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Abstract: In this work We consider and discuss the problems which come with trying to explain human and machine
intelligence. How explainable artificial intelligence research is being carried out, the pitfalls and limitations of
current approaches and the bigger question of whether we need explanations for trusting inherently complex
and large intelligent systems, whether artificial or not.

1 Explainable (Artificial)
Intelligence

Those of us who have returned to the refrigerator mul-
tiple times expecting different food to have materi-
alised know that human behaviour is often inexplica-
ble — but at least we can rely on the cold logic of
machines to make decisions. Or can we?

Explainable artificial intelligence (Das and Rad,
2020), often referred to as XAI, is an emerging and
somewhat embryonic field. XAI is the development
and analysis of a set of tools with the motivation of
providing human-readable explanations about how ar-
tificial intelligence algorithms make their decisions.
Although there has been increased interest and effort
in this research area lately (Mei et al., 2022; Belle
and Papantonis, 2021; Trajanov et al., 2022; Keane
and Smyth, 2020), there is a lack of proper analysis of
XAI methods, and a lack of consistency in how XAI is
carried out. Additionally, there are important limita-
tions to XAI techniques. In the sections which follow,
we discuss some common methods and the problems
with using them. At the end of the section, some over-
arching issues are presented.

2 Feature Attribution Methods

Most popular XAI methods fall into the category of
feature attribution methods, meaning they attribute a

relative or absolute importance measure to each fea-
ture for a given machine learning model and its pre-
diction. These methods work post-hoc and are usually
model-agnostic. These methods aim to either explain
a single prediction (local) or a complete machine
learning model (global). Local explanation methods
can also be used on an entire training or test set to
provide more global explanations.

2.1 Local Feature Attribution

One of the most popular feature attribution methods
is Shapley additive explanations (Lundberg and Lee,
2017), usually referred to as SHAP.It is used for ex-
ample in (Jansen et al., 2020; Ariza-Garzón et al.,
2020; Yeung et al., 2020; Van Stein et al., 2023) to
provide local explanations for an individual predic-
tion. Given a feature, f1, SHAP considers models
which contain f1 and obtains the predicted values for
the input data at hand. SHAP also does this for mod-
els which are identical to those in the previous step,
except f1 (and only f1) has been removed as a predic-
tor. The mean differential between the predicted out-
put (including f1) and the predicted output (excluding
f1) are the feature’s marginal contribution; the SHAP
value for f1 is the mean marginal contribution over
all considered models. SHAP values can be positive,
negative, or even zero.

Despite the prevalence of SHAP in explainable
AI, it exhibits several disadvantages. For large feature
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sets SHAP is computationally expensive, and in these
cases it relies on approximation techniques such as
exploiting the tree information in TreeSHAP (Yang,
2021) or by using a subsample of model configura-
tions; it follows that randomness can have an effect
on the computed values. In addition, values can de-
pend on the order in which features are presented.
SHAP is not particularly stable: for example, a fea-
ture may have a large SHAP magnitude for one spe-
cific input, but not for any other. Additionally, there is
the question of just how human-accessible SHAP val-
ues are. They are essentially just numbers on a non-
normalised scale and it may not be clear to a stake-
holder or patient how to interpret them. There is also
the issue that SHAP values are unlikely to be intuitive
or helpful when the features in question are individ-
ual pixels in image data (a map of image features with
scores like this is called pixel attribution) or complex
time-series data. A recent work showed that SHAP
can be misleading when the marginal contributions
for a feature have differing amounts of noise (Kwon
and Zou, 2022); they proposed weightedSHAP to ad-
dress this issue.

Another local feature attribution method is Permu-
tation feature importance (PFI) (Fisher et al., 2019).
PFI is a method which is conceptually similar to
SHAP. PFI results in feature scores which are not for
a single prediction, but typically represent a test set of
data. To obtain a feature importance score, the val-
ues of that feature in each observation within the test
set are randomly permuted and the output obtained
several times. The mean difference between the pre-
dictions from the non-permuted data and those from
the permuted data is taken to be the importance score
for that feature. A limitation of PFI is that the scores
may depend on the randomness used in the permuting
stage. Additionally, it shuffles one feature at a time,
thereby assuming the variables are independent and
not considering the possibility of feature interaction.

Local interpretable model-agnostic explanations
(Ribeiro et al., 2016), or LIME for short, is another
popular local XAI approach (Magesh et al., 2020;
Gabbay et al., 2021; Kuzlu et al., 2020). LIME es-
timates feature importance magnitudes for a predic-
tion by randomly perturbing the values of the input
data several times and obtaining the resultant predic-
tion by the model. A separate linear model is then fit
to the perturbed inputs and associated outputs; the co-
efficients for the linear model are the LIME scores for
the original model.

One of the limitations of LIME is that it depends
on the randomness and size of perturbations applied
to the input data. These effects can result in differ-
ent scores for the same features. LIME is designed

for computing feature scores for a single prediction,
meaning that it could fail to pick up on global patterns
or overall model behaviour. Another limitation of
LIME is that it might generate perturbations that are
infeasible or unrealistic in reality (due to constraints
or underlying feature interactions), and therefore gen-
erate explanations that are unrealistic.

2.2 Global Feature Attribution

While each local feature attribution method can be
used for approximating global explanations, there are
also methods specifically designed for attributing im-
portance to features on a global model level. Sensi-
tivity analysis methods are perhaps the oldest variant
of explainable AI. The Morris method (Morris, 1991)
or Sobol sensitivity analysis (Sobol, 2001) are meth-
ods to create global explanations of a model by using
a large space filling design of samples and computing
the sensitivity scores for features, groups of features
and feature interactions. These methods also allow
for the computation of second and higher order inter-
actions, but they are computationally very expensive
and do not explain single predictions. Next to Morris
and Sobol there is a large number of other similar ap-
proaches (Van Stein et al., 2022) that can be used for
global sensitivity analysis. Most of these methods are
limited to specific sampling methods, require a large
number of samples to show robust behaviour and are
computationally expensive.

2.3 Feature Interactions

Real world prediction scenarios often — if not always
— exhibit interactions between features; this means
that the combined effect of two or more features is
different than what their additive individual effects
would be. This can be the case in, for example, pre-
dicting breast cancer (Behravan et al., 2020); acute
coronary syndromes (Alsayegh et al., 2022); and hy-
pertension (Elshawi et al., 2019). Despite this, com-
mon XAI techniques do not properly address, account
for, and uncover feature interactivity: SHAP, permu-
tation feature importance, LIME, and counterfactual
explanations do not manage this well. There are some
tools which are aimed at feature interaction, how-
ever. Friedman’s H-Statistic (Friedman and Popescu,
2008) is based on partial dependence decomposition
and represents the proportion of variance explained
by an interaction. The H-Statistic is very computa-
tionally expensive (Molnar, 2020); indeed, the expe-
rience of an author of the present work is that it can
be prohibitively expensive in situations where com-
putational power is restricted due to data privacy. The



H-Statistic is also sensitive to noise in the data.

3 Counterfactual Explanations

Counter-factual explanations (Keane and Smyth,
2020) are a human-friendly XAI approach. They are
written in human language and take the form ‘if X ,
then Y ’, where X is a configuration of — or change
to — the input data and where Y is the resultant pre-
dicted response. To generate a counterfactual for a
particular input, the practitioner decides what they de-
sire the output to change to. In regression contexts,
an example might be ‘for the predicted revenue to in-
crease by £500’; for classification, it might be ‘for
the prediction of cancer to switch to no cancer’. A
search algorithm is then used to discover which mu-
tants of the original input data result in the desired
outcome. These solutions are then converted into
human-readable sentences; these are counterfactuals.

Although this approach is intuitive and widely un-
derstandable to stakeholders, there are several limita-
tions. Counterfactuals do not consider feature inter-
activity, or address the problem of correlation versus
causality. Multiple conflicting counterfactuals can ex-
ist for the same model, and in these situations it is not
clear which takes precedence over the other.

4 Model Intrinsic Explanations

Model intrinsic XAI techniques are mainly presented
in the context of artificial neural networks, where the
weights of the layers, the gradients or attention mech-
anisms (Vaswani et al., 2017) are used to generate ex-
planations.

Neural networks often have millions, or indeed
billions, of parameters. With this in mind, it might
be argued that intelligible explanations for what is
happening inside the network are improbable. Even
so, there have been some steps forward to this end.
Network dissection (Bau et al., 2017) is an approach
for convolutional neural networks (CNNs) which cap-
tures how interpretable learned features in the latent
space are. The method maps channels which have
been significantly ‘activated’ with human-defined ob-
jects, such as ‘ear’. Unfortunately, in realistic CNN
architectures there can be a very high number of chan-
nels to consider. Additionally, while the explanation
of a network component is valuable, it does not ex-
plain the whole system and can miss feature interac-
tions. Also, it could be argued that these explanations
are not truly accessible: grasping them fully requires
an understanding of CNNs.

As mentioned in Section 2.1, pixel attribution
maps display an importance score for each pixel com-
prising input data, and can be based on SHAP values
(or indeed LIME). There are also gradient-based tools
for this, such as Image-Specific Class Saliency (ISCS)
(Simonyan et al., 2013). ISCS works by propagating
an particular image through the network and then us-
ing derivatives to compute the gradients attributable
to input pixels. Another gradient-based approach is
gradCAM (Selvaraju et al., 2017), which calculates
the gradients backwards to the deepest convolutional
layer and outputs a map indicating important regions
of the original input image.

Similarly to network dissection, ISCS and grad-
CAM can miss feature interactions. ISCS can have
difficulty identifying small features, and its precision
can be quite coarse-grained. GradCAM can some-
times identify image regions which are not actually
relevant to the desired explanation, leading to a mis-
leading interpretation.

A solution to the problem of unintelligible neu-
ral networks might be deliberately simplifying mod-
els with explainability in mind. The problem with this
is the known tradeoff between accuracy and complex-
ity (which is visualised in Figure 1); it is likely that
a substantial simplification would be needed to facil-
itate truly accurate justifications for decisions — an
example of simplification would be reducing param-
eter cardinality by removing network layers — and
a corresponding decrease in model quality would be
expected.

5 Interpretable Models

There is also, of course, the option of deliberately
choosing models which are known to be inherently in-
terpretable: decision trees or linear models, for exam-
ple. A decision tree, with the rules it has learned from
the data, can be visualised (if not too big). People of-
ten find that reading the binary rules is intuitive and
accessible. With linear models, feature coefficients
can be extracted. These are essentially weights or im-
portances for the features. Despite these interpretabil-
ity advantages, deciding upon one of these as your
model is not a straightforward choice: decision trees
have a sensitivity to noise, and linear models have un-
derlying assumptions which may not suit non-trivial
real world data. More complex models such as neu-
ral networks may often be needed to capture nonlinear
patterns in data; in general, more interpretable models
are less accurate. This phenomenon is shown in Fig-
ure 1. Notice that while linear models are at the high
end of interpretability, they are typically lower in ac-



Figure 1: The tradeoff between model accuracy and model
interpretability. More complex models are less understand-
able. The question becomes one of priorities: what is more
important, a highly accurate model or an intelligible one?

curacy. On the other end, deep neural networks tend
to be low in interpretability but higher in accuracy.

6 Considerations and limitations

Throughout the discussion of popular XAI tech-
niques, we notice that a common limitation to them is
their sensitivity to randomness and noise; this could
be formalised as their lack of stability. There is also
the issue that prevalent XAI tools such as SHAP, per-
mutation importance, LIME, and counterfactuals do
not properly consider feature interactions. In addi-
tion there is not much work done to integrate uncer-
tainty quantification in XAI, as often machine learn-
ing models have to deal with uncertainty and have un-
certainty in their predictions. In practise, XAI results
are presented often over-confident without taking un-
certainty and model over- and under-fitting into ac-
count.

We observe that there is a lack of consistency in
how practitioners carry out explainable artificial in-
telligence. For example, some carry out SHAP in iso-
lation (Moncada-Torres et al., 2021); some use both
SHAP and LIME (Rao et al., 2022); others use SHAP,
LIME, and counterfactuals (Zhou et al., 2022). Aside
from the specific tools used, there do not appear to be
known ‘best practice’ axioms yet. In addition, there
are only a few (very recent, somewhat limited and not
yet widely used) benchmark suites for XAI methods
(Liu et al., 2021; Arras et al., 2022; Agarwal et al.,
2022; Clark et al., 2023).

An arterial problem in the field of XAI is the phe-
nomenon of ‘false explanations’. False explanations
are inaccurate or misleading and can arise for a num-
ber of reasons: for example, noise (in the data, the
model, or the XAI method itself); spurious correla-

tions (also known as the Rashomon effect (Leventi-
Peetz and Weber, 2022)), and the issue of causal-
ity versus correlation; and bias in the training data,
which may result in that bias being amplified through
explanations of prediction. The most salient chal-
lenge in XAI, however, is arguably the accuracy-
complexity trade off which was mentioned in Sections
4 and 5: neural networks are popular due to their un-
rivalled accuracy, but the task of making their inner
workings truly comprehensible and accessible is gar-
gantuan.

7 Methods for exploring Explainable
Real Intelligence

As the anecdote at the beginning of this article sug-
gested, there are people who expect redemption from
their refrigerator. Perhaps, therefore, we should re-
consider the likelihood of finding explainable real in-
telligence (ERI) in humans. Human intelligence is a
multifaceted concept. Our search for ERI requires a
focus on decision-making capacity. At the face of it,
ERI seems readily available. We can simply ask deci-
sion makers to explain their considerations. In every-
day life, this is normally sufficient.

In science, more caution is needed. Introspective
reports can be considered fundamentally unreliable
(Schwitzgebel, 2008). People are known to come up
with all sorts of rationalizations after the fact. There-
fore, we may want them to express their reflections
while they are still in progress (think-aloud protocols;
(Simon and Ericsson, 1984). However, people hide
their true motives; some cultures find it unusual, un-
comfortable and unnatural to express what they are
thinking (Güss, 2018; Kim, 2002). Moreover, many
people have too limited a vocabulary to do so, or
lack the necessary metacognitive skills such as self-
control, prediction, and self-questioning (Wong and
Jones, 1982).

A final reason why thought protocols may be un-
reliable is that deliberation might not always be con-
scious. Dijksterhuis and Nordgren proposed that de-
cisions improve after a diversion of conscious thought
(Dijksterhuis and Nordgren, 2006). This, apparently,
because the thought process continues unencumbered
by conscious hangups, and becomes more fruitful.
Yet this seems to be a red herring, as a study by
Nieuwenstein et al. found the evidence for improved
decision-making not replicable (Nieuwenstein et al.,
2015).

Think-aloud protocols can be informative in do-
mains fostering covert speech, for instance in com-
plex math or for monitoring the user experience of



automated devices (Simon and Ericsson, 1984). Even
there will protocols necessarily be incomplete, given
the time limits on what people can overtly verbalize
while performing an attentionally demanding task. In
nonverbal, i.e. pictorial domains, sketching made dur-
ing the process may be collected to understand the
reasoning (Jaarsveld and van Leeuwen, 2005). Ca-
pacity limitations similarly apply to have sketching
produce informative results.

When introspective reports or sketches are un-
available, we may turn to implicit measures such as
eye tracking, or decoding neural signals. In humans,
noninvasive signals can be obtained through EEG/
MEG, or fMRI, among others. Eye-tracking can in-
form us what an observer is fixating on, and there-
fore is attending to. But this measure has limitations:
in real images, several items compete for attention.
As a result, observers often fixate on one, while fo-
cusing covert attention on another. As a result, both
are quickly forgotten (Nikolaev et al., 2013). Eye-
tracking results, therefore, can be unreliable at times,
in particular when complex, realistic scenes are in-
volved.

Decoding algorithms for brain signals were ini-
tially developed in the context of brain-computer in-
terfaces. Within the temporal (fMRI) and spatial
(EEG) restrictions of the medium, they reveal the non-
stationary and dynamic patterns of brain activity that
play increasingly prominent roles in our efforts to un-
derstand cognitive processes (Loriette et al., 2022).
This field is rapidly expanding. Machine-learning-
based techniques for decoding dynamic signals are
used for identifying the locus of covert attention in
humans (Astrand et al., 2015). Cross-temporal de-
coding can be used for distinguishing codes for stable
stimulus representation from transient ones, which
presumably are used in computation (King and De-
haene, 2014). Despite these advances, they can pro-
vide us with only a fragmented understanding of what
the brain does. We can identify patterns in neu-
ronal activity, but what we observe turns out to be
highly context-specific. In combination with the high-
dimensionality of the brain, this implies that patterns
are hard to predict. Unlike in artificial neural net-
works, we have only limited knowledge of the dy-
namics by which brain and brain activity evolve, what
aspects of the activity and structure are relevant, and
which are not. In other words, we need a theory of
mind and brain to guide us in developing our hypothe-
ses and predictions involving brain signals.

8 Theories of ERI

ERI is traditionally associated with rationality, i.e.
following rules or maxims in decision-making (Kaisla
et al., 2001). Not all rules are good. Thus the notion
of rationality has inherently a moral component. The
doctrine of liberalism prescribes that it is ultimately
beneficially for society, when each individual pursues
their own benefit. As a result, classical economics
has long upheld the fiction that decisions optimize
value (or utility) to the individual. Psychologists have
helped dismantle this idea, two of which have been
awarded Nobel prizes. (Simon, 1956) proposed that
decisions are made by satisficing (a port manteau of
sufficing and satisfying). Rather that optimal benefits,
those are preferred that are good enough, and easily to
obtain. We may still consider this rational if we take
into account the limitations to our information pro-
cessing capacity and the information available to us
(Simon, 1982). More generally, (Simon, 1978) argues
that rationality should take into account the procedu-
ral aspects of decision-making, both individually and
within an organization and its environment.

Thus satisficing is an “ecologically rational” strat-
egy that enables efficient decision-making under time
constraints. Like other animals, humans are some-
times forced to do just that. Add to this the fact that
human decisions typically are made in a social con-
text, and collective decisions may deviate from indi-
vidual ones: ”I want A but we want B”. To accom-
modate these aspects of our decision-making, Daniel
Kahneman famously developed his two-systems the-
ory (Kahneman, 2011). System 1 is involved in de-
cisions which are made effortlessly, intuitively, in-
voluntary or habitually and with minimal conscious
involvement, while system 2 is all about reasoning
processes needing focused attention (Stanovich and
West, 2000). This distinction resembles that between
automatic and controlled processing in visual search
(Schneider and Shiffrin, 1977; Treisman and Gelade,
1980) but goes beyond it in scope. System 1 includes
all innate cognitive skills and ones acquired through
extensive practice, such as reading and grandmaster
chess. System 2 encompasses reasoning, selection,
and is associated with a sense of agency. Both sys-
tems interact; a salient stimulus (e.g. a loud bang)
triggers System 1, which alerts System 2 which takes
control to suppresses System 1’s flight response and
produces the reasoned decision whether to explore the
source. System 2 can instruct System 1. Waiting for
a relative at the station, and knowing that the person
has a beard, System 2 instructs System 1 to look for a
person with a beard. System 1, which determines rou-
tine decisions, operates with superficial heuristics and



is liable to biases such as availability, representative-
ness and anchoring (Tversky and Kahneman, 1974),
implying that reasoned decisions are superior. This
is a strong claim whose value depends on a precise
demarcation of both systems.

However, the broadness of these concepts and the
appeal to intuitive examples makes it hard to pin
down. The soundness of the empirical basis of Kah-
neman’s work has been contested. Namely, Gigeren-
zer et al. argue that the representativeness heuristic
implies that people ignore base rates in belief revi-
sion (Gigerenzer et al., 1988). Tversky & Kahne-
man’s “engineers versus lawyers problem” purported
to show that people do not revise their beliefs in light
of probability information (How likely is the person
matching the description of a typical lawyer to be an
engineer, given this description is drawn from an urn
with 30/70 vs 70/30 engineers) (Tversky and Kahne-
man, 1974). Whether base rate neglect occurs turns
out to depend on the context. In domains where
people have everyday familiarity in applying proba-
bilistic reasoning (“how likely is Sunderland to win
against Manchester United, given that the half time
score is 3–1”), base rates are not ignored. In other
words, people here operate like Bayesians. Gigeren-
zer argues that what goes by System 1 is actually
more intelligent than Kahneman suggests, and that its
“gut feelings” often are superior to reasoned decisions
(Gigerenzer, 2007).

9 From Behavior to the Brain

Bayesian principles today are believed to underly
much of our everyday responses. Predictive coding
theory assumes that the brain constantly keeps and
updates an internal model of the environment. The
model is tested and updated against our sensations.
Testing and updating happens recursively on several
hierarchical strata, where the higher level passes pre-
dictions to the lower one, and the lower level sends
prediction errors (or surprise) up, as a result of which
the priors are adjusted. Predictive coding originated
in models of the visual system (Rao and Ballard,
1999) and was generalized to a theory of cognition
and brain (Clark, 2013; Friston, 2010). It provides
an action-oriented view of cognition, given the output
generated by the top-down stream projects to the mo-
tor system. According to Friston, reduction of overall
prediction error is the basic function of the brain. He
postulates this principle on account of a thermody-
namic analogy, identifying prediction error with free
energy. Living systems are unique as self-organizing
systems in that they work to maintain or increase or-

der within their system. Hence the states with locally
minimal free energy constitute a global attractor for
the system. As long as the system dwells near the
attractor, sensory surprisals are supposed to be maxi-
mally infrequent and cause minimal perturbance.

Note first, that students of neural networks will
be familiar with what is being advertised here. Sim-
ilar principles involving energy minimization can be
found in Hopfield networks and Boltzmann machines,
and in statistical inferencing algorithms (MacKay,
1995); attractor dynamics are the bread and butter
of recurrent neural networks. The way surprises are
minimized resembles the Generative Adversarial Net-
work (GAN) approach. None of these approaches,
however, have gone so far in exploiting the analogy
of energy and information entropy.

Herein lies much of the attraction of the free en-
ergy principle. It promises no less than to unify biol-
ogy and psychology under the same thermodynamic
principles. But it is exactly these principles that cause
havoc for the theory. The second law of thermody-
namics requires that if order is created internally to
minimize free energy, an equal or larger amount of
warmth (or free energy, or disorder) must be dissi-
pated to its environment. Estimates for the upper
bounds of energy dissipation in biological systems ex-
ist (Skinner and Dunkel, 2021). But what would be
such dissipation in the informational analogue of free
energy? Perhaps the immense amounts of nonsense
spouted on social media may count as such? More
seriously, to prevent such harm to the outside world
and vice versa, Markov blankets isolate the interior
brain from the exterior world. This, allows the non-
equilibrium steady-state of minimal surprise to per-
sist, but in the informational version only. So the pre-
tended universality of this approach appears to be a
case of bait and switch.

This notwithstanding, at least internally, rational-
ity has been restored to the system: rule following
behavior was initially replaced with satisficing, and
now has made a comeback with the principle of free
energy minimization. This principle restores rule fol-
lowing behavior at computational level, in the form
of attractor dynamics. The theory promotes random
and fragile attractors. This allows the system to show
complex dynamical trajectories when stochastically
perturbed, and wander chaotically amongst the vari-
ous wings of the attractor (Tsuda, 2001)). Because
it allows for complex attractor structures and chaotic
itinerancy, inflexibility is not a problem for such sys-
tems.

But is this behavior ecologically rational? If
brains compute, they must compute online to meet
the immediate demands of navigating their environ-



ment. Attractors cannot be reached in short time. This
means the approach is unsuitable for online comput-
ing. Transient computation may be more suitable in
that case (Rabinovich et al., 2008). Transients galore
in chaotic itinerancy. But when they do the compu-
tational work, whence the need for a global attractor
minimizing surprise?

Early criticisms of this approach have pointed out
that such a principle may be limited in its ability to
explain exploratory behavior (Van Leeuwen, 1990).
We may have to allow for the possibility that living
systems actively seek surprise. This is needed for en-
terprise, exploration and discovery. The same may
be true for the brain. Exploration is needed for mak-
ing new discoveries in creative invention (Verstijnen
et al., 2000).

Later critiques (e.g. (Di Paolo et al., 2022)) have
emphasized the incompatibility of the free energy
principle as applied here, and embodied cognitive
science (Varela et al., 1992), in particular the enac-
tive approach. According to Di Paolo, “These ten-
sions have to do with how the enactive approach con-
ceives of agents as precarious, self-constituted entities
in ongoing historical development and capable of in-
corporating different sources of normativity through-
out their development, a world-involving process that
is co-defined with their environment across multiple
spatiotemporal scales and together with other agents.”
(p.3). The enactive approach argues that our mental
life is found at this ecological level, rather than hid-
ing in the brain under a Markov blanket.

It will be clear that underlying these tensions are
differences in how we consider the human cogni-
tion: as enclosed within its organism, mainly engaged
in ordering its own attic or as a person, individu-
ally and collectively engaging with their environment.
Humans typically vacillate between such states: ex-
ploitation and exploration. We observe this kind of
everyday behavior, but encounter it even in the labo-
ratory, for instance in the perception of visual scenes
(Nikolaev et al., 2023). Perhaps such cycles, rather
are relevant to how brain dynamics should be under-
stood. It remains to be seen if the notions of chaotic
itinerancy and the free energy principle are versatile
enough to explain this behavior.

10 Position

Given the above observations, how likely is it that
theories of human intelligence (or: cognition) will,
within any reasonable amount of time, reach a level
of maturity such that we can actually explain — or
maybe even predict — a person’s decisions?

Not very likely, it would seem. The rule-based
explanations of the 1950s, 60s, and 70s all had their
fallacies — either from a philosophical or an empir-
ical standpoint — and do not hold the explanatory
power we need to truly understand why or how peo-
ple make decisions, or classify sensory instances. Do
the more contemporary models, rooted in thermody-
namics, entropy, time series and attractors then pro-
vide for more explainability? Hardly. Even though
these models have (some) biological validity, and the
promising ‘fragile’ attractor models do seem to an-
swer the ‘how’ question, at least partially, the expla-
nation of ‘why’ still eludes. Worse still, we might
never capture it. Many dynamical systems exhibit
chaotic behaviour, which in some cases is unpre-
dictable (Moore, 1990; Werndl, 2009) — for the same
reason the local weather is unpredictable: the unpre-
dictability is a property of the system itself ; any for-
ward projection of the system will separate exponen-
tially fast from the real state (Dingwell, 2006).

With these thoughts in mind, one cannot help but
consider this: human intelligence is opaque to this
extent, then what justification do we have trying to
explain artificial intelligence? Why do we generally
trust a medical diagnosis from human doctor better
than the same diagnosis from an AI algorithm – even
when the latter performs better? (Amann et al., 2020;
Longoni et al., 2019)?

The answer might be partially because it’s new.
Resistance to new technology has persisted since the
dawn of time; some famous examples include nu-
clear power, information technology and biotechnol-
ogy (Bauer, 1995). AI, explainable or unexplainable,
has recently made its way into our daily lives, and
is rapidly gaining ground. To what extent ‘explanan-
tion’ should be seen as our generations’ resistance, or
our trouble getting accustomed to the new reality will
likely be answered by future generations. Maybe Max
Planck’s famous quote is a good way to conclude this
position: “[A new scientific truth does not triumph by
convincing people and making them see the light, but
rather because its opponents eventually die, and a new
generation grows up that is familiar with it.]” (Planck,
1949).
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