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Abstract 

Proteochemometric (PCM) modelling is a powerful computational drug discovery tool used in bioactivity predic-
tion of potential drug candidates relying on both chemical and protein information. In PCM features are computed 
to describe small molecules and proteins, which directly impact the quality of the predictive models. State-of-the-art 
protein descriptors, however, are calculated from the protein sequence and neglect the dynamic nature of proteins. 
This dynamic nature can be computationally simulated with molecular dynamics (MD). Here, novel 3D dynamic pro-
tein descriptors (3DDPDs) were designed to be applied in bioactivity prediction tasks with PCM models. As a test case, 
publicly available G protein-coupled receptor (GPCR) MD data from GPCRmd was used. GPCRs are membrane-bound 
proteins, which are activated by hormones and neurotransmitters, and constitute an important target family for drug 
discovery. GPCRs exist in different conformational states that allow the transmission of diverse signals and that can 
be modified by ligand interactions, among other factors. To translate the MD-encoded protein dynamics two types 
of 3DDPDs were considered: one-hot encoded residue-specific (rs) and embedding-like protein-specific (ps) 3DDPDs. 
The descriptors were developed by calculating distributions of trajectory coordinates and partial charges, apply-
ing dimensionality reduction, and subsequently condensing them into vectors per residue or protein, respectively. 
3DDPDs were benchmarked on several PCM tasks against state-of-the-art non-dynamic protein descriptors. Our 
rs- and ps3DDPDs outperformed non-dynamic descriptors in regression tasks using a temporal split and showed 
comparable performance with a random split and in all classification tasks. Combinations of non-dynamic descriptors 
with 3DDPDs did not result in increased performance. Finally, the power of 3DDPDs to capture dynamic fluctuations 
in mutant GPCRs was explored. The results presented here show the potential of including protein dynamic informa-
tion on machine learning tasks, specifically bioactivity prediction, and open opportunities for applications in drug 
discovery, including oncology.
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Introduction
Proteins are complex biological units that constitute the 
basis for cellular function. As such, studying their struc-
ture and interaction with the environment is a key aspect 
of preclinical drug discovery [1]. In computational drug 
discovery, the information encoded in proteins can be 
extracted and leveraged for several applications using 
machine learning [2]. These include, among others, target 
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identification [3], computational mutagenesis [4], pro-
tein–protein interaction studies [5, 6], and small mole-
cule-target binding affinity prediction [7, 8]. The latter, 
also referred to as bioactivity proteochemometric model-
ling (PCM), is an extension of the widely employed quan-
titative structure–activity relationship (QSAR) models 
enriched with protein descriptors [7].

Several types of protein descriptors are available for 
PCM modelling and similar applications [7–9]. These 
can be broadly classified between sequence-based and 
structure-based descriptors. Descriptors derived from 
the protein sequence include discrete features calculated 
per residue (one-hot encoding) [10] or protein [11] cap-
turing physicochemical properties or amino acid compo-
sition. Additionally, deep learning applications of natural 
language processing have prompted the generation of 
protein embeddings from sequences [12]. Structure-
based descriptors can be derived from molecular graphs 
or the protein 3D structure by measuring connectivity, 
distances, and physicochemical properties among others 
[8, 9]. Moreover, ligand–protein interaction fingerprints 
can be derived from protein structures in complex with 
small molecules [13] or from combinations of ligand and 
protein descriptors [14].

While the goal of protein descriptors is to capture the 
full complexity of the protein, they largely fail to depict 
protein dynamism. At physiological temperatures, pro-
teins exist in an equilibrium of structural conformations, 
which can be studied experimentally or simulated with 
Molecular Dynamics (MD) [15]. Changes in metabolite 
or ligand concentrations, as well as mutations and other 
structural alterations, can impact protein dynamics [15, 
16]. These, in turn, directly influence protein function 
and interactions [15, 17]. The inclusion of dynamic infor-
mation in protein descriptors could therefore increase 
performance in some of the machine learning applica-
tions listed above. Positive effects have already been 
reported in target and functional site identification [18], 
but this potential is yet to be explored in PCM bioactivity 
modelling.

G protein-coupled receptors (GPCRs) have exten-
sively been explored as targets in bioactivity prediction, 
including PCM, due to their biological and therapeu-
tic relevance [19, 20]. GPCRs as a family share a highly 
conserved structure with seven transmembrane (TM) 
domains that exists in a dynamic equilibrium between 
active and inactive conformations [21, 22]. In the last 
decades, the scientific community has seen an increas-
ing interest in the dynamic aspects of GPCRs, resulting 
in community efforts such as the GPCRmd database, 
where curated GPCR MD simulations are publicly avail-
able [23]. Simultaneously, GPCR research in the con-
text of oncological therapies is gaining momentum [24], 

with several in vitro studies showing how cancer-related 
somatic mutations affect receptor function and/or phar-
macological intervention [25–27]. Some of the physi-
ological effects observed in mutants have been associated 
with changes in receptor dynamics thanks to MD simula-
tions [28].

Here, 3D dynamic protein descriptors (3DDPDs) 
were developed leveraging atom coordinates and par-
tial charges from publicly available single replicate MD 
simulations from GPCRmd. Two descriptor architectures 
were explored: embedding-like (protein specific—ps3D-
DPD), and one-hot encodings (residue specific—rs3D-
DPD). The performance in PCM GPCR bioactivity 
prediction of these novel protein descriptors was bench-
marked against and in combination with a panel of state-
of-the-art protein descriptors. Finally, the ability of our 
3DDPDs to capture dynamic changes driven by (cancer-
related) somatic point mutations in GPCRs was tested. 
These results highlight 3DDPDs as a stepping stone for 
further research on protein descriptors used for predict-
ing drug-target interactions based on protein dynamics.

Results
3DDPDs generation and optimization
3D dynamic protein descriptors (3DDPDs) were designed 
to capture the dynamic behavior of proteins in MD simu-
lations. For this purpose, atomic coordinates were first 
extracted from the MD trajectories and their variability 
over a certain number of frames calculated. As proof of 
concept, 3DDPDs were conceived for single MD trajec-
tory replicates in this work. In order to account not only 
for the position but also for the type of atoms in the pro-
tein, atomic partial charges were computed. Next, two 
strategies were developed to condense the dense atomic 
information into protein descriptors (Fig. 1). These strat-
egies correspond to the two types of 3DDPDs envisioned. 
The residue-specific (rs)3DDPD is closer to classical one-
hot encoded protein descriptors and defines each resi-
due in the protein with a fixed number of features. The 
rs3DDPD was designed to capture the differences across 
different sections of the target. The second type, protein-
specific (ps)3DDPD, is closer to whole sequence protein 
embeddings and was designed to capture the differences 
between targets in a set. Consequently, atomic data were 
aggregated per target for rs3DDPDs and for all targets 
for ps3DDPDs and its dimensionality was reduced via 
principal component analysis (PCA). Several principal 
components (PCs) for each atom were selected and, in 
the case of rs3DDPDs, grouped per residue. A second 
dimensionality reduction step was applied to residue data 
and the selected PCs were placed in their matching sec-
tions corresponding to a multiple sequence alignment 
(MSA) of the targets of interest. For ps3DDPDs, the PCs 
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selected per atom were grouped per target, resulting in 
the final descriptor.

The 3DDPD generation strategy described above was 
optimized by comparing the descriptors’ performance on 
PCM modelling tasks. GPCRs were selected as the pro-
tein family for this case study given the availability of a 
large number of MD trajectories freely in the GPCRmd 
database [23]. Particularly, the focus laid on Class A 
GPCR apo structures in the inactive or intermediate 
conformations, more broadly represented at the time of 
the analysis. The PCM dataset contained 26 GPCRs with 
available MD trajectories in GPCRmd and high-qual-
ity data in the Papyrus bioactivity dataset [29], in total 
38,701 datapoints. Although two data split strategies (i.e. 
random and temporal) were applied in both regression 
and classification PCM tasks, the optimization strategy 
was driven mostly by the results in the most demanding 
task, regression with a temporal split.

First, the “dynamic” properties derived from atomic 
coordinates were optimized. Here, the use of mean, 

median, and standard deviation from the mean (SD) or 
just the SD, representing the “rigidity” of each atomic 
coordinate was benchmarked. For rs3DDPDs, using 
SD resulted in better performance (Fig.  2a), contrary to 
ps3DDPDs (Fig.  2b). The number of frames included in 
each trajectory split was also optimized, where 100 or 
500 frames yielded similarly better results (Fig.  2a), so 
100 frames were selected further. The variance explained 
by the selected number of PCs on atom data was opti-
mized and set at 95% for both rs3DDPDs and ps3DDPDs 
(Fig.  2b), and similarly, the number of PCs on residue 
data was optimized and set to 5 not to explode the num-
ber of features (Fig. 2a).

Furthermore, the inclusion of atomic data from all 
heavy atoms or non-carbon atoms only was tested. The 
former option was significantly better for both rs3D-
DPDs (Fig. 2a) and ps3DDPDs. Finally, residue selection 
strategies were tested to focus the 3DDPDs on the pro-
tein binding site (Fig.  2c). These selections were based 
on structural-driven MSAs at different protein family 

Fig. 1. 3D dynamic descriptor (3DDPD) generation overview. First, a selection of residues and atoms is made. XYZ coordinates are collected 
for the selected atoms over all frames of the trajectory. The full simulation ranging from 0 to 500 ns is divided into sub-trajectories and atomic 
coordinate statistics (average, SD, and median) are computed for each of them. Two routes are possible from this point to generate either one-hot 
encoded residue-specific rs3DDPDs or embedding-like protein-specific ps3DDPDs. Respectively, atomic data is grouped and standardized 
either per target or for all targets and PCA is computed. A number of PCs for each atom are then selected and, in the case of rs3DDPDs, grouped 
per residue by calculating the average and SD. A second dimensionality reduction step is applied to residue data and the selected n number 
of PCs are mapped to their corresponding positions in a MSA of the targets of interest. This results in a vector rs3DDPD of length n * L, where L 
is the length of the protein or the MSA. For ps3DDPDs, the m number of PCs selected per atom are grouped per target by calculating average, 
median, and SD, therefore resulting in the final vector descriptor of length m * 3



Page 4 of 19Gorostiola González et al. Journal of Cheminformatics           (2023) 15:74 

levels, starting from the full sequence, then the binding 
pocket of class A GPCRs, then specific GPCR families, 
such as nucleotide receptors, then GPCR subfamilies, 
such as adenosine receptors, and finally, target-specific 
binding pocket such as the adenosine  A1 receptor. To 
ensure a consistent number of features per descriptor, 
in rs3DDPDs only the first two options could be tested, 
where the class A binding pocket performed significantly 
worse than the full sequence (Fig. 2a). In ps3DDPDs all 

selection methods performed similarly except for the 
family and target pockets, which performed significantly 
worse (Fig. 2b).

The optimized rs3DDPD included “Rigidity” coordi-
nate data calculated from 100-frame splits, where all 
atomic data was included for all residues in the protein 
sequence. In the atomic PCA, 95% of the variability was 
kept and 5 PCs in the residue PCA. This resulted in a vec-
tor of 3,785 features for the class A GPCRdb MSA used, 

Fig. 2 Optimization of the 3DDPD generation strategy. Ten PCM regression tasks with temporal split were trained with each variation 
of the 3DDPDs to select the optimal parameters. Pairwise differences were analyzed by their statistical significance in a Student’s T test, represented 
by asterisks in (a,b):. * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001. a rs3DDPDs were optimized by testing different options for trajectory 
data (i.e. choices of statistical metrics for sub-trajectory grouped coordinate atomic data: “coordinate” includes all, “rigidity” only SD), number 
of frames in the sub-trajectory frame splits, number of PCs from the residue PCA, atom selection (i.e. all heavy atoms or “minus C”: non-carbon), 
and residue selection (i.e. full sequence or class A GPCRdb-annotated binding pocket). b ps3DDPDs were optimized based on trajectory data, 
variance covered by the selected number of atom PCA components, atom selection, and residue selection. c Residue selection options exemplified 
on the structure of adenosine A1 receptor PDB 5UEN. In orange, the residues that would be selected by each of the five possible definitions 
of a structural-driven binding pocket selection approach: full sequence, class A, family, subfamily, and target
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of length 757. The optimized ps3DDPD included all coor-
dinate data statistics calculated from 100-frame splits, 
where all atomic data was included for all residues in the 
protein sequence and 95% of the variability was kept in 
the atomic PCA. This resulted in a vector of 30 features.

3DDPDs reflect the GPCR dynamic fluctuations
From the publicly available MD database for GPCRs, 
GPCRmd, a subset of 26 trajectories for class A GPCRs 
with sufficient bioactivity data for PCM modelling was 
selected, as described in the Materials and Methods sec-
tion. Apo inactive conformations were selected to avoid 
bias towards a specific ligand-triggering activation mode. 
The targets selected covered 17 subfamilies within four 
class A families: aminergic, lipid, nucleotide, and peptide 
receptors. The analysis of the MD trajectories showed 
similarities between dynamic behaviors but also dif-
ferences that can be potentially captured and exploited 
using 3DDPDs. Such differences can be better observed 
by aligning the Root Mean Square Fluctuation (RMSF) 
values to a GPCR class A MSA (Fig.  3a and Additional 
file 2: Fig S1). Across GPCRs, there is a shared pattern of 
reduced mobility in the TM domains compared to extra-
cellular (ECL) and intracellular (ICL) loops or N- and 
C-terminus. However, deviations from this pattern are 

common when comparing (i) members of different fami-
lies (e.g. adrenergic 5-hydroxytryptamine receptor  1B 
(5HT1B) and nucleotide adenosine  A1 receptor (AA1R) 
in their overall dynamic behavior), (ii) members of the 
same family but different subfamilies (e.g. nucleotide 
receptors adenosine  A2A (AA2AR) and P2Y purinocep-
tor 1 (P2RY1) in TM2, ICL2, ECL2, ICL3, and C-termi-
nus), or (iii) even members of the same subfamily (e.g. 
5-hydroxytryptamine receptors 5HT1B and  2B (5HT2B) 
in N-terminus, TM3, TM4, ECL2, ICL3, and ECL3). 
Importantly, the main dynamic patterns described above 
were highly conserved for the three different replicates of 
the same system available on GPCRmd (Additional file 2: 
Fig S2), suggesting that the omission of MD replicates in 
the current 3DDPD pipeline did not have a major impact 
on the results presented here.

The observed similarities and differences in dynamic 
behaviors between GPCRs were effectively captured by 
the optimized rs3DDPDs (Fig.  3b and Additional file  2: 
Fig S3) and ps3DDPDs (Fig.  3c and Additional file  2: 
Fig S4). In the translation from RMSF to rs3DDPD and 
ps3DDPD, positive and negative values appeared that 
represented inter- and intra-target variability, respec-
tively. While rs3DDPDs reflected the dynamic fluctua-
tions on a residue level that resembled more closely the 

Fig. 3 Representation of the GPCRs dynamic behavior by 3DDPDs. a Dynamic fluctuations of the residues of six GPCRs from the set, represented 
by their RMSF (Å). The RMSF values are mapped to their corresponding positions in the MSA later used for rs3DDPD and non-dynamic descriptor 
calculation, for easier visualization. The regions in the MSA corresponding to domains TM 1–7 are shadowed for reference. Data for the complete 
set of 26 GPCRs is available in Additional file 2: Fig S1. b Representation of the rs3DDPD feature values for the same subset of GPCRs. Data 
for the complete set of 26 GPCRs is available in Additional file 2: Fig S3. c Representation of the ps3DDPD feature values for the same subset 
of GPCRs. Data for the complete set of 26 GPCRs is available in Additional file 2: Fig S4
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RMSF pattern itself, ps3DDPDs showed a more general-
ized embedding of each protein dynamics compared to 
all the targets in the set thus enhancing the differences 
among targets. Of note, rs3DDPDs did not represent 
merely a transform of the RMSF values, as exemplified 
for the positions corresponding to the N-terminus and 
TM1 in P2RY1 and P2RY12 (Fig. 3a, b). This suggests that 
information other than the atom coordinate variability, 
such as the type of atoms and residues encoded by par-
tial charges, was picked up by the 3DDPDs. In part, such 
an effect was likely possible thanks to the dimensionality 
reduction process that introduced several opportunities 
to exploit atomic and residue similarities and differences 
as opposed to the RMSF calculation.

3DDPDs outperform non‑dynamic protein descriptors 
in PCM regression tasks
The use of 3DDPDs as protein descriptors in PCM bioac-
tivity modelling tasks was tested for our GPCR dataset. 
For this purpose, the performance of random forest (RF) 
models was benchmarked using 3DDPDs in combination 
with ECFP6 molecular fingerprints against models using 
as protein descriptors one of five other one-hot encoded 
descriptors (i.e. Zscale in two modalities, STscale, MS-
WHIM, and PhysChem) or one protein embedding (i.e. 
Unirep). The benchmark was carried out for classifica-
tion and regression tasks using two different types of 
training-test splits: 80:20 random split and temporal split 
with 2013 as a cutoff year for the test set. The temporal 
split was introduced as a more accurate representation 
of a drug discovery campaign where data from the past 
is used to predict novel chemical entities developed later 
in time and indeed showed a considerable decrease in 
chemical bias compared to the random split (0.051 vs. 
0.279).

The bioactivity dataset compiled for bioactivity model-
ling contained 38,701 bioactivity datapoints heterogene-
ously distributed across the 26 targets (Additional file 1: 
Table S1). Active data for classification was defined with 
a cutoff of 6.5 pChEMBL value. Firstly, the need for PCM 
modelling in such a set was assessed by comparing the 
performance of the PCM models to the average perfor-
mance of individual QSAR models for each of the GPCRs 
in the set. In all of the modelling scenarios, the worst 
performing PCM model outperformed significantly 
the QSAR models: Matthews correlation coefficient 
(MCC) 0.643 ± 0.005 (UniRep) vs. 0.578 ± 0.007 in ran-
dom split classification, MCC 0.273 ± 0.003 (rs3DDPD) 
vs. 0.192 ± 0.009 in temporal split classification, Pearson 
r 0.832 ± 0.003 (UniRep) vs. 0.775 ± 0.005 in random split 
regression, and Pearson r 0.410 ± 0.003 (Zscale Hellberg) 
vs. 0.343 ± 0.004 in temporal split regression.

In PCM, models using 3DDPDs performed similarly 
to using other protein descriptors in classification tasks 
regardless of the split type (Fig.  4a, c). One exception 
was the temporal split classification task, here rs3D-
DPDs produced slightly worse performance than mod-
els using Zscale Hellberg, Stscale, and MS-WHIM 
(MCC 0.273 ± 0.003 vs. 0.273 ± 0.005, 0.278 ± 0.005 and 
0.277 ± 0.004, respectively, Fig. 4c). In the regression task 
with random split, models using 3DDPDs performed 
again similarly to models using other protein descrip-
tors (Fig.  4b), with the exception of rs3DDPDs per-
forming slightly but significantly worse than Zscale van 
Westen (Pearson r 0.832 ± 0.004 vs. 0.836 ± 0.004, respec-
tively) and ps3DDPDs performing slightly better than 
the Unirep protein embedding (Pearson r 0.835 ± 0.003 
vs. 0.832 ± 0.003, respectively). In the regression task 
with temporal split, however, both types of 3DDPDs 
outperformed the rest of the descriptors (Fig.  4d). The 
performance of models trained with non-dynamic pro-
tein descriptors measured as Pearson r ranged from 
0.410 ± 0.003 (Zscale Hellberg) to 0.415 ± 0.004 (Phy-
sChem) passing by 0.410 ± 0.006 (Zscale van Westen), 
0.410 ± 0.004 (MS-WHIM), 0.411 ± 0.004 (UniRep), and 
0.413 ± 0.005 (Stscale). One-hot encoded rs3DDPDs 
performed significantly better than most of the other 
descriptors, except for PhysChem, with a Pearson r of 
0.417 ± 0.004. Embedding-like ps3DDPDs, however, sig-
nificantly outperformed all the other descriptors, includ-
ing rs3DDPDs, with a Pearson r of 0.451 ± 0.003. These 
results were also confirmed in terms of Root Mean 
Square Error (RMSE), which was the lowest for ps3D-
DPDs (1.154 ± 0.003) and then QSAR models on average 
(1.168 ± 0.004), followed by rs3DDPDs (1.214 ± 0.005) and 
then the rest of non-dynamic protein descriptors (from 
1.124 ± 0.005 to 1.221 ± 0.006). A summary of all valida-
tion metrics is given in Additional file 1: Table S2 (ran-
dom split) and Additional file 1: Table S3 (temporal split).

In order to test the complementarity of the 3DDPDs 
with other protein descriptors, a set of regression 
models was trained with temporal splits with pairs of 
dynamic and non-dynamic protein descriptors (Fig. 5). 
In all cases, the addition of a 3DDPD on top of a non-
dynamic descriptor resulted in similar performance 
to the models trained exclusively using non-dynamic 
descriptors, or even slightly worse in the case of Phy-
sChem + rs3DDPD. Moreover, the combination yielded 
statistically worse performance than using the dynamic 
descriptors alone, particularly in the case of ps3DDPD. 
This non-complementarity was further confirmed for 
ps3DDPDs by their exclusion from the most impor-
tant features for the combination models (e.g. ps3D-
DPD + PhysChem, Additional file  2: Fig S5d), where 
only non-dynamic protein descriptor features and 
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ECFP6 compound fingerprint bits were picked up as 
the top 25 most important for the model. For rs3D-
DPDs, however, there seemed to be a certain comple-
mentarity as both dynamic and non-dynamic protein 

descriptor features showed up among the top 25 most 
important for the model (e.g. rs3DDPD + Zscale van 
Westen, Additional file 2: Fig S5c), even if this did not 
translate into an improvement in model performance.

Fig. 4 Benchmark of 3DDPD performance in PCM bioactivity modelling tasks against non-dynamic descriptors. Ten RF models with random seeds 
were trained and validated for each combination of protein descriptors with ECFP6 molecular fingerprints. A shade of green (the darker the better) 
represents better performance using a descriptor A instead of a descriptor B, as read in panel a. A shade of red (the darker the worse) represents 
worse performance using a descriptor A instead of a descriptor B. The statistical significance of the differences is derived from pairwise Student 
T-test and represented by asterisks: * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001. Four PCM tasks were benchmarked: a Classification 
with validation based on an 80:20 random split. In classification tasks, MCC was used as an evaluation metric on the test set. b Regression 
with validation based on 80:20 random split. In regression tasks, Pearson r was used as an evaluation metric on the test set. c Classification 
with validation based on a temporal split, with 2013 as the cutoff year. d Regression with validation based on a temporal split, with 2013 
as the cutoff year
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rs3DDPD features can be traced back to generic GPCR 
positions
A specific trait of one-hot encoded protein descriptors is 
that every feature can be traced back to specific protein 
sequence residues or MSA positions. For class A GPCRs, 
the aligned positions can additionally be linked to generic 
positions in the GPCR structure with known functional 
relevance. The most widely used generic position identi-
fier for class A GPCRs is the Ballesteros-Weinstein (BW) 
schema [30], which consists of a first number identifying 
the TM domain followed by a second number that rep-
resents the level of conservation in that helix around the 
most conserved position that gets the value 50. Using the 
GPCRdb [31] MSA mapping to BW positions, the most 
important rs3DDPD features in regression models were 
traced back to their generic GPCR positions.

In the models built with a temporal split, four rs3DDPD 
features were among the top 25 most important (Fig. 6a). 
The most important feature overall, AA223_PC3, cor-
responded to the BW position 3.32 in TM3. For further 
interpretability, this generic position can also be directly 
mapped to a specific residue in a protein of interest. As 
an example, in AA1R 3.32 it translated to Val 87 (Fig. 6b). 

The other three important rs3DDPD features did not 
correspond to any BW positions, as two of them were 
located in the ECL2 and one in the ECL3. From the three 
loop positions, only one exists in adenosine receptor A1, 
Asn 147 (AA292_PC3). The two other ECL positions are 
only available in other receptors (Additional file  2: Fig 
S1). In the models built with a random split, the two most 
important rs3DDPD features, AA128_PC2 and AA576_
PC5, corresponded to TM1 1.38 and TM6 6.46 BW posi-
tions, respectively (Fig.  6c). In AA1R, these translated 
to Ile 15 and Leu 245 (Fig. 6d). The other two important 
rs3DDPD features correspond to positions in ICL3. Of 
note, the consensus between seeds on the importance of 
specific rs3DDPD features was less marked on the mod-
els with random split than on the models with temporal 
split (Fig. 6a, c). This analysis was further applied to dis-
cuss the relevance of specific GPCR positions in ligand 
binding.

Dynamic fluctuations in mutants can be captured 
with 3DDPDs
To assess the viability of dynamic descriptors to cap-
ture differences between mutants in a potential mutant 

Fig. 5 PCM model performance with dynamic and non-dynamic protein descriptor combination in regression tasks with a temporal split. In green, 
the performance of RF models trained on 3DDPDs. In blue, RF models trained on non-dynamic protein descriptors. In green and blue, RF models 
trained on a combination of both types. Zscale Hellberg and van Westen are abbreviated to Zscale H and vW, respectively. The statistical significance 
of the differences is derived from pairwise Student T-test and represented by asterisks: * = p-value < 0.05; ** = p-value < 0.01; *** = p-value < 0.001
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PCM model, a subset of 28 mutants from five of the 
GPCRs in our set was gathered: AA1R and AA2AR, 
muscarinic acetylcholine receptor 2 (ACM2), beta-2 
adrenergic receptor (ADRB2), and CC chemokine 
receptor 5 (CCR5). The selection of mutations was 
done for the original set of 26 GPCRs when there was 
available mutagenesis data in GPCRdb (Table 2), from 

which the point mutation’s effect in bioactivity was 
projected for the five resulting receptors (Additional 
file  2: Fig S6). Additionally, five mutations on these 
GPCRs present in cancer patients from the Genomic 
Data Commons (GDC) database were included that 
also had mutagenesis data in GPCRdb: AA1R  R291C7.56 
and  R296C8.51, AA2AR  H278N7.42, ACM2  V421L7.33, 
and ADRB2  V317A7.43. The cancer-related mutants, 

Fig. 6 GPCR generic position mapping of most important rs3DDPD features in PCM regression tasks. a Top 25 most important features in PCM 
regression models using a temporal split validation for the GPCR set. The importance was averaged across the ten random seeds trained and the SD 
represented as error bars. Rs3DDPD features are mapped to their corresponding GPCR Ballesteros-Weinstein number or, if not available, region 
of the protein. b Representation of the most important rs3DDPD features in regression temporal split in the adenosine A1 receptor (PDB 5UEN). 
c Top 25 most important features in PCM regression models using a random split validation. d Representation of the most important rs3DDPD 
features in regression random split in the adenosine A1 receptor)
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however, did not seem to have an effect on bioactivity 
given the limited amount of mutagenesis data available.

The selected mutations were introduced in equilibrated 
wild type receptor systems from GPCRmd, which were 
subsequently re-equilibrated to run production 500 ns 
MD simulations following the GPCRmd pipeline. One of 
the selected mutations did not run successfully therefore 
it was discarded from the analysis (AA2AR  H278N7.42). 
Most mutant trajectories showed deviations from wild 
type trajectories in terms of RMSF (Additional file 2: Fig 
S7), with the exception of AA1R and CCR5 mutants. The 
deviations were sometimes in the vicinity of the mutation 
(i.e. AA2AR  M177A5.40,  N181A5.43,  Y271A7.35; ARDB2 
 D130N3.49,  S203A5.43,  V317A7.43; ACM2  D103E3.32, 
 V421L7.33), but most commonly spawned across the 
whole sequence or altered stability in distant regions. For 
example, in AA2AR  L85A3.33 increased flexibility in ICL2 
and ECL2 and  S91A3.39 in ICL3 and TM6. Moreover, 
adjacent mutations that triggered different effects were 
observed. For example, in ADRB2,  S203A5.43 decreased 
stability in TM1, ICL2, and ECL3, while  S204A5.44 
decreased stability in TM2 and TM4 while increas-
ing stability in ICL3. Of note, in ACM2  D103E3.32 and 
 D103N3.32 triggered similar higher flexibility in ECL1 and 
ECL2, with an overall differential pattern of lower stabil-
ity in  D103E3.32. In general, the mutations with smaller 
dynamic fluctuations from the wild type also corre-
sponded to those with a smaller effect in bioactivity, such 
as AA1R  R291C7.56 and  R296C8.51, and ADRB2  V317A7.43 
(Additional file 2: Figs S6, S7).

Next, the power of 3DDPDs to distinguish between 
mutants was tested. rs3DDPDs and ps3DDPDs were 
computed for the mutant trajectories and used to clus-
ter the mutants based on the distance between descrip-
tors. As rs3DDPDs are computed independently for each 
trajectory and reflect all atoms in the system, all mutants 
of the same target clustered together (Fig.  7a). Within 
targets, clusters of mutants with similar overall dynamic 
behavior compared to wild type were observed, for exam-
ple, ADRB2  D79N2.50 and  D130N3.49, or with similar fluc-
tuations from wild type in specific regions, such as AA1R 
 R291C7.56 and  R296C8.51 in TM7 and H8/C-terminus 
(Additional file 2: Fig S7). For targets with unique differ-
ential dynamic patterns from wild type for each mutant, 
like ACM2, the clusters discerned the most different pat-
terns (e.g.  D103N3.32 shows certain receptor stabilization 
compared to  D103E3.32 and  V421L7.33, and is therefore 
excluded from the cluster). These results supported the 
ability of rs3DDPDs to capture dynamic fluctuations in 
mutants. Nevertheless, the mutant discriminatory power 
of rs3DDPDs did not correlate directly to that of using 
directly RMSF (Additional file  2: Fig S8a) or RMSF dif-
ferences to wild type (Additional file  2: Fig S8b), which 

reinforced the notion that rs3DDPDs are not merely 
a transform of RMSF and include other non-dynamic 
atomic information.

Using ps3DDPDs, mutants were clustered based on 
overall similarities and differences in their dynamic 
behavior and residue composition across the set (Fig. 7b). 
This way, the five wild type targets clustered together 
because they had the most stable trajectories overall, and 
CCR5  Y108A3.32 was close by because overall it showed 
small differences to the wild type trajectory (Additional 
file  2: Fig S7). However, some discrepancies with the 
expected results based on RMSF differences were found. 
For example, ADRB2  S203A5.43 and  S204A5.44 formed 
their own cluster despite showing differential RMSF 
peaks. This and other examples suggest that ps3DDPD 
values for this set of mutants were heavily influenced 
by fluctuations in the N- and C-terminus, which were 
the most accentuated. Therefore ps3DDPDs did capture 
mutant fluctuations, but using them in their optimized 
form for wild type GPCRs seemed suboptimal to dis-
criminate mutants.

Discussion
PCM is a modality of bioactivity modelling that leverages 
similarities and differences between targets by combining 
them in the same model represented by protein descrip-
tors [7]. The most commonly used protein descriptors in 
PCM characterize different properties of the sequence 
of residues [10], but do not consider an important factor 
for protein–ligand binding: protein dynamics. Here, 3D 
dynamic protein descriptors (3DDPDs) were developed 
leveraging publicly available single-replicate MD simu-
lations. This information was condensed into multiple 
steps that were optimized to produce a one-hot encod-
ing residue-specific (rs3DDPD) and an embedding-like 
protein-specific (ps3DDPD) descriptor. The optimized 
3DDPDs were subsequently benchmarked against non-
dynamic protein descriptors in PCM tasks for a bioactiv-
ity set of 26 class A GPCRs. Finally, the use of 3DDPDs to 
describe point mutations was explored, which are other-
wise underrepresented by sequence-based non-dynamic 
descriptors.

The strategy to develop 3DDPDs borrows ingredients 
from other types of descriptors. Firstly the calculation of 
3DDPDs starts from the collection of coordinate data for 
each atom, to which atomic partial charges were added to 
represent the electrostatic component over time (Fig. 1). 
Other MD fingerprints for small molecules have used 
as starting properties potential energy, solvent-acces-
sible surface area or radius of gyration [32], ultimately 
similarly representing electrostatic and conformational 
changes of the molecule over time. More computation-
ally expensive partial charges than Gasteiger could be 
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explored, although the simpler implementation cho-
sen here has been shown to be a cost-efficient option in 
other modelling tasks [33]. Further down in our pipeline, 
PCA is used to reduce dimensionality, which is a com-
mon resource in protein descriptor calculation. How-
ever, for non-dynamic one-hot encoded descriptors, it 
is often used to calculate fixed features for each residue 
type (e.g. Zscale, MS-WHIM, Stscale [10, 34]) rather 
than specific features for each residue in the sequence, 
as was done for rs3DDPDs given the heavy influence of 
the environment in the dynamic behavior of single resi-
dues. On the other hand, protein embeddings are often 
the byproduct of a machine or deep learning model using 
a protein sequence as input [12, 35], unlike the approach 

followed for ps3DDPDs. Here, instead, a common main 
framework was kept to increase the interpretability and 
interoperability of the resulting descriptors. This allowed 
us to follow a similar optimization route for both descrip-
tor types (Fig.  2). In terms of residue composition, for 
our particular dataset the full sequence was favored. In 
a less diverse GPCR set, however, the use of family- or 
subfamily-specific alignments and binding pocket selec-
tions would provide more relevant information to the 
model given the differential activation-induced confor-
mational changes reported for GPCRs binding different 
ligand types [21].

Next, the performance of our optimized 3DDPDs in 
PCM regression and classification tasks was tested using 

Fig. 7 Discrimination of GPCR mutants using 3DDPDs as descriptors. Hierarchical clustering of GPCR variants based on their Euclidean 
distance between descriptor vectors. a Mutants represented as rs3DDPDs. b Mutants represented as ps3DDPDs. Individual clusters generated 
under a distance threshold of 70% of the final merge are represented in different colors in the dendrograms
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both random and temporal validation splits (Fig. 4). The 
performance of our models was in line with other PCM 
models trained in similar conditions for subfamilies of 
GPCRs [29]. In our set, 3DDPDs performed similarly to 
non-dynamic protein descriptors in classification tasks 
and regression tasks with a random split. These results 
suggest that the performance of these models had already 
reached its peak and small differences in the way to 
represent the protein space did not make a difference. 
Nevertheless, the best-performing models in classifica-
tion tasks did not reach a high MCC. Models reached 
0.646 ± 0.009 in the random split (Zscale van Westen), 
and 0.278 ± 0.005 in the temporal split (Zscale Hellberg), 
hence questioning the relevance of this dataset for such 
task. Interestingly, protein embeddings (UniRep) showed 
lower performance across the board, which has also been 
shown in other datasets compared to sequence- and 
3D-based protein descriptors [36]. In the regression task 
with temporal split, however, 3DDPDs significantly out-
performed non-dynamic descriptors. Given the more 
challenging form of validation introduced by the tem-
poral split, the 3DDPDs represent an advantage. These 
results are likely also the result of performing 3DDPD 
optimization using this particular task. Nevertheless, 
similar behaviors have been observed in other bench-
marks when using temporal splits compared to random 
splits [29, 37]. Moreover, in our PCM benchmark ps3D-
DPDs performed better than rs3DDPDs overall. One rea-
son for this could be the difference in descriptor length: 
for the GPCR wild type set, rs3DDPDs contained 3785 
features and ps3DDPDs 30 features. Moreover, the MSA 
used to compute rs3DDPD contained many gaps as it 
accounted for all class A GPCRs and not only the ones in 
the set. Therefore, lengthy rs3DDPDs with a large num-
ber of zeroes likely introduced noise in the model com-
pared to the more compact ps3DDPDs. While this aspect 
would be corrected in practice by feature selection tech-
niques prior to modelling, those were not applied here, 
similarly to hyperparameter optimization, to be able to 
explicitly benchmark the calculated descriptor with the 
least degrees of freedom. Finally, ps3DDPDs represent 
the overall differences between proteins in the set, which 
seems to be beneficial in agreement with the observa-
tion from Rackovsky and Scheraga that the description of 
the overall mobility of the protein correlates better with 
its structure than the description of individual residue 
mobility [38].

Subsequently, the biological relevance of the informa-
tion contained in the 3DDPDs was investigated. One-hot 
encoding rs3DDPDs are calculated independently for 
each target and ps3DDPDs together for the targets in a 
particular set. Respectively, they exploit differences in 
atom coordinates and partial charges across positions in 

a target or a number of targets, representing the most rel-
evant aspects of the protein dynamics, as defined by the 
RMSF fluctuations (Fig. 3, Additional file 2: Figs S1, S2, 
S3, S4). An advantage of rs3DDPDs is the possibility to be 
traced back to particular residues, alignment positions, 
or GPCR generic positions. This allowed us to investigate 
whether the 3DDPDs capture biologically relevant infor-
mation from the MD simulation. To this end, the most 
important rs3DDPD features in regression PCM mod-
els were extracted and mapped to their corresponding 
GPCR generic positions (Fig. 6). The most important fea-
ture in a temporal split corresponded to the BW position 
3.32 in TM3. As an example, in AA1R this translated to 
Val 87, which lies within the orthosteric binding pocket 
and makes hydrophobic interactions with the endoge-
nous ligand adenosine (PDB 7LD4 [39]). Other important 
rs3DDPD features were located in the ECL2 and ECL3, 
which as expected showed high flexibility in the MD sim-
ulations and are regions whose conformational changes 
are known to be relevant for ligand binding [40] and acti-
vation [41]. In the models built with a random split, the 
two most important rs3DDPD features corresponded to 
TM1 1.38 and TM6 6.46 BW positions, respectively. In 
AA1R, these translated to Ile 15 and Leu 245, which flank 
the binding site of non-endogenous co-crystalized antag-
onists (PDB 5UEN [42]). The other two important rs3D-
DPD features correspond to positions in ICL3, which are 
close to the G protein interface (PDB 7LD3 [39]). These 
results confirm that 3DDPDs capture relevant changes 
for GPCR ligand binding and activation and could help 
elucidate functional sites in orphan proteins. Similar 
approaches have previously leveraged MD information 
to identify relevant functional sites using deep learning 
models [18] or graph-based approaches [43].

Finally, the use of 3DDPDs beyond wild type proteins 
was showcased by applying them to GPCR mutant MD 
simulations computed for a selection of 28 variants 
from five targets in our set with varied in vitro effects on 
ligand binding (Additional file 2: Fig S6). The analysis of 
the MD trajectories showed major dynamic fluctuations 
compared to wild type across the protein sequence, and 
not necessarily in the vicinity of the amino acid change, 
contrary to expectation (Additional file  2: Fig S7). Such 
allosteric effects on the protein dynamics dependent on 
the 3D organization of the protein have been previously 
shown to be able to explain the pathogenic mechanism of 
disease-driving variants [44, 45], as well as cancer muta-
tional drivers [46], and are therefore relevant to encode. 
Since 3DDPDs could not be applied to predict mutant 
bioactivity due to the lack of available data for our set, 
the power of the dynamic descriptors to discriminate 
between variants was investigated by clustering them 
based on the distance between descriptor vectors. To 
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this end, rs3DDPDs were able to cluster all variants of the 
same target together, and smaller clusters were formed 
for mutants with similar dynamic behaviors compared to 
the wild type (Fig.  7a, Additional file  2: Fig S7). Never-
theless, the clusters created based on rs3DDPDs did not 
fully represent the clusters based on RMSF (Additional 
file  2: Fig S8), further supporting that 3DDPDs include 
non-dynamic information on top of dynamic informa-
tion. These results make us confident to propose the use 
of rs3DDPDs as mutant descriptors in machine learning 
tasks. Other works have highlighted the use of dynamic 
information to predict differences between mutants, 
such as by extracting normal modes [47], or time series 
of changing geometrical features [48]. However, as the 
changes in protein dynamics did not fully match the 
in vitro effects from the limited mutagenesis data avail-
able, the value in mutant bioactivity prediction needs to 
be further validated. Mutant clusters generated based on 
ps3DDPDs captured the most different dynamic changes 
between variants (Fig. 7b), but this did not result in the 
expected clustering. The biggest differences in RMSF 
between mutants were observed in the N- and C-ter-
minus, which are the most flexible regions of the GPCR 
together with the loops. While the termini have a func-
tion in the receptor, in the context of ps3DDPDs it seems 
to be blown out of proportion. An alternative would be to 
compute ps3DDPDs for particular regions of interest. For 
instance, we suggest analyzing functionally relevant resi-
dues derived from rs3DDPD feature importance, from 
observations in the RMSF analysis, or the literature (for 
example for cancer-related mutants [24]).

One of the main limitations of our current approach 
is the reliability of MD simulations as input data for the 
computation of 3DDPDs. Firstly, the issue of MD sto-
chastic stability is not addressed here [49], as differ-
ent replicates are not used to compute our 3DDPDs. 
This was acceptable for the GPCR case study given the 
low inter-replicate variability found for MD simulations 
in GPCRmd. In the future, an analysis of the impact of 
additional replicates in the data collection phase should 
be conducted. The introduction of replicas could be done 
twofold, either by directly using the average of the atomic 
coordinates as starting point, or by using a bigger stack of 
individual atomic coordinates in the first PCA. Secondly, 
MD simulations are computationally expensive to gener-
ate, which can be a bottleneck. Similar publicly available 
repositories to those existing for GPCRs (i.e. GPCRmd) 
would help increase the applicability domain of dynamic 
descriptors to other protein families in the future. Finally, 
by extracting features from the MD trajectory, there is a 
constant need to make informed decisions to leave out 
data and reduce the amount of information available. 
Recently, graph neural networks (GNNs) have been used 

to represent MD trajectories [50]. The network embed-
dings could be used as dynamic descriptors instead, 
letting the machine decide which features are more rel-
evant, although such approaches do not necessarily pro-
duce better results [51]. As a last note on applicability, in 
our current work the description of the dynamic behavior 
of a protein is tackled, but the conformational changes 
introduced by ligand binding are not taken into account. 
Running MD simulations for every complex in the data-
set would not be advisable, but the dynamic binding 
space could be represented for example by an additional 
term describing dynamic pharmacophores [52] or com-
puting cross-terms between dynamic protein and ligand 
descriptors [14].

Conclusion
In this work, 3D dynamic protein descriptors (3DDPDs) 
were developed that capture the dynamic fluctuations 
of GPCRs as observed in MD simulations. Our one-hot 
encoding (rs3DDPDs) and embedding-like (ps3DDPDs) 
descriptors matched the performance in PCM tasks of 
non-dynamic state-of-the-art protein descriptors, out-
performing them in regression tasks with a more chal-
lenging temporal split validation. Moreover, by mapping 
the most important rs3DDPD features in regression 
models to their GPCR generic positions it was shown 
that 3DDPDs represent biologically relevant information 
for ligand binding and activation. Finally, 3DDPDs were 
employed to discriminate mutant GPCRs based on their 
dynamic behavior with promising results that could be 
translated to the field of oncological drug discovery.

Methods
Wildtype GPCR MD trajectory selection and analysis
The MD simulations for the construction of 3D dynamic 
protein descriptors (3DDPDs) were obtained from 
GPCRmd [23] following the first official data deposit on 
November 14th 2019. Given the positive bias towards 
inactive conformations, apo simulations in inactive con-
formation were selected for class A GPCRs with available 
bioactivity data (see PCM bioactivity modelling). When 
more than one system was available PDB codes with true 
apo structure with the highest resolution were selected 
(Table 1). Most selected MD trajectories had been simu-
lated in triplicate for 500 ns over 2500 frames following 
the GPCRmd standardized pipeline. The exceptions were 
GPCRmd ID 87 with 1250 frames and ID 154 with 2000 
frames. For the generation of 3DDPDs, the first replicate 
was selected for each system.

Python library MDtraj [53] was used to compute the 
Root Mean Square Deviation (RMSD) and RMSF of 
MD trajectories to assess the stability of the simulations 
and account for differences in the dynamic behaviour 
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of the selected GPCRs in different protein segments. 
RMSD was calculated for the protein atoms in refer-
ence to the first frame in the production run. RMSF was 
calculated for the protein Cα backbone atoms over the 
total length of the simulation. To allow direct compari-
son between receptors, RMSF values were aligned based 
on their corresponding residue number to the class A 
GPCR MSA obtained from GPCRdb [31]. The location 
of TM domains in the RMSF plots was mapped based 
on the generic BW [30] residue numbers obtained from 
GPCRdb. BW numbers were also used throughout the 
manuscript to refer to equivalent locations in the GPCR 
structure.

3DDPD generation and optimization
Atomic coordinates were extracted from GPCRmd tra-
jectories with MDtraj. Each trajectory was divided into 
sub-trajectories of a defined number of frames, f, and 
the mean, median, and SD of the x, y, and z coordinates 
were calculated for each sub-trajectory. Additionally, 
atomic partial charges were generated for each atom 
in the system with RDkit Gasteiger charges calculator 
[54]. The next steps are tailored for the two flavors of 

3DDPDs generated: one-hot encoding residue-specific 
(rs) 3DDPDs, and whole sequence embedding-like pro-
tein-specific (ps) 3DDPDs (Fig. 1).

For rs3DDPDs, coordinate statistics and partial 
charges per atom were collected for each target and 
standardized between 0 and 1. Subsequently, dimen-
sionality reduction was applied in the form of PCA. 
A number of PCs for each atom were selected and 
grouped per residue as average and SD. A second 
dimensionality reduction step was applied to residue 
data and the selected PCs were placed in their match-
ing sections corresponding to an MSA of the targets of 
interest.

Protein-specific ps3DDPDs were generated similarly 
to rs3DDPDs with some differences. Firstly, coordinate 
statistics and partial charges per atom were collected for 
all targets together and standardized between 0 and 1. 
Secondly, atom PCA was not grouped per residue and no 
second PCA was applied. Instead, the PCs selected per 
atom were grouped per target as average, median, and 
SD, constituting the final descriptor.

The generation parameters for the descriptors were 
randomly initialized and sequentially optimized. The 
parameters optimized included (in the following order):

i) Trajectory data: the use of all statistical values 
derived from the x, y, and z coordinates was com-
pared to just the SD, representing the “rigidity” of 
each atomic coordinate.

ii) Frame split: number of frames included in each tra-
jectory split, for which 10, 50, 100 and 500 frames 
were tested. This parameter was optimized on rs3D-
DPDs and the results were applied to ps3DDPDs.

iii) Residue PCA (only for rs3DDPDs): number of PCs 
selected after residue data PCA, either 3, 5, 7, or 10.

iv) Atom PCA coverage: variance explained by the 
selected number of PCs on atom data, either 95% or 
99%.

v) Atom selection: inclusion of atomic data from all 
heavy atoms or just non-carbon atoms.

vi) Residue selection: strategies to focus the 3DDPDs on 
the protein binding site. These selections were based 
on structural-driven MSAs at different protein fam-
ily levels, starting from using the full sequence, then 
the binding pocket of class A GPCRs, then of specific 
GPCR families, then GPCR subfamilies, and finally, 
target-specific binding pocket. To ensure a consistent 
number of features per descriptor, in rs3DDPDs only 
the first two options were tested.

vii) Combination with classical protein descriptors: 
tested sequentially and, for the case of rs3DDPDs also 
embedded on the descriptor via the residue PCA.

Table 1 Wildtype GPCR MD trajectories selected from GPCRmd

GPCR PDB GPCRmd ID Resolution (Å)

5HT1B 4IAR 87 2.80

5HT2B 4IB4 92 2.70

AA1R 5UEN 165 3.20

AA2AR 5IU4 49 1.72

ACM1 5CXV 154 2.70

ACM2 3UON 111 3.00

ACM4 5DSG 157 2.60

ADRB2 2RH1 11 2.40

AGTR1 4ZUD 189 2.80

CCR5 4MBS 118 2.71

CNR1 5U09 163 2.60

CXCR4 3ODU 101 2.50

DRD3 3PBL 105 2.89

EDNRB 5GLH 158 2.80

FFAR1 4PHU 75 2.33

HRH1 3RZE 108 3.10

LPAR1 4Z35 184 2.90

OPRD 4N6H 73 1.80

OPRK 4DJH 59 2.90

OPRX 5DHH 155 3.00

OX1R 4ZJ8 186 2.75

OX2R 4S0V 91 2.50

P2RY1 4XNV 179 2.20

P2Y12 4PXZ 77 2.50

PAR1 3VW7 128 2.20
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The optimization of 3DDPDs was done by comparing 
their performance with different parameters on PCM 
Bioactivity regression modelling on a temporal split.

3DDPD and MD hierarchical clustering
Hierarchical clustering dendrograms were computed to 
visualize similarities and differences between 3DDPD 
descriptors and dynamic behavior (represented by 
MD’s RMSF) across targets. Python package Scipy [55] 
was used to compute hierarchical clusters based on the 
Euclidean distance between non-null bits of 3DDPD or 
RMSF vectors. The accompanying representation of the 
descriptor or RMSF includes null bits that are derived 
from their mapping to the GPCR class A MSA. Plotting 
was done in Python using the package Matplotlib [56].

PCM bioactivity modelling
The bioactivity dataset for PCM modelling was con-
structed starting from the highly curated Papyrus data-
set version 5.50 [29]. For the regression task, high-quality 
datapoints with continuous data (pChEMBL values) 
were extracted for all available GPCRs. Receptors with 
MD inactive/intermediate apo trajectories available 
on GPCRmd and over 100 bioactivity datapoints were 
selected for the PCM set, resulting in 26 GPCRs and a 
total number of 38,701 bioactivity datapoints (Additional 
file 1: Table S1).

PCM modelling was implemented in Python 3.8 [57] 
using the modelling capabilities of the Papyrus scripts 
Python package [29]. Random Forest models from 
Scikit-learn [58] were used in regression and classifica-
tion tasks as the state-of-the-art in bioactivity predic-
tion. A pChEMBL value of 6.5 was considered as a cutoff 
between active and inactive compounds for classifica-
tion tasks. Hyperparameters were set as default and not 
optimized during the training of the different models 
to reduce degrees of freedom in the comparison of the 
effect of different protein descriptors.

The compound descriptors used were Morgan finger-
prints of radius 3 (ECFP6) and length 1024 [54], pre-cal-
culated in the Papyrus dataset. The protein descriptors 
used to benchmark the performance of 3DDPDs were 
one-hot encodings and protein embeddings. The former 
included MS-WHIM, STscale, PhysChem, and two fla-
vors of Zscale (Hellberg and van Westen, with 5 and 3 
PCs per residue each) [10, 34]. One-hot encodings were 
calculated using the Python package ProDEC [59] based 
on the class A GPCR MSA obtained from GPCRdb for 
our protein set. As protein embeddings Unirep [60] were 
used, pre-calculated in the Papyrus dataset. 3DDPDs 
were benchmarked as protein descriptors on their own 
and in combination with non-dynamic protein descrip-
tors. The best-performing rs3DDPDs and ps3DDPDs in 

the optimization phase were used for combination. Addi-
tionally, QSAR models were trained on each of the targets 
in the set with the same options and analysis as the PCM 
models to benchmark the use of protein descriptors.

Two methods were used to split the PCM dataset into 
training and test sets. Firstly a random split was used, 
where 80% of the data was allocated to the training set 
and 20% of the data to the test set. Data for all targets was 
present in both the training and the test set. Secondly, a 
temporal split was used to provide the model with a more 
challenging validation task than the random split, where 
compound-target pairs first recorded before 2013 were 
allocated to the training set, and newer datapoints to the 
test set. The cutoff year was selected to make sure that 
all targets were represented in the test set. This resulted 
in a test set with 39% of the data, which was not equally 
distributed per target but showed considerably reduced 
chemical bias between training and test set compared 
to the random split. Chemical bias was computed as the 
asymmetric validation embedding (AVE) bias defined by 
Wallach & Heifets [61] using as active-inactive cutoff a 
pChEMBL value of 6.5.

All RF models were trained using fivefold cross-valida-
tion, and the performance of the models was evaluated on 
the test set. The evaluation metrics reported were MCC 
for classification and Pearson r and RMSE for regression 
tasks. Other metrics are available in the additional data. 
For comparison purposes, a single average performance 
metric was calculated for QSAR RF models trained and 
tested on each target of the set independently.

Ten model replicates were trained for each protein 
descriptor benchmarked with random seeds 1234, 2345, 
3456, 4567, 5678, 6879, 7890, 8901, 9012, and 9999. 
The seed was used for resampling, booth in the form of 
K-Fold shuffling in cross-validation and train/test split-
ting, the latter only in the case of a random split. Moreo-
ver, each model was initialized with a random seed as per 
default in Scikit-learn RF. The statistical significance of 
the differences in performance when using different pro-
tein descriptors was calculated by performing an inde-
pendent T-test of the average performance metrics in 
the pool of model replicates. Differences were considered 
significant when p-value < 0.05. Performance comparison 
plots were generated in Python using the packages Mat-
plotlib [56] and Seaborn [62].

Selection of GPCR (cancer‑related) somatic mutants
In order to test the usage of 3DDPDs in mutants, sev-
eral mutations for the GPCRs in the 3DDPD set were 
selected. To simulate a real application scenario, a mutant 
PCM dataset was created, gathering available mutagen-
esis data from GPCRdb for the GPCR 3DDPD set. 
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Mutations with datapoints available for more than ten 
different ligands were selected.

To extend the applicability domain, somatic mutations 
in cancer patients were extracted from the GDC database 
v22.0 [63] for the five GPCRs with selected mutagenesis 
data. Cancer-related mutations with mutagenesis data 
available on GPCRdb, regardless of the magnitude, were 
added to the mutation selection list in order to include 
a subsample of mutations present in cancer patients 
(Table 2).

Mutant MD simulations and 3DDPDs
Mutant MD simulations were performed according 
to the GPCRmd pipeline [23]. Equilibrated GPCRmd 
wild type systems were obtained from the first frame 
of the first simulation replicate available online for the 
GPCRmd IDs defined in Table 1. Using the HTMD pack-
age [64], the mutations of interest were introduced and 
the systems were re-equilibrated using AceMD MD 
engine [65] and default GPCRmd parameters. Consecu-
tively, the re-equilibrated trajectories were wrapped 
and 500ns production runs were simulated in triplicate 

with different random initialization seeds following the 
GPCRmd framework. Finally, the production trajectories 
were wrapped and rs3DDPDs and ps3DDPDs were gen-
erated from the first replicate.

3D visualization
Representations of proteins in 3D were generated using 
PyMOL 2.5.2 [66].

Hardware
Mutant MD simulations were computed both on a local 
Rocky Linux 8 server and the Leiden University High-
Performance Computing cluster ALICE. The local server 
contains Dual Xeon(R) E5-2650 v4 12 core CPU, 512 
G DDR4 memory, 7 Nvidia GTX 1080/8 Gb mem, and 
1 GeForce RTX 2080 Ti/11 Gb mem. MD simulations 
were computed on one GPU node each. PCM modelling 
and data analysis was done in the aforementioned local 
Rocky8 system.

Table 2 GPCR mutations selected

GPCR PDB GPCRmd ID Mutation GPCRdb ligands/
datapoints

GDC patients Motif

AA1R 5UEN 165 T277A7.41 13/36 0 –

R291C7.56 4/4 1 NpxxY (ext)

R296C8.51 4/4 1 –

AA2AR 5IU4 49 I66A2.64 20/22 0 –

L85A3.33 21/21 0 –

T88D3.36 14/16 0 –

S91A3.39 12/16 0 –

L167A45.51 20/20 0 –

M177A5.40 22/24 0 –

N181A5.43 20/20 0 –

W246A6.48 37/52 0 CWxP

N253A6.55 22/22 0 –

Y271A7.35 20/22 0 –

S277A7.41 29/33 0 –

H278N7.42 3/3 1 –

ACM2 3UON 111 D103E3.32 32/42 0 –

D103N3.32 12/15 0 –

V421L7.33 1/1 1 –

ADRB2 2RH1 11 D79N2.50 12/12 0 –

D130N3.49 11/11 0 DRY

S203A5.43 12/12 0 –

S204A5.44 13/13 0 –

N293L6.55 12/12 0 –

V317A7.43 5/5 1 –

CCR5 4MBS 118 Y108A3.32 12/20 0 –
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