

Giant galactic outflows and shocks in the cosmic web Oei, M.S.S.L.

Citation

Oei, M. S. S. L. (2023, December 12). *Giant galactic outflows and shocks in the cosmic web*. Retrieved from https://hdl.handle.net/1887/3666253

Version:	Publisher's Version
License:	Licence agreement concerning inclusion of doctoral thesis in the Institutional Repository of the University of Leiden
Downloaded from:	<u>https://hdl.handle.net/1887/3666253</u>

Note: To cite this publication please use the final published version (if applicable).

Contents

I	Inte	RODUCTION	15
	1.1	Magnetism and the rise of modern physics	16
	1.2	Magnetism throughout the Universe	18
	1.3	Origin of magnetism	26
	1.4	Astronomical observations of magnetic phenomena	31
	1.5	The LOFAR	31
	1.6	Astronomical interferometry of electromagnetic waves: the van Cittert–Zernike	
		theorem	34
	1.7	The ionosphere	46
	1.8	Late-time radio probes of cosmological magnetism	49
	1.9	This thesis	61
	1.10	Future directions	66
2	A pr	OBABILISTIC APPROACH TO DIRECTION-DEPENDENT CALIBRA-	
	TION		67
	2.I	Introduction	68
	2.2	Ionospheric effects on interferometric visibilities	70
	2.3	Probabilistic relation between FED and ΔTEC : Gaussian process layer model	72
	2.4	Method	76
	2.5	Results	83
	2.6	Discussion	86
	2.7	Conclusion	91
	Appe	ndix 2.A1 Derivation of tomographic equivalence	93
	Appe	ndix 2.A2 ΔTEC variance function	94

	Appendix 2.A3 Covariance function with frozen flow	97
	Appendix 2.A4 Supporting figures	98
3	Filamentary Baryons and Where to Find Them: A forecast	
	OF SYNCHROTRON RADIATION FROM MERGER AND ACCRETION SHOC	KS
	IN THE LOCAL COSMIC WEB	101
	3.1 Introduction	103
	3.2 Methods	109
	3.3 Redshift predictions from geometric cosmic web model	I 2 I
	3.4 Results	130
	3.5 Discussion	140
	3.6 Conclusions	147
	Appendix 3.A1 Additional figures	148
	Appendix 3.A2 Single-shock synchrotron MEC-total matter density scaling relation .	149
	Appendix 3.A3 Ray tracing in the cosmological setting	156
	Appendix 3.A4 Observer's specific intensity	156
	Appendix 3.A5 Volume-filling fractions	158
	Appendix 3.A6 Notation	160
4	The discovery of a radio galaxy of at least 5 Mpc	163
	4.1 Introduction	165
	4.2 Data and methods	168
	4.3 Results and discussion	169
	4.4 Conclusion	187
	Appendix 4.A1 J1420-0545 comparison	189
	Appendix 4.A2 Inclination angle comparison	190
	Appendix 4.A3 Lobe volumes with truncated double cone model	193
5	An intergalactic medium temperature from a giant radio	
,	GALAXY	203
	5.1 Introduction	204
	5.2 Data	205
	5.3 Methods and results	214
	5.4 Discussion	228
	5.5 Conclusion	234
	Appendix ς .A1 Average density ratio for WHIM with isothermal β -profile	237
	Appendix 5.A2 Large-to-small-scale density conversion: the low-density regime	238
	Appendix 5.A3 Lower WHIM temperature constraints from current-day radio data	241
	rr	

6	Measuring the giant radio galaxy length distribution with		
	THE LOTSS	243	
	6.1 Introduction	245	
	6.2 Theory	247	
	6.3 Sample compilation and properties	268	
	6.4 Results	281	
	6.5 Discussion	296	
	6.6 Conclusions	302	
	Appendix 6.A1 Framework derivations and details	307	
	Appendix 6.A2 Additional images	334	
	Appendix 6.A3 Stellar and supermassive black hole masses	334	
	Appendix 6.A4 Surface brightness prior	334	
	Appendix 6.A5 Likelihood function	339	
	Appendix 6.A6 Properties of newly discovered giants	341	
7	Do luminous giants populate special large-scale environ-		
	ments? Or: the radio luminosity–Cosmic Web density re-		
	LATION FOR RADIO GALAXIES	343	
	7.1 Introduction	345	
	7.2 Data	349	
	7.3 Methods	352	
	7.4 Results	357	
	7.5 Discussion	379	
	7.6 Conclusion	391	
	Appendix 7.A1 Cosmic Web localisation accuracy with spectroscopic and photometric		
	redshifts	394	
	Appendix 7.A2 Cosmic Web density distribution: the gamma Ansatz	395	
	Appendix 7.A3 Modelling relative baryon density measurement heteroskedasticity	397	
	Appendix 7.A4 Radio luminosity–Cosmic Web density relation: fixed voxel method	398	
	Appendix 7.A5 Relative number density derivation	398	
	Appendix 7.A6 Disparity between mean squared density and squared mean density	402	
8	Constraining the giant radio galaxy population with ma-		
	chine learning–accelerated detection and Bayesian infer-		
	ENCE	405	
	8.1 Introduction	407	
	8.2 Theory	408	
	8.3 Data	419	

BII	BIBLIOGRAPHY 4		
12 Acknowledgments		NOWLEDGMENTS	497
ΙI	Cur	RICULUM VITAE	491
10	List	OF PUBLICATIONS	489
	9.10	Giganten, machinaal leren en magnetogenese	488
	9.9	De omgevingen van gigantische galactische uitvloeisels in het Kosmische Web	485
	9.8	Een census van giganten	483
	9.7	Een gigantisch uitvloeisel uit een spiraalsterrenstelsel	482
	9.6	Gevoelige LOFAR-beelden en een onverwachtse ontdekking	480
	9.5	Schokgolfvoorspellingen voor het Kosmische Web aan de noordelijke hemel	478
	9.4	Schokgolven in het Kosmische Web en ionosferische kalibratie	476
	9.3	Het Kosmische Web	474
	9.2	Radiogolven	472
	9.1	Licht en elektromagnetische golven	47 I
9	Рор	ULAIRWETENSCHAPPELIJKE SAMENVATTING	47 I
	B.4	Conclusion	468
	B.3	Numerical results	468
	B.2	Analytical results	464
	В.1	Introduction	464
	FOR	HIGH-SNR SOURCES	463
Ар	PEND	IX B FLUX SCALE–INDUCED SPECTRAL INDEX UNCERTAINTIES	
	SION	i: the curved Earth	457
Ар	PEND	ix A Gaussian random field ionosphere model exten-	
	Appe	ndix 8.A5 Sky coverages	455
	Appe	ndix 8.A4 Adaptations of the radio ridgeline based host galaxy identification	453
	Appe	ndix 8.A3 PyBDSF parameters	453
	Appe	ndix 8.A2 Likelihood trick	452
	Appe	ndix 8.A1 Curved power law PDF for L	45 I
	8.7	Conclusions	448
	8.6	Discussion	445
	8.5	Results	439
	8.4	Methods	420