (≤ 2), 
or zero values for signal intensity. Normalization was done 
using functional normalization as implemented in minfi, 
using five principal components extracted using the control 
probes for normalization. All samples or probes with more 
than 5% of their values missing were removed.

TwinsUK: Whole-blood DNA methylation profiles in 
TwinsUK have previously been described [35]. Briefly, 
measurement of whole blood DNA methylation was per-
formed using the Infinium HumanMethylation450 BeadChip 
(Illumina Inc, San Diego, CA) which profiles methylation 
levels at > 450,000 sites of the human genome. Processing of 
signals was performed using ENmix [36] for quality control, 
and minfi [31] to exclude samples with median methylated 
and unmethylated signals below 10.5. Both tools are avail-
able as Bioconductor software packages in R. During ENmix 
quality control checks, background and dye bias correction 
were performed as well as quantile normalization of sig-
nals. Bad probes and outlier samples were identified using 
standard parameter values, and signals with detP > 0.000001 
and nbead < 3 were excluded. Beta-values were estimated 
after adjusting for differences in the distribution of type I 
and type II probe signals with the Regression on Correlated 
Probes (RCP) method. Beta-values out of the ± 3* inter-
quartile distribution range were further excluded to match 
KORA FF4 exclusion criteria during association analyses. 
Maximum probe and sample missingness were set to 5%, 
and probes that mapped to multiple locations in the genome 
were removed. Overall, a total 430,768 autosomal probes 
and 487 individuals were included in our analysis.

Here we present the results of CpG sites that overlap 
between the Infinium MethylationEPIC and the Infinium 
HumanMethylation450 BeadChip, leaving a final number 
of at least 393,223 CpG sites per food group.

Statistical analysis

The EWAS was carried out using linear regression analysis 
of the overlap of CpGs that were common in all three cohorts 
after quality control (n = 393,427). We performed a fixed-effect 

meta-analysis, because the estimated tau is considered impre-
cise with a small sample of studies [37]. In addition, we did 
a random-effects meta-analysis as a sensitivity analysis to 
follow-up on significant signals by evaluating the unadjusted 
p value. In context of the often high heterogeneity observed, 
we reported the I2 confidence interval, which is recommended 
in a small sample meta-analysis [38]. N = 1321 subjects from 
KORA FF4, N = 507 subjects from LLS and N = 487 subjects 
from TUK were included in the analysis, resulting in a sample 
size of N = 2315. The primary outcome of this study was meth-
ylation beta values. We tested 37 food groups, nutrients and 
diet quality scores: potatoes, total vegetables, leafy vegetables, 
fruit vegetables, root vegetables, cabbage vegetables, onions 
and garlic, legumes, total fruits, nuts and seeds, milk, yogurt, 
cheese, cream, grain products, whole grain products, total 
meat, fresh red meat, processed meat, total fish, eggs, plant 
oils, butter, margarine, total sweets, cakes, sugar-sweetened 
beverages, coffee, tea, wine, beer, spirits, AHEI, MDS and 
folic acid. The residual method was used in each cohort to get 
intake estimates independent of total energy intake [39]. The 
p values were false-discovery rate (FDR) corrected (p < 0.05) 
using the Benjamini and Hochberg procedure. Methylation as 
beta values were regarded as the dependent variable. Expo-
sures were food groups (g/day), dietary pattern scores (integer) 
and additionally folic acid in µg/day. Selected covariates for 
the model were sex, age (continuous), age squared, BMI (con-
tinuous), BMI squared, total caloric intake (continuous), alco-
hol in g/day (continuous—not applied in the analysis of wine, 
beer, spirits, AHEI and MDS), measured or estimated cell 
counts (using the Houseman-method [40]), smoking behav-
ior (regular, former, never) and methylation plate and/or plate 
position as a technical variable. These were selected based on 
the literature and our own assessment of confounding with 
the disjunctive cause criterion [41]. Neutrophile granulocytes 
were excluded as a covariate due to multicollinearity. Only 
complete cases for every covariate were included in the analy-
sis. To account for heterogeneity, we inspected and reported 
the p value of the Q-statistic and I2 for all CpGs that reached 
statistical significance. All statistical analyses were carried out 
with R statistical software version 4.0.4 [30]. Meta-analysis 
was performed with the metagen function of the meta package 
version 4.17.0 [42]. Figures were created using the ggplot2 
package [43]. To evaluate whether CpGs were occuring in 
differentially methylated regions, DMRfinder [44] was used 
to test for the occurrence of significant CpGs < 1 kb apart as 
implemented in DNAmArray.

Results

Overall, the results of 2316 participants were included in 
the meta-analysis. In KORA FF4, LLS and TUK, partici-
pants had a median age of 58, 59, and 60 years; a median 

https://molepi.github.io/DNAmArray_workflow/
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BMI of 26.8, 25.1, and 25.6 kg/m2; and a median total 
energy intake of 1820, 1883, and 1808 kcal/day, respec-
tively (Table 2). Intake of food groups for all cohorts 
can be found in Online Resource 1. Following a false-
discovery rate adjustment with an alpha threshold at 0.05 
(Table 3), we found 2 significant associations for onions 
and garlic consumption, 18 for nuts and seeds (Figs. 2a 
and 3), one for milk (Fig. 4), 11 for cream (Figs. 2b and 5), 
13 for butter (Figs. 2c and 6), four for plant oils (Fig. 2d), 
five for wine, 16 for beer and six for spirits (for alcoholic 
beverages results, see Online Resource 2). We obtained 
no statistically significant signals for other food groups or 
dietary patterns. All significant CpGs were located in dis-
tinct regions (inter-CpG-distance > 1 kb). Some interesting 
annotated genes that are linked to metabolism include: 
GLI1 (Fig. 3), ATP5H, MYC, RPTOR, ASAM, FOXA2, and 
DIO1. Cg26633077 lies within the gene body of RPTOR, 
which could lead to suppressed gene expression with 
more cream consumption, as indicated by the negative 
effect size. This gene is involved in a signaling pathway 
that regulates cell growth in response to nutrient levels. 
Cg11798857 is positioned at the promoter of the FOXA2 
gene. Combined with a positive effect size, this would 
indicate gene suppression as well. FOXA2 is a transcrip-
tional activator for liver-specific genes. Figure 5 shows 

the forest plot of the CpG associated with MYC, which 
is a pro-fibrotic regulator. See Table 3 for information on 
all annotated genes and locations of the CpGs. Figure 7 
displays examples of effect size estimates for the asso-
ciation of different food groups with DNA methylation. 
Two of the identified CpGs were detected in two distinct 
food groups, namely wine and beer. The first locus was 
annotated to the PHGDH gene, which is involved in the 
early steps of L-serine synthesis (cg14476101) and the 
second to TRA2B, which plays a role in mRNA processing 
(cg12825509).       

Many of the food groups for which we observed signifi-
cant associations are high in fat content. However, in con-
trast to this statement, we found no significant signals in 
case of cheese, eggs or margarine consumption. We explored 
whether significant CpGs identified in one food group may 
also be associated with another (high-fat) food group. We 
chose the example of the findings for nuts and seeds, and 
Table 4 displays the results. In total for all explored food 
groups, 10 signals from the food group nuts and seeds 
showed an unadjusted p value < 0.05 in other high-fat food 
groups, and only two of them had the same direction of 
effect [cg09418283, cg10530560]. We did not observe any 
significant association for the consumption of food groups 
that are well known for their specific phytochemical content, 

Table 2  Population characteristics stratified by sex and cohort

Values are presented as median [Interquartilrange]

KORA LLS TUK

Male Female Overall Male Female Overall Male Female

n 620 702 1322 240 267 507 NA 487
Age in years 

(median 
[IQR])

59.0 [49.0, 
67.0]

58.0 [48.0, 
65.0]

58.0 [49.0, 
66.0]

60.7 [55.9, 
64.9]

57.5 [53.0, 
61.8]

58.9 [54.5, 
63.5]

NA 59.5 [52.2, 65.5]

BMI in kg/
m2 (median 
[IQR])

27.4 [25.2, 
30.5]

26.1 [23.2, 
29.8]

26.8 [24.1, 
30.2]

25.3 [23.6, 
27.2]

24.6 [22.4, 
26.9]

25.1 [23.0, 
27.1]

NA 25.6 [23.1, 29.3]

Total energy 
intake 
(median 
[IQR])

2093.8 
[1885.9, 
2332.7]

1578.9 
[1427.9, 
1791.8]

1819.8 
[1550.8, 
2114.8]

2215.3 
[1771.9, 
2576.9]

1730.5 
[1465.0, 
2008.3]

1882.5 
[1573.9, 
2341.5]

NA 1808.1 [1473.1, 
2199.3]

Alcohol in g/
day (median 
[IQR])

13.2 [5.1, 24.6] 2.7 [1.7, 5.3] 5.0 [2.4, 13.9] 16.1 [8.4, 28.0] 9.0 [2.9, 19.1] 12.5 [4.5, 89.6] NA 5.4 [0.9, 12.6]

Smoking behavior (%)
 Regular 

smoker
96 (15.5) 97 (13.8) 193 (14.6) 41 (11.5) 44 (11.3) 85 (11.6) NA 60 (12.3)

 Former 
smoker

283 (45.6) 222 (31.6) 505 (38.2) 196 (54.9) 162 (41.8) 358 (48.9) NA 162 (33.2)

 Never smoker 241 (38.9) 383 (54.6) 624 (47.2) 67 (18.8) 132 (34.0) 199 (27.2) NA 265 (54.4)
 Physical 

activity: 
active (%)

361 (58.2) 452 (64.4) 813 (61.5) 240 (100) 267 (100) 507 (100) NA NA
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such as leafy vegetables, cabbage vegetables and fruits, or 
coffee and tea. We also did not observe any DNA methyla-
tion association with AHEI or MDS.

In many cases, heterogeneity between studies was high, 
with I2 > 0.8 (Table 3). Reasons could be differences in 
dietary assessment methods across studies or differences 
between populations. To explore this further, we also 

performed a random-effects meta-analysis, which repro-
duced 2 of 2 signals in onions and garlic [cg06618277; 
cg13970894], 7 out of 18 in nuts and seeds [cg03046445; 
cg11701148; cg13471114; cg15864779; cg23415756; 
cg27344289; cg27496650], 0 of 1 in milk, 3 of 11 in cream 
[cg03846926; cg08846079; cg13923646], 6 of 13 in butter 

Fig. 2  Volcano plots with the unadjusted p value on the y-axis. Every significant CpG after FDR adjustment is marked with its probeID. Effect 
size on the x-axis is %-methylation change per gram residual/day. a nuts and seeds, b cream, c butter, d plant oils in g/day residuals
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[cg02924347; cg07410571; cg11798857; cg19200140; 
cg19526600; cg26502414], 2 of 4 in plant oils 
[cg02488288; cg18419070], 5 of 5 in wine [cg06690548; 
cg07856667; cg08033640; cg12825509; cg14476101], 
10 of 16 in beer [cg01794805; cg03044533; cg03725309; 
cg06469895; cg07714319; cg08984272; cg10797552; 
cg11100157; cg11376147; cg15821562], and 1 of 6 in 
spirits [cg09307985]. Detailed results are listed in Online 
Resource 3. For further information regarding heteroge-
neity and effect size distribution, see Online Resource 4, 
where the p value distribution, I2 distribution and esti-
mated tau distribution for every analyzed food group with 
significant signals are displayed. Online Resource 5 pre-
sents volcano plots for every analyzed food group.

Discussion

This work explored many food groups that have not been 
studied in context of human DNA methylation, e.g., nuts 
and seeds, or added fats and oils. Our main finding is that 
the majority of analyzed food groups did not show sig-
nificant associations with blood DNA methylation, and 
that significant associations with methylation levels were 
observed primarily for food groups high in fat content.

We evaluated whether the CpGs we found to be asso-
ciated with food groups in this analysis had been previ-
ously identified in EWAS for other traits using the EWAS 
catalog [45]. Many significant associations (cg12825509, 
cg14476101, cg06690548, cg11376147, cg14476101, 

Fig. 3  Forest plot for the asso-
ciation between cg10530560 
methylation level and nuts and 
seeds consumption. Effect size 
on the x-axis is %-methylation 
change per gram residual/day 
with a 95% confidence interval
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cg06469895, cg12825509, cg18120259, cg03725309, 
cg07714319, cg16246545, cg15821562, cg03044533, 
cg26282731, cg11100157, cg01794805) observed in our 
analysis on alcoholic beverages could be attributed to their 
ethanol content, and are already reported in the EWAS 
catalog for their association with alcohol consumption. 
Loci cg12430457 (nuts and seeds), cg06947913 (cream) 
and cg14046757, cg13934553, cg26502414, cg07410571 
(butter) were all reported to be associated with rheumatoid 
arthritis [45]. One signal in nuts and seeds, cg14828673, 
was previously reported to be associated with waist-to-
hip-ratio [45]. Surprisingly, cg13331940, which was sig-
nificantly associated with cream, was previously reported 
to be associated with alcohol consumption per day [45]. 
None of our remaining significant signals were associated 

with metabolic traits, metabolic diseases or dietary expo-
sures in past EWAS.

We found several interesting signals in the food group 
nuts and seeds for which there is a reported connection in the 
literature. Cg10530560 maps to the gene GLI1 and showed 
a significant association with the food group nuts and seeds. 
GLI1 is a transcription factor which gets activated by and is 
a marker of the sonic hedgehog pathway [46]. A negative 
effect size and the location in the gene body could be inter-
preted as a downregulation in gene expression, which would 
fit the downregulation of genes in the hedgehog pathway 
triggered by a diet high in either saturated or unsaturated 
fatty acids as reported by Mehmood et al. [46]. Deactiva-
tion of the hedgehog pathway is suggested to be associ-
ated with fat accumulation [47]. Another significant signal 

Fig. 4  Forest plot for the asso-
ciation between cg14732699 
methylation level and milk 
consumption. Effect size on the 
x-axis is %-methylation change 
per gram residual/day with a 
95% confidence interval
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(cg15864779, located within the ATP5H gene) could pos-
sibly be explained by the high-methionine content in nuts. A 
high-methionine diet alters the ATP5H expression depend-
ent on the paraoxonase genotype. Paraoxonase-positive mice 
have downregulated ATP5H, whereas paraoxonase-negative 
mice had upregulated ATP5H. This interaction is tightly 
linked to energy generation in the hyperhomocysteinemic 
liver [48].

The one CpG linked to milk consumption, cg14732699, 
is associated with MYC, a pro-fibrotic regulator. Butyric acid 
as a component in bovine milk triglycerides [49] could have 
affected the methylation of this MYC CpG site. One study 
identified butyrate as a protective agent for diet-induced non-
alcoholic hepatic steatosis and liver fibrosis by downregu-
lating, among other, MYC [50]. Another study observed an 
association between oleic acid, the main monounsaturated 

fatty acid in bovine milk, and the gene MYC. It showed that 
oleic acid promotes colorectal cancer development by upreg-
ulation of MYC, among others [51].

We also observed significant associations with cream 
consumption, another high-fat food group. CLIP2 associ-
ated with cg17353893 is reported to be downregulated under 
a high-fat diet regimen [52]. This downregulation also fits 
our results, where cg17353893 has a negative effect size 
and is located within the gene body [53]. The CYFIP1 
(cg22028181) gene is a homolog of CYFIP2, which was 
described as a genetic factor underlying compulsive-like 
binge eating in mice [54]. CYFIP1 haploinsufficiency shows 
similar properties by increasing compulsive-like behavior 
and modulation of palatable food intake in mice [55]. Cream 
is a food with very high energy density; thus, dependent 
on the direction of the relationship, gene methylation could 

Fig. 5  Forest plot for the asso-
ciation between cg26633077 
methylation level and cream 
consumption. Effect size on the 
x-axis is %-methylation change 
per gram residual/day with a 
95% confidence interval
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be either the cause or effect of cream consumption. Calo-
rie intake impacts the gene associated with cg26633077, 
RPTOR, as shown in the stabilization of the MTOR-RPTOR 
association by nutrient deprivation, leading to inhibition of 
MTOR activity [56]. Despite the inhibition of the anabolic 
regulator MTOR, one study found that RPTOR null mice 
gained less weight, most likely due to reduced food intake 
in a high-fat diet, when compared to wild type mice [57]. 
It is worth noting that there was very high heterogeneity 
observed for cg26633077.

More insight into the association between CpG methyla-
tion and adiposity can be given by significant associations 
with butter intake. Cg18247124 is located in adipocyte adhe-
sion molecule (ASAM), which was found to be correlated 
with BMI in human subcutaneous adipose tissue, and ASAM 
mRNA is increased during adipocyte differentiation in mice 

and humans [58]. Also, cg11798857 in the transcription 
start site of FOXA2 was a significant finding in our analysis. 
FOXA2 mRNA, related to fatty acid oxidation in the liver, 
was increased in mice fed with pre- and probiotics, along 
with improved insulin sensitivity and reduced adipocyte size 
[59]. DIO1 (cg19526600) encodes for type I iodothyronine 
deiodinase and can affect lipid metabolism through its effects 
on thyroid hormones. Xia et al. [60] reported that mice with 
an obese phenotype experienced ameliorated hepatic stea-
tosis if the intervention was exercise, low-fat, quercetin or 
calorie restriction, possibly by affecting miRNAs, e.g. miR-
383 and miR-146b to elevate DIO1 expression.

Comparing all of our results to previous EWAS is quite 
difficult because of the lack of EWAS analyzing food groups. 
Karabegovic et al. performed an EWAS in four European 
cohorts analyzing tea and coffee consumption. We tried 

Fig. 6  Forest plot for the asso-
ciation between cg11798857 
methylation level and butter 
consumption. Effect size on the 
x-axis is %-methylation change 
per gram residual/day with a 
95% confidence interval
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to replicate the findings of Karabegovicet al. [61] for cof-
fee with a Bonferroni adjusted alpha (0.05) solely in the 
KORA FF4 study, but failed, except for cg25648203, for 
which we could confirm the direction of effect. We did not 
observe significant signals in our meta-analysis of coffee and 
DNA methylation. There are obvious differences that could 
explain the failed replication. The study from Karabegovic 
et al. has ten times the sample size that our study has, which 
greatly increases the power to detect such signals. Also, 
while Karabegovic et al. used their coffee intake in cups per 
day, ours is measured as usual dietary intake in g/day and 
used as residuals in the linear regression.

Several pathways could assist in explaining the associa-
tions between food groups and methylation changes. One of 
our hypotheses was that the link between diet and inflam-
mation could influence DNA methylation levels. Nuts are 

known for their high unsaturated and low saturated fatty 
acid content, which can affect homeostasis of inflammation 
and therefore impact DNA methylation patterns [3]. How-
ever, this argument has to be evaluated for every food group 
separately. Nuts, butter, plant oils and cream have a high-
fat content in common, which could also either trigger or 
reduce inflammation in mice [62], but not in obese humans 
without metabolic disturbances [63]. Other food groups like 
red meat or cabbage that were associated with inflammatory 
processes in the past have not yielded any signals. Further 
studies are needed to confirm our results that the association 
of, for example, red meat and cabbage with inflammation are 
independent of DNA methylation.

Although our results hint at a pattern suggesting that 
the high-fat content of the food groups seems to be a major 
determinant in the modification of methylation patterns, the 

Fig. 7  Combined forest plot 
of pooled estimators. One 
significant finding in different 
food groups is shown to get a 
perspective for the different 
effect sizes. Effect size on the 
x-axis is %-methylation change 
per gram residual/day with a 
95% confidence interval
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results as described in Table 4 do not confirm this regard-
ing the significant signals found for the food group nuts and 
seeds. Additionally, we observed only a few or no significant 
signals in other high-fat content food groups like fish, pro-
cessed meat and cheese.

Despite the focus on food groups, we also analyzed folic 
acid intake in this meta-analysis. We found no significant 
association here, which supports the theory that nutrients 
involved in the pathway that leads to the main methyl donor 
S-adenosylmethionine have at most a weak isolated impact 
on DNA methylation, as already demonstrated by Man-
daviya et al. [4] and Dugué et al. [5].

Our study has several strengths. It is the first study which 
examined in three independent studies the intake of many 
food groups and subgroups for their association with DNA 
methylation. We harmonized the dietary intake data of 
KORA, LLS and TUK to ensure that same food classifica-
tion scheme was applied. Residual confounding by energy 
intake was best considered by calculating food group residu-
als and using these in our models.

The analytic method to estimate the methylation level was 
similar across studies; the larger set of CpG sites measured 
in KORA was not considered here since the analyses were 
based on overlapping CpG sites across all studies. Our study 
also has limitations. We did not perform a food substitution 
model. Thus, we could not exclude the possibility that another 
food can act as a compensating mechanism. Also, since we 
have no gene expression data, conclusions about the effect 
of methylation change have to be confirmed in mechanistic 

studies. Additionally, we only had access to whole blood 
cells; therefore, we cannot draw any tissue-specific conclu-
sions. Finally, there could be limited correlation of the same 
CpGs in the Illumina 450 k Chip used by TwinsUK and LLS 
and in the EPIC 850 k Chip used by KORA [64]. These 
results need replication to further clarify the association of 
food groups with white blood cell DNA methylation. As a 
fixed-effect model was chosen, extrapolating conclusions to 
different populations has to be done carefully. Although the 
random-effects meta-analysis more closely resembles the data 
reality than a fixed-effects analysis, because of the assumption 
of underlying distinct true means, the results should not be 
valued over the fixed-effects analysis, since an imprecise tau 
is included in our random-effects model [37]. We are aware 
of the debate around the focus on p values [65], but since we 
needed a threshold to decide if a CpG in this explorative study 
represents a meaningful finding, we deemed this the best fit. 
Due to the design of this study, we cannot draw conclusions 
regarding causality. Lastly, since dietary intake was assessed 
by FFQ’s (TUK, LLS) or a blended approach using repeated 
24 h food list and an FFQ, exposure data may suffer from dif-
ferential bias(including self-reporting bias).

Conclusions

This study analyzed a broad range of different food groups 
and subgroups from three cohorts for their association 
with CpG methylation level. There were no significant 

Table 4  p values for high-
fat food groups for loci with 
significant associations with the 
food group nuts and seeds

Underlining indicates same direction of effect
*Indicates p value < 0.05

CpG Nuts-seeds Butter Cheese Cream Eggs Margarine Plant-oils Processed-meat

cg03046445 5.27e–07* 0.217 0.413 0.328 0.549 0.102 0.901 0.387
cg05275153 4.10e–10* 0.725 0.760 0.189 0.766 0.377 0.170 0.600
cg08633290 8.66e–11* 0.118 0.118 0.853 0.489 0.170 0.712 0.915
cg09418283 1.04e–07* 0.427 0.942 0.185 0.021* 0.758 0.452 0.082
cg10530560 1.65e–12* 0.821 0.046* 0.929 0.043* 0.720 0.171 0.088
cg11701148 1.11e–07* 0.251 0.230 0.574 0.672 0.785 0.299 0.764
cg12430457 2.15e–06* 0.636 0.986 0.343 0.790 0.311 0.304 0.423
cg12611195 1.66e–06* 0.223 0.033* 0.748 0.479 0.013* 0.443 0.051
cg13471114 1.37e–06* 0.870 0.979 0.608 0.240 0.372 0.452 0.085
cg14436861 5.04e–10* 0.865 0.598 0.246 0.968 0.013* 0.843 0.053
cg14828673 8.97e–07* 0.610 0.751 0.942 0.627 0.993 0.946 0.589
cg15864779 8.95e–08* 0.232 0.773 0.210 0.810 0.819 0.898 0.082
cg16790682 1.57e–06* 0.526 0.469 0.929 0.744 0.021* 0.472 0.169
cg21251785 6.06e–07* 0.518 0.547 0.321 0.427 0.665 0.254 0.890
cg23415756 1.68e–08* 0.045* 0.999 0.745 0.812 0.956 0.606 0.317
cg25554998 9.77e–07* 0.088 0.876 0.409 0.551 0.401 0.688 0.502
cg27344289 1.51e–09* 0.155 0.470 0.921 0.396 0.730 0.921 0.148
cg27496650 2.11e–07* 0.812 0.394 0.080 0.002* 0.461 0.173 0.284
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associations for almost all vegetable or fruit food (sub-) 
groups. Rather, we observed interesting signals in food 
groups rich in fat, such as nuts and seeds, cream, butter, 
and plant oils. Some of the annotated genes seem to sup-
port the frequently observed effects of high-fat diets on 
DNA methylation in experimental studies. However, the 
results need replication in other cohorts with appropriate 
sample sizes to overcome some of the limitations present 
in this study.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00394- 022- 03074-9.
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