
PLIS: a metabolomic response monitor to a lifestyle intervention study
in older adults
Bogaards, F.A.; Gehrmann, T.; Beekman, M.; Akker, E. ben van den; Rest, O. van de;
Hangelbroek, R.W.J.; ... ; Slagboom, P.E.

Citation
Bogaards, F. A., Gehrmann, T., Beekman, M., Akker, E. ben van den, Rest, O. van de,
Hangelbroek, R. W. J., … Slagboom, P. E. (2022). PLIS: a metabolomic response monitor to
a lifestyle intervention study in older adults. The Faseb Journal, 36(11).
doi:10.1096/fj.202201037R
 
Version: Publisher's Version
License: Creative Commons CC BY-NC-ND 4.0 license
Downloaded from: https://hdl.handle.net/1887/3503750
 
Note: To cite this publication please use the final published version (if applicable).

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://hdl.handle.net/1887/3503750


The FASEB Journal. 2022;36:e22578.	﻿	     |  1 of 17
https://doi.org/10.1096/fj.202201037R

wileyonlinelibrary.com/journal/fsb2

Received: 12 July 2022  |  Revised: 7 September 2022  |  Accepted: 19 September 2022

DOI: 10.1096/fj.202201037R  

R E S E A R C H  A R T I C L E

PLIS: A metabolomic response monitor to a lifestyle 
intervention study in older adults

Fatih A. Bogaards1,2,3   |   Thies Gehrmann1,2   |   Marian Beekman1   |    
Erik Ben van den Akker1,2,4   |   Ondine van de Rest3   |   Roland W. J. Hangelbroek3   |   
Raymond Noordam5   |   Simon P. Mooijaart5   |   Lisette C. P. G. M. de Groot3   |   
Marcel J. T. Reinders2,4   |   P. Eline Slagboom1

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any 
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2022 The Authors. The FASEB Journal published by Wiley Periodicals LLC on behalf of Federation of American Societies for Experimental Biology.

Marcel J. T. Reinders and P. Eline Slagboom contributed equally to this work.  

Abbreviations: 1H-NMR, hydrogyen-1 nuclear magnetic resonance; AGO study, Active and Healthy Old study; Ala, alanine; ApoA1, apolipoprotein 
A1; ApoB, apolipoprotein B; BMI, body mass index; bOHBut, 3-Hydroxybutyrate; CHM, classical metabolic health marker; Cit, citrate; Crea, 
creatinine; CRP, C-reactive protein; DBP, diastolic blood pressure; DHA, docosahexaenoic acid; FAw3-FA, ratio of omega-3 fatty acids to total fatty 
acids; FAw6, omega-6 fatty acids; FAw6-FA, ratio of omega-6 fatty acids to total fatty acids; FRS, Framingham risk score; Glc, glucose; Gln, 
glutamine; GOTO study, Growing Old TOgether study; Gp, glycoprotein acetyls; HDL2-C, total cholesterol in HDL2; HDL3-C, total cholesterol in 
HDL3; HDL-C, total cholesterol in HDL; HDL-D, mean diameter for HDL particles; His, histidine; HOMA2-IR, Homeostasis Model Assessment of 
Insulin Resistance; IDL-C, total cholesterol in IDL; IDL-L, total lipids in IDL; LA, linoleic acid; Lac, lactate; LDL-C, total cholesterol in LDL; Leu, 
leucine; L-HDL-L, total lipids in large HDL; L-LDL-L, total lipids in large LDL; MHDLL, total lipids in medium HDL; M-HDL-L, total lipids in 
medium HDL; M-LDL-L, total lipids in medium LDL; MUFA, monounsaturated fatty acids; MUFA-FA, ratio of monounsaturated fatty acids to total 
fatty acids; M-VLDL-L, total lipids in medium VLDL; PC, phosphatidylcholine and other cholines; Phe, phenylalanine; PLIS, personalized Lifestyle 
Intervention Status; PUFA, polyunsaturated fatty acids; PUFA-FA, ratio of polyunsaturated fatty acids to total fatty acids; SBP, systolic blood 
pressure; SerumC, serum total cholesterol; SerumTG, serum triglycerides; SFA, saturated fatty acids; SFA-FA, ratio of saturated fatty acids to total 
fatty acids; S-LDL-L, total lipids in small LDL; SM, sphingomyelins; S-VLDL-L, total lipids in small VLDL; TotCho, total cholines; TotFA, total fatty 
acids; TotPG, total phosphoglycerides; Tyr, tyrosine; UnsatDeg, estimated degree of unsaturation; Val, valine; VLDL-C, total cholesterol in VLDL; 
VLDL-D, mean diameter for VLDL particles; WC, waist circumference; WHR, waist-to-hip ratio; XL-HDL-L, total lipids in very large HDL; XS-
VLDL-L, total lipids in very small VLDL; XXL-VLDL-L, total lipids in chylomicrons and extremely large VLDL; ΔMetaboAge, delta MetaboAge.
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Abstract
The response to lifestyle intervention studies is often heterogeneous, especially 
in older adults. Subtle responses that may represent a health gain for individu-
als are not always detected by classical health variables, stressing the need for 
novel biomarkers that detect intermediate changes in metabolic, inflammatory, 
and immunity-related health. Here, our aim was to develop and validate a mo-
lecular multivariate biomarker maximally sensitive to the individual effect of a 
lifestyle intervention; the Personalized Lifestyle Intervention Status (PLIS). We 
used 1H-NMR fasting blood metabolite measurements from before and after the 
13-week combined physical and nutritional Growing Old TOgether (GOTO) 
lifestyle intervention study in combination with a fivefold cross-validation and 
a bootstrapping method to train a separate PLIS score for men and women. The 
PLIS scores consisted of 14 and four metabolites for females and males, respec-
tively. Performance of the PLIS score in tracking health gain was illustrated by 
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1   |   INTRODUCTION

Worldwide, the proportion of older people in the human 
population is increasing and with it, the burden of late age 
diseases on quality of life and society.1,2 Improving meta-
bolic and immune-related health parameters is generally 
considered to be an important component of improving 
vitality in older age.3,4 Various lifestyle interventions may 
beneficially influence such parameters and especially 
those based on combinations of physical activity and di-
etary intake.5–10 However, the effects of short-term life-
style intervention studies are often modest and do not 
immediately indicate changes in disease risk, they are 
often also ambiguous due to individual differences in re-
sponse which mask beneficial effects for subgroups.11,12

To maximize the result of lifestyle interventions one 
needs to establish what benefit is gained by which inter-
vention at a personal basis, expressing the need for sen-
sitive molecular biomarkers. There are novel molecular 
biomarkers which have been trained to predict disease 
and metabolic health outcomes using machine learning 
algorithms in combination with different omics measures, 
including metabolomics.13 Metabolomics is the term for 
studies into the small molecules within cells, biofluids, tis-
sues, or organisms that represent the intermediate or end 
products of metabolism (metabolites).13 The metabolome 
comprises the quantitative and qualitative measurements 
of these metabolites. Novel metabolomics-based biomark-
ers have been shown to be a valuable tool in precision nu-
trition and they indicate the risk of metabolic diseases.14,15 
Multivariate metabolomic markers have also been trained 
(based on chronological age and on mortality) to indi-
cate biological age (MetaboAge and MetaboHealth).16,17 
Such biomarkers tend to predict disease outcomes and 

mortality equally or even better than classical clinical 
markers, potentially contributing to personalized medi-
cine.14–19 However, these biomarkers are trained on large 
sets of cohort data and do not detect the subtle changes in 
health caused by short-term interventions, further stress-
ing the need for novel biomarkers specifically designed 
to record such changes caused by short lifestyle interven-
tions, to follow the trajectory of the participants.

We set out to train and validate a novel response 
marker that can predict the effect of a short-term inter-
vention based on metabolomics data. The data used to 
train this novel response predictor, which we named the 
Personalized Lifestyle Intervention Status (PLIS) score, 
were part of the short-term Growing Old TOgether 
(GOTO) lifestyle intervention study.6 The aim of the 
GOTO intervention study was to improve the metabolic 
health in older adults through an increased energy expen-
diture by 25% for 13 weeks in part by a 12.5% reduction 
in caloric intake and a 12.5% increase in physical activity, 
following one of the criteria of the hallmark CALERIE in-
tervention study.20

The aim of the current methodological study is to de-
velop and validate a molecular multifaceted biomarker 
maximally sensitive to the individual effect of a mild life-
style intervention, such as GOTO. We tested whether the 
PLIS score is sufficiently sensitive to detect heterogeneous 
responses to the GOTO intervention, whether it is signifi-
cantly associated with more traditional metabolic health 
markers (such as BMI, trunk fat%, fasting HDL choles-
terol, and fasting insulin), how well it would be able to 
select participants for a novel lifestyle intervention study 
and how it compared to a score trained on the investigated 
metabolic health markers and/or established metabolite 
health scores. Lastly, we investigated how the PLIS score 
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association of the sex-specific PLIS scores with several classical metabolic health 
markers, such as BMI, trunk fat%, fasting HDL cholesterol, and fasting insulin, 
the primary outcome of the GOTO study. We also showed that the baseline PLIS 
score indicated which participants respond positively to the intervention. Finally, 
we explored PLIS in an independent physical activity lifestyle intervention study, 
showing similar, albeit remarkably weaker, associations of PLIS with classical 
metabolic health markers. To conclude, we found that the sex-specific PLIS score 
was able to track the individual short-term metabolic health gain of the GOTO 
lifestyle intervention study. The methodology used to train the PLIS score poten-
tially provides a useful instrument to track personal responses and predict the 
participant's health benefit in lifestyle interventions similar to the GOTO study.
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performed in an independent lifestyle intervention study 
called the Actief en Gezond Oud (Active and Healthy Old) 
(AGO) study.11

2   |   MATERIALS AND METHODS

2.1  |  Compliance calculation and 
selection of participants

The compliance in the GOTO study was self-reported. 
During each week of the intervention study, the par-
ticipants filled in the number of days they were compli-
ant to the dietary arm and the physical activity arm of 
the intervention. The mean compliance over 13 weeks 
was calculated separately for diet and physical activity. 
Participants with a mean dietary or a mean physical activ-
ity compliance above 3.5, were considered high compliant. 
Participants with a mean dietary compliance and a mean 
physical activity compliance below 3.5, were considered 
non-compliers and were removed from the dataset.

2.2  |  Diagnostic measurements

All measurements were performed in fasting serum col-
lected through venipuncture. Measurements of cho-
lesterol and C-reactive protein (CRP) were performed 
on the Roche/Hitachi Modular P800 analyzer (Roche 
Diagnostics, Almere, The Netherlands). Insulin was meas-
ured using an Immulite 2000 XPi (Siemens, Eschborn, 
Germany). The Homeostasis Model Assessment of Insulin 
Resistance (HOMA2-IR) was calculated using the pub-
licly available HOMA calculator (https://www.dtu.ox.ac.uk/
homac​alcul​ator/).21 Complete methods of diagnostic meas-
urements are described in van de Rest et al.6

2.3  |  Hydrogen-1 nuclear 
magnetic resonance

Hydrogen-1 nuclear magnetic resonance (1H-NMR) was 
used to analyze the metabolite levels in fasting serum 
using a previously described platform,22 consisting of 58 
underived measurements and 175 ratios derived from 
the 58 underived measurements. Sixty-three measure-
ments were selected, the 58 underived measurements, 
and five fatty acid ratios (FAw3-FA, FAw6-FA, PUFA-FA, 
MUFA-FA, and SFA-FA). These measurements included: 
amino acids, ketone bodies, total lipid concentration, 
mean lipid size, fatty acid amounts, and metabolites in-
volved in glycolysis, fluid balance, and immunity (Table 1; 
Table S1).

2.4  |  Univariate analysis of the effect of 
GOTO intervention study on metabolic 
health markers

The intervention effect of each metabolic health marker 
was calculated using a linear mixed model, adjusted for 
age at baseline (fixed effects) and individual (random ef-
fects). The intervention effects of males and females were 
calculated separately.

2.5  |  Training the PLIS score predictor

We used elastic net regression with both L1 and L2 pe-
nalization to train a sex-specific Personalized Lifestyle 
Intervention Status (PLIS) score using metabolomic meas-
urements from baseline (output 0) and postintervention 
(output 1) (Table S1). Consequently, a PLIS score closer to 
0 represents someone before the GOTO intervention and a 
PLIS score closer to 1 represents someone who has already 
been through the GOTO intervention. We trained our PLIS 
score using elastic net regression (α = 0.5, λ was optimized 
through a bootstrapping method) using the function glm-
net of the package glmnet.23 We used a combination of 
fivefold cross-validation and bootstrapping (N = 1000) to 
evaluate the PLIS score. Based on outer-fold samples (data 
not used for training the models), the association between 
the PLIS scores and 11 metabolic health marker measure-
ments are assessed using linear mixed models.

The metabolite measurements were normalized per 
outer training set, using natural log transformation, fol-
lowed by rank-based inverse normal transformation 
(Figure S1, Supplementary Methods). For each outer train-
ing set: a bootstrap method (N = 1000) was used to grab 
80% of the training data at random. The bootstrap sample 
selection was used for an inner fivefold cross-validation 
to train inner PLIS models across the whole shrinkage (λ) 
range. For each λ value, the inner PLIS score was calcu-
lated. The correlation between the inner PLIS scores and 
11 metabolic health markers were calculated. For each λ 
value, the average of the correlations was calculated, the 
λ value with the strongest absolute mean correlation be-
tween the inner PLIS scores and all 11 metabolic health 
markers, was selected to train the outer model (Figures S2 
and S3).

Males had the highest mean absolute correlations 
across the five outer folds: 0.172, 0.170, 0.173, 0.191, and 
0.195 (with accompanying λ values: 1.16e-01, 1.07e-01, 
1.26e-01, 1.07e-01, and 1.26e-01, respectively, Table  S2). 
Although there is some minor variation between the dif-
ferent folds, the shrinkage levels for the male model are 
in the same order of magnitude. Females had lower mean 
absolute correlations: 0.162, 0.155, 0.120, 0.125, and 0.124 
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(with accompanying λ values: 6.61e-02, 5.19e-02, 9.87e-02, 
8.89e-03, and 6.61e-02, respectively). Also, female scores 
varied more between the folds, and penalization weights 
varied more than in males.

Lastly, the optimized outer models were used to predict 
the PLIS scores in the independent validation sets.

2.6  |  Association of PLIS scores to 
classical metabolic health marker 
measurements

The association between the PLIS score and each classical 
metabolic health marker separately was calculated using 
the function lmer of package lmerTest,24 adjusting for age 

at baseline as a fixed effect and person ID as a random 
effect. To combine the p-values from the five independ-
ent test sets into one p-value, we used Fisher's method 
for combining p-values.25 We adjusted the combined  
p-values for multiple testing, using the Bonferroni correc-
tion method.

2.7  |  Training the classical metabolic 
health marker (CHM) score

The classical metabolic health marker (CHM) score was 
trained based on the 11 classical metabolic health marker 
measurements: BMI, WC, WHR, SBP, DBP, whole-body 
fat%, trunk fat%, fasting insulin, fasting HDL cholesterol, 

T A B L E  1   Effect of the Intervention on body composition, health and functioning, and diagnostic measurements of the participants used 
to train the PLIS score

Characteristic, mean (SE)

Male Female

n Difference p-value n Difference p-value

Body composition

Weight, kg 75 −3.48 (0.277) 5.47E-20 78 −3.35 (0.249) 6.99E-22

BMI, kg/m2 75 −1.09 (0.09) 2.38E-19 78 −1.23 (0.093) 1.41E-21

Waist circumference, cm 75 −4.49 (0.608) 1.79E-10 78 −4.33 (0.63) 1.44E-09

Waist-to-hip ratio 75 −0.02 (0.005) 1.57E-04 78 −0.01 (0.006) 7.62E-02

Whole-body fat, % 63 −1.6 (0.209) 1.22E-10 62 −1.57 (0.217) 9.79E-10

Trunk fat, % 63 −2.47 (0.27) 3.17E-13 62 −2.22 (0.275) 3.13E-11

Health and functioning

Systolic blood pressure, mm 
Hga

53 −4.46 (1.516) 4.89E-03 52 −4.89 (1.362) 7.42E-04

Diastolic blood pressure, mm 
Hga

53 −1.53 (0.888) 9.10E-02 52 −2.16 (0.913) 2.16E-02

FRS, % 75 −0.75 (0.447) 9.93E-02 78 −0.38 (0.151) 1.27E-02

Diagnostic measures

Fasting glucose, mmol/L 75 −0.07 (0.047) 1 78 −0.13 (0.045) 6.23E-03

Fasting insulin, mU/L 75 −0.07 (0.038) 1 78 −0.05 (0.037) 3.34E-01

HOMA2-IR 75 −0.05 (0.049) 1 78 −0.05 (0.046) 2.92E-01

Fasting total cholesterol, mmol/
Lb

59 −0.28 (0.072) .00527 66 −0.28 (0.072) 2.13E-04

Fasting HDL cholesterol, 
mmol/Lb

59 0.04 (0.019) .516 66 −0.05 (0.019) 1.08E-02

Fasting LDL cholesterol, mmol/
Lb

59 −0.15 (0.042) .0118 66 −0.1 (0.039) 1.67E-02

Fasting serum triglycerides, 
mmol/L

75 −0.14 (0.056) .302 78 −0.08 (0.047) 1.01E-01

Fasting CRP, mmol/L 75 −0.45 (0.4) 1 78 −0.35 (0.35) 3.27E-01

Note: The effects of the intervention were determined using a linear model adjusted for, age, status (longevity family member or control) (fixed effects), 
household, and individual (random effects).
aIndividuals using antihypertensive agents were removed before analysis.
bIndividuals using lipid-lowering medication were removed before analysis.
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fasting SerumTG, and fasting CRP. A similar procedure 
as for the PLIS score is used. Natural log and rank-based 
inverse normal transformation were performed with in 
the fivefold cross-validation, using the same folds as in 
the PLIS score training (Figure 1). The same Y labels as 
in the PLIS score were used. We used logistic regression 
to train the sex-specific models, using the function glm 
of the package glmnet. After training the CHM score was 
predicted in the independent validation sets.

2.8  |  Actief en Gezond Oud (Active and 
Healthy Old) (AGO) study

The AGO study was a 12-week physical activity lifestyle 
intervention study.11 The aim of the intervention was to 
increase the activity by 10%, compared to the participant's 
baseline activity. Two hundred and thirty-five participants 
were included in the study, 119 in the intervention group 
and 116 in the control group. The baseline age of the AGO 
participants was between 60 and 70 years old. Some par-
ticipants of the AGO study had a higher baseline BMI 
than the maximum baseline BMI of the participants in the 
GOTO study. To select a group with more similar charac-
teristics, AGO participants with a higher BMI at baseline 
than the maximum baseline BMI of the GOTO partici-
pants were removed. We selected 100 participants (62 
males, 38 females) out of the intervention group of AGO 
to validate the PLIS score. These participants had a simi-
lar age at baseline as the GOTO participants (Tables  S3 

and S4). The effect of the AGO study on the majority of 
the investigated classical metabolic health markers was in 
the same direction as the effect of the GOTO study, how-
ever, the effects of the AGO study were weaker (Table 1; 
Table S5).

3   |   RESULTS

3.1  |  A 13-week combined lifestyle 
intervention study improved the metabolic 
health of its participants

Participants of the GOTO intervention study increased 
their physical activity by 12.5% and decreased their ca-
loric intake by 12.5% for a duration of 13 weeks. Classical 
metabolic health markers and 1H-NMR metabolites were 
measured at baseline and after the intervention. In previ-
ous work, we showed that the GOTO intervention study 
significantly improved health indicators of its partici-
pants,6 including BMI, whole-body fat%, trunk fat%, total 
cholesterol, and several metabolites. Out of the 164 GOTO 
participants, we selected 153 participants (75 males and 78 
females) that both had a high compliance (see Section 2) 
and fasting metabolite measurements at baseline as well 
as after the intervention. This subset of participants re-
sponded similarly or slightly stronger in terms of the rel-
evant health indicator as compared to the entire study, 
that is, the effects were stronger in weight, BMI, waist cir-
cumference (WC), systolic blood pressure (SBP), diastolic 

F I G U R E  1   Overview of concept and training of the PLIS score. (A) Heterogeneity of the response to an intervention study if generally 
ignored when only looking at the average response. Yellow area represents the before intervention measurements, blue area represents 
postintervention measurements. Yellow dots represent baseline samples, blue dots represent postintervention samples. Arrows represent 
participants' responses to an intervention. (B) Training of the PLIS score. X = fasted 1H-NMR metabolite measurements, Y = intervention 
time point. PLIS score was trained using fivefold cross-validation in combination with elastic net regression. (C) Predictions of the PLIS 
score. Green lines represent a positive response to the intervention, gray lines represent a weak response to the intervention, red lines 
represent a negative response to the intervention.

(A) (B) (C)
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blood pressure (DBP) (females only), Framingham risk 
score 10-year risk (FRS), fasting glucose (Glc), fasting 
insulin (men only), HOMA2-IR, serum triglycerides 
(SerumTG), and fasting CRP (Table 1; Table S6).

3.2  |  The GOTO intervention had a 
similar effect on most of the metabolic 
health markers in males and females

As health parameters usually differ between males and 
females especially at older age,26 we stratified for testing 
sex difference in intervention responses. Here we report 
on the GOTO intervention effects in the 153 participants 
we selected. Out of 17 selected metabolic health mark-
ers, six were significantly influenced by the intervention 
in both males and females, after adjusting for multiple 
testing (Table 1). However, waist-to-hip ratio (WHR) and 
LDL cholesterol concentration were only significantly in-
fluenced in males. SBP was only significantly decreased 
in females. The direction of the intervention effect on the 
metabolic health markers was the same in males and fe-
males, except for fasting HDL cholesterol, which was in-
creased in males and decreased in females. From this we 
conclude that the GOTO intervention study had a largely 
similar effect on the metabolic health markers in males 
and females.

3.3  |  The GOTO intervention had a 
different effect on the 1H-NMR metabolites 
in males and females

In addition to the metabolic health markers, the 1H-NMR-
based fasted blood metabolome was measured before and 
after the intervention. The metabolite profiles consist 
of 63 measurements including: amino acids, glycolysis-
related metabolites, lipoprotein subclasses, and fatty 
acid ratios (see Section 2). In the 153 participants we se-
lected, the GOTO intervention significantly influenced 
23 of the 63 metabolites, in both males and females (His, 
M-VLDL-L, S-VLDL-L, XS-VLDL-L, IDL-L, L-LDL-L, M-
LDL-L, S-LDL-L, IDL-C, SerumC, VLDL-C, LDL-C, HDL-
C, HDL2-C, TotPG, SM, ApoB, TotFA, LA, FAw6, PUFA, 
MUFA, and SFA-FA) (Table S1). Seven metabolites were 
significantly different only in males (Cit, Gp, L-HDL-L, 
VLDL-D, HDL-D, SerumTG, and MUFA-FA). Eight me-
tabolites were only significantly different in females (Gln, 
Tyr, Leu, Glc, M-HDL-L, PC, TotCho, and ApoA1). Forty-
eight metabolites had an effect in the same direction in 
males and females. Thirteen metabolites had an opposite 
effect in males and females (Ala, Phe, Val, Lac, XL-HDL-
L,M-HDL-L, HDL-C, HDL2-C, HDL3-C, ApoA1, DHA, 

Faw6-FA, and PUFA-FA), and two metabolites had an 
effect in males but not in females (SFA and UnsatDeg). 
These results indicated that the metabolomic response to 
the GOTO intervention was sex specific.

3.4  |  An intervention status predictor 
to reconstruct variation in individual 
intervention responses

The effect of the GOTO intervention on metabolites 
showed a big variation between the different participants 
(Table  S1). The individual variation of metabolite levels 
after the intervention is based on differences at baseline 
and their change from pre- to postintervention status. To 
capture heterogeneity in the response to the intervention 
(Figure 1), we trained a model based on all pre- and post-
metabolite levels and generated a score per metabolic pro-
file of an individual that indicates to what extend someone 
resembles the metabolome status before or after the inter-
vention. This Personalized Lifestyle Intervention Status 
(PLIS) score ranges from 0 to 1 and was calculated for all 
individuals, both, before and after the intervention. The 
closer the PLIS score for an individual approaches 0, the 
more that individual resembles the average score before 
the intervention and, vice versa, a PLIS score closer to 1 
indicates the person resembles the average level after the 
intervention (see Section  2). The model that generates 
these PLIS scores was trained on 63 1H-NMR metabo-
lite markers measured at baseline and postintervention. 
To train the model, we used penalized logistic regression 
in combination with a double fivefold cross-validation 
and a bootstrapping method (n = 1000) (Supplementary 
Methods) (Figure 1). Since the metabolome of males and 
females responded differently to the GOTO intervention 
two separate models were trained.

3.5  |  Characteristics of the optimized 
PLIS score models

The differences in metabolomic response to the GOTO 
intervention between males and females resulted in two 
sex-specific PLIS models with a low overlap of betas for 
the different metabolites. The metabolites selected by the 
penalized regression highlight the differences and similar-
ities in the metabolic response to the GOTO intervention 
in males and females. The male PLIS score was influenced 
by four metabolites: a higher level of citrate (Cit), and 
ratio of saturated fatty acids to total fatty acids (SFA-FA) 
positively influenced the male PLIS score, resembling 
the (supposedly healthier) profile after the intervention, 
while higher concentrations of histidine (His) and total 
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lipids in small VLDL (S-VLDL-L) were associated with a 
lower PLIS score in males, resembling the profile before 
the intervention. The female PLIS score was influenced 
by 14 metabolites. A higher level of glutamine (Gln), phe-
nylalanine (Phe), Cit, docosahexaenoic acid (DHA), and 
SFA-FA concentration positively influenced the female 
PLIS score, while higher concentrations of His, tyrosine 
(Tyr), leucine (Leu), glucose (Glc), 3-Hydroxybutyrate 
(bOHBut), creatinine (Crea), total lipids in chylomicrons 
and extremely large VLDL (XXL-VLDL-L), sphingomy-
elins (SM), and apolipoprotein A1 (ApoA1) resulted in a 
lower female PLIS score (Table 2, Table S7).

S-VLDL-L had a strong significant intervention effect 
in males (Table S1), but not in females, explaining why it is 
only present in the male model (Table 2). Of the 11 metab-
olites that are only present in the female PLIS score, three 
had an opposite effect in males and females (Phe, ApoA1, 
and DHA) and six metabolites were only significantly in-
fluenced by the intervention in female samples (Tyr, Leu, 
Glc, Crea, SM, and ApoA1), highlighting the difference in 
the male and female metabolomic response to the GOTO 
intervention. Only three metabolites influenced both the 
male and female PLIS models: His, Cit, and SFA-FA. The 
effect of the GOTO intervention on these three metabo-
lites was similar in males and females.

The 15 metabolites that influence the two scores rep-
resent different aspects of metabolic health and include 
five amino acids, three lipids-related metabolites, two cit-
ric acid cycle-related metabolites, two fatty acids, and the 

others are ketone bodies, involved in fluid balance, or cho-
lesterol related (Tables S1 and S7).

3.6  |  The PLIS score associates 
significantly with the changes in 
metabolic health

The majority of the participants (74.7% of males and 75.6% 
of females) increased in their PLIS score as a result of the 
GOTO intervention (Figure 2). To evaluate how well the 
PLIS score captures the changes in metabolic health, we 
investigated to what extent the change in PLIS score for 
each participant associated with a change in 11 classical 
parameters of health gain: body mass index (BMI), waist 
circumference (WC), waist-to-hip ratio (WHR), systolic 
and diastolic blood pressure (SBP and DBP), whole-body 
fat%, trunk fat%, fasting insulin, fasting HDL cholesterol, 
fasting serum triglycerides (SerumTG), and fasting CRP 
(Figure 3). These classical metabolic health markers were 
chosen because they represent three different aspects of 
metabolic health: glucose metabolism, fat metabolism, 
and inflammation, and have been linked to a wide range 
of metabolic diseases.27–29

The male PLIS score change was significantly nega-
tively associated with the change in 6 (out of 11) inves-
tigated classical metabolic health markers: BMI, waist 
circumference, WHR, whole-body fat%, trunk fat%, and 
fasting SerumTG (Figure 3). The only significant positive 

Biomarker Full name
Male model 
betas

Female 
model betas

Gln Glutamine 0 0.15599

His Histidine −0.2084 −0.26048

Phe Phenylalanine 0 0.14138

Tyr Tyrosine 0 −0.20236

Leu Leucine 0 −0.04071

Glc Glucose 0 −0.13918

Cit Citrate 0.01581 0.11538

bOHBut 3-Hydroxybutyrate 0 −0.10615

Crea Creatinine 0 −0.08286

XXL-VLDL-L Total lipids in chylomicrons 
and extremely large 
VLDL

0 −0.20585

S-VLDL-L Total lipids in small VLDL −0.15834 0

SM Sphingomyelins 0 −0.03204

ApoA1 Apolipoprotein A1 0 −0.25456

DHA Docosahexaenoic acid 0 0.14235

SFA-FA Ratio of saturated fatty acids 
to total fatty acids

0.15861 0.28787

T A B L E  2   PLIS Model betas for male 
and female models
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association was with fasting HDL cholesterol changes. 
Furthermore, the male PLIS score had a weak negative 
interaction with SBP, DBP, and fasting insulin changes. 
There was no association between the male PLIS score 
and fasting CRP.

The female PLIS score change was significantly neg-
atively associated with the change in nine classical met-
abolic health markers: BMI, WC, SBP, DBP, whole-body 
fat%, trunk fat%, fasting insulin, fasting HDL cholesterol, 
and fasting SerumTG (Figure 3). There was a nonsignifi-
cant negative association between the female PLIS score 
and WHR, and a nonsignificant positive interaction with 
fasting CRP.

3.7  |  The PLIS score has stronger 
association with changes in health than 
before/after intervention labels

Next, we assessed whether the change in classical meta-
bolic health markers due to the intervention associated 
stronger with traditional intervention status (0 for sam-
ples taken before intervention, 1 for samples taken after 
intervention) or by the PLIS score (at baseline and postin-
tervention). For males, the traditional intervention status 
was significantly associated with five classical metabolic 
health marker measurements (BMI, waist circumference, 
WHR, whole-body fat%, and trunk fat%) (Figure S4).

The male PLIS score also associated significantly with 
these five classical metabolic health markers. There was, 
however, a difference in effect size. Overall, the effect sizes 

of the PLIS score associations were 10-fold higher than 
that of the traditional intervention status. We observed 
a stronger association for the male PLIS score than the 
traditional intervention status for the classical metabolic 
health markers with a large variation in intervention ef-
fect: fasting insulin, fasting HDL cholesterol, and fasting 
SerumTG (Table  1). Contrary, fasting CRP associations 
showed a stronger effect when using the intervention sta-
tus label instead of the PLIS score. The association effects 
were all in the same direction, except for fasting CRP.

For females, traditional intervention status was sig-
nificantly associated with four classical metabolic health 
marker measurements (BMI, WC, whole-body fat%, and 
trunk fat%) (Figure S4). The female PLIS scores also as-
sociated significantly with the four significant classical 
metabolic health markers. Additionally, the female PLIS 
score was significantly associated with five other classi-
cal metabolic health markers as well (SBP, DBP, fasting 
insulin, fasting HDL cholesterol, and fasting SerumTG). 
These classical metabolic health markers had a high vari-
ation in their intervention effect (Table 1). The effect sizes 
of the associations with WHR, SBP, and fasting HDL cho-
lesterol were of similar strength when using the interven-
tion status in comparison to when using the PLIS score. 
The PLIS score did show a larger effect size for fasting 
SerumTG and fasting insulin. Finally, fasting CRP associ-
ated weakly in both cases, however, there was a difference 
in the direction.

For both males and females, the PLIS score represented 
the classical metabolic health changes more accurately 
than the traditional intervention status.

F I G U R E  2   The PLIS score increases due to the GOTO Intervention study. The baseline PLIS score is plotted on the x-axis, the 
postintervention PLIS score is plotted on the y-axis. Each point on the plot represents a participant in the intervention study, the shape of the 
points represents the sex of the participant; circles indicate female samples, squares indicate male samples. Predictions were made using two 
different predictors, (A) Female predictor; 75.6% increased their PLIS score, (B) Male predictor; 74.7% increased their PLIS score.
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      |  9 of 17BOGAARDS et al.

3.8  |  The PLIS score has weak  
nonsignificant associations to Classical 
Metabolic health markers in an 
Independent Lifestyle Intervention 
Study AGO

To test the replicability of the PLIS score we applied it to 
an independent other intervention study: the Actief en 
Gezond Oud (Active and Healthy Old) AGO lifestyle inter-
vention study.11 The AGO study encompassed a 12-week 
physical activity lifestyle intervention study in sedentary 
older adults, with no dietary component (see Section 2). 
Ten of the 11 classical metabolic health markers dis-
cussed in this paper, were measured in the AGO study; 
only trunk fat% was not measured. In males the directions 

of effects between the classical metabolic health mark-
ers and the PLIS score were the same in the AGO study 
as in the GOTO study, except for WHR which unexpect-
edly had a positive association with the PLIS score in the 
AGO study (Figure 4). The associations in AGO were not 
as significant and the effect sizes were smaller, compared 
to GOTO. Fasting HDL cholesterol had a strong, but not 
significant, effect in AGO. Only fasting SerumTG was sig-
nificantly associated with the male PLIS score.

In females of the AGO study, associations between the 
PLIS scores and health markers in the AGO study were 
in the same direction as in the GOTO study (Figure  4). 
Fasting HDL cholesterol showed a strong but nonsig-
nificant effect. None of these associations were signif-
icant. Overall, the PLIS score had a similar but weaker 

F I G U R E  3   The PLIS score is significantly associated with 11 classical metabolic health markers. Association strength between the PLIS 
score and classical health markers are plotted on the x-axis, adjusted for age. Metabolic health markers are plotted on the y-axis. Interaction 
was calculated per outer fold test set for each of the sexes. Circles represent female samples; squares represent male samples. Gray dots 
represent the interaction between the individual fold test sets, white points represent the mean interaction over all five test sets. Error bars 
indicate the 95% confidence interval of the interaction. Combined p-values were calculated using Fisher's method and adjusted for multiple 
testing using the Bonferroni correction method. Asterisks indicate adjusted p-value <.05.
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10 of 17  |      BOGAARDS et al.

association with the classical metabolic health markers in 
the AGO study than in the GOTO study.

3.9  |  Participants with a low baseline 
PLIS score have a larger positive response 
to the GOTO intervention study

Selecting participants for a specific lifestyle interven-
tion study that are expected to benefit the most can 
be difficult. We examined whether selecting partici-
pants on the basis of the PLIS score could be a use-
ful inclusion criterium. To this end, we stratified the 
participants into tertiles based on their PLIS score at 
baseline. We reasoned that a low baseline PLIS score 

indicates a low metabolic health, and that these par-
ticipants would then also benefit the most from the 
GOTO intervention. In males, fasting HDL cholesterol 
and fasting SerumTG showed a significant difference 
only for the tertile with the lowest baseline PLIS score 
(tertile 1). Whole-body fat% was only significantly dif-
ferent in tertile 1 and 2 and WHR was only significantly 
different in tertile 2. The remaining classical metabolic 
health markers had a similar significance in all three 
tertiles.

For females, SBP was significantly different in ter-
tile 1 only. To our surprise, DBP was only significantly 
different in tertile 3. WC and whole-body fat% were sig-
nificantly different in all tertiles, but had the strongest 
significance in tertile 1. Trunk fat% was also significantly 

F I G U R E  4   The PLIS score has weak nonsignificant associations to the metabolic health marker measurements in the AGO study. 
Interaction strength between the PLIS score and classical health markers are plotted on the x-axis. Metabolic health markers are plotted on 
the y-axis. Association was calculated for male and female samples separately. Circles represent female samples; squares represent male 
samples. Error bars indicate the 95% confidence interval of the interaction. p-values were adjusted for multiple testing using the Bonferroni 
correction method.

p.adjust = 1.00e+00  
p.adjust = 1.00e+00  

p.adjust = 1.00e+00  
p.adjust = 7.55e 07 *

p.adjust = 6.78e 01  
p.adjust = 7.32e 02  

p.adjust = 1.00e+00  
p.adjust = 1.00e+00  

p.adjust = 1.00e+00  
p.adjust = 9.54e 01  

p.adjust = 1.00e+00  
p.adjust = 1.00e+00  

p.adjust = 8.40e 01  
p.adjust = 1.00e+00  

p.adjust = 1.00e+00  
p.adjust = 1.00e+00  

p.adjust = 1.00e+00  
p.adjust = 1.00e+00  

p.adjust = 1.00e+00  
p.adjust = 1.00e+00  

Fasting CRP

Fasting Serum Triglycerides

Fasting HDL Cholesterol

Fasting Insulin

Whole Body Fat%

Diastolic Blood Pressure

Systolic Blood Pressure

Waist to Hip Ratio

Waist Circumference

BMI

1.0 0.5 0.0 0.5 1.0

Mean Coefficient Estimate +  95% Confidence Interval

C
la

ss
ic

al
 M

et
ab

ol
ic

 H
ea

lth
 M

ar
ke

r

Sex
Female
Male

 15306860, 2022, 11, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202201037R

 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [15/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



      |  11 of 17BOGAARDS et al.

different in all three tertiles but had the strongest effect 
in tertile 1 and 2. The remaining classical metabolic 
health markers had a similar significance in all three 
tertiles.

When we focused on the median deltas in the tertiles 
and compared them with the median delta of the whole 
group (no selection), we found a striking difference be-
tween males and females (Figure 5). In the male samples, 
the median delta of tertile 1 was the biggest in only four 
classical metabolic health markers (fasting insulin, fasting 
HDL cholesterol, fasting SerumTG, and fasting CRP). For 
DBP the median delta was the same in tertile 1 and the 
entire group of male samples. BMI, SBP, whole-body fat%, 
trunk fat%, waist circumference, and WHR all had a big-
ger delta in the entire group of males.

For females there were slight differences in the me-
dian; tertile 1 had a bigger median delta, compared to the 
median delta of all females, in 9 of the 11 classical met-
abolic health markers (BMI, whole-body fat%, WC, SBP, 
DBP, fasting insulin, fasting SerumTG, WHR, and fasting 
CRP) (Figure 5). The median delta of trunk fat% was the 
same in the two groups, the median delta of fasting HDL 
cholesterol was bigger in the entire dataset than in tertile 
1. Taken together, it seems we can use the PLIS score to 
select female participants that have a larger response to 
the GOTO intervention, while the PLIS score is less able 
to do this for males.

3.10  |  A score comprising of metabolites 
is more predictive of the intervention 
response than a score comprising of 
classical metabolic health markers

In practice, individuals for an intervention would be se-
lected on the basis of health criteria (high glucose, LDL 
cholesterol etc.). Such criteria based on classical metabolic 
health markers are based on cohort studies and life course 
risks, not on intervention studies. Therefore, we won-
dered how a selection of individuals that profit the most 
from the GOTO intervention based on PLIS score would 
compare to a selection based on classical metabolic health 
markers. To test that, we trained a multivariate logistic 
model, using the measured 11 classical metabolic health 
markers at baseline and postintervention, and called 
this score the Classical Health Marker (CHM) score (see 
Section 2). Next, we performed the same tertile approach 
for the CHM score as we did for the PLIS score to select 
participants expected to respond best to the intervention.

In males, tertile 1 of the CHM did not have a stronger 
significance than the entire group (Figure S5). When we 
focused on the median deltas, we found that three classical 
metabolic health markers had a bigger median for tertile 
1 of the CHM score than in the entire male group (fast-
ing SerumTG, WHR, and fasting CRP) (Figure  S5). The 
median delta was the same in tertile 1 and all males for 

F I G U R E  5   Samples in the lowest Baseline PLIS score tertile have bigger deltas for majority of metabolic health markers. Metabolic 
health markers are plotted on the x-axis, normalized deltas are plotted on the y-axis. Colors represent different PLIS score tertiles: gray; no 
tertile selection, yellow; tertile 1, orange; tertile 2, green; tertile 3. p-values were adjusted for multiple testing using the Bonferroni correction 
method. Significance is indicated by the asterisks (* = p-adjust <.05, ** = p-adjust <.01, *** = p- adjust <.001). The effects of the intervention 
were determined using a linear model adjusted for, age (fixed effect) and individual (random effect).

 15306860, 2022, 11, D
ow

nloaded from
 https://faseb.onlinelibrary.w

iley.com
/doi/10.1096/fj.202201037R

 by U
niversity O

f L
eiden, W

iley O
nline L

ibrary on [15/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 17  |      BOGAARDS et al.

three classical metabolic health markers (BMI, DBP, and 
WC). Five classical metabolic health markers had a big-
ger median delta when considering all males than when 
considering only the males in tertile 1 (SBP, whole-body 
fat%, trunk fat%, fasting insulin, and fasting HDL choles-
terol). For males, this score based on the classical meta-
bolic health markers was not predictive of the response to 
the GOTO intervention study and was less predictive than 
the PLIS score.

For females, eight classical metabolic health markers 
had a bigger median delta in tertile 1 than for the whole 
group of females (BMI, SBP, DBP, whole-body fat%, 
trunk fat%, WC, fasting insulin, and fasting SerumTG) 
(Figure  S5). Fasting HDL cholesterol, WHR, and fasting 
CRP had a higher median delta in the entire female group 
than in females in tertile 1. For females, the CHM score 
was more predictive of the response to the GOTO inter-
vention study, than in males. However, also in females, the 
CHM score was less predictive of the response as the PLIS 
score.

3.11  |  The PLIS score outperformed 
established metabolomic predictors of 
metabolic health

Since the PLIS score outperformed the CHM score, we 
wanted to investigate how the PLIS score would compare 
to other metabolic health scores based on metabolites. 
We selected two other scores that used the same metabo-
lite platform. The MetaboHealth17 and the MetaboAge16 
score. The MetaboHealth was trained on metabolomic 
data of over 44 000 participants and gives a score that is 
significantly positively associated with all-cause mortal-
ity. For males, the change in the MetaboHealth was sig-
nificantly associated with the change in fasting insulin, 
fasting HDL cholesterol, and fasting CRP (Figure  S6). 
Overall, the associations are a lot weaker than in the PLIS 
score, which had seven significant associations for males 
(Figure 3). When the tertile approach was used in combi-
nation with the MetaboHealth, we found that participants 
in the tertile with the highest MetaboHealth at baseline do 
not respond better to the intervention than participants in 
the other two tertiles (Figure S7). A low PLIS score was 
associated with a more positive response to the GOTO in-
tervention study (Figure 5).

For females, we find similar results as for males. The 
change in MetaboHealth was significantly associated with 
the change in fasting HDL cholesterol and the change in 
fasting CRP (Figure S6). The PLIS score was significantly 
associated with 9 of the 11 classical metabolic health 
markers (Figure 3). A high MetaboHealth at baseline was 
not associated with a better response to the intervention 

(Figure  S7). A PLIS score did show a stronger positive 
GOTO intervention effect for females (Figure 5).

The MetaboAge is trained on metabolomic data of 
over 25 000 participants. When a participant's MetaboAge 
is higher than their chronological age, they have a pos-
itive delta MetaboAge (ΔMetaboAge) and are metaboli-
cally unhealthy for their age, participants with a negative 
ΔMetaboAge are metabolically healthy for their age. 
The ΔMetaboAge is used as a biomarker. For males, the 
change in ΔMetaboAge was not significantly associated 
with any of the classical metabolic health marker changes 
(Figure  S8). A higher ΔMetaboAge at baseline was not 
associated with a stronger intervention effect (Figure S9). 
On both these measures, the PLIS score easily outper-
formed the MetaboAge score (Figures 3 and 5).

For females, the change in ΔMetaboAge was signifi-
cantly associated with the change in serum triglycerides 
(Figure  S8). As for males, there was no association be-
tween a high MetaboAge at baseline and a stronger re-
sponse to the intervention in females (Figure  S9). For 
females, the PLIS score outperformed the MetaboAge as 
well (Figures 3 and 5).

In the independent lifestyle intervention study AGO, 
both the MetaboHealth and the MetaboAge were weakly 
associated with the classical metabolic health marker 
levels.

In males, the change in the MetaboHealth was signifi-
cantly associated with fasting HDL cholesterol and fasting 
CRP (Figure S10). In females, the MetaboHealth was only 
significantly associated with fasting HDL cholesterol.

The ΔMetaboAge only had one significant associ-
ation in males, a significant negative association with 
fasting serum triglycerides (Figure  S11). In females, the 
ΔMetaboAge was not significantly associated with any of 
the classical metabolic health markers.

4   |   DISCUSSION

By performing metabolic biomarker profiling in 153 par-
ticipants of the 13-week GOTO combined lifestyle inter-
vention study, we identified 38 metabolomic biomarkers 
associating with the intervention, 15 of which with sex-
specific effects. The identified metabolomics biomarkers 
represent immuno-metabolic health for ages ranging 50 
to 75 years. The metabolomics biomarkers were then used 
to calculate sex-specific PLIS scores that indicate inter-
vention effects. For both sexes, these scores were signifi-
cantly associated with several classical metabolic health 
markers. We observed that the PLIS score represents 
the intervention induced change in classical metabolic 
health markers better than the traditional intervention 
status (labeled 0 for samples taken before intervention, 
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1 for samples taken after intervention). In GOTO the 
PLIS score also outperformed a predictor trained on the 
11 classical metabolic health markers in selecting partici-
pants who are expected to respond beneficially to future 
lifestyle interventions with similar characteristics to the 
GOTO study. Furthermore, we have shown that the PLIS 
score associates with changes in an independent lifestyle 
intervention study.

The 15 metabolites that form the sex-specific PLIS 
scores, are involved in different biological processes, in-
cluding fatty acid and lipoprotein metabolism, renal 
function, energy metabolism, protein synthesis, and the 
immune system (Figure 6).30–37 Several of these metabo-
lites have previously been found to associate with health 
and were included in predictors of metabolic age and mor-
tality.16,17 This is the first time they were included in a pre-
dictor to study the effectiveness of a lifestyle intervention.

Out of the 15 metabolites, Histidine, Citrate, and 
SFA-FA are both used to determine the PLIS score in males 

and females. S-VLDL-L is only used in males. Gln, Phe, 
Tyr, Leu, Glc, bOHBut, Crea, XXL-VLDL-L, SM, ApoA1, 
and DHA are used to calculate the PLIS score only in fe-
males (Figure 6).

SFA-FA, bOHBut, and DHA are involved in fatty acid 
metabolism,38,39 which has been shown to change upon 
a combined dietary and physical activity lifestyle inter-
vention study in glucose intolerant participants of older 
age.40 XXL-VLDL-L, S-VLDL-L, SM, and ApoA1 play a 
role in lipid metabolism,41 which is related to change 
in multiple lifestyle intervention studies.42,43 Gln is 
a nonessential amino acid that plays a role in the im-
mune system,30 the decline of which is closely linked 
to older age,44 but can be improved again upon an in-
crease in activity and a change in diet.45 His, Phe, and 
Leu are essential amino acids that play a role in protein 
synthesis as well as in energy metabolism,31,36,37 which 
are both affected by aging,46,47 both have also shown to 
improve as a result of a lifestyle intervention.48–50 Tyr is 

F I G U R E  6   The PLIS score is influenced by metabolites that play a role in different biological processes. Schematic representation of the 
metabolites that influence the PLIS score. Y-axis represents the strength of the effect, metabolites above the dashed horizontal line have a 
positive effect on the PLIS score, metabolites below the dashed horizontal line have a negative effect on the PLIS score. The further away the 
metabolite from the horizontal line is, the stronger the effect. (A) The female PLIS score is influenced by 14 metabolites which are involved 
in eight biological processes. (B) The male PLIS score is influenced by four metabolites that are involved in at four biological processes. 
Metabolites can be involved in more than one biological process. Three metabolites influence both the female and the male PLIS score, these 
metabolites are underlined.
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a nonessential amino acid that also plays a role in pro-
tein synthesis, as well as in cognition,51,52 the latter of 
which has been positively associated with physical ac-
tivity.53 Cit and Glc are an intermediate and end product 
of the citric acid cycle and play a role in energy metabo-
lism.54,55 Crea is in involved in muscle metabolism, im-
proves upon increased physical activity and is a marker 
for kidney health.56,57 In summary, the 15 metabolites 
that made up the algorithm of the PLIS score are all 
either involved in the aging process or have previously 
been found to change upon a lifestyle intervention, 
highlighting the strong associations between the PLIS 
score, healthy aging, and intervention effect.

The male and female PLIS models have three over-
lapping metabolites. This small overlap of metabolites 
could be explained by a number of factors. First, the 
difference in baseline metabolite levels of males and 
females (Table  S3),58 due to metabolic differences in 
the sexes, which in turn could explain the sex-specific 
response to the intervention study (Table  S1). Second, 
the GOTO intervention had a diet and an activity com-
ponent, and it is possible that males and females were 
prone to focus on different aspects of the intervention, 
through their own choice or as an advice from the physi-
cal activity/dietary supervisors. Third, males and females 
could have performed the physical activity aspect of the 
intervention differently. Males are overall more physi-
cally active,59 and could also be more prone to higher 
intensive activities than females during the interven-
tion. Fourth, the difference in adherence to the GOTO 
intervention. A study that compared the adherence to a 
lifestyle intervention in males and females, found that 
males had a higher adherence than females,60 which 
could also explain why males overall had a larger in-
tervention effect than females (Table 1), which could in 
turn have led to stronger associations between the PLIS 
score and the majority of the classical metabolic health 
markers. There are multiple possibilities for these dif-
ferences However, this is not clear from our compliance 
data. Finally, it could also be that males have a stronger 
relationship between their fasting metabolite levels and 
classical metabolic health markers than females.

Metabolic health has different aspects, including BMI, 
lipid profile, blood pressure, fasting glucose, and inflam-
mation.61,62 These aspects are reflected in the 11 classi-
cal metabolic health markers we have used to determine 
metabolic health. The change in PLIS score in GOTO was 
significantly associated with several of these classical met-
abolic health markers in both males and females. Six classi-
cal metabolic health markers were significantly associated 
with the PLIS score in both males and females (BMI, WC, 
whole-body fat%, trunk fat%, fasting HDL cholesterol, and 
fasting SerumTG). WHR was only significantly associated 

with the PLIS score in males. Contrarily, SBP, DBP, and 
fasting insulin were only significantly associated with the 
PLIS score in females.

The significant associations between the PLIS score 
and 11 classical metabolic health markers, showed 
that the change in PLIS score is indicative of the meta-
bolic health change. Moreover, participants with minor 
changes in some of the classical metabolic health markers 
still showed a big difference in the PLIS score. This may 
indicate that the PLIS score potentially records a broader 
spectrum of metabolic changes than the classical mark-
ers investigated here and/or smaller changes in metabolic 
health that may have gone undetected by the classical 
metabolic health markers.

In both males and females, the PLIS score showed a 
stronger association with the classical metabolic health 
markers than categorization by traditional intervention 
status (0 for samples taken before intervention, 1 for sam-
ples taken after intervention) (Figure 2; Figure S4). These 
results suggest that the PLIS score: (a) better captures the 
metabolic health state of the GOTO participants than the 
traditional intervention status and (b) may provide a bet-
ter indicator of metabolic change due to the intervention.

In addition, we found that a low PLIS score was stronger 
associated with a positive response to the GOTO interven-
tion study than a low score composed of classical meta-
bolic health markers (CHM score, Figure 5; Figure S5), in 
both males and females. This result may indicate that the 
15 metabolites capture the metabolic health gain better 
than the 11 classical metabolic health markers used here, 
something which has been hinted at in other studies.63

We also found a stronger association between the 
change in PLIS score and changes in classical metabolic 
health markers than was found for the change in two 
recently developed metabolomic health scores namely 
MetaboAge and MetaboHealth (Figure  3; Figure  S6 and 
S8). The PLIS score was also better at selecting partici-
pants who would respond positively to the intervention 
than both the MetaboAge and MetaboHealth, especially 
for females (Figure 5; Figure S7 and S9). This illustrates 
the higher sensitivity of the PLIS score as compared to the 
metabolomics health risk estimators.

Taken together our results indicate that the benefit 
in metabolic health gained by a mild intervention study 
like GOTO is best monitored by a score trained for this 
purpose and sex-specific PLIS generated from fasting me-
tabolites seem a suitable first step. When one would want 
to select older persons inclined to respond positively to 
GOTO like interventions baseline PLIS screening would 
clearly be preferred over the individual classical metabolic 
health markers tested here as well as over a score based on 
these and finally over metabolomics health risk estimators 
such as MetaboAge and the MetaboHealth.
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Overall, the associations of the PLIS scores and health 
markers in the independent replication AGO study were 
in the same direction as in the GOTO study, indicating 
that the PLIS score can capture the effect of the AGO study 
(Figure  5). The effect sizes and the significances in the 
AGO study were lower than in the GOTO study. This re-
duction in effect sizes and significance could be explained 
by the lower number of the participants in AGO (62 
males, 38 females) than in GOTO (75 males, 78 females), 
especially in females (Table 1; Table S4). In addition, the 
fact that the AGO study was only a physical activity inter-
vention while the GOTO intervention combined diet and 
physical activity, resulted in weaker intervention effects 
on metabolic health markers in the AGO study, compared 
to the GOTO study (Table  S5; Table  1).11 Consequently, 
the MetaboHealth and the PLIS scores were weaker asso-
ciated with the classical metabolic health markers in AGO 
than in GOTO (Figures 3 and 4; Figures S6 and S10). The 
associations between MetaboAge and classical metabolic 
health markers were weak and nonsignificant in both 
studies (Figures S8 and S11). These results indicate that 
a score trained, using the same methodology as the PLIS 
score, on results from a lifestyle intervention study with 
only a physical activity component might estimate the in-
tervention status in AGO more accurately than our cur-
rent PLIS score. However, we do see the same direction of 
effect between the PLIS score and the classical metabolic 
health markers in AGO and GOTO, which shows that the 
PLIS score was able to pick up an intervention effect in an 
independent lifestyle intervention study.

5   |   CONCLUSION

The PLIS score showed that an omics-based biomarker 
specifically trained on capturing individual lifestyle in-
tervention effects, was able to monitor minor metabolic 
health changes, which more traditional metabolic health 
markers and omics-based health risk biomarkers were 
not able to. Furthermore, these results highlighted that 
intervention-specific biomarkers could be applied to se-
lect participants at baseline most likely to profit most from 
a novel lifestyle intervention than the classical metabolic 
health markers investigated here and could be used as in-
clusion criterium for personalized lifestyle intervention 
studies. The PLIS score methodology may potentially pro-
vide a useful instrument to indicate for similar types of 
lifestyle interventions which participants are expected to 
respond positively.
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