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Every portrait that is painted with feeling is a portrait of the artist, not of the
sitter.

Oscar Wilde, Irish Aestheticist and poet, The Picture of Dorian Gray
(1891)
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A probabilistic approach to

direction-dependent calibration
J. G. Albert,M. S. S. L. Oei, R. J. vanWeeren, H. T. Intema, H. J. A. Röttgering—Astronomy&As-
trophysics, 633, 77, 2020

Abstract
Calibrating for direction-dependent ionospheric distortions in visibility data is one of
themain technical challenges that must be overcome to advance low-frequency radio
astronomy. In this paper, we propose a novel probabilistic, tomographic approach
that utilises Gaussian processes to calibrate direction-dependent ionospheric phase
distortions in low-frequency interferometric data. We suggest that the ionospheric
free electron density can be modelled to good approximation by a Gaussian process
restricted to a thick single layer, and show that under this assumption the differen-
tial total electron contentmust also be a Gaussian process. We perform a comparison
with a number of other widely successful Gaussian processes on simulated differen-
tial total electron contents over a wide range of experimental conditions, and find
that, in all experimental conditions, our model is better able to represent observed
data and generalise to unseen data. The mean equivalent source shift imposed by
our predictive errors are half as large as those of the best competitor model. We find
that it is possible to partially constrain the hyperparameters of the ionosphere from
sparse-and-noisy observed data. Our model provides an alternative explanation for
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observed phase structure functions deviating from Kolmogorov’s five-thirds turbu-
lence, turnover at high baselines, and diffractive scale anisotropy. We show that our
model performs tomography of the free electron density both implicitly and cheaply.
Moreover, we find that even a fast, low-resolution approximation of ourmodel yields
better results than the best alternative Gaussian process, implying that the geometric
coupling between directions and antennae is a powerful prior that should not be ig-
nored.

Key words: techniques: interferometric –methods: analytical –methods: statistical

2.1 Introduction

Since the dawn of low-frequency radio astronomy, the ionosphere has been a con-
founding factor in the interpretation of radio data. This is because the ionosphere has
a spatially and temporally varying refractive index,whichperturbs the radio-frequency
radiation that passes through it. This effect becomes more severe at lower frequen-
cies; see (e.g. deGasperin et al., 2018). The functional relationbetween the skybright-
ness distribution—the image—and interferometric observables— the visibilities—
is given by the radio interferometry measurement equation (RIME; Hamaker et al.,
1996), which models the propagation of radiation along geodesics from source to
observer as an ordered set of linear transformations (Jones, 1941).

A mild ionosphere will act as a weak-scattering layer resulting in a perturbed in-
ferred sky brightness distribution, analogous to the phenomenon of seeing in optical
astronomy (Wolf, 1969). Furthermore, the perturbation of a geodesic coming from a
bright source will deteriorate the image quality far more than geodesics coming from
faint sources. Therefore, the image-domain effects of the ionosphere can be depen-
dent on the distribution of bright sources on the celestial sphere, that is they can be
heteroscedastic. This severely impacts experiments which require sensitivity to faint
structures in radio images. Such studies include the search for the epoch of reionisa-
tion (e.g. Patil et al., 2017), probes of the morphology of extended galaxy clusters
(e.g. van Weeren et al., 2019), efforts to detect the synchrotron Cosmic Web (e.g.
Vernstrom et al., 2017), and analyses of weak gravitational lensing in the radio do-
main (e.g. Harrison et al., 2016). Importantly, these studies were among the moti-
vations for building the next generation of low-frequency radio telescopes like the
Low-Frequency Array (LOFAR), Murchison Widefield Array (MWA), and the fu-
ture Square Kilometre Array (SKA). Therefore, it is of great relevance to properly
calibrate the ionosphere.

Efforts to calibrate interferometric visibilities have evolvedover the years fromsingle-
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direction, narrow-band, narrow-field-of-view techniques (Cohen, 1973), tomore ad-
vanced multi-directional, wide-band, wide-field methods (e.g. Kazemi et al., 2011;
van Weeren et al., 2016; Tasse et al., 2018). The principle underlying these calibra-
tion schemes is that if you start with a rough initial model of the true sky bright-
ness distribution, then you can calibrate against this model and generate an improved
sky brightness model. One can then repeat this process for iterative improvement.
Among the direction-dependent calibration techniques themost relevant for this pa-
per is facet-based calibration, which applies the single-directionmethod to piece-wise
independent patches of sky called facets. This scheme is possible if there are enough
compact bright sources — calibrators — and if sufficient computational resources
are available. Ultimately, there are a finite number of calibrators in a field of view and
additional techniquesmust be considered to calibrate all the geodesics involved in the
RIME. We note that there are other schemes for ionosphere calibration that do not
apply the facet-based approach, such as image domain warping (Hurley-Walker et al.,
2017).

There are two different approaches for calibrating all geodesics involved in the
RIME. The first approach is to model the interferometric visibilities from first prin-
ciples and then solve the joint calibration-and-imaging inversion problem. This per-
spective is the most fundamental; however, applications (e.g. Bouman et al., 2016)
of this type are very rare and often restricted to small data volumes due to explod-
ing computational complexity. However, we argue that investing research capital —
in small teams to minimise risk — could be fruitful and disrupt the status quo (Wu
et al., 2019). The second approach is to treat the piece-wise independent calibration
solutions as data and predict calibration solutions for missing geodesics (e.g. Intema
et al., 2009a; vanWeeren et al., 2016; Tasse et al., 2018). In this paper, we consider an
inference problem of the second kind.

In order to perform inference for the calibration along missing geodesics, a prior
must be placed on the model. One often-used prior is that the Jones operators are
constant over some solution interval. For example, in facet-based calibration the im-
plicit prior is that two geodesics passing through the same facet and originating from
the same antenna have the same calibration — which can be thought of a nearest-
neighbour interpolation. One often-neglected prior is the 3D correlation structure
of the refractive index of the ionosphere. An intuitivemotivation for considering this
type of prior is as follows: The ionosphere has some intrinsic 3D correlation struc-
ture, and since cosmic radio emission propagates as spatially coherent waves. It fol-
lows that the correlation structure of the ionosphere should be present in ground-
based measurements of the electric field correlation — the visibilities. The scope of
this paper is therefore to build the mathematical prior corresponding to the above
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intuition.
We arrange this paper by first reviewing some properties of the ionosphere and

its relation to interferometric visibilities via differential total electron content in Sec-
tion 2.2. In Section 2.3, we then introduce a flexible model for the free electron den-
sity based on a Gaussian process restricted to a layer. We derive the general relation
between the probability measure for free electron density and differential total elec-
tron content, and use this to form a strong prior for differential total electron content
along missing geodesics. In Section 2.4 we describe a numerical experiment wherein
we test our model against other widely successful Gaussian-process models readily
available in the literature. In Section2.5we show that ourprior outperforms theother
widely successful priors in all noise regimes and levels of data sparsity. Furthermore,
we show that we are able to hierarchically learn the prior from data. In Section 2.6 we
provide a justification for the assumptions of the model, and show the equivalence
with tomographic inference.

2.2 Ionospheric effects on interferometric visibilities

The telluric ionosphere is formedby the geomagnetic field and a turbulent low-density
plasma of various ion species, with bulk flows driven by extreme ultraviolet solar ra-
diation (Kivelson & Russell, 1995). Spatial irregularities in the free electron density
(FED) ne and magnetic field B of the ionosphere give rise to a variable refractive in-
dex n, described by the Appleton–Hartree equation (Cargill, 2007) — here given in
a Taylor series expansion to orderO(ν−5):

n(x) ≈1−
ν2p(x)
2ν2

±
νH(x)ν2p(x)

2ν3
−

ν4p(x)− 4ν2H(x)ν2p(x)
8ν4

. (2.1)

Here νp(x) =
(

ne(x)q2
4π2ε0m

)1/2
is the plasma frequency, νH(x) =

B(x)q
2πm is the gyro fre-

quency, ν is the frequency of radiation, q is the elementary charge, ε0 is the vacuum
permittivity, andm is the effective electronmass. This formof theAppleton–Hartree
equation assumes that the ionospheric plasma is cold and collisionless, that the mag-
netic field is parallel to the radiation wavevector, and that ν � max{νp, νH}. The
plus symbol corresponds to the left-handed circularly polarisedmode of propagation,
and the minus symbol corresponds to the right-handed equivalent. Going forward,
we will only consider up to second-order effects, and therefore neglect all effects of
polarisation in forthcoming analyses.

In the regime where refractive index variation over one wavelength is small, we
can ignore diffraction and interference, or equivalently think about wave propaga-
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tion as ray propagation (e.g. Koopmans, 2010). This approximation is known as
the Jeffreys–Wentzel–Kramers–Brillouin approximation (Jeffreys, 1925), which is
equivalent to treating this as a scattering problem, and assuming that the scattered
wave amplitude ismuch smaller than the incidentwave amplitude—theweak scatter-
ing limit (e.g. Yeh, 1962;Wolf, 1969). Light passing through a varying refractive index
n will accumulate a wavefront phase proportional to the path length of the geodesic
traversed. LetRk̂

x be a functional of n, so that the geodesicRk̂
x[n] : [0,∞) → R3

maps from someparameter s to points along it. The geodesic connects an Earth-based
spatial location x to a direction on the celestial sphere, indicated by unit vector k̂. The
accumulated wavefront phase along the path is then given by

φk̂
x =

2πν
c

ˆ ∞

0
n
(
Rk̂

x[n](s)
)
− 1 ds, (2.2)

where c is the speed of light in vacuo. Hamilton’s principle of least-action states that
geodesics are defined by paths that extremise the total variation of Eq. 2.2.

By substitutingEq. 2.1 intoEq. 2.2, andby considering termsup to secondorder in
ν−1 only, we find that the phase deviation induced by the ionosphere is proportional
to the integral of the FED along the geodesic, φk̂

x ≈
−q2

4πε0mcντ
k̂
x , where,

τk̂x ≜
ˆ ∞

0
ne
(
Rk̂

x[n](s)
)
ds. (2.3)

Equation 2.3 defines the total electron content (TEC).
In radio interferometry, the RIME states that the visibilities, being a measure of

coherence, are insensitive to unitary transformations of the electric field associated
with an electromagnetic wave. Thus, the phase deviation associated with a geodesic
is a relative quantity, usually referenced to the phase deviation from another fixed
parallel geodesic— the origin ofwhich is called the reference antenna. Going forward
we use Latin subscripts to specify geodesics with origins at an antenna location; for
exampleRk̂

i [n] is used as shorthand forRk̂
xi [n]. Correspondingly, we introduce the

notion of differential total electron content (ΔTEC),

τk̂ij ≜ τk̂i − τk̂j , (2.4)

which is the TEC ofRk̂
i [n] relative toRk̂

j [n].
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2.3 ProbabilisticrelationbetweenFEDandΔTEC: Gaussianprocess
layer model

In this section we derive the probability distribution of ΔTEC given a specific prob-
ability distribution for FED. It helps to first introduce the concept of the ray integral
(RI) and the corresponding differenced ray integral (DRI). The RI is defined by the
linear operator Gk̂

i : V → Rmapping from the space of all scalar-valued functions
overR3 to a scalar value according to,

Gk̂
i f ≜

ˆ ∞

0
f
(
Rk̂

i [n](s)
)
ds, (2.5)

where f ∈ V =
{
g |
´
R3 g2(x)dx < ∞

}
. Thus, an RI simply integrates a scalar field

along a geodesic. TheDRIΔk̂
ij : V → R for a scalar field f is straightforwardly defined

by

Δk̂
ijf ≜

(
Gk̂

i − Gk̂
j

)
f. (2.6)

Both theRI andDRI are linear operators in the usual sense. Using Eqs. 2.3 up to 2.6,
we see that

τk̂ij = Δk̂
ijne. (2.7)

Let us now specify that the FED is a Gaussian process (GP) restricted to (and in-
dexedby) the set of spatial locationsX = {x ∈ R3 | (x−x0)·ẑ ∈ [a− b/2, a+ b/2]}.
This defines a layer of thickness b at height a above some reference point x0 (see
Fig. 2.1). Within this layer the FED is realised from,

ne ∼ N [μ,K], (2.8)

where μ : X → R>0 is the mean function, and K : X × X → R is the covariance
kernel function. In otherwords, the ionospheric FED is regarded to be a uncountable
infinite set of random variables (RVs) indexed by spatial locations inX , such that for
anyfinite subset of such locations the correspondingFEDshave amultivariate normal
distribution.

In order to extend the scalar field ne to all ofR3, so that wemay apply the operator
in Eq. 2.6 to FED, we impose that for all x ∈ R3 \X : ne(x) = 0. This simplymeans
that we take electron density to be zero outside the layer, and makesGk̂

i well-defined.
To further simplify the model, we assume that the mean FED in the layer is constant;
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ẑ

ŷ
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ŷ

x̂

φ2

xj

k̂1 k̂2

x0

Figure 2.1: Geometry of the toy model. The ionosphere is a layer of thickness b at height a above a
reference location x0. In general, ΔTEC is the TEC along one geodesic minus the TEC along another
parallel geodesic. Usually, these geodesics are originating at antennae i and j (locations xi and xj), and
pointing in directions k̂1 and k̂2, respectively. One common choice is to have a fixed reference antenna
for all ΔTECmeasurements. The corresponding zenith angles are φ1 and φ2.

that is, for all x ∈ X : μ(x) = n̄e.
One immediate question that arises pertains to the reasoning behind using a GP

to model the FED in the ionosphere. Currently, there is no adequate probabilistic
description of the ionosphere that is valid for all times and at the spatial scales that
we require. The state-of-the-art characterisation of the ionosphere at the latitude and
scales we are concerned with are measurements of the phase structure function, a
second-order statistic (Mevius et al., 2016). It is well known that second-order statis-
tics alone do not determine a distribution. In general, all moments are required to
characterise a distribution, with a determinancy criterion known as Carleman’s con-
dition. Furthermore, the ionosphere is highly dynamic and displays a multitude of
behaviours. Jordan et al. (2017) observed four distinct behaviours of the ionosphere
above the MWA. It is likely that there are innumerable states of the ionosphere.

Due to the above issue, it is not our intent to precisely model the ionosphere. We
rather seek to describe it with a flexible and powerful probabilistic framework. Gaus-
sian processes have several attractive properties, such as the fact that they are highly
expressive, easy to interpret, and (in some cases) allow closed-form analytic integra-
tion over hypotheses (Rasmussen &Williams, 2006).
However, a Gaussian distribution assigns a non-zero probability density to nega-

tive values, which is unphysical. One might instead consider the FED to be a log-GP,
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ne (x) = n̄e exp ρ (x), where the dimensionless quantity ρ (x) is a Gaussian process.
In the limit ρ (x) → 0, we recover that ne is itself a GP. This is equivalent to say-
ing that the σne/n̄e � 1. As explained in Section 2.4, we determine estimates of σne
and n̄e by fitting ourmodels to actual observed calibrator data, the International Ref-
erence Ionosphere (IRI), and observations taken from Kivelson & Russell (1995).
This places the ratio at σne/n̄e ≲ 0.06, suggesting that if the FED can be accurately
described with a log-GP, then to good approximation it can also be described with a
GP.

We now impose that the geodesics are straight rays, a simplification valid in the
weak-scattering limit considered here. The geodesics therefore becomeRk̂

x[n](s) =

x+sk̂. Inpractice, strong scatteringdue to small-scale refractive index variations in the
ionosphere is negligible at frequencies far above the plasma frequencywhen the iono-
sphere is well-behaved, which is about 90% of the time (Vedantham & Koopmans,
2015). For frequencies ≲ 50 MHz however, this simplification becomes problem-
atic. Under the straight-ray assumption, Equation 2.7 becomes

τk̂ij =
ˆ sk̂+i

sk̂−i
ne(xi + sk̂) ds−

ˆ sk̂+j

sk̂−j
ne(xj + s′k̂) ds′. (2.9)

Here, the integration limits come from the extension of the FED to spatial locations
outside the index-setX , and are given by

sk̂±i =

(
a± b

2
− (xi − x0) · ẑ

)
sec φ, (2.10)

where sec φ = (k̂ · ẑ)−1 denotes the secant of the zenith angle. It is convenient to
colocate the reference point x0 with one of the antenna locations, and then to also
specify this antenna as the reference antenna, i.e. the origin of all reference geodesics.
When this choice is made, ΔTEC becomes τk̂i0.
Equation 2.7 shows directly that if ne is a GP, then so is ΔTEC. This can be un-

derstood by viewing the RI as the limit of a Riemann sum. We reiterate that every
univariate marginal of a multivariate Gaussian is also Gaussian, and that every finite
linear combination of Gaussian RVs is again Gaussian. Taking the Riemann sum to
the infinitesimal limit preserves this property. Since the DRI is a linear combination
of two RIs, the result follows (e.g. Jidling et al., 2018).
The index-set for the ΔTEC GP is the product space of all possible antenna lo-

cations and vectors on the unit 2-sphere, S =
{
(x, k̂) | x ∈ R3, k̂ ∈ S2

}
. This is

analogous to saying that the coordinates of the ΔTEC GP are a tuple of antenna lo-
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cation and calibration direction. Thus, given any y = (x, k̂) ∈ S, the ΔTEC is
denoted by τk̂x0. Because ΔTEC is a GP, its distribution is completely specified by its
first two moments.

Since we assume a flat layer geometry, the intersections of two parallel rays with the
ionosphere layer have equal lengths of b sec φ. This results in the mean TEC of two
parallel rays being equal, and thus the first moment of ΔTEC is,

mΔTEC(y) =0, (2.11)

where y = (xi, k̂) ∈ S . It is important to note that this is not a trivial result. Indeed,
a more realistic but slightly more complicated ionosphere layer model would assume
the layer follows the curvature of the Earth. In this case, the intersections of two
parallel rays with the ionosphere layer have unequal lengths, and the first moment of
ΔTEC would depend on the layer geometry and n̄e.
Wenowderive the second centralmoment between twoΔTECalong twodifferent

geodesics, as visualised in Fig. 2.1.

KΔTEC(y, y′) =E
[
τk̂i0τk̂

′

j0

]
(2.12)

=E
[
(Gk̂

i ne − Gk̂
0ne)(Gk̂′

j ne − Gk̂′
0 ne)

]
(2.13)

=Ik̂k̂′ij + Ik̂k̂′00 − Ik̂k̂′i0 − Ik̂k̂′0j , (2.14)

where y = (xi, k̂) ∈ S and y′ = (xj, k̂
′
) ∈ S and,

Ik̂k̂′ij =

ˆ sk̂+i

sk̂−i

ˆ sk̂
′+

j

sk̂
′−

j

K
(
xi + sk̂, xj + s′k̂

′)
dsds′. (2.15)

We now see that the GP for ΔTEC is zero-mean with a kernel that depends on the
kernel of the FED and layer geometry. The layer geometry of the ionosphere enters
through the integration limits of Eq. 2.15. Most notably, the physical kernel is non-
stationary even if the FED kernel is. Non-stationarity means that the ΔTEC model
is not statistically homogeneous, a fact that is well known since antennae near the
reference antenna typically have small ionospheric phase corrections. We henceforth
refer to Eq. 2.14 as the physical kernel, or our kernel.

Relatedwork. Modelling the ionosphere with a layer has been used in the past.
Yeh (1962) performed analysis of transverse spatial covariances of wavefronts (e.g.
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Wilcox, 1962; Keller et al., 1964) passing through the ionosphere. Their layer model
was motivated by the observation of scintillation of radio waves from satellites (Yeh
& Swenson, 1959). One of their results is a simplified variance function, which can
be related to the phase structure functions in Section 2.6.4. In van der Tol (2009), a
theoretical treatment of ionospheric calibration using a layered ionosphere with Kol-
mogorov turbulence is done. More recently, Arora et al. (2016) attempted to model
a variable-height ionosphere layer above the MWA using GPS measurements for the
purpose of modelling a TEC gradient; however unfortunately they concluded that
the GPS station array of the MWA is not dense enough to constrain their model.

2.4 Method

In order to investigate the efficacy of the physical kernel for the purpose of modelling
ΔTEC we devise a simulation-based experiment. Firstly, we define several obser-
vational setups covering a range of calibration pierce-point sparsity and calibration
signal-to-noise ratios. A high signal-to-noise-ratio calibration corresponds to better
determination of ΔTEC from gains in a real calibration program. Secondly, we char-
acterise two ionosphere varieties as introduced in Section 2.3. Each ionosphere vari-
ety is defined by its layer height and thickness, and GP parameters. For each pair of
observational setup and ionosphere variety we realise FED along each geodesic and
numerically evaluate Eq. 2.7 thereby producing ΔTEC. We then add an amount of
white noise to ΔTEC which mimics the uncertainty in a real calibration program
with a given calibration signal-to-noise ratio. Finally, we compare the performance
of our kernel against several other common kernels used in machine learning on the
problem of Gaussian process regression, known as Kriging. In order to do this, we
generate ΔTEC for extra geodesics and place them in a held-out dataset. This held-
out dataset is used for validation of the predictive performance to new geodesics given
the observed ΔTEC. We refer to the other kernels, which we compare our kernel to,
as the competitor kernels, and themodels that they induce, as the competitormodels.

2.4.1 Data generation

For all simulations, we have chosen the core and remote station configuration of LO-
FAR (vanHaarlem et al., 2013), which is a state-of-the-art low-frequency radio array
centred in the Netherlands and spread across Europe. The core and remote stations
of LOFAR are located within the Netherlands with maximal baselines of 70 km, and
we term this array the Dutch LOFAR configuration. We thinned out the array such
that no antenna is within 150 m of another. We made this cutoff to reduce the data
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Table 2.1: Summary of the parameters of the simulated ionospheres.

Variety a (km) b (km) KFED σne (m−3) HPD (km)
dawn 250 100 M32 6 · 109 15
dusk 350 200 EQ 3 · 109 15

size because nearby antennae add little new information and inevitably raise compu-
tational cost. For example, antennae like CS001HBA0 andCS001HBA1 are so close
that their joint inclusion was considered redundant.

We consider several different experimental conditions, with a particular choice de-
noted by η, under whichwe compare ourmodel to competitors. We consider five lev-
els of pierce-point sparsity: {10, 20, 30, 40, 50}directionsperfieldof view (12.6deg2).
For a given choice of pierce-point sparsity we place twice as many directions along a
Fibonacci spiral — scaled to be contained within the field of view — and randomly
select half of the points to be in the observed dataset and the other half to be in the
held-out dataset. The Fibonacci spiral is slightly overdense in the centre of the field
of view, which mimics selecting bright calibrators from a primary-beam uncorrected
radio source model. We consider a range of calibration signal-to-noise ratios, which
correspond toGaussian uncertainties of ΔTEC thatwould be inferred fromantenna-
based gains in a real calibration program. We therefore consider 11 uncertainty lev-
els on a logarithmic scale from 0.1 to 10 mTECU. A typical state-of-the-art Dutch
LOFAR-HBA (high-band antennae) direction-dependent calibration is able to pro-
duce on the order of 30 calibration directions (Shimwell et al., 2019), based on the
number of bright sources in the field of view, and produce ΔTEC with an uncer-
tainty of approximately 1mTECU; these levels of sparsity and noise probe above and
below nominal LOFAR-HBA observing conditions.

We define an ionosphere variety as an ionosphere layer model with a particular
choice of height a, thickness b, mean electron density n̄e, and FED kernelKFED with
associated hyperparameters, namely length-scale and variance. As mentioned in Sec-
tion 2.3, due to the innumerable states of the ionosphere our intent is not to exactly
simulate the ionosphere, but rather to derive a flexible model. Therefore, to illus-
trate the flexibility of our model, we have chosen to experiment with two very differ-
ent ionosphere varieties which we designate the dawn and dusk ionosphere varieties.
These ionosphere varieties are summarised inTable 2.1. In Section 2.6.4we show that
these ionosphere varieties predict phase structure functions which are indistinguish-
able from real observations. In order to select the layer height and thickness param-
eters for the dawn and dusk varieties we took height profiles from the International
Reference Ionosphere (IRI; Bilitza & Reinisch, 2008) model.
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In order to choose the FED GP kernels and hyperparameters we note that it has
been suggested that scintillation is more pronounced during mornings, due to in-
creased FED variation (e.g. Spoelstra, 1983); therefore we chose a rough FED kernel
for our dawn simulation. Roughness corresponds to how much spectral power is
placed on the shorter length-scales, and also relates to how differentiable realisations
from the process are; e.g. see Fig. 2.3. For the dawn ionospherewe choose theMatérn-
3/2 (M32) kernel,

KM32(x, x′) = σ2ne

(
1+

√
3

lM32
|x− x′|

)
exp
[
−
√
3

lM32
|x− x′|

]
, (2.16)

which produces realisations that are only once differentiable and therefore rough. For
the dusk ionosphere we choose the exponentiated quadratic (EQ) kernel,

KEQ(x, x′) = σ2ne exp

[
−|x− x′|2

2l2EQ

]
, (2.17)

which produces realisations that are infinitely differentiable and smooth.
Both kernels have two hyperparameters, variance σ2ne and length-scale l. In order to

estimate the FEDvariation, σne , we used observations fromKivelson&Russell (1995)
that TEC measurements are typically on the order of 10 TECU, with variations of
about 0.1 TECU. Following the observation that the dawn typically exhibits more
scintillation we choose a twice higher σne for our dawn simulation. In addition to
the length-scale we consider the half-peak distance (HPD) h, which corresponds to
the distance at which the kernel reaches half of its maximum. This parameter has a
consistentmeaning across allmonotonically decreasing isotropic kernels, whereas the
meaning of l depends on the kernel. It is related to h by h ≈ 1.177 lEQ for the EQ and
h ≈ 0.969 lM32 for theM32 kernel. The length-scales were chosen by simulating a set
of ionosphereswith different length-scales and choosing the length-scale that resulted
in ΔTEC screens that are visually similar to typical Dutch LOFAR-HBA calibration
data. For a given ionosphere variety, we numerically integrate the FED realised from
the corresponding GP along the rays in order to compute TEC. FromTECwe com-
pute DTEC by taking the difference with the reference antenna TEC. We note that
this requires a much higher relative precision in the absolute TEC calculations, since
TEC is typically two orders of magnitude large than DTEC. Due to computational
limits, we only realise one simulation per experimental condition — that is, we do
not average over multiple realisations per experimental condition — however given
the large number of experimental conditions there is enough variation to robustly
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Figure 2.2: Example of antenna-based ΔTEC screens from the dusk ionosphere simulation. Each plot shows the simulated ground truth (noise-free)
ΔTEC for each geodesic originating from that station with axes given in direction components kx and ky. The inset label gives how far the antenna is from
the reference antenna. Antennae further from the reference antenna tend to have a larger magnitude ΔTEC as expected. Each plot box bounds a circular
12.6 deg2 field of view.



Figure 2.3: Example realisations from exponentiated quadratic, Matérn-5/2, Matérn-3/2, and
Matérn-1/2 kernels. The same HPD was used in all kernels, however the smoothness of the result-
ing process realisation is different for each.

perform a comparative analysis.

2.4.2 Competitor models

For the comparison with competitor models, we compare the physical kernel with:
exponentiated quadratic (EQ), Matérn-5/2 (M52), Matérn-3/2 (M32), andMatérn-
1/2 (M12) (Rasmussen & Williams, 2006). The EQ and M32 kernels have already
been introduced as FEDkernels. TheM52 andM12 are very similar except for having
different roughness properties. Each of these kernels results in a model that spatially
smooths — and therefore interpolates — the observed data, but involves a different
assumption on the underlying roughness of the function. In order to use these ker-
nels tomodel ΔTEC, we give each subspace ofS its own kernel and take the product.
For example, if KC is the competitor kernel type, and (x, k̂), (x′, k̂

′
) ∈ S , then we

form the kernel KC((x, k̂), (x′, k̂
′
)) = K1

C(x, x′)K2
C(k̂, k̂

′
) thereby giving each sub-

space of the index set, S , its own kernel with associated hyperparameters.
Figure 2.4 shows each kernel profile with the sameHPD and Fig. 2.3 shows exam-

ple realisations from the same kernels. It can be visually verified that the M32 kernel
has more small-scale variation than the EQ kernel, while maintaining similar large-
scale correlation features.

We note that evaluation of the physical kernel requires that a double integral be
performed, which can be done in several ways (e.g. Hendriks et al., 2018). In our
experiments we tried both explicit adaptive step-size Runge–Kutta quadrature, and
two-dimensional trapezoid quadrature. We found via experimentation that we could
simply use the trapezoid quadrature with each abscissa partitioned into four equal
intervals without loss of effectiveness. However, we chose to use seven partitions. We
discuss this choice in Section 2.6.5.
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Figure 2.4: Shape of several kernels as a function of separation in units of the HPD of the kernel.

2.4.3 Model comparison

For model comparison, we investigate two key aspects of each model: the ability to
accurately model observed ΔTEC, and the ability to accurately infer the held-out
ΔTEC. In the language of the machine learning community these are often referred
to as minimising the data loss and the generalisation error, respectively. We also in-
vestigate the ability to learn the hyperparameters of the physical kernel from sparse
data. Finding that the physical model accurately models both observed and held-out
ΔTEC, while also being able to learn the hyperparameters, would be a positive out-
come.

Tomeasurehowwell amodel represents theobserveddata, given aparticular choice
of kernel K and hyperparameters, we compute the log-probability of the observed
(LPO) ΔTEC data — Bayesian evidence — which gives a measure of how well a
GP fits the data with intrinsically penalised model complexity. If we have data mea-
sured at X ∈ S according to τobs = τ(X) + ε where ε ∼ N [0, σ2] and τ(X) ∼
N [0,K(X,X)], then the LPO is

logPK (τobs) = logN [0,B], (2.18)
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where B = K(X,X) + σ2I. Tomeasure howwell a model generalises to unseen data,
given a particular choice of kernel K, we compute the conditional log-probability of
held-out (LPH) data given the observed data. That is, if we have a held-out dataset
measured at X∗ ∈ S according to τ∗obs = τ(X∗) + ε∗ with ε∗ ∼ N [0, σ2], then the
LPH conditional on observed τobs is

logPK (τ∗obs | τobs) = logN [K(X∗,X)B−1τobs,
B∗ − K(X∗,X)B−1K(X,X∗)] (2.19)

where B∗ = K(X∗,X∗) + σ2I.
In order to make any claims of model superiority, we will define the following two

figures of merit (FOMs),

ΔLPOC(η) ≜
PΔTEC (τobs | η)
PC (τobs | η)

, (2.20)

ΔLPHC(η) ≜
PΔTEC (τ∗obs | τobs, η)
PC (τ∗obs | τobs, η)

, (2.21)

where PΔTEC is the probability distribution using the physical kernel and PC is the
distribution using a competitor kernel. The variable η represents a particular choice
of experimental conditions, for example pierce point sparsity and noise.

These FOMs specify howmuchmore or less probable the physical kernel model is
than a competitor for the given choice of experimental conditions, and are therefore
useful interpretable numbers capable of discriminating between twomodels. For ex-
ample, a ΔLPOC(η) value of 1 implies that for the given experimental conditions, η,
both models have an equal probability of representing the observed data, and a value
of 1.5 would imply that the physical kernel representation is 50%more probable than
the competitor kernel. We note that considering the ratio of marginal probabilities is
the canonical way of model selection (Rasmussen & Williams, 2006). For a rule-of-
thumb using these FOMs, we empirically visually find that models produce notice-
ably better predictions starting at around 1.10 (10%).

For each choice of experimental conditions, η, and kernel model, we first infer the
maximum a posteriori estimate of the hyperparameters of the kernel by maximising
themarginal log-likelihood of the correspondingGP (Rasmussen&Williams, 2006),
which is equivalent to maximising the LPO of that model on the available observed
dataset. We maximise the marginal log-likelihood using the variable metric BFGS
method, which uses a low-rank approximation to the Hessian to perform gradient-
based convex optimisation (Byrd et al., 1995). We use the GPFlow library (Matthews
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Table 2.2: Average and standard deviation, over all experimental conditions, of the difference between
the learned physical hyperparameters and the true hyperparameters.

Variety a b HPD b · σne
(km) (km) (km) (1011 km ·m−3)

dawn 10± 10 48± 18 4± 3 1.9± 1.2
dusk 16± 9 82± 20 1± 0.5 2.2± 0.3

et al., 2017), which simplifies the algorithmic process considerably. On top of this we
perform optimisation from multiple random initialisations to avoid potential local
minima. For the physical kernel this corresponds to learning the layer height a and
thickness b, and FED kernel length-scale l, and variance σ2ne , and for the competitor
kernels this corresponds to learning a variance and the length-scales for each subspace.

2.5 Results

In Table 2.2 we report the average and standard deviation, over all experimental con-
ditions, of the difference between the learned physical hyperparameters and the true
hyperparameters, which we term the discrepancy. The optimisation converged in all
cases. We observe that for both ionosphere varieties the discrepancy of a is on the
order of a∼ 10 km, or a few percent, implying that a can be learned from data. The
discrepancy of HPD, is on the order of 1 km, or around 10%, implying the spectral
shape information of the FED can be constrained from data. We observe that the
discrepancy of layer thickness, b, is large and on the order of 50%. One reason for
this is because Eq. 2.15 will scale to first order with b—which is degenerate with the
function of σne — and the only way to break the degeneracy is to have enough vari-
ation in the secant of the zenith angle. In a sparse and noisy observation of ΔTEC,
the secant variation is poor and it is expected that this degeneracy exists. Therefore
we also show the product b · σne , and we see that this compound value discrepancy is
smaller by approximately 35%.

In Table 2.3 we summarise the performance of the physical kernel against each
competitor kernel. We display the mean of ΔLPOC(η), and ΔLPHC(η) over all ex-
perimental conditions, as well as their values at the nominal experimental conditions
of 30 directions per 12.6 deg2, and ΔTEC noise of 1 mTECU, which is indicated
with ηnom. We use bold font in Table 2.3 to indicate the best competitor model.

We first consider the ability of each model to represent the observed data. For the
dawn ionosphere, the M52 competitor kernel has the best (lowest) 〈ΔLPOC〉η =

1.55 and ΔLPOηnom
C = 1.46, implying that theM52 kernel model is 55% and 46% less
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Table 2.3: Shows the probability ratio FOMs (see text) averaged over experimental conditions and
at nominal conditions. Larger values indicate that the physical model is more probable. Bold face
indicates the best performing competitor model (lower number).

〈ΔLPOC〉η ΔLPOηnom
C 〈ΔLPHC〉η ΔLPHηnom

C
dawn

M12 1.86 1.79 1.82 1.61
M32 1.56 1.49 1.50 1.33
M52 1.55 1.46 1.49 1.31
EQ 1.63 1.48 1.84 1.35

dusk
M12 2.72 2.19 2.24 1.73
M32 1.96 1.69 1.50 1.29
M52 1.82 1.60 1.33 1.20
EQ 1.73 1.54 1.16 1.12

probable than the physical kernel model on average over all experimental conditions,
and at nominal conditions, respectively. We note that theM32 kernel produced sim-
ilar results. For the dusk ionosphere, the EQ kernel model is likewise the best among
all competitors, being only 73% and 54% less probable than the physical kernel model
on average over all experimental conditions, and at nominal conditions, respectively.
In all experimental conditions, the physicalmodel provides a significantlymore prob-
able explanation of the observed data.
We now consider the ability of eachmodel to infer the held-out data. For the dawn

ionosphere, theM52 competitor kernel has the best (lowest) 〈ΔLPHC〉η = 1.49 and
ΔLPOηnom

C = 1.31, implying that theM52 kernel prediction is 49% and 31% less prob-
able than the physical kernel model on average over all experimental conditions, and
at nominal conditions, respectively. We note that the M32 kernel produced similar
results. For the dusk ionosphere, the EQ kernel model is likewise the best among all
competitors, with predictions only 16% and 12% less probable than the physical ker-
nel model on average over all experimental conditions, and at nominal conditions,
respectively. In the case of the rougher dawn ionosphere, the physical model pro-
vides a significantlymore probable prediction of the held-out data in all experimental
conditions. However, for the smoother dusk ionosphere at nominal conditions, the
physical model is only 12% more probable than the EQ kernel model, which is not
very significant.

Figure 2.7 shows a visual comparison of the predictive distributions of the physical
and best competitor kernel for the dawn ionosphere, for nominal and sparse-and-
noisy conditions, for a subset of antennae over the field of view. In the first row we

84



0

1

2

3

4

5

6

7
M

ea
n 

so
ur

ce
 sh

ift
[a

rc
se

c]
a) c)

0.0 0.2 0.4 0.6 0.8 1.0
Nearest calibrator distance [deg]

1.0

1.5

2.0

2.5

3.0

M
ea

n 
so

ur
ce

 sh
ift

[a
rc

se
c]

b)

0.0 0.2 0.4 0.6 0.8 1.0
Nearest calibrator distance [deg]

d)

Figure 2.5: Mean equivalent source shift as a function of angular distance from the nearest calibrator
causedby inference errors from the ground truth for a) remote stations (RS;> 3 km from the reference
antenna) at nominal conditions (30 calibrators for 12.6deg2 and 1mTECUnoise),b) core stations (CS;
< 2 km) at nominal conditions, c) RS with sparse-and-noisy conditions (10 calibrators for 12.6deg2
and 2.6 mTECU noise), and d) CS with sparse-and-noisy conditions. The dash line styles are the
best competitor models (see text), the solid line styles are the physical model. The red lines are dawn
ionospheres, and the blue lines are dusk ionospheres.

show the ground truth and observed data. In the second and third rows we plot the
meanof the predictive distributionwithuncertainty contours of the physical andbest
competitor models, respectively. At nominal conditions, the predictive means of the
best competitor and physical models both visually appear to follow the shape of the
ground truth. However, for the sparse-and-noisy condition, only the physical model
predictive mean visually follows the shape of the ground truth. The uncertainty con-
tours of the physical model vary in height slowly over the field of view, and are on the
order of 0.5–1 mTECU. The uncertainty contours for the physical model indicate
thatwe can trust the predictions near the edges of the field of view. In comparison, the
uncertainty contours of the best competitor model steeply grow in regions without
calibrators, and are on the order of 2–10 mTECU, indicating that only predictions
in densely sampled regions should be trusted.

The last two rows show the residuals between the posterior means and the ground
truth for the physical and best competitor models respectively. From this we can see
that even when the best-competitor predictive mean visually appears to follow the
ground truth the residuals are larger in magnitude than those of the physical models.

In order to quantify the effect of the residuals, a ΔTEC error, δτ, can be conve-
niently represented by the equivalent source shift for a source at zenith on a baseline
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of r,

δl ≈ q2

ε0meν2r
δτ (2.22)

≈ 1.16′′
( r
10 km

)−1 ( ν
150MHz

)−2
(

δτ
mTECU

)
. (2.23)

Figure 2.5 shows the mean linear regression of the absolute equivalent source shift
of the residuals for each point in the held-out data set, for nominal (left) and sparse-
and-noisy (right) conditions, at 150MHz on a baseline of 10 km, as a function of the
nearest calibrator. For visual claritywe have not plotted confidence intervals, however
we note that for nominal conditions the 1σ confidence width is about 2′′ and for the
sparse-and-noisy conditions it is about 4′′. Because there are few nearest-calibrator
distances exceeding 1 degree at nominal conditions, we only perform a linear regres-
sion out to 1 degree.

The upper row shows the source shift for the remote stations (RS) residuals, which
are generally much larger than the source shifts for core stations (CS) in the bottom
row, since the CS antennae are much closer to the reference antenna and have smaller
ΔTEC variance. We observe that the physical model (dashed line styles) generally
has a shallower slope than the best competitor model (solid line styles). Indeed, for
the CS antennae the physical model source shift is almost independent of distance
from a calibrator. The offset from zero at 0 degrees of separation comes from the fact
that the predictive variance cannot be less than the variance of the observations; see
the definition of B∗ in Eq. 2.19. At 1 degree of separation, the physical model mean
equivalent source shift is approximately half of that of the best competitormodel. At
0 degrees of separation, themean source shift is the same for bothmodels as expected.

2.6 Discussion

2.6.1 Model selection bias

Our derived model is a probabilistic model informed by the physics of the problem.
We use the same physical model to simulate the data. Therefore it should perform
better than any other general-purpose model. The fact that we simulate from the
same physical model as used to derive the probabilistic model does not detract from
the efficacy of the proposed model to represent the data. Indeed, it should be seen as
a reason for preferring physics-based approaches when the physics are rightly known.
TheGaussian randomfield layermodel for the ionosphere has been a useful prescrip-
tion for the ionosphere for a long time (e.g. Yeh & Swenson, 1959).
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One type of bias that should be addressed is the fact that we assume we know the
FED kernel type of the ionosphere. We do not show, for example, what happens
when we assume the wrong FED kernel. However, since we are able to converge on
optimal hyperparameters for a given choice of FED kernel, we can therefore imagine
performing model selection based on the values of the Bayesian evidence (LPO) for
different candidate FED kernels. Thus, we can assume that we could correctly select
the right FED kernel in all the experimental conditions that we chose in this work.

2.6.2 Implicit tomography

The results of Section 2.5 indicate that the physical model provides a better expla-
nation of ΔTEC data than any of the competitor models. One might ask how it
performs so well. The approach we present is closely linked to tomography, where
(possibly non-linear) projections of a physical field are inverted for a scalar field. In
a classical tomographic approach, the posterior distribution for the FED given ob-
served ΔTEC data would be inferred and then the predictive ΔTECwould be calcu-
lated from the FED, marginalising over all possible FEDs,

P (τ | τobs) =
ˆ
ne
P (τ | ne)P (ne | τobs) dne, (2.24)

where ne = {ne(x) | x ∈ X} is the set of FEDs over the entire index set X , τ =

{τk̂x | (x, k̂) ∈ S∗ ⊂ S} is the ΔTEC over some subset S∗ of the index set S ,
τobs = {τk̂x + ε | (x, k̂) ∈ Sobs ⊂ S} is the observed ΔTEC over a different subset
Sobs of S, and ε ∼ N [0, σ2I].

In our model, the associated equation for P (τ | τobs) is found by conditioning the
joint distribution on the observed ΔTEC and then marginalising out FED,

P (τ | τobs) =
ˆ
ne
P (ne, τ | τobs) dne (2.25)

=

ˆ
ne
P (ne | τobs)P (τ | ne, τobs) dne, (2.26)

where in the second line we used the product rule of probability distributions (Kol-
mogorov, 1956). Byworking throughEqs. 2.24 and2.26,wediscover that ifP (τ | ne) =
P (τ | ne, τobs) is true, then our method is equivalent to first inferring FED and then
using that distribution to calculate ΔTEC. In Appendix 2.A1 we prove that the ex-
pressions in Eqs. 2.24 and 2.26 are equal due to the linear relation between FED and
ΔTEC because the sum of two Gaussian RVs is again Gaussian. Most importantly,
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this result would not be true if ΔTEC was a non-linear projection of FED.
We refer to this as implicit tomography as opposed to explicit tomography, wherein

the FEDdistributionwould be computed first and the ΔTEC computed second (e.g.
Jidling et al., 2018). This explains why our kernel is able to accurately predict ΔTEC
in regions without nearby calibrators. The computational savings of our approach
is many-fold compared with performing explicit tomography, since the amount of
memory that would be required to evaluate the predictive distribution of FED every-
where would be prohibitive. Finally, the use of GPs to model ray integrals of a GP
scalar field is used in the seismic physics community for performing tomography of
the interior of the Earth.

2.6.3 Temporal differential TEC correlations

One clearly missing aspect is the temporal evolution of the ionosphere. In this work
we have considered instantaneous realisations of the FED from a spatial GP; however,
the inclusion of time in the FED GP is straightforward in principle. One way to in-
clude time is by appending a time dimension to the FED kernel, which wouldmimic
internal (e.g. turbulence-driven) evolution of the FED field. Another possibility is
the application of a frozen flow assumption, wherein the ionospheric time evolution
is dominated by a wind of constant velocity v, so that ne(x, t) = n0e (x − vt). Here,
n0e represents the FED at time t = 0, and ne is a translation over the array as time pro-
gresses. In modelling a real dataset with frozen flow the velocity could be assumed to
be piece-wise constant in time. We briefly experimented with frozen flow and found
hyperparameter optimisation to be sensitive to the initial starting point due to the
presence of many local optima far from the ground-truth hyperparameters. We sug-
gest that a different velocity parametrisation might facilitate implementation of the
frozen flow approach.

2.6.4 Structurefunctionturnoverandanisotropicdiffractivescale

The power spectrum is often used to characterise the second-order statistics of a sta-
tionary randommedium, since according to Bochner’s theorem the power spectrum
is uniquely related to the covariance function via a Fourier transform. In 1941, Kol-
mogorov (translated from Russian in Kolmogorov, 1991) famously postulated that
turbulence of incompressible fluids with very large Reynolds numbers displays self-
similarity. From this assumption, he used dimensional analysis to show that the nec-
essary power spectrum of self-similar turbulence is a power-law with an exponent of
-5/3. A convenient relatedmeasurable function for the ionosphere is the phase struc-
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Figure 2.6: Structure functions predicted by ourmodel comparedwith observations and theory. The
dotted and dashed lines show the phase structure function corresponding to the physical kernel, with
the dawn and dusk configurations, respectively (see Fig. 2.1). Along side is the predicted structure
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ture function (van der Tol, 2009),

D(r) =〈(φν(R)− φν(r+ R))2〉R (2.27)

≜
(

r
rdiff

)β

, (2.28)

where the expectation is locally over locations far from the boundaries of the tur-
bulent medium, which is often characterised by an outer scale. The quantity rdiff
is referred to as the diffractive scale, and is defined as the length where the structure
function is 1 rad2. UnderKolmogorov’s theory of 1941, β = 5/3. Observations from
29 LOFAR pointings constrain β to be 1.89 ± 0.1, slightly higher than predicted by
Kolmogorov’s theory, and the diffractive scale to range from5 to 30 km (Mevius et al.,
2016).

In Fig. 2.6 the structure functions of the physical kernel are shown for the dawn
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and dusk varieties, alongside Kolmogorov’s β = 5/3 and theMevius et al. (2016) ob-
servations. Though not plotted, Mevius et al. (2016) also find that there is a hint of a
turnover in the structure functions they observed, which they suggest might be a re-
sult of an outer scale in the context of Kolmogorov turbulence. However, these latter
authors conclude that longer baselines are needed to properly confirm the turnover
and its nature. The dawn and dusk structure functions are nearly parallel with obser-
vations, and have turnovers that result because the FED covariance functions decay
to zero monotonically and rapidly beyond the HPD. Interestingly, despite the fact
that the FED kernels used for the dawn and dusk ionospheres have different spectral
shapes, the structure functions have similar slopes. The difference between the dawn
and dusk structure functions can be seen in the curvature of their turnovers.

Our model provides an explanation for the observed shape of structure functions,
whichKolmogorov’s theoryof 1941 fails toprovide, namely the existenceof a turnover,
and a slope deviating from five-thirds. Specifically, a turnover requires only FED cor-
relations that are stationary, isotropic, and monotonically decreasing (SIMD). Both
the dawn and dusk ionosphere varieties experimented with predict slopes compatible
with observations. Moreover, as shown inAppendix 2.A2, ourmodel in conjunction
with the SIMD FED kernel is falsifiable by observing a lack of plateau.

Mevius et al. (2016) also observe anisotropy in the measured rdiff as a function of
pointing direction, and suggest that it is due to FED structures aligned with mag-
netic field lines (Loi et al., 2015). In total, 12 out of 29 (40%) of their observations
show anisotropy unalignedwith themagnetic field lines of Earth. We propose a com-
plementary explanation for the anisotropy of diffractive scale, without appealing to
magnetic field lines. Ourmodel implies that diffractive scalemonotonically decreases
with zenith angle. This is a result of the non-stationarity of the physical kernel even
if the FED is stationary.

2.6.5 Low-accuracy numerical integration

The numerical integration required to compute Eq. 2.14 is performed using the 2D
trapezoid rule. This requires the selection of a number of partitions along the ray.
The computational complexity scales quadratically with the number of partitions
chosen, and thus a trade-off between accuracy and speed must be chosen. We found
the relative error (using the Frobenius norm) to be 80%with twopartitions, 20%with
three partitions, 10% with four partitions, and 6% with seven partitions. After ex-
perimentation it was surprisingly found that two partitions was sufficient to beat all
competitormodels, and thatmarginal improvement occurs after five partitions. This
suggests that even a low-accuracy approximation of our model encodes enough ge-
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ometric information to make it a powerful tool in describing the ionosphere. Ulti-
mately, we chose to use four partitions for our trials.

2.7 Conclusion

In this work, we put forth a probabilistic description of antenna-based ionospheric
phase distortions, which we call the physical model. We assumed a single weakly scat-
tering ionosphere layer with arbitrary height and thickness, and free electron density
(FED) described by a Gaussian process (GP). We argue that modelling the FEDwith
a GP locally about the mean is a strong assumption due to the small ratio of FED
variation to mean as evidenced from ionosphere models. We show that under these
assumptions the directly observable ΔTECmust also be aGP.Weprovide amean and
covariance function that are analytically related to the FEDGPmean and covariance
function, the ionosphere height and thickness, and the geometry of the interferomet-
ric array.
In order to validate the efficacy of our model, we simulated two varieties of iono-

sphere — a dawn (rough FED) and dusk (smooth FED) scenario — and computed
the corresponding ΔTEC for the Dutch LOFAR-HBA configuration over a wide
rangeof experimental conditions includingnominal and sparse-and-noisy conditions.
We compared this physical kernel to other widely successful competitor GP models
that might naively be applied to the same problem. Our results show that we are al-
ways able to learn the FED GP hyperparameters and layer height — including from
sparse-and-noisy ΔTEC data— and that the layer thickness could likely be learned if
a height prior was provided. In general, the physical model is better able to represent
observed data and generalises better to unseen data.

Visual validation of the predictive distributions of ΔTEC show that the physical
model can accurately infer ΔTEC in regions far from the nearest calibrator. Residuals
from the physical model (0.5–1 mTECU) are smaller and less correlated than those
of competitor models (2–10 mTECU). In terms of mean equivalent source shift re-
sulting from incorrect predictions, the physical model mean equivalent source shift
is approximately half of that of the best competitor model. We show that our model
performs implicit tomographic inference at low cost, which is because ΔTEC is a lin-
ear projection of FED and the FED is a GP. We suggest possible extensions to incor-
porate time, including frozen flow and appending the FED spectrumwith a temporal
power spectrum. Ourmodel provides an alternative explanation for theMevius et al.
(2016) observations: phase structure function slope deviating from Kolmogorov’s
five-thirds, the turnover on large baselines, and diffractive scale anisotropy.

In the near future, we will apply this model to LOFAR-HBA datasets and per-
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Figure 2.7: Example visual comparison of the predictive performance of our physical model with that
of the best competitor model for the dawn ionosphere. First row: ground truth ΔTEC overlaid with
noisy draws from the ground truth — the observations. Second and third rows: posterior mean with
uncertainty contours for the physical model and best competitor model respectively. Fourth and fifth
rows: residuals between posterior means and ground truth for the physical model and best competitor
model respectively. First two columns: results for a central antenna (near to reference antenna) and
a remote station (far from reference antenna), given 10 directions and 2.5 mTECU noise. Last two
columns: results for a central antenna and a remote station, given 30 directions and 1.6mTECUnoise.

form precise ionospheric calibration for all bright sources in the field of view. It is
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envisioned that this will lead to clearer views of the sky at the longest wavelengths,
empowering a plethora of science goals.

Author contributions

Joshua came up with the idea of the ionospheric model, and set up a first quantita-
tive outline assuming lognormally distributed ionospheric FEDs. Joshua andMartijn
together found the correct Gaussian process equations. Martijn simulated the iono-
spheric FEDs andΔTECs, and Joshua compared theGaussian process regression per-
formance of different kernels. Joshua led the writing of the article, with important
contributions fromMartijn.

2.A1 Derivation of tomographic equivalence

We now explicitly prove the assertion that Eq. 2.24 is equal to Eq. 2.26, that is,
ˆ

P (τ | ne)P (ne | τobs) dne =
ˆ

P (ne, τ | τobs) dne. (2.29)

We note that we sometimes use the notation N [a | ma,Ca] which is equivalent to
a ∼ N [ma,Ca].

Wedefine thematrix representationof theDRIoperator inEq. 2.6, Δ∗ne = {Δk̂
xne |

(x, k̂) ∈ S∗}, and likewise let Δ be the matrix representation over the index set
Sobs. Similarly, the matrix representation of the FED kernel— the Grammatrix— is
K = {K(x, x′) | x, x′ ∈ X}. Using these matrix representation we have the follow-
ing joint distribution,

P (ne, τ, τobs) =N

n̄e0
0
,

K KΔT
∗ KΔT

Δ∗K Δ∗KΔT
∗ Δ∗KΔT

ΔK ΔKΔT
∗ ΔKΔT + σ2I

 . (2.30)

Let us first work out the left-hand side (LHS) of Eq. 2.29. Because τ = Δ∗ne, and
using standard Gaussian identities we have,

P (τ | ne) = N [Δ∗KK−1(ne − n̄e)︸ ︷︷ ︸
Δ∗(ne−n̄e)

,Δ∗KΔ∗ − Δ∗KK−1KΔ∗︸ ︷︷ ︸
0

]. (2.31)

93



Similarly, the second distribution on the LHS is,

P (ne | τobs) = N [n̄e + KΔT(ΔKΔT + σ2I)−1τobs,
K− KΔT(ΔKΔT + σ2I)−1ΔK]. (2.32)

Wenowcanuse standardGaussian identities (e.g.Weiss&Freeman, 2001) to evaluate
the integral on the LHS:
ˆ

P (τ | ne)P (ne | τobs) dne =N [Δ∗KΔT(ΔKΔT + σ2I)−1τobs,Δ∗KΔT
∗

− Δ∗KΔT(ΔKΔT + σ2I)−1ΔKΔT
∗ ]. (2.33)

In order to work out the right-hand side (RHS), we simply condition Eq. 2.30 on
τobs and thenmarginalisene by selecting the corresponding sub-blockof theGaussian,

P (ne, τ | τobs) =N
[(

n̄e
0

)
+

(
KΔT

ΔT
∗KΔT

)(
ΔKΔT + σ2I

)−1 τobs,(
K̄ ΔKΔT

∗
Δ∗KΔT Δ∗KΔT

∗

)
−
(

KΔT

Δ∗KΔT

)(
ΔKΔT + σ2I

)−1 (ΔK ΔKΔT
∗
)]

(2.34)

Marginalising over ne is equivalent to neglecting the sub-block corresponding to ne.
Therefore, the RHS is

ˆ
P (ne, τ | τobs) dne =N

[
Δ∗KΔT (ΔKΔT + σ2I

)−1 τobs,Δ∗KΔT
∗

−Δ∗KΔT (ΔKΔT + σ2I
)−1 ΔKΔT

∗

]
. (2.35)

■

2.A2 Derivation of the ΔTEC variance function and its limits

We derive the ΔTEC variance function σ2ΔTEC(d) for zenith observations (k = k′ =
ẑ) by considering a baseline between an antenna-of-interest at xi = xj and a reference
antenna at x0 = 0. To use the Pythagorean theorem later, we assume that this base-
line lies in the plane of the local horizon, i.e. perpendicular to the zenith. Without loss
of generality, we can orient the coordinate axes such that this baseline lies along the x̂
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direction, so that xi−x0 = dx̂. Hered ≜ ||xi|| is the distance between the two anten-
nae. We then take the general covariance functionKΔTEC

([
xi, x0, k̂

]
,
[
xj, x0, k̂′

])
,

and find that in this particular case

σ2ΔTEC(d) ≜KΔTEC ([xi, x0, ẑ] , [xi, x0, ẑ]) (2.36)

=
1∑

p1=0

1∑
p2=0

(−1)p1+p2

ˆ b

0

ˆ b

0
Kne
(
||x(1−p1)i − x(1−p2)i + ẑ (s1 − s2) ||

)
ds1ds2, (2.37)

where Kne is an arbitrary stationary and isotropic kernel (such as the exponentiated
quadratic andMatérn 3

2 kernels considered earlier) for the FED.The two termswhere
p1 and p2 are equal give the same contribution, as do the two terms for which p1 and
p2 are unequal. By subsequently applying the Pythagorean theorem in this last case
(i.e. p1 = 0 and p2 = 1, and vice versa), we find

σ2ΔTEC(d) = 2
ˆ b

0

ˆ b

0
Kne (|s1 − s2|)− Kne

(√
d2 + (s1 − s2)2

)
ds1ds2. (2.38)

We manipulate this result to obtain a more insightful expression. First, we note the
(implicit) presence of three parameters with dimension length: ionospheric thickness
b, reference antenna distance d, and FED kernel half-peak distance h. We perform
transformations to dimensionless coordinates u1 = s1

h and u2 = s2
h to reveal that

the shape— though not the absolute scale — of the function σ2ΔTEC(d) is governed
only by the length-scale ratios b

h and d
h , and the particular functional form of Kne .

Furthermore, for stationary covariance functions, we haveKne = σ2neCne , whereCne is
the corresponding dimensionless correlation function.

These considerations enable us to express the ΔTEC structure function as a di-
mensionless, shape-determining double integral appended by dimensionful prefac-
tors; i.e.

σ2ΔTEC(d) = 2σ2neh
2
ˆ b

h

0

ˆ b
h

0
Cne (h |u1 − u2|)

− Cne

h

√(
d
h

)2

+ (u1 − u2)2
 du1du2. (2.39)

We first note that the variance of ΔTEC is simply proportional to the variance of ne.
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Secondly, we note that

h |u1 − u2| < h

√(
d
h

)2

+ (u1 − u2)2 (2.40)

for any non-zero d, so that

Cne (h |u1 − u2|) > Cne

h

√(
d
h

)2

+ (u1 − u2)2
 (2.41)

for all monotonically decreasing correlation functions Cne (or, equivalently, covari-
ance functions Kne). With the integrand always positive, we see that the integral
must be a strictly increasing function of b

h (which occurs in the integration limits).
Therefore, we conclude that for stationary, isotropic, and monotonically decreasing
(SIMD) FED kernels withHPD h, the ΔTEC variance increases monotonically with
the thickness of the ionosphere b. Simply put: thicker SIMD ionospheres cause larger
ΔTEC variations.

Let us now consider three limits of the ΔTEC zenith variance function, that all do
not require KFED to decrease monotonically. In the short-baseline limit, i.e. d

h → 0,
we have

Cne

h

√(
d
h

)2

+ (u1 − u2)2
→ Cne (h |u1 − u2|) . (2.42)

We therefore find that σ2ΔTEC → 0 irrespective of other parameters, recovering that
the variance of ΔTEC vanishes near the reference antenna. In the long-baseline limit,

i.e. d
h � b

h > 1, we see that
√(d

h

)2
+ (u1 − u2)2 ≈ d

h , since

(u1 − u2)2 <
(
b
h

)2

�
(
d
h

)2

. (2.43)

Assuming Cne(d) ≈ 0 when d
h � 1, the integrand reduces to Cne (h |u1 − u2|) −

Cne
(
h · d

h

)
≈ Cne (h |u1 − u2|). We find that in this case,

σ2ΔTEC ≈ 2σ2neh
2
ˆ b

h

0

ˆ b
h

0
Cne (h |u1 − u2|) du1du2. (2.44)

96



This is the plateau value of the ΔTEC variance that our model predicts for the long-
baseline limit.

Another way to arrive at the plateau value expression of Equation 2.44 is by con-
sidering the statistical properties of TEC first. In a computation analogous to the
one for ΔTEC in Section 2.3, one can derive the general TEC covariance function
KTEC. The variance of τẑi (the TEC of antenna i while observing towards the zenith
ẑ) is straightforwardly shown to be

V
(
τẑi
)
= σ2neh

2
ˆ b

h

0

ˆ b
h

0
Cne (h |u1 − u2|) du1du2. (2.45)

We highlight the absence of a dependence on i at the RHS. As a ΔTEC is simply a
TECdifferencedwith a TEC for a reference antenna observing in the same direction,
we have

σ2ΔTEC = V
(
τẑi − τẑ0

)
= V

(
τẑi
)
+ V

(
τẑ0
)
, (2.46)

where the second equality only holdswhen theTECs are independent. This is exactly
the scenario considered in the long-baseline limit. Plugging in Equation 2.45 recovers
theplateau level. We canfind a general upper bound to the variance ofΔTEC in terms
of physical parameters. To this end, we note that the integrand in Equation 2.39 is
maximised when, over the full range of integration, the value of the first term is 1
whilst the second term is equal to the infimum of the correlation function. Calling
infR {Cne(r) : r ∈ R>0} ≜ I, we find the inequality,

σ2ΔTEC ≤ 2σ2neh
2
ˆ b

h

0

ˆ b
h

0
1− I du1du2 = 2 (1− I) σ2neb

2. (2.47)

For strictly positive FED kernels that decay to zero at large distances (such as the EQ
and Matérn kernels considered in this work), we find σ2ΔTEC ≤ 2σ2neb

2. Kernels re-
sulting in anticorrelated FEDs produce the constraint σ2ΔTEC ≤ 4σ2neb

2 or tighter. By
measuring σΔTEC(d), one can bound the product σneb from below. The strongest
bound is obtained for large d.

2.A3 Covariance functionwith frozen flow

Here we give the DTEC covariance function assuming the ionosphere drifts over the
array as time progresses, without evolving internally. We derived these results during
the development of the original publication, but they were not made part of it.

The covariance between the DTEC RV of a station at xi1 referenced to one at xj1
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whilst both observe k̂α1 at time tβ1 , and the DTECRV of a station at xi2 referenced to
one at xj2 whilst both observe k̂α2 at time tβ2 , is the sum of four double integrals:

KΔτ



xi1
xj1
k̂α1
tβ1

 ,


xi2
xj2
k̂α2
tβ2


 =

1∑
l1=0

1∑
l2=0

(−1)l1+l2
ˆ s+1

s−1

ˆ s+2

s−2

Kne (y1, y2) ds1ds2, (2.48)

where typically j1 = j2,Kne is the FED covariance function, and

s±p = sec φαp

(
a± b

2
−
(
x(1−lp)ip+lpjp − x0 − vtβp

)
· ẑ
)
, (2.49)

yp = x(1−lp)ip+lpjp − vtβp + k̂αp sp, (2.50)

sec φαp =
(
k̂αp · ẑ

)−1
. (2.51)

We model the ionosphere as a layer with thickness b, whose centre lies at a height a
above x0. The zenith is denoted ẑ. We linkDTECRVs of different times by assuming
that the ionosphere is a frozen flow with velocity v.

2.A4 Supporting figures

Figure 2.8 shows 24 Dutch core and remote LOFAR stations with a simulated iono-
sphere above them. Figure 2.9 shows simulated ionospheric phase distortions for the
same stations. For brevity, these figures did not feature in the original publication;
they appear for the first time in this thesis, and illustrate the methods of Sect. 2.4.
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Figure 2.8: Simulation of a three-dimensional Gaussian random field ionosphere above 24 Dutch LOFAR stations (black dots), for which our work
presents the optimal calibration method. We show the field ne(x, t) along a few sightlines only. The visualisation makes clear that sightlines from the same
station pass through similar ionospheric columns, resulting in correlated ΔTECs and phase distortions. For the latter, see Fig. 2.9.
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Figure 2.9: Ionospheric phase distortions as a function of sky direction (kx, ky) for each station shown in Fig. 2.8, with array centre proximity (legends)
marked. Statistically speaking, the further the stations are from the array centre, the larger the phase distortions become. The phase distortions inherit this
behaviour from the ΔTEC fields shown in Fig. 2.2, with which the distortions scale linearly.
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