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Abstract	
	
Various	groups	of	chemicals	that	we	encounter	in	every-day	life	are	known	to	
disrupt	the	endocrine	system,	such	as	estrogen	mimics	that	can	disturb	normal	
cellular	development	and	homeostasis.	To	understand	the	effect	of	estrogen	on	
intracellular	 protein	 dynamics	 and	 how	 this	 relates	 to	 cell	 proliferation,	 we	
aimed	to	develop	a	quantitative	description	of	 transcription	 factor	complexes	
and	 their	 regulation	 of	 cell	 cycle	 progression	 in	 response	 to	 estrogenic	
stimulation.	We	designed	a	mathematical	model	that	describes	the	dynamics	of	
three	proteins,	GREB1,	PR	and	TFF1,	that	are	transcriptionally	activated	upon	
binding	of	17β-estradiol	(E2)	to	estrogen	receptor	alpha	(ERα).	Calibration	of	
this	 model	 to	 imaging	 data	 monitoring	 the	 expression	 dynamics	 of	 these	
proteins	in	MCF7	cells	suggests	that	transcriptional	activation	of	GREB1	and	PR	
depends	on	the	association	of	the	E2-ERα	complex	with	both	GREB1	and	PR.	We	
subsequently	combined	this	ER	signaling	model	with	a	previously	published	cell	
cycle	model	and	compared	this	to	deep	neural	network-based	quantiHication	of	
cell	 cycle	 durations	 in	MCF7	 cells.	 The	 resulting	model	 predicts	 the	 effect	 of	
GREB1	and	PR	knockdown	on	cell	cycle	progression,	thus	providing	mechanistic	
insight	in	the	molecular	interactions	between	ERα-regulated	proteins	and	their	
relation	to	cell	cycle	progression.	Our	Hindings	form	a	valuable	basis	to	further	
investigate	the	pharmacodynamics	of	endocrine	disrupting	chemicals	and	their	
inHluence	on	cellular	behavior.	
	
Introduction		
	
Breast	cancer	accounts	for	approximately	24.5%	of	all	cancer	cases	and	about	
15.5%	 of	 cancer	 deaths	 worldwide	 1.	 Breast	 cancer	 development	 might	 be	
provoked	by	long-term	exposure	to	endocrine	disrupting	chemicals	(EDCs)	2–5	
that	 are	 abundantly	 present	 in	 our	 every-day	 life,	 e.g.,	 in	 pesticides,	 plastics,	
food,	personal	care	products	and	Hlame	retardants.	Because	EDCs	can	mimic	or	
block	 endogenous	 hormones,	 these	 compounds	 can	 disrupt	 the	 normal	
endocrine	 system	 6–8,	 resulting	 in	 adverse	 outcomes	 such	 as	 unscheduled	
proliferation,	 which	 can	 culminate	 in	 tumor	 formation	 7,9.	 Estrogen	 receptor	
alpha	 (ERα)	 is	 an	 important	 regulator	 of	 growth,	 proliferation	 and	
differentiation,	 and	 can	 be	 activated	 through	 binding	 by	 several	 EDCs	 9–12.	
Therefore,	a	mechanistic	understanding	of	the	regulation	of	proliferation	by	ERα	
is	 important	 in	 the	search	 for	a	 strategy	 to	quantitatively	predict	 the	cellular	
outcome	of	exposure	to	EDCs	on	mammary	gland	epithelial	cells.		
	
ERα,	 encoded	by	 the	ESR1	 gene,	 is	 a	nuclear	 transcription	 factor	 that	 can	be	
bound	and	activated	by	multiple	binding	partners.	Upon	binding	of	ERα	with	one	
of	 its	 endogenous	 ligands,	 17β-estradiol	 (E2),	 the	 E2-ERα	 complex	 forms	
homodimers	and	binds	to	estrogen	response	elements	in	the	promoters	of	target	
genes	 13–15.	 Activation	 of	 target	 gene	 transcription	 requires	 the	 binding	 of	
coactivators	 that	stabilize	 the	association	of	ERα	with	 the	DNA	and	stimulate	
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transcription	 16,17.	 However,	 the	 requirement	 of	 coactivator	 binding	 differs	
between	genes	17.	Among	the	well-known	estrogen-regulated	genes	are	growth-
regulating	estrogen	receptor	binding	1	(GREB1),	progesterone	receptor	(PGR)	
and	 trefoil	 factor	 1	 (TFF1).	 Interestingly,	 the	 GREB1	 protein	 functions	 as	
coactivator	for	ERα	18,	although	it	is	not	known	whether	only	speciHic	genes	are	
dependent	on	GREB1	binding.	The	progesterone	receptor	(PR)	belongs	to	the	
same	family	of	nuclear	steroid	hormone	receptors	as	ERα	and	is	activated	upon	
binding	to	progesterone.		Apart	from	its	transcriptional	activity,	PR	can	bind	ERα	
in	 the	 presence	 of	 progesterone	 19,20,	 which	 suppresses	 the	 transcriptional	
activity	 of	 ERα	 and	 has	 an	 antiproliferative	 effect	 21–23.	 In	 addition,	 PR	
transfection	 also	 has	 a	 ligand-independent	 antiproliferative	 effect	 on	 E2-
stimulated	cells	24.	Thus,	the	crosstalk	between	ERα	and	PR	is	important	in	the	
regulation	of	target	gene	expression	and	proliferation.	Much	less	is	known	about	
the	 biological	 role	 of	 TFF1,	 but	 it	 can	 serve	 as	 diagnostic	 25	 and	 prognostic	
biomarker	 for	 breast	 cancer.	 TFF1	 expression	 is	 thought	 to	 protect	 against	
breast	 cancer	 26	 and	 high	 expression	 levels	 in	 breast	 cancer	 patients	 are	
associated	 with	 a	 good	 prognosis	 27,28.	 However,	 conHlicting	 studies	 showed	
enhanced	migration	29	and	tumorigenesis	in	mammary	tissue	upon	expression	
of	TFF1	30.	Thus,	considerable	controversy	exists	about	the	role	of	TFF1	in	breast	
cancer.	
	
In	addition	to	their	transcription	regulatory	function,	ERα,	GREB1,	PR	and	TFF1	
also	play	a	role	 in	regulation	of	proliferation.	Proliferating	cells	enter	 the	cell	
cycle	in	growth	phase	1	(G1).	After	passing	the	G1	restriction	point,	cells	start	
DNA	synthesis	in	the	S	phase	and	subsequently	enter	growth	phase	2	(G2).	In	
the	 Hinal	 cell	 cycle	 stage,	 cells	 are	 preparing	 for	 mitosis	 and	 divide	 (M).	
Transitions	 through	 these	 cell	 cycle	 phases	 are	 regulated	 by	 the	 physical	
association	between	cyclins	and	cyclin-dependent	kinases	(CDKs).	In	response	
to	estrogen,	ERα,	GREB1,	PR	and	TFF1	each	contribute	to	cell	cycle	progression	
in	their	own	ways.	First,	ERα	transcriptionally	activates	cyclin	D1	that	binds	and	
activates	CDK4/6,	stimulating	G1	progression	31–34	 .	SpeciHically,	the	cyclin	D1-
CDK4/6	 complex	 binds	 and	 hyper-phosphorylates	 the	 tumor	 suppressor	
protein	retinoblastoma	(pRB)	35,	which	promotes	the	dissociation	of	pRB	from	
transcription	 factor	 E2F	 36	 and	 subsequent	 transcription	 initiation	 of	 target	
genes	 involved	 in	 cell	 cycle	 progression	 37–39.	 Second,	 ligand-activated	 PR	
initiates	 transcription	 of	 target	 genes	 involved	 in	 proliferation	 by	 direct	
interaction	with	DNA,	but	also	induces	gene	expression	through	association	with	
other	transcription	factors	40.	For	example,	ligand-bound	PR	can	activate	cyclin	
D1	transcription	in	the	presence	of	ERα	20,40.	Moreover,	PR	can	directly	activate	
cytoplasmic	 signaling	 pathways,	 such	 as	 the	 cell	 cycle	 regulatory	
PI3K/Akt/mTOR	40	or	the	MAPK	pathway	41.	Third,	GREB1	inHluences	cell	cycle	
progression	 in	 an	ERα-dependent	 and	 independent	manner.	 SpeciHically,	 ERα	
stimulation	by	estrogen	leads	to	activation	of	the	PI3K/Akt/mTOR	pathway	via	
GREB1	 42.	 In	 addition,	 GREB1	 knockdown	 and	 exogenous	 GREB1	 expression	
cause	 an	 ERα-independent	 decrease	 in	 proliferation	 43,44.	 Finally,	 TFF1	 is	
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negatively	associated	with	cell	proliferation	45,46	by	increasing	the	expression	of	
CDK	 inhibitors	 that	 impede	 E2F	 functionality	 47.	 In	 contrast,	 we	 previously	
demonstrated	 a	 signiHicant	 reduction	 of	 proliferation	 in	 ERα-positive	 MCF7	
human	breast	cancer	cells	after	siRNA-mediated	knockdown	of	TFF1,	similar	to	
the	effect	of	ERα,	GREB1	or	PGR	knockdown	48.	Despite	these	multiple	studies	
focussing	on	the	roles	of	ERα,	PR,	GREB1	and	TFF1	in	cell	cycle	progression,	the	
full	mechanisms	behind	ERα-mediated	cell	cycle	regulation,	and	especially	their	
quantitative	impact	remains	to	be	elucidated.	
	
To	 gain	 quantitative	 insight	 in	 the	 interdependencies	 between	 protein	
expression	in	the	ERα	signaling	pathway	and	their	effect	on	the	cell	cycle,	we	
adopted	 a	mathematical	modeling	 approach.	 The	 E2-dependent	 induction	 of	
ERα	 downstream	 targets	 has	 not	 been	 modeled	 previously,	 although	
mathematical	 models	 related	 to	 estrogen	 signaling	 do	 exist.	 One	 such	 study	
focused	on	the	switch	between	estrogen	and	growth	factor	signaling,	and	E2-
independent	cancer	cell	growth	49.	Another	modeling	study	used	direct	estrogen	
supply	 as	 stimulant	 for	 tumor	 cell	 growth,	 which	 determined	 the	 relation	
between	E2	and	tumor	growth	50.	In	addition,	mathematical	models	of	the	cell	
cycle	 are	 ubiquitous	 and	 differ	 greatly	 in	 complexity,	 with	 respect	 to	 either	
protein	 level	 or	 cell	 cycle	 phase	 level	 (e.g.,	 51–57).	 As	 one	 of	 the	 interesting	
examples,	 the	 simpliHied	 cell	 cycle	 model	 by	 Ferrell	 et	 al.	 (2011)	 54	 was	
subsequently	 used	 for	 cell	 phase	 classiHication	 by	 Bae	 et	 al.	 (2019)	 55.	
Importantly,	 these	 studies	 do	 not	 yet	 provide	 quantitative	 insight	 into	 the	
relation	between	ERα-regulated	protein	expression	and	cell	cycle	progression.	
Constructing	a	model	 that	describes	 this	 relation	 can	help	 to	understand	 the	
mechanisms	 underlying	 adversity	 and	 can	 ultimately	 be	 incorporated	 into	
quantitative	adverse	outcome	pathways	(qAOPs),	which	establish	quantitative	
relationships	 between	 key	 events	 and	 ultimately	 lead	 to	 deHined	 adverse	
outcomes	58,59.		
	
Using	ordinary	differential	equation	(ODE)	modeling,	we	here	aimed	to	Hind	a	
mechanistic	explanation	 for	observations	of	protein	expression	and	cell	 cycle	
progression	in	MCF7	cells	derived	from	live-cell	confocal	microscopy	data.	For	
this	purpose,	we	exploited	MCF7	BAC-GFP	reporter	cell	lines	for	GREB1,	PR	and	
TFF1,	 in	 addition	 to	 an	 MCF7	 Hluorescent	 ubiquitination-based	 cell	 cycle	
indicator	(FUCCI)	cell	line	48.	Based	on	time-resolved	protein	expression	and	cell	
cycle	progression	data	at	single	cell	level,	we	propose	a	novel	E2	signaling	model	
that	connects	to	the	simpliHied	cell	cycle	model	by	Ferrell	et	al.	(2011)	54.	Our	
model	 suggests	 that	 transcriptional	 activation	 of	 GREB1	 and	 PR	 is	 not	 only	
dependent	on	association	of	the	E2-ERα	complex	with	GREB1,	but	also	with	PR.	
In	addition,	we	show	that	this	model	can	be	combined	with	an	elementary	cell	
cycle	 model	 of	 two	 oscillating	 proteins	 to	 predict	 changes	 in	 cell	 cycle	
progression	in	response	to	siRNA-mediated	molecular	manipulation.		
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Results	
	
An	 ODE	 model	 for	 E2	 signaling	 provides	 insight	 into	 protein-protein	
interactions	
Binding	 of	 E2	 to	 the	 ERα	 receptor	 and	 subsequent	 dimerization	 leads	 to	
transcriptional	activation	of	downstream	targets	GREB1,	PR	and	TFF1	(Fig.	1A).	
Knockdown	experiments	in	MCF7	cells	have	highlighted	the	interdependencies	
of	 these	 proteins	 and	 their	 relevance	 in	 cell	 cycle	 regulation	 in	 a	 qualitative	
manner	48.	To	obtain	the	detailed	dynamics	of	ERα	target	expression	at	protein	
level	over	a	period	of	more	than	two	days,	we	monitored	the	induction	of	GFP-
labelled	GREB1,	PR	and	TFF1	proteins	with	live-cell	confocal	microscopy	(Fig.	
1B)	at	different	E2	concentrations	using	earlier	established	reporter	cell	lines	48.	
E2	 exposure	 induced	 protein	 expression	 in	 a	 concentration-	 and	 time-
dependent	 manner	 (Fig.	 1C).	 GREB1	 and	 TFF1	 demonstrated	 a	 biphasic	
expression	 pattern,	 with	 a	 rapid	 increase	 in	 the	 Hirst	 15	 h	 and	 a	 slower	 but	
sustained	 increase	 in	 the	 following	 hours.	 PR	 dynamics	 were	 qualitatively	
different,	with	a	sustained	increase	over	the	entire	measurement	period	of	55	h.		
	
To	mathematically	describe	the	interactions	between	ERα	and	its	downstream	
targets	in	response	to	estrogen	exposure	as	reported	in	literature,	we	developed	
an	ODE	model	for	the	ERα	signaling	pathway	(Model	I;	Fig.	2A;	for	details	see	
Methods).	 In	 this	model,	 binding	 of	 E2	with	 ERα	 and	 subsequent	 binding	 to	
GREB1	 18	 leads	 to	 transcriptional	 activation	 of	 GREB1,	 PR	 and	 TFF1.	 We	
calibrated	the	model	parameters	to	the	experimental	data	for	protein	expression	
dynamics.	 Importantly,	 model	 simulations	 matched	 the	 data	 very	 well	
quantitatively,	 yet	 they	 also	mirrored	 their	 qualitative	 characteristics,	 i.e.,	 bi-
phasic	 GREB1	 and	 TFF1	 dynamics,	 and	 sustained	 PR	 activation	 (Fig.	 2B;	
Supplementary	Figure	1A).	
	

Figure	1.	E2-induced	protein	expression.	(A)	Transcriptional	activation	of	GREB1,	PR	and	TFF1	
in	response	to	E2	binding	to	the	ERα	receptor.	(B)	Example	images	for	the	MCF7	cell	nuclei	(Hoechst	
staining,	blue)	and	protein	expression	 (GFP,	green)	at	0	and	48	hr	after	exposure	 to	100	nM	E2.	
GREB1	 and	 TFF1	 are	 mainly	 expressed	 in	 the	 cytoplasm,	 whereas	 PR	 is	 only	 detectable	 in	 the	
nucleus.	(C)	Dynamics	of	quanti\ied	protein	expression	at	different	E2	concentrations.	Mean	±	SD	of	
three	biological	replicates.		
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To	 assess	 the	 predictive	 capacity	 of	 our	 model	 for	 the	 expected	 relations	
between	 the	 ERα	 targets	 at	 protein	 level,	 we	 used	 previously	 published	
knockdown	data	48	(Fig.	2C).	These	data	demonstrated	a	dependency	of	GREB1	
on	PR	availability	and	vice	versa,	and	a	dependency	of	TFF1	expression	on	the	
presence	of	PR,	but	not	GREB1.	As	can	be	expected	from	its	structure,	our	simple	
literature-based	model	is	not	sufHicient	to	explain	the	dependencies	of	GREB1	
and	TFF1	on	PR.	Indeed,	simulation	of	complete	knockdowns	of	the	proteins	did	
not	 fully	 match	 the	 experimental	 data	 (Fig.	 2D).	 To	 make	 GREB1	 and	 TFF1	
dependent	on	PR,	we	adjusted	the	model	by	including	PR	in	the	E2-ERα/GREB1-
dependent	 stimulation	 of	 GREB1	 and	 TFF1	 (Model	 II;	 Supplementary	 Figure	
1B).	 Although	 this	 model	 Hitted	 the	 expression	 dynamics	 upon	 E2	 exposure	
approximately	equally	well	as	model	I	(Supplementary	Figure	1C	and	1D),	the	
interdependencies	 of	 the	 proteins	 revealed	 after	 knockdown	 were	 still	 not	
completely	reproduced,	because	GREB1	knockdown	is	erroneously	predicted	to	
lead	to	strong	TFF1	overexpression	(Supplementary	Figure	1E).	Therefore,	we	
created	a	third	model,	in	which	PR	binds	E2-ERα	prior	to	the	association	with	
GREB1	(Model	 III;	Fig.	2E).	 In	this	model,	 the	E2-ERα	complex	and	PR	jointly	
promote	transcriptional	activation	of	TFF1.	Moreover,	 the	E2-ERα/PR/GREB1	
complex	 stimulates	GREB1	and	PR.	Calibration	of	 this	model	 gave	an	equally	
good	Hit	to	the	E2	exposure	data	as	models	I	and	II	(Supplementary	Figure	1C	
and	1F)	and	simulation	of	complete	knockdowns	of	GREB1,	PR	and	TFF1	in	this	
model	qualitatively	matched	the	knockdown	data	(Fig.	2F).	Simulations	covering	
a	long	time	period	after	E2	exposure	showed	recovery	of	protein	expression	for	
GREB1	and	PR	upon	E2	disappearance,	but	not	TFF1	 (Supplementary	Figure	
1G).	This	suggests	that	crucial	information	for	correct	predictions	of	long-term	
TFF1	 decay	 may	 be	 lacking.	 Nevertheless,	 our	 model	 suggests	 that	 physical	
association	of	PR	to	the	E2-ERα	complex	is	necessary	to	explain	the	ERα	target	
expression	data	at	protein	level	and	their	interdependencies.	
	
Integration	of	the	E2	signaling	model	with	a	cell	cycle	model	predicts	cell	
cycle	progression	
Previous	research	has	highlighted	the	inHluence	of	GREB1,	PR	and	TFF1	on	cell	
cycle	progression,	i.e.,	knockdown	of	these	proteins	shifts	the	proportion	of	cells	
in	G1,	G1/S	and	S-G2-M	cell	cycle	phases	48.	We	aimed	to	study	this	relationship	
in	more	detail	by	quantifying	the	inHluence	of	E2,	GREB1	and	PR	on	cell	cycle	
phase	duration.	For	this	purpose,	we	combined	our	E2	signaling	model	with	an	
existing	cell	cycle	model	that	simulates	the	oscillations	of	CDK1	and	APC	during	
the	 cell	 cycle	 54,55	 (Fig.	 3A).	 Note	 that	 we	 did	 not	 include	 the	 potential	
contribution	of	TFF1	to	the	cell	cycle,	due	to	the	absence	of	TFF1	decay	in	our	
simulations	at	late	timepoints.	Because	CDK1	is	indirectly	stimulated	by	GREB1	
through	GREB1-dependent	activation	of	Akt	42	that	in	turn	inactivates	the	CDK	
inhibitor	 p2160–62,	 we	 made	 the	 production	 of	 CDK1	 dependent	 on	 GREB1.	
Moreover,	E2	and	PR	stimulate	progression	through	the	G1	phase	via	production	
of	cyclin	D1	32,34,41,63.	To	accelerate	the	transition	from	G1	to	S-G2-M,	we	made	
the	degradation	of	APC	dependent	on	the	availability	of	the	E2-ERα	complex	and	
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PR.	Depending	on	the	strength	of	these	interactions,	constant	availability	of	E2	
resulted	 in	 sustained	 oscillations	 between	 CDK1	 and	 APC	 (Supplementary	
Figure	2;	see	Methods	for	details),	from	which	we	determined	cell	cycle	phase	
durations	(Fig.	3B).	In	a	previous	study,	the	minimum	CDK1	expression	deHined	
the	transition	from	S-G2-M	phase	to	G1,	i.e.,	green	to	red,	and	the	minimum	APC	
activity	deHined	the	transition	point	between	G1	and	S-G2-M	55.	Because	we	also	
aimed	to	determine	the	duration	of	 the	G1/S	transition	phase,	 i.e.,	 the	yellow	
phase,	we	modiHied	the	second	of	the	previously	used	transition	rules.		
	

Figure	2.	E2	signaling	models	and	predictions	of	protein-protein	interaction	dynamics.	 (A)	
Schematic	 diagram	 of	 the	 E2	 signaling	model	 I.	 E2	 and	 ERα	 form	 an	 E2-ERα	 complex	 that	 can	
subsequently	bind	GREB1	to	stimulate	synthesis	of	GREB1,	PR	and	TFF1.	Solid	arrows:	synthesis	
and	degradation;	dashed	arrows:	modulation.	 (B)	Model	simulations	 for	Model	 I	after	parameter	
calibration	(solid	lines)	to	the	experimental	data	(points,	three	independent	replicates	separately	
shown).	 (C)	 Data	 from	 protein	 dynamics	 in	 control	 situation	 (mock)	 or	 after	 siRNA-mediated	
knockdown,	followed	by	24	hr	exposure	to	1	nM	E2	(mean	±	SD	of	three	biological	replicates).	(D)	
Predictions	of	GREB1,	PR	and	TFF1	expression	after	complete	protein	knockdown	in	Model	I.	(E)	
Schematic	diagram	of	the	E2	signaling	model	III	(for	model	II	refer	to	Supplementary	Figure	1).	E2	
and	ERα	form	an	E2-ERα	complex	that	can	also	bind	PR.	E2-ERα	and	PR	stimulate	the	synthesis	of	
TFF1.	E2-ERα/PR	can	bind	GREB1	and	the	resulting	E2-ERα/PR/GREB1	complex	stimulates	GREB1	
and	 PR	 synthesis.	 Solid	 arrows:	 synthesis	 and	 degradation;	 dashed	 arrows:	 modulation.	 (F)	
Simulations	of	GREB1,	PR	and	TFF1	expression	after	complete	protein	knockdown	in	Model	III.		
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Instead	of	basing	the	transition	on	the	APC	minimum,	we	deHined	a	threshold	for	
APC:	when	APC	expression	decreased	below	this	threshold,	cells	went	from	G1	
into	G1/S	transition	phase	and	when	APC	levels	increased	above	the	threshold,	
cells	progressed	from	G1/S	into	S-G2-M	phase.	For	the	transition	from	S-G2-M	
phase	to	G1,	we	followed	the	previously	proposed	minimum	CDK1	expression	
as	transition	point.		
	
To	generate	predictions	for	E2-stimulated	cell	cycle	progression,	we	mimicked	
the	experimental	steps	(culturing,	plating,	starvation	and	exposure)	in	silico	(Fig.	
3C).	Experimentally,	cells	were	cultured	in	complete	medium	containing	growth	
stimulatory	 compounds	 that	 have	 estrogenic	 properties.	 We	 estimated	 the	
concentration	of	E2-equivalent	compounds	in	complete	medium	based	on	the	
degradation	rate	of	GREB1,	PR	and	TFF1	in	starvation	medium	without	addition	
of	 E2	 (Supplementary	 Figure	 3;	 see	 Methods	 for	 details),	 and	 used	 this	
concentration	to	simulate	the	steady	state	protein	concentrations	during	culture		
	

Figure	3.	Model	simulations	of	cell	cycle	progression	with	interference	of	E2-ERα,	GREB1	and	
PR.	(A)	Schematic	representation	of	the	cell	cycle	model	with	CDK1	and	APC,	and	the	effect	of	E2-
ERα,	 GREB1	 and	 PR	 on	 these	 proteins.	 (B)	 Simulations	 of	 oscillations	 of	 CDK1	 and	 APC	 under	
constant	E2	availability,	i.e.,	when	cells	are	in	steady	state.	The	colored	bar	indicates	the	assigned	
cell	 cycle	 phases	 (red,	 G1;	 yellow,	 G1/S	 transition;	 green,	 S-G2-M).	 (C)	 Flow	 of	 subsequent	
experimental	phases	used	to	reproduce	the	experiment	 in	silico.	 (D-E)	Simulated	trajectory	of	E2	
concentration	 (D)	and	of	GREB1	(E,	 left)	and	PR	 (E,	 right)	expression	 in	 the	subsequent	culture,	
starvation	and	100	nM	E2	exposure	phases.	 (F)	Hundred	randomly	chosen	CDK1	and	APC	 initial	
concentrations	from	one	full	cell	cycle	(indicated	by	vertical	lines).	(G-H)	Simulations	of	CDK1	and	
APC	expression	in	100	unsynchronized	cells	during	the	\irst	100	h	in	control	condition,	i.e.,	without	
E2	stimulation	(G),	or	after	1	or	100	nM	E2	exposure	(H).	(I)	Quanti\ication	of	in	silico	cell	phase	
durations	for	the	trajectories	in	H.		
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conditions.	Following	steady-state	attainment	during	 in	silico	culture	(Fig.	3D,	
solid	 line),	we	simulated	the	24-hour	starvation	period,	during	which	E2	was	
removed	from	the	system	(Fig.	3D,	dashed	line).	Right	after	100	nM	E2	exposure,	
we	considered	E2	to	peak	instantly,	after	which	E2	levels	biphasically	dropped	
towards	baseline	levels	(Fig.	3D,	dotted	line).	In	our	simulations,	removal	of	E2	
during	 starvation	 led	 to	 a	 drop	 in	 the	 expression	 of	 GREB1	 and	 PR,	 but	 the	
proteins	recovered	quickly	after	exposure	(Fig.	3E).	In	addition,	we	simulated	
CDK1	 and	 APC	 expression	 under	 different	 E2	 exposure	 conditions	 for	 100	
unsynchronized	virtual	cells,	by	choosing	100	random	starting	positions	during	
one	full	cell	cycle	(Fig.	3F).	Without	E2,	cells	rapidly	entered	a	cell	cycle	arrest	in	
G1,	 indicated	by	 the	sustained	 low	CDK1	activity	after	a	CDK1	minimum,	 i.e.,	
after	mitosis	(Fig.	3G).	After	E2	exposure,	cell	cycle	progression	increased	and	
the	 virtual	 cells	 had	 multiple	 CDK1-APC	 oscillation	 cycles	 (Fig.	 3H).	
QuantiHication	of	cell	cycle	phase	durations	in	our	simulated	cells	exposed	to	1	
and	 100	 nM	 E2	 indeed	 demonstrated	 a	 decrease	 in	 G1	 and	 S-G2-M	 phase	
durations,	but	not	for	G1/S	phase	(Fig.	3I).	Thus,	our	combined	E2	signaling	and	
cell	cycle	model	can	describe	faster	cell	cycle	progression	upon	E2	exposure.		
	
E2	exposure,	GREB1	and	PR	affect	cell	cycle	phase	durations	
To	 examine	 whether	 our	 model	 predictions	 were	 consistent	 with	 cell	 cycle	
progression	 in	 living	cells,	we	exploited	 the	cell	 cycle	data	published	 in	 48	 by	
quantifying	cell	cycle	phase	durations	of	individual	MCF7-FUCCI	reporter	cells.	
FUCCI	cells	have	a	red	or	green	Hluorescent	protein	bound	to	respectively	Cdt1	
and	Geminin.	Because	Cdt1	is	expressed	during	G1	phase	and	Geminin	during	S-
G2-M	phases,	the	color	of	a	cell	indicates	its	cell	cycle	phase,	i.e.,	red	during	G1,	
yellow	during	G1/S	transition	due	to	the	presence	of	both	Cdt1	and	Geminin,	
and	 green	 during	 S-G2-M	 (Fig.	 4A).	 We	 used	 the	 raw	 live-cell	 confocal	
microscopy	data	of	MCF7-FUCCI	reporter	cells	imaged	over	48	h	in	48	(Fig.	4B)	
to	 extract	 cell	 cycle	 phase	 durations.	 The	 high	 resolution	 in	 time	 and	 space	
allowed	us	to	reliably	identify	single	cells	with	a	convolutional	neural	network	
(CNN)-based	 segmentation	 method.	 SpeciHically,	 two	 CNNs	 independently	
predicted	distance	and	neighbor	distance	maps	on	the	basis	of	nuclear	Hoechst	
intensities,	which	jointly	led	to	excellent	predictions	of	segmented	nuclei	(Fig.	
4C).		
	
Based	 on	 these	 segmentations,	 we	 generated	 single	 cell	 tracks	 and	
simultaneously	measured	Cdt1	and	Geminin	 Hluorescence	 intensities	 in	 those	
cells	 (Fig.	 4D).	 These	 data	 allowed	 us	 to	 determine	 per	 cell	 and	 at	 every	
timepoint	the	cell	cycle	phase	(Fig.	4E),	and	consequently	the	duration	of	the	cell	
cycle	phases	after	different	E2	exposure	conditions	(Fig.	4F).	After	exposure	to	
E2,	the	duration	of	the	G1	phase	was	shortened	compared	to	control	conditions	
without	E2,	although	consistent	with	our	cell	cycle	simulations	(Fig.	3E)	this	was	
a	small	effect.	Comparing	the	single	cell	tracks	in	DMSO	(Supplementary	Figure	
4A)	and	after	100	nM	E2	exposure	(Fig.	4E)	clearly	indicated	longer	G1	phases	
for	cells	in	control	conditions,	especially	after	the	Hirst	cell	division.	Consistently,	
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the	shorter	G1	phase	after	E2	exposure	coincided	with	a	faster	increase	in	cell	
counts	 in	 presence	 than	 in	 absence	 of	 E2	 (Supplementary	 Figure	 4B).	 As	
expected	based	on	the	time	required	for	E2	signaling	and	cell	division,	this	E2-
mediated	acceleration	only	started	to	occur	after	an	initial	lag	period	of	30-40	h.	
Overall,	 phases	 were	 slightly	 longer	 in	 our	 simulations	 compared	 to	 the	
experimental	data.	Nevertheless,	the	qualitative	agreement	between	the	model	
simulations	 and	 our	 model	 predictions	 suggested	 that	 our	 model	 correctly	
captures	the	effect	of	E2,	GREB1	and	PR	on	cell	cycle	phase	durations.		
	

Figure	4.	Live-cell	imaging	of	cell	cycle	progression	in	MCF7-FUCCI	cells.	(A)	Fluorescent	cell	
colors	adopted	during	cycling.	Cells	are	red	in	G1	phase	when	Cdt1	is	present	and	green	during	S,	G2	
and	M	phase	when	only	Geminin	is	expressed.	During	G1/S	transition	both	Cdt1	and	Geminin	are	
expressed,	 and	 cells	 display	 a	 yellow	 color.	 Cells	 are	 colorless	 (indicated	 with	 grey	 color)	
immediately	after	mitosis.	(B)	Example	images	of	MCF7-FUCCI	cells	with	Cdt1	in	red	(left	panel),	
Geminin	 in	 green	 (middle	 panel)	 and	 their	 overlay,	 which	 reveals	 the	 yellow	 color	 in	 cells	 that	
express	both	Cdt1	and	Geminin	(right	panel).	 (C)	Example	 images	of	nuclei	segmentation	results	
with	 the	 original	 image,	 cell	 distance	 and	 neighbor	 distance	 predictions,	 and	 the	 segmentation	
result.	(D)	Example	track	of	a	cell	with	the	Cdt1,	Geminin	and	Hoechst	intensity	and	nucleus	size	
over	time.	The	colored	bar	at	the	bottom	displays	the	assigned	cell	cycle	phase	per	timepoint.	(E)	
Assigned	cell	cycle	phases	for	cells	after	100	nM	E2	exposure.	(F)	Distribution	of	cell	cycle	phase	
lengths	at	different	E2	exposure	conditions.	Data	from	one	experiment.	*	p	<	0.01;	**	p	<	0.001,	***	
p	<	0.0001.	
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In	silico	knockdown	successfully	predicts	cell	cycle	phase	durations	
To	 further	 test	 the	 validity	 of	 our	model,	we	 questioned	whether	 our	model	
could	predict	the	effect	of	GREB1	and	PR	knockdown	on	cell	cycle	progression.	
Similar	to	the	FUCCI	data	under	different	E2	exposure	conditions,	we	created	
single	 cell	 tracks	 for	 the	 FUCCI	 siRNA	 transfection	 data	 published	 in	 48	 and	
quantiHied	phase	durations	to	compare	cell	cycle	progression	in	mock	condition,	
i.e.,	 without	 protein	 knockdowns,	 or	 after	 protein	 knockdown	 (Fig.	 5A).	
Knockdown	of	GREB1	increased	the	duration	of	the	G1	and	G1/S	phase,	and	PR	
or	 TFF1	 knockdown	 increased	 G1	 phase	 duration.	 Especially	 after	 PR	
knockdown	the	spread	in	G1	phase	lengths	became	high	and	a	small	number	of	
quantiHiable	tracks	remained.	Visual	comparison	of	the	single	cell	tracks	showed	
that	G1	phases	were	indeed	strongly	increased	after	PR	knockdown	compared	
to	 the	 mock	 condition	 (Supplementary	 Figure	 5A	 and	 5B).	 Similarly,	 the	
differences	 in	 G1	 phase	 duration	 after	 TFF1	 knockdown	 and	 G1/S	 phase	
duration	after	GREB1	knockdown	were	most	apparent	in	the	overviews	of	single	
cell	 tracks	 (Supplementary	 Figure	 5C	 and	 5D),	 presumably	 because	 in	 the	
overall	statistics	we	only	included	measurements	for	which	both	phase	initiation	
and	termination	were	visible	in	the	imaging	period.	These	results	demonstrate	
the	regulatory	role	of	ERα	as	well	as	its	downstream	targets	GREB1,	PR	and	TFF1	
on	MCF7	cell	cycle	progression.	
	
	

Figure	 5.	 Measured	 and	 predicted	 cell	 phase	 durations	 after	 protein	 knockdowns.	 (A)	
Distribution	of	cell	cycle	phase	lengths	without	(mock)	or	after	knockdown	of	GREB1,	PR	and	TFF1	
proteins	and	with	exposure	to	100	nM	E2.	Data	combined	from	two	biological	replicates.	*	p	<	0.01;	
**	p	<	0.001,	***	p	<	0.0001.	 (B)	Flow	of	subsequent	experimental	phases	used	to	reproduce	the	
knockdown	 experiment	 in	 silico.	 (C-D)	 Simulations	 of	 CDK1	 and	 APC	 expression	 in	 100	
unsynchronized	cells	after	(C)	PR	knockdown	or	(D)	GREB1	knockdown	during	the	\irst	100	h	after	
E2	exposure.	(E)	Quanti\ication	of	in	silico	cell	phase	durations	for	the	trajectories	in	D.		
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To	 compare	 the	 experimental	 results	 to	model	 predictions,	we	mimicked	 the	
knockdown	experiment	in	silico	by	introducing	a	complete	knockdown	of	PR	or	
GREB1	24	h	prior	 to	 the	24	h	starvation	period	 (Fig.	5B).	Simulations	of	 this	
model	 predicted	 that	 the	 oscillations	 disappeared	 completely	 after	 PR	
knockdown	 (Fig.	 5C).	 Obviously,	 phase	 durations	 cannot	 be	 determined	 in	
absence	of	oscillations,	but	the	sustained	low	expression	of	CDK1	indicated	that	
in	silico	cells	were	residing	in	G1	phase,	which	was	consistent	with	experimental	
observations	(Supplementary	Figure	5C).	Like	for	PR	knockdown,	oscillations	
were	much	slower	 for	GREB1	knockdown	compared	to	mock	conditions	(Fig.	
5D),	which	was	apparent	 from	 the	quantiHied	 simulated	 cell	 trajectories	 (Fig.	
5E).	 SpeciHically,	 GREB1	 knockdown	 caused	 a	 considerable	 increase	 in	 G1/S	
duration,	similar	to	the	effect	observed	in	the	experimental	data.	However,	the	
S-G2-M	phase	duration	was	also	slightly	increased	in	our	simulations,	which	was	
not	reHlected	by	the	data.	In	conclusion,	with	the	combined	E2	signaling	and	cell	
cycle	 model,	 we	 were	 able	 to	 explain	 the	 most	 important	 Hindings	 in	 the	
experimental	 data,	 i.e.,	 G1	 arrest	 after	 PR	 knockdown	 and	 a	 prolonged	G1/S	
phase	 transition	 after	 GREB1	 knockdown.	 Therefore,	 our	 model	 provides	
valuable	 insight	 in	 the	 regulation	 of	 cell	 cycle	 progression	 by	 E2-regulated	
proteins.	
	
Discussion	
	
EDCs	 interfere	 with	 endogenous	 hormone	 regulation	 and	 can	 cause,	 among	
others,	 disturbance	 of	 developmental	 and	 reproductive	 processes	 64	 and	
immune	system	functioning	65,	depending	on	the	targets	they	bind	to.	Estrogenic	
EDCs	can	alter	cell	cycle	progression,	which	is	associated	with	an	increased	risk	
of	 developing	 cancer	 66,67.	 Therefore,	 it	 is	 important	 to	 obtain	 a	 detailed	
understanding	 of	 how	 EDCs	 affect	 the	 ERα	 signaling	 pathway	 and	 what	 the	
quantitative	 inHluence	 of	 this	 signaling	 is	 on	 cell	 cycle	 progression.	 This	
knowledge	 will	 greatly	 help	 our	 subsequent	 understanding	 of	 the	 impact	 of	
estrogenic	EDCs.		
	
In	 this	 study,	 we	 used	 protein	 expression	 data	 of	 high	 time	 resolution	 after	
exposure	to	different	E2	concentrations	and	ERα	target	knockdowns	GREB1,	PR	
and	TFF1	to	build	an	ODE	model	that	can	both	describe	the	upregulation	of	ERα	
targets	 under	 inHluence	 of	 E2,	 and	 predict	 the	 effect	 of	 knockdown	 of	 single	
proteins	on	the	expression	of	the	others.	In	our	model,	binding	of	both	GREB1	
and	PR	to	the	E2-ERα	complex	was	necessary	to	correctly	describe	the	protein	
dynamics	after	E2	exposure	and	protein	knockdowns,	generating	a	new	theory	
on	 the	 transcriptional	 E2-ERα-protein	 complex	 formed	 in	 response	 to	 E2	
exposure	that	drives	cell	cycle	progression.		
	
In	addition,	we	studied	the	effect	of	activation	of	the	E2	signaling	pathway	on	
cell	 cycle	 progression	 by	 creating	 single	 cell	 tracks	 of	MCF7-FUCCI	 cells	 and	
quantifying	 phase	 durations.	 GREB1,	 PR	 and	 TFF1	 affected	 cell	 cycle	 phase	
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duration	in	a	distinct	manner.	We	integrated	our	E2	signaling	dynamics	model	
with	 a	 cell	 cycle	 progression	 model	 to	 understand	 the	 relation	 between	
subcellular	processes	 and	 cell	 behavior.	We	 found	 that	 knockdown	of	GREB1	
caused	a	prolonged	G1/S	phase	transition	due	to	prolonged	CDK1	induction	in	
absence	of	GREB1.	In	contrast,	our	model	suggested	that	slow	APC	degradation	
after	PR	knockdown	explains	the	resulting	G1	arrest.	Although	the	prolonged	G1	
phase	 after	 TFF1	 knockdown	 corroborates	 previous	 reports	 45,48,	 we	 did	 not	
include	TFF1	 in	 the	model	 due	 to	 unreliable	 predictions	 at	 timepoints	much	
later	 than	 72	 h.	 Therefore,	 further	 examination	 of	 the	 regulation	 of	 TFF1,	
particularly	 its	 degradation,	 is	 necessary	 to	 accurately	describe	 its	 long-term	
dynamics.		
	
In	general,	our	study	shows	that	combining	a	signaling	pathway	model	with	a	
molecular	cell	cycle	model	can	be	a	successful	strategy	to	quantify	the	effect	of	
protein	dynamics	on	downstream	cell	fate.	Nevertheless,	our	approach	is	only	
one	 of	 many	 options	 to	 integrate	 intracellular	 dynamics	 with	 cell	 cycle	
progression.	Indeed,	the	dynamics	of	proteins	involved	in	cell	cycle	progression	
have	 been	 modeled	 extensively	 52,	 in	 different	 gradations	 of	 complexity.	 For	
example,	 there	are	simple	models	 that	consist	of	merely	 two	to	 four	proteins	
54,55,68,69,	and	complex	models	that	contain	more	than	20	state	variables	56,70,71.	
Models	that	focus	on	cell	cycle	phase	transitions	often	explicitly	model	the	cell	
cycle	phases	rather	than	the	intracellular	protein	dynamics	53,57,72,73.	Although	
these	 models	 are	 well	 suited	 to	 compare	 simulations	 with	 FUCCI	 cell	 cycle	
progression	data,	 it	 is	 challenging	 to	 integrate	 these	with	a	model	describing	
signaling	components	that	affect	the	cell	cycle,	such	as	the	E2	signaling	pathway.	
Therefore,	we	asked	whether	a	simple	cell	cycle	model	would	be	sufHicient	to	
connect	 our	 E2	 signaling	model	 to	 the	 cell	 cycle.	 SpeciHically,	we	 elected	 the	
elementary	cell	cycle	model	of	Bae	et	al.	(2019)	55,	which	could	classify	cell	cycle	
phases	 based	 on	 the	 dynamics	 of	 proteins	 CDK1	 and	 APC.	 Because	 we	 only	
studied	the	effect	of	GREB1	and	PR	on	cell	cycle	progression	and	these	proteins	
play	distinct	 roles	 in	 cell	 cycle	progression,	 this	 simple	model	 gave	 adequate	
results.	However,	incorporation	of	the	effects	of	other	proteins	with	additional	
and	potentially	subtle	effects	on	the	cell	cycle	may	require	a	complex	cell	cycle	
model.		
	
We	showed	that	predictions	of	our	combined	E2	signaling	and	cell	cycle	model	
qualitatively	 matched	 the	 knockdown	 effects	 on	 cell	 cycle	 phase	 durations	
observed	in	our	experimental	data.	However,	the	overall	duration	of	cell	phases	
was	considerably	higher	in	our	simulations	than	in	the	experimental	data,	which	
at	Hirst	sight	is	surprising.	To	generate	our	simulations,	we	set	the	kGREB1	and	r	
parameters	 such	 that	 the	 expected	 value	 for	 the	 mean	 division	 time	 was	
approximately	48	h,	similar	to	the	proliferation	rate	at	population	level	in	the	
data	 (Supplementary	 Figure	 4B).	 Moreover,	 we	 selected	 cell	 cycle	 model	
parameters	such	that	the	length	of	the	G1	and	S-G2-M	phases	were	comparable,	
as	was	the	case	in	our	experimental	data	and	in	data	reported	elsewhere	57,74.	
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The	quantitative	mismatch	in	phase	durations	between	experiment	and	model	
is	 likely	 partially	 due	 to	 the	 limited	 time	window	 of	 observation	 in	 imaging	
experiments.	In	many	tracks,	the	total	duration	of	at	least	one	cell	cycle	phase	
could	 therefore	 not	 be	 determined.	 Measurements	 of	 cells	 with	 long	 phases	
could	therefore	often	not	be	taken	along	in	the	summary	statistics,	which	caused	
an	overrepresentation	of	cells	with	short	phases	in	our	data.	
	
An	additional	mismatch	between	observed	and	in	silico	cell	cycle	phases	was	the	
lower	variability	in	phase	durations	in	simulated	cells	compared	to	MCF7	cells.	
Clearly,	the	variation	in	phase	durations	between	cells	is	not	only	caused	by	the	
phase	cells	are	in	at	time	of	treatment,	but	also	by	stochastic	variation	between	
cells	57,75,76	which	we	did	not	incorporate	in	our	model.	Thus,	the	quantitative	
discrepancies	 in	 cell	 phase	 duration	 could	 be	 due	 to	 a	 combination	 of	
shortcomings	 of	 the	 data	 and	 simulation	 setup.	 Various	 approaches	 can	
contribute	to	solving	such	problems,	e.g.,	 longer	measurement	time	windows,	
mathematical	 approaches	 to	 correct	 for	 censored	 data	 77,	 and	 inclusion	 of	
stochastic	intercellular	variation	in	model	parameters.		
	
To	 correctly	 capture	 the	 protein	 dynamics	 of	 GREB1,	 PR	 and	TFF1	 and	 their	
interactions,	we	found	that	a	physical	association	between	the	E2-ERα	complex	
and	both	PR	and	GREB1	was	required,	in	addition	to	E2-ERα	and	PR-dependent	
stimulation	 of	 TFF1.	 In	 this	 way,	 the	model	 ensured	 the	 interdependency	 of	
GREB1	and	PR,	and	GREB1-independency	of	TFF1.	Two	prior	studies	revealed	
the	potential	of	PR	to	bind	to	ERα	in	the	presence	of	progestins	19,20.	Because	the	
media	used	in	our	study	did	not	contain	progestins,	nor	was	progesterone	used	
as	exposure	condition,	our	work	suggests	that	ERα/PR	association	also	occurs	
in	presence	of	 estrogen.	Thus,	 further	 research	 into	 the	physical	 interactions	
between	these	proteins	is	warranted.	This	will	help	to	resolve	the	role	of	PR,	the	
order	of	complex	 formation	and	the	contribution	of	 the	various	complexes	 in	
transcriptional	activation	of	the	target	genes.		
	
With	our	approach,	we	managed	to	build	a	model	that	connects	two	levels	of	
biological	complexity,	i.e.,	E2	signaling	dynamics	and	cell	cycle	progression.	Our	
model	 allows	quantiHication	of	 the	effect	of	perturbations	 in	 the	E2	 signaling	
pathway	on	cell	cycle	progression	and	can	support	mechanistic	understanding	
of	cell	cycle	regulation	by	estrogenic	EDCs.	Further	extensions	that	include	the	
interactions	 of	 other	 proteins	 or	 signaling	 pathways	 will	 establish	 a	 holistic	
model	for	the	cellular	response	to	endocrine	disrupting	chemicals	on	cell	cycle	
progression.	In	addition,	incorporation	of	these	ODE	models	in	qAOPs	involving	
ERα	 activation	 as	 key	 event	 could	 determine	 biological	 tipping	 points	 and	
predict	consequent	adverse	outcomes	58,59,78,79.	In	combination	with	short	term	
in	vitro	data	of	the	BAC-GFP	reporters	exposed	to	estrogenic	EDCs	such	as	E2,	
the	 industrial	 phenolic	 bisphenol	A	 or	 the	phytoestrogen	 genistein,	 this	ODE	
model	 could	 be	 exploited	 to	 predict	 their	 effect	 on	 proliferation	 at	 later	
timepoints.	 These	next-generation	 risk	 assessment	 approaches	 are	becoming	
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increasingly	 relevant,	 as	 they	 will	 reduce	 time	 and	 resources	 in	 the	 safety	
evaluation	of	chemicals.		
	
Methods	
	
Cell	culture	and	exposure		
We	maintained	MCF7	 GREB1-GFP,	MCF7	 PR-GFP,	MCF7	 TFF1-GFP	 and	MCF7	
FUCCI	cells	(established	as	described	in	Duijndam	et	al.,	2021	48)	in	RPMI-1640	
medium	modiHied	with	l-glutamine,	HEPES	and	phenol	red	(#22400089,	Gibco,	
ThermoFisher	ScientiHic)	and	supplemented	with	10%	fetal	bovine	serum	(FBS)	
(#10270106,	Gibco,	ThermoFisher	ScientiHic),	25	U/ml	penicillin	and	25	μg/ml	
streptomycin	(#15070063,	Gibco,	ThermoFisher	ScientiHic)	(further	referred	to	
as	 complete	 medium)	 at	 37	 °C	 under	 5%	 CO2	 atmosphere.	 The	 starvation	
medium	 consisted	 of	 phenol	 red-free	 RPMI1640	 medium	 modiHied	 with	 l-
glutamine	(#11835105,	Gibco,	ThermoFisher	ScientiHic)	supplemented	with	5%	
charcoal/dextran-treated	fetal	bovine	serum	(cdFBS)	(#SH30068.03,	HyClone,	
GE	Healthcare).	We	 treated	 cells	with	 17β-estradiol	 (E2)	 (no.	 E1024,	 Sigma-
Aldrich),	 as	 described	 below.	 We	 freshly	 prepared	 serial	 dilutions	 in	 DMSO	
(VWR	International)	per	 independent	run	and	 further	diluted	 it	 in	starvation	
medium	with	a	maximum	concentration	of	0.1%	(v/v)	DMSO.		
	
Live-cell	imaging	
To	prepare	the	GFP	reporter	cells	for	72	h	live	imaging,	we	seeded	cells	in	a	384-
well	black	screenstar	imaging	plate	(no.	781866,	Greiner	Bio-One)	in	complete	
medium	 and	 after	 16-24 h	 the	medium	was	 replaced	 by	 starvation	medium.	
Following	 a	 24-hour	 starvation	 period,	 and	 2 h	 prior	 to	 exposure	 to	 E2,	 we	
loaded	 the	 cells	with	 100 ng/ml	Hoechst	 33342	 (ThermoFisher	 ScientiHic)	 to	
visualize	 the	 nuclei	 and	 removed	 the	 Hoechst-containing	 medium	 before	
exposure.	We	exposed	the	cells	to	E2	in	a	broad	concentration	range	(100	fM	to	
10	µM	E2,	with	10-fold	dilution	steps),	and	captured	images	every	hour	for	72	h	
(2	positions	per	well,	2	wells	per	condition).	We	performed	the	experiment	in	
triplicate,	 i.e.,	 with	 a	 new	 batch	 of	 cells,	 to	 generate	 three	 biologically	
independent	replicates.	
	
We	used	the	siRNA	transfection	data	and	FUCCI	imaging	experiments	published	
by	Duijndam	et	al.,	2021	48.	In	short,	in	these	experiments,	cells	were	reversely	
transfected	with	siRNA	in	a	96-well	plate.	16-24	h	after	transfection,	the	medium	
was	replaced	by	starvation	medium.	After	a	24-hour	starvation	period,	and	2 h	
prior	to	exposure	to	E2,	cells	were	loaded	with	Hoechst,	and	Hoechst-containing	
medium	was	removed	before	exposure.	Cells	were	exposed	to	E2,	and	images	
were	captured	every	hour	for	24	h	(GFP	reporters,	4	positions	per	well,	2	wells	
per	 conditions,	 3	 biological	 replicates)	 or	 every	 half	 hour	 for	 48	 h	 (FUCCI	
reporter,	4	positions	per	well,	2	wells	per	condition,	1	biological	replicate	for	the	
experiment	 with	 different	 E2	 concentrations	 and	 2	 biological	 replicates	 for	
siRNA-mediated	knockdown	experiments.		



	
Chapter	4	

 112 

	
To	 evaluate	 the	 response	 to	 potential	 estrogenic	 stimuli	within	 the	 complete	
medium	utilized	in	our	experimental	set-up	and	estimate	the	rate	of	decay	of	
these	stimuli	during	starvation,	we	conducted	a	starvation	experiment	with	the	
GFP	 reporter	 cells	 under	 one	 of	 the	 following	 conditions:	 (I)	 cells	 were	
maintained	 in	 complete	medium	prior	 to	 plating	 and	 subsequently	 plated	 in	
complete	 medium,	 and	 the	 complete	 medium	 was	 replaced	 by	 starvation	
medium	two	days	later,	or	(II)	cells	were	maintained	in	complete	medium	prior	
to	 plating	 and	 subsequently	 plated	 in	 complete	 medium,	 and	 the	 complete	
medium	was	 replaced	by	 starvation	medium	 the	next	day,	or	 (III),	 cells	were	
maintained	 in	 complete	medium	prior	 to	 plating	 and	 subsequently	 plated	 in	
starvation	medium,	or	(IV)	cells	were	maintained	in	starvation	medium	prior	to	
plating	and	subsequently	plated	in	starvation	medium	(Supplementary	Figure	
3A).	We	seeded	cells	in	a	384-well	black	screenstar	imaging	plate	(no.	781866,	
Greiner	Bio-One).	 In	 each	 condition,	we	 loaded	 cells	with	Hoechst	48	h	 after	
plating	 and	 2 h	 prior	 to	 imaging,	 and	 the	 Hoechst-containing	 medium	 was	
removed	immediately	before	imaging	(as	described	above).	We	captured	images	
at	 0,	 24	 and	 48	 h	 (2	 positions	 per	 well,	 2	 wells	 per	 condition,	 1	 biological	
replicate).	Hoechst,	GFP	and	RFP	levels	were	monitored	using	a	Nikon	TiE2000	
confocal	 laser	microscope	 (lasers:	 408,	 488,	 561,	 647 nm),	 equipped	with	 an	
automated	stage,	perfect	focus	system,	and	climate	chamber	(at	37	°C	under	5%	
CO2	 atmosphere).	 Imaging	 was	 performed	 with	 a	 Nikon	 Plan	 Apo	 20×	
magniHication	 objective	 lens	 (1×	 or	 2×	 optical	 zoom)	 using	 NIS	 elements	
software	(Nikon).		
	
Population	level	image	analysis	
To	obtain	population	level	protein	expression	data	matrices	from	the	72	h	BAC-
GFP	live-cell	 imaging	data,	we	used	CellProHiler	version	2.1.1.	First,	 individual	
nuclei	 were	 segmented	 with	 an	 in-house	 developed	 module	 for	 Watershed	
Masked	Clustering	 (WMC)	 80.	The	 resulting	binary	 image	was	used	 for	nuclei	
identiHication	 using	 the	 IdentifyPrimaryObjects	 module,	 followed	 by	 the	
IdentifySecondaryObjects	module	 with	 the	 N-distance	method	 of	 8	 pixels	 to	
determine	the	cytoplasmic	region.	To	obtain	the	GFP	intensities	in	the	nuclei	and	
cytoplasm,	 we	 applied	 the	 MeasureObjectIntensity	 module.	 After	 export	 to	
HDF5	Hiles,	we	extracted	relevant	 features	 from	these	 Hiles,	 i.e.,	 the	 integrated	
cytoplasmic	 (for	 GREB1	 and	 TFF1)	 and	 nuclear	 (for	 PR)	 intensities	 and	 cell	
count,	using	the	H5CellProHiler	method	by	Wink	et	al.	(2022)	81.	
	
Following	 this	 initial	 image	 analysis,	 we	 performed	 additional	 data	 analysis	
steps.	First,	we	normalized	cell	counts	by	calculating	the	ratio	between	the	cell	
count	 at	 each	 timepoint	 and	 the	 number	 of	 cells	 at	 the	 Hirst	 measurement	
timepoint.	Second,	in	control	experiments	with	exposure	of	cells	to	DMSO,	the	
GFP	 intensities	 decreased	 over	 time.	 To	 correct	 the	 GFP	 intensities	 for	 this	
observed	 decrease	 in	 control	 conditions,	 we	 computed	 the	 ratio	 between	
measurements	with	E2	 exposure	 and	 those	with	DMSO	exposure	 (taking	 the	
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average	of	the	technical	replicates	for	DMSO)	per	biological	replicate,	reporter	
cell	 line	 and	 timepoint.	 Third,	 due	 to	 likely	 erroneous	measurements	 at	 late	
timepoints	a	sudden	temporary	drop	in	intensity	of	GREB1	and	TFF1	occurred	
in	 two	 out	 of	 three	 biological	 replicates.	 Therefore,	 we	 removed	 the	 data	
collected	at	time	points	later	than	55	h.	
	
Nuclei	segmentation	for	cell	tracking	
To	 improve	 the	 identiHication	 of	 distinct	 nuclei	 and	 acquire	 reliable	
segmentation	 for	 single	 cell	 tracking	 of	 the	 FUCCI	 experiments	 (see	 section	
Single	 cell	 tracking),	we	adapted	and	 trained	an	existing	U-Net	 convolutional	
neural	network	82	established	by	Scherr	et	al.	(2020)	83.	In	this	model,	a	single	
neural	network	with	 two	parallel	decoder	paths	predicts	both	a	 cell	distance	
map	 (CDP)	 and	 a	 neighbor	 distance	 map	 (NDP).	 These	 maps	 (construction	
explained	in	more	detail	below)	quantify	the	distance	to	either	pixels	belonging	
to	other	cells	(NDP)	or	to	any	pixel	belonging	to	other	cells	or	background	(CDP).	
To	avoid	competition	between	the	CDP	and	NDP	predictions	in	the	architecture	
of	the	original	model,	we	separated	the	single	neural	network	with	two	parallel	
decoder	paths	into	two	neural	networks	each	with	their	own	decoder	path.	The	
neural	network	was	built	using	the	Pytorch	library	in	Python	version	3.7.10.	
	
To	improve	prediction	performance	of	the	pre-trained	neural	network	on	our	
images,	 we	 created	 training	 sets	 using	 manual	 segmentation	 on	 20x	
magniHication	 images	 in	 ImageJ	 (16	 images,	 with	 in	 total	 2312	 examples	 of	
segmented	 nuclei).	 Because	 automated	 segmentation	 performs	well	 on	 high-
resolution	 images	 and	 its	 assistance	 speeds	 up	 the	 manual	 segmentation	
process,	 we	 used	 CellProHiler’s	 IdentifyPrimaryObjects	 module	 followed	 by	
manual	 correction	 for	 40x	 magniHication	 images	 (20	 images,	 with	 each	
approximately	50-100	objects	per	 image).	 Prior	 to	 training,	 these	 segmented	
images	were	 converted	 to	 CDPs	 and	NDPs	with	 a	 pre-processing	 pipeline	 in	
Python	attached	to	the	model.	Following	Scherr	et	al.	(2020)	83,	we	created	the	
CDP	by	applying	a	distance	transform	to	each	cell,	 i.e.,	each	pixel	of	an	object	
obtains	a	value	for	the	distance	to	the	nearest	pixel	not	belonging	to	the	same	
object,	followed	by	normalization	of	the	distance	transform	to	a	[0,	1]	interval	
and	combining	the	results	per	object	to	create	a	single	CDP.	For	the	creation	of	
an	 NDP,	 each	 single	 segmented	 object	 was	 removed	 one	 at	 a	 time	 from	 the	
segmented	image	by	subtraction,	which	resulted	in	a	set	of	images	that	all	had	
one	segmented	object	missing.	We	subsequently	inverted	the	resulting	images	
and	 applied	 a	 distance	 transform.	 This	 image	was	masked	 to	 the	 segmented	
image	of	 the	removed	cell,	normalized	to	a	 [0,	1]	 interval	and	 inverted	again.	
Finally,	we	combined	all	 the	resulting	neighbor	distance	 transformed	objects,	
applied	grayscale	closing	with	a	kernel	of	3	by	3	and	raised	the	pixel	values	to	a	
power	of	10	to	obtain	a	steep	gradient	within	objects.	
	
We	augmented	the	training	set	by	mirroring	the	images,	rotating	them	with	90,	
180	 and	 270	 degrees	 before	 and	 after	 mirroring,	 and	 applying	 an	 elastic	
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deformation	84	with	sigma = 6	and	alpha = 40	and	subsequently	mirroring	
and	rotating	the	deformed	images.	During	training,	the	images	for	training	were	
shufHled	and	randomly	split	into	a	training	set	containing	90%,	and	an	evaluation	
set	 containing	 10%	 of	 the	 images.	 During	 training	 of	 the	 model	 on	 the	 40x	
magniHication	images,	we	used	a	batch	size	of	10	for	a	maximum	of	15	epochs	
for	the	NDP	model	and	10	epochs	for	the	CDP	model.	We	changed	the	number	of	
epochs	 to	 20	 and	 5	 for	 training	 the	 NDP	 and	 CDP	 models	 on	 the	 20x	
magniHication	images,	respectively.	To	create	the	Hinal	CDP	and	NDP	predicted	
images	to	be	employed	for	segmentation,	we	used	seed	extraction	and	a	binary	
mask	followed	by	a	watershed	on	the	prediction	output	 images	of	 the	model.	
First,	we	applied	Gaussian	smoothing	on	both	 the	cell	 and	neighbor	distance	
predictions	with	sigma = 1.5.	We	used	a	threshold	of	0.15	to	the	smoothed	
cell	distance	prediction	to	generate	a	binary	mask.	Next,	the	smoothed	neighbor	
distance	prediction	was	squared	and	subtracted	from	the	smoothed	cell	distance	
prediction,	which	provided	the	basis	for	the	seed	map.	We	generated	the	Hinal	
seeds	by	applying	a	threshold	of	0.25	to	the	subtracted	image	and	used	the	mask	
and	seeds	as	input	for	the	watershed.		
	
Single	cell	tracking	
We	 used	 the	 U-net-based	 segmentation	 predictions	 of	 the	 FUCCI	 images	 as	
direct	 input	 for	a	single-cell	 tracking	pipeline	 in	CellProHiler	4.1.3.	Within	 the	
TrackObjects	module,	we	applied	the	overlap	method	to	create	single-cell	tracks,	
allowing	for	a	maximum	distance	of	40	pixels	between	the	objects’	centers	of	
mass	at	subsequent	timepoints.	Because	CellProHiler	uses	the	same	object	ID	for	
all	 cells	within	 one	 lineage,	 i.e.,	 the	 parental	 cell	 and	 all	 its	 descendants,	we	
renamed	the	tracks	of	sequential	daughter	cells	with	the	CPtrackR	package	in	R	
(available	at	https://doi.org/10.5281/zenodo.4725472)	to	obtain	unique	track	
IDs	for	each	track.	For	example,	instead	of	ID	1	for	both	a	mother	cell	and	her	
two	daughter	cells,	the	mother	cell	with	ID	1	produces	daughters	with	IDs	1.1	
and	 1.2.	 Equivalently,	 descendants	 of	 daughter	 1.1	 are	 assigned	 ID	 1.1.1	 and	
1.1.2.	The	resulting	tracking	data	were	subsequently	Hiltered	and	processed	in	R	
version	4.2.1	 to	remove	unreliable	 tracks	 that	originate	 from	mistakes	by	 the	
automated	 tracking	 algorithm.	 First,	 we	 removed	 track	 IDs	 of	 less	 than	 5	
timepoints	in	length	and	without	descendants	from	the	data	set,	i.e.,	objects	that	
appear	and	rapidly	disappear.	Second,	for	every	Hinal-generation	descendant	we	
created	a	single	‘family’	track	containing	the	subtracks	of	all	ancestors,	such	that	
every	row	of	the	data	set	contained	a	unique,	full	track	from	initial	parent	up	to	
the	 last	 generation	 descendant.	 Note	 that	 this	 implies	 that	 the	 ancestor	
subtracks	of	these	rows	are	exactly	repeated	across	multiple	family	tracks.	Third,	
we	removed	short	family	tracks	of	30	timepoints	or	less.	Fourth,	family	tracks	
with	more	 than	 4	 divisions	 based	 on	 the	 Geminin-GFP	 intensity	 (as	 deHined	
below)	were	removed	from	the	data	set.	
	
For	every	segmented	nucleus	we	used	 the	MeasureObjectIntensity	module	 to	
extract	 the	 Geminin-GFP	 and	 Cdt1-RFP	 intensities	 inside	 the	 nuclei.	 In	
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combination	with	tracking,	this	delivered	sequences	of	the	readouts,	i.e.,	Cdt1-
RFP,	Geminin-GFP,	Hoechst	mean	intensities	in	the	nuclei	and	the	nuclear	size.	
We	 normalized	 each	 readout	 using	 min-max	 normalization,	 i.e.,	 𝑥⃗M =
	 N:"0?L(N⃗)
0FJ(N⃗)"0?L(N⃗)

,	with	𝑥𝑖	the	single	measurements	and	𝑥	all	measurements	per	readout	
channel	 within	 one	 experiment.	 After	 careful	 examination	 of	 the	 tracks,	 we	
deduced	that	irregularities	in	the	Geminin-GFP	intensity	were	most	indicative	
for	unreliable	tracks.	To	Hilter	out	uncertain	tracks,	we	determined	cell	divisions	
based	on	the	Geminin-GFP	expression	pattern.	For	this	purpose,	we	smoothed	
the	Geminin	readout	with	a	rolling	mean	with	a	window	of	2	 timepoints	and	
calculated	 the	 difference	 d	 between	 consecutive	 expression	 values.	 We	
considered	the	logical	expression		
	
cell	division = 	d < −0.5	 ∙ SD(Geminin)	,	 Eq.	1	

with	SD	the	standard	deviation,	to	determine	whether	a	cell	division	occurred,	
i.e.,	a	cell	divided	when	its	Geminin-GFP	value	decreased	more	quickly	than	a	
threshold.	We	removed	tracks	with	more	than	4	cell	divisions	from	the	data	set.	
	
To	remove	small	Hluctuations	in	measurements,	we	applied	a	rolling	mean	with	
a	 centered	 window	 of	 10	 timepoints	 on	 the	 raw	 values	 of	 all	 readouts.	
Subsequently,	 we	 computed	 and	 log-transformed	 the	 Geminin:Cdt1	 ratio	
according	to	the	conditions	
	

r = Y
−100, (Geminin = 0) 	∨ (Geminin < 0.0001	 ∧ Cdt1 < 0.0001)
100, (Cdt1 = 0) ∧ (Geminin > 0.0001)

log7K Q
:E0?L?L
C&%7

R , otherwise
	.	

Eq.	2	

	
We	then	determined	the	cell	cycle	phase	per	 track	according	to	 the	 following	
conditions:	
	

cell	cycle	phase = ^
G1, (r = −100) 	∨ (Cdt1 > Geminin)

S-G2-M, (r = 			100) 	∨ (Geminin > Cdt1)
G1/S, |r| < 2

	.		
Eq.	3	

	
Despite	the	Hiltering	steps	and	application	of	the	rolling	mean	to	prevent	small	
measurement	 Hluctuations	 leading	 to	 repeated	 cell	 cycle	 switching,	 some	
irregularities	 in	 phase	 assignment	 still	 occurred.	 We	 therefore	 applied	 an	
additional	correction:	if	the	determined	cell	cycle	phase	switched	to	a	different	
phase	 but	 reverted	 within	 maximally	 4	 timepoints,	 we	 corrected	 this	 by	
replacing	 the	 phase	 assigned	 to	 the	 timepoints	 with	 the	 alluded	 temporary	
phase	 change	 with	 the	 phase	 before	 the	 switch.	 In	 addition,	 irregularities	
occurred	in	cells	that	went	from	S-G2-M	to	G1	phase	during	mitosis,	a	transition	
in	which,	for	a	short	period	of	time,	the	|r|	value	could	become	smaller	than	2,	
which	led	to	a	cell	cycle	phase	assignment	of	G1/S.	In	these	cases,	we	corrected	
the	G1/S	phase	to	become	G1	(i.e.,	transition	from	S-G2-M	directly	to	G1-S	was	
not	allowed).		
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Following	 the	 above	 assignment	 of	 cell	 phases,	 we	 quantiHied	 the	 phase	
durations	 for	 each	 unique	 track.	 For	 this	 purpose,	 we	 removed	 the	 parts	 of	
family	 tracks	 that	 led	 to	 parental	 track	 duplicates	 and	 very	 short	 remaining	
subtracks	of	5	or	less	timepoints	in	length	(after	removal	of	the	parental	parts	
of	 a	 track).	 For	 statistical	 analysis,	we	 included	only	 the	 cell	 cycle	phases	 for	
which	the	start	and	end	were	both	contained	in	the	measurement	time	window	
of	48	h.	A	pairwise	t-test	with	a	Bonferroni	correction	for	multiple	testing	was	
applied	 to	 identify	 signiHicant	 differences	 in	 phase	 durations	 between	
conditions,	i.e.,	E2	concentrations	and	siRNA	knockdown	conditions.		
	
E2	signaling	models	
We	created	three	ODE	model	variants	to	simulate	the	E2	signaling	pathway	and	
to	 predict	 the	 inter-protein	 dependencies	 revealed	 by	 the	 knockdown	
experiments.	 Apart	 from	 mass-action	 kinetics	 to	 describe	 synthesis	 and	
degradation	rates,	we	modeled	binding,	modiHication	and	stimulation	of	state	
variables	with	terms	of	the	form	𝑝 ∙ (	∙	+

,-(-+
	,	with	p	a	parameter	and	X	and	Y	state	

variables,	to	prevent	unlimited	accumulation	of	these	entities	in	the	system.	In	
Model	 I,	E2	(E2)	binds	to	ERα	(ER)	 to	 form	an	E2-ERα	(E2_ER)	complex	with	
binding	 rate	bE2_ER.	 In	 contrast	 to	E2,	which	 is	 only	depleted	 through	E2-ERα	
complex	formation	and	subsequent	degradation	of	this	complex	with	rate	dE2_ER,	
ERα	is	replenished	by	basal	synthesis	(sER)	and	degraded	with	rate	dER.	GREB1	
(GREB1)	associates	with	the	E2-ERα	complex	at	rate	bE2_ER_GREB1	to	form	an	E2-
ERα/GREB1	(E2_ER_GREB1)	complex.	The	differential	equations	for	E2,	ERα	and	
their	complexes	thus	become:	
	
	
&R1
&%
= 	− 	;;(_;"	∙	R1	∙	R-

7	6	R1	6	R-
	,	 Eq.	4	

		
&R-
&%
= 	 sR- −

;;(_;"	∙	R1	∙	R-
7	6	R1	6	R-

−	dR- ∙ ER	,	 Eq.	5	

	
&R1_R-
&%

= 	 ;;(_;"	∙	R1	∙	R-
7	6	R1	6	R-

− ;;(_;"_8";=,	∙	R1_R-	∙	:-R87
7	6	R1_R-	6	:-R87

−	dR1_R- ∙ E2_ER	,	and	 Eq.	6	

	
&R1_R-_:-R87

&%
= 	 ;;(_;"_8";=,	∙	R1_R-	∙	:-R87

7	6	R1_R-	6	:-R87
−	dR1_R-_:-R87 ∙ E2_ER_GREB1	.	 Eq.	7	

	
Apart	 from	basal	synthesis	of	proteins	GREB1,	PR	and	TFF1	(TFF1)	with	rate	
constants	sGREB1,	sPR,	sTFF1,	their	degradation	with	rate	constants	dGREB1,	dPR,	dTFF1,	
and	consumption	of	GREB1	into	the	E2-ERα/GREB1	complex,	the	synthesis	of	
the	three	proteins	is	stimulated	by	the	E2-ERα/GREB1	complex.	SpeciHically,	the	
formation	of	GREB1,	PR	and	TFF1	is	stimulated	by	the	E2-ERα/GREB1	complex	
with	rate	stimGREB1,	stimPR,	and	stimTFF1,	respectively.	The	full	ODEs	for	GREB1,	PR	
and	TFF1	thus	become:	
	
&:-R87

&%
= 	 s:-R87 +

4%?08";=,	∙	R1_R-_:-R87
7	6	R1_R-_:-R87

−	d:-R87 ∙ GREB1	,	 Eq.	8	
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&)-
&%
= 	 s)- +

4%?0>"	∙	R1_R-_:-R87
7	6	R1_R-_:-R87

−	d)- ∙ PR	,	and	 Eq.	9	

	
&9TT7
&%

= 	 s9TT7 +
4%?0?@@,	∙	R1_R-_:-R87

7	6	R1_R-_:-R87
−	d9TT7 ∙ TFF	.	 Eq.	10	

	
For	Model	II,	we	adjusted	Equation	8	and	10	to	make	GREB1	and	TFF1	synthesis	
in	 addition	 dependent	 on	 PR	 (besides	 dependence	 on	 the	 E2-ERα/GREB1	
complex).	In	addition,	we	made	TFF1	production	independent	of	GREB1,	such	
that	TFF1	was	 stimulated	by	 the	E2-ERα	 complex	 and	PR	 in	 a	 co-dependent	
manner.	The	new	ODEs	for	GREB1	and	TFF1	became:	
	
&:-R87

&%
= 	 s:-R87 +

4%?08";=,	∙	R1_R-_:-R87	∙	)-
7	6	R1_R-_:-R87	6)-

−	d:-R87 ∙ GREB1	,	and	 Eq.	11	

	
&9TT7
&%

= 	 s9TT7 +
4%?0?@@,	∙	R1_R-	∙	)-

7	6	R1_R-	6)-
−	d9TT7 ∙ TFF1	.	 Eq.	12	

	
In	Model	III,	we	adjusted	the	equations	once	more	by	creating	an	intermediate	
E2-ERα/PR	 complex	 (E2_ER_PR)	 prior	 to	 GREB1	 binding.	 The	 complex	 with	
GREB1	bound	 to	E2-ERα/PR	 (E2_ER_PR_GREB1)	was	 considered	 to	 stimulate	
the	 production	 of	 GREB1	 and	 PR.	 Formation	 of	 the	 E2-ERα	 complex	 itself	
(Equations	4-6)	remained	the	same,	and	the	ODEs	for	formation	of	E2-ERα/PR,	
E2-ERα/PR/GREB1	and	GREB1,	PR	and	TFF1	then	became:	
	
&R1_R-_)-

&%
= 	 ;;(_;"_>"	∙	R1_R-	∙	)-

7	6	R1_R-	6	)-
−	;;(_;"_>"_8";=,	∙	R1_R-_)-	∙	:-R87

7	6	R1_R-_)-	6	:-R87
− 	dR1_R-_)- ∙ E2_ER_PR	,	 Eq.	13	

	
&R1_R-_)-_:-R87

&%
= 	 ;;(_;"_>"_8";=,	∙	R1_R-_)-	∙	:-R87

7	6	R1_R-_)-	6	:-R87
−	dR1_R-_)-_:-R87 ∙ E2_ER_PR_GREB1	,	 Eq.	14	

	
&:-R87

&%
= 	 s:-R87 +

4%?08";=,	∙	R1_R-_)-_:-R87
7	6	R1_R-_)-_:-R87

−	;;(_;"_>"_8";=,	∙	R1_R-_)-	∙	:-R87
7	6	R1_R-_)-	6	:-R87

−

																			d:-R87 ∙ GREB1	,	
Eq.	15	

	
&)-
&%
= 	 s)- +

4%?0>"	∙	R1_R-_)-_:-R87
7	6	R1_R-_)-_:-R87

− ;;(_;"_>"	∙	R1_R-	∙	)-
7	6	R1_R-	6	)-

−	d)- ∙ PR	,	and	 Eq.	16	

	
&9TT7
&%

= 	 s9TT7 +
4%?0?@@,	∙	R1_R-	∙	)-

7	6	R1_R-	6	)-
−	d9TT7 ∙ TFF1	.	 Eq.	17	

	
The	 parameters	 in	 these	 model	 variants	 were	 optimized	 with	 our	 gradient	
descent-based	 optimization	 method	 described	 previously	 85.	 In	 brief,	 we	
employed	 sensitivity	 equations	 and	 steady	 state	 constraints	 86	 to	 Hind	 the	
direction	of	steepest	descent	during	optimization	with	the	least	squares	method	
of	the	SciPy	package	in	Python	version	3.7.3	and	used	Latin	hypercube	sampling	
87	for	efHicient	sampling	of	the	parameter	space	during	parameter	initialization.	
Because	we	performed	background	correction	and	thereby	eliminated	any	effect	
of	residual	E2	in	the	wells,	the	system	can	be	considered	to	start	in	steady	state	
and	deprived	of	E2.	Therefore,	the	initial	states	of	the	three	complexes	formed	
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during	E2-dependent	signaling	were	Hixed	at	0.	Because	there	were	no	changes	
over	time	in	protein	dynamics	observed	in	concentrations	lower	than	0.001	nM	
and	 adverse	 effects	were	 observed	 for	 1000	 nM	 and	 higher,	we	 Hitted	 to	 the	
expression	data	of	the	concentrations	0.001,	0.01,	0.1,	1,	10	and	100	nM.	The	
effective	 concentrations,	 i.e.,	 the	 concentrations	 perceived	 by	 the	 cells,	 were	
Hitted	together	with	initial	states	of	ERα,	GREB1,	PR	and	TFF1,	and	the	model	
parameters.	However,	we	Hixed	the	lowest	effective	concentration	to	0.001	as	a	
reference	for	the	higher	concentrations.	All	degradation	and	binding	parameters	
were	constrained	between	0	and	1.	In	addition,	to	force	the	system	to	start	in	
steady	state,	we	made	the	synthesis	parameters	dependent	on	the	degradation	
parameters	and	initial	states:	
	
sR- = 	dR- ∙ ER?L?%	,	 Eq.	18	

s:-R87 = 	d:-R87 ∙ GREB1?L?%	,	 Eq.	19	

s)- = 	d)- ∙ PR?L?%	,	and	 Eq.	20	

s9TT7 = 	d9TT7 ∙ TFF1?L?%	.	 Eq.	21	

	
The	parameter	values	for	the	three	models	are	available	in	Supplementary	Table	
1.	To	compare	the	model	simulations	of	PR	and	GREB1	to	their	respective	data,	
we	used	the	total	amount	of	PR	and	GREB1,	i.e.,	their	free	forms	and	the	amount	
of	these	proteins	captured	in	complexes.	
	
Cell	cycle	model	
To	 connect	 the	 protein	 expression	 dynamics	 to	 cell	 cycle	 progression,	 we	
modiHied	an	existing	cell	cycle	model	(see	Supplementary	Methods)	54,55.	This	
model	simulates	the	oscillatory	dynamics	of	CDK1	(CDK1)	and	APC	(APC),	which	
are	 used	 to	 identify	 the	 duration	 of	 the	 G1	 phase	 and	 total	 duration	 of	 the	
combined	S,	G2	and	M	phases.	CDK1	and	APC	are	synthesized	with	rates	a1	and	
a2,	and	degraded	with	rates	b1	and	b2,	respectively.	APC	inhibits	CDK1	through	
stimulation	of	its	degradation	(dependent	on	parameters	n1	and	K1),	whereas	
synthesis	of	APC	is	inHluenced	by	CDK1	via	parameters	n2	and	K2.	In	addition,	
CDK1	has	an	auto-stimulatory	feedback	modeled	with	parameters	n3	and	K3.	In	
this	model,	we	incorporated	the	 inHluence	of	E2-ERα,	GREB1	and	PR	(current	
biological	 knowledge	 on	 these	 interactions	 summarized	 in	 introduction	 and	
results)	 to	 investigate	whether	we	could	predict	 the	 inHluence	of	E2	signaling	
and	protein	knockdown	on	cell	cycle	progression.	To	model	the	stimulation	of	
G1	progression	into	S	phase,	we	made	the	degradation	term	for	APC	dependent	
on	the	E2-ERα	complex	and	PR,	and	modiHied	the	b2	parameter	by	multiplication	
with	factor	r.	In	addition,	we	modeled	the	stimulatory	effect	of	GREB1	on	CDK1	
with	 the	addition	of	a	GREB1-dependent	synthesis	 term	with	rate	kGREB1.	The	
equations	of	the	modiHied	model	thus	became:	
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&C'57
&%

= 	a1 − b1	 ∙ 	CDK1	 ∙ 	 /)CA,

57A,	6	/)CA,
+ a3	(1	 − 	CDK1) 	 ∙ 	 	C'57A*

5+A*	6	C'57A*
+

																	k:-R87 ∙ GREB1	,	and	
Eq.	22	

	
&/)C
&%

= 	a2	(1 − APC) ∙ 	 C'57A(

51A(	6	C'57A(
− r	 ∙ b2	 ∙ APC	 ∙ 	E2_ER	 ∙ PR	.	 Eq.	23	

	
Depending	on	the	kGREB1	and	r	values,	the	cell	cycle	model	displayed	sustained	
oscillations	under	constant	E2	availability.	SpeciHically,	oscillations	disappeared	
for	kGREB1	⪆	0.0009	(Supplementary	Figure	2A-B)	and	 for	r	⪅	0.1	or	r	⪆	6.26	
(Supplementary	Figure	2C-D).		
	
Model	simulations	
To	 closely	 replicate	 the	 in	 vitro	 experimental	 set-up	 to	 obtain	 cell	 cycle	
progression	data	with	our	in	silico	model,	we	distinguished	three	experimental	
phases.	 In	 the	 Hirst	 phase,	 cells	 in	 complete	 culture	 medium	 had	 sufHicient	
nutrients	 and	 growth-stimulating	 compounds	 (i.e.,	 compounds	 functionally	
equivalent	to	E2),	available	to	proliferate	at	a	rate	of	approximately	once	per	48	
h.	A	starvation	phase	(phase	2)	of	24	h	followed	phase	1	in	which	the	complete	
medium	 was	 replaced	 with	 starvation	 medium	 devoid	 of	 E2-equivalent	
compounds	to	eliminate	the	growth-enhancing	effect	of	the	medium.	In	phase	3,	
cells	 were	 exposed	 to	 starvation	 medium	 with	 the	 addition	 of	 various	 E2	
concentrations,	and	protein	expression	dynamics	were	measured	using	live-cell	
imaging	(Fig.	3C).	In	case	of	a	knockdown	experiment,	there	was	an	additional	
phase	of	24	h	between	phase	1	and	2,	 in	which	the	complete	culture	medium	
was	replaced	with	complete	transfection	medium	that	contained	siRNAs	(Fig.	
5B).	
	
We	mimicked	these	experimental	phases	with	our	model.	We	Hirst	simulated	a	
constant	low	concentration	of	E2	during	culture	conditions,	to	ensure	cells	were	
in	steady	state.	Because	we	could	not	directly	determine	the	concentration	of	
E2-equivalent	 compounds	 in	 complete	 medium,	 we	 estimated	 this	
concentration	based	on	the	dynamics	of	GREB1,	PR	and	TFF1	in	complete	and	
starvation	 medium	 without	 addition	 of	 E2	 (Supplementary	 Figure	 3B).	 To	
achieve	this,	we	Hirst	determined	the	protein	degradation	rates	during	starvation	
(Supplementary	 Figure	 3C).	 For	 this	 purpose,	 we	 used	 an	 elementary	
degradation	model	for	GREB1,	PR	and	TFF1	with	equations:	
	
&:-R87

&%
= 	−	d:-R87 ∙ GREB1	,		 Eq.	24	

	
&)-
&%
= 	−	d)- ∙ PR	,	and	 Eq.	25	

	
&9TT7
&%

= 	−	d9TT7 ∙ TFF1	.		 Eq.	26	

	
We	estimated	the	degradation	parameters	by	Hitting	this	model	to	the	data	from	
the	 starvation	 experiment	 with	 the	 modCost	 and	 modFit	 functions	 of	 the	
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Flexible	 Modeling	 Environment	 (FME)	 package	 in	 R	 (parameter	 values	 in	
Supplementary	 Table	 2).	 Note	 that	 these	 degradation	 parameter	 values	 are	
lower	than	the	values	estimated	in	the	complete	model,	which	could	be	due	to	
the	difference	in	chemical	properties	of	E2	and	the	E2-equivalent	compounds.	
	
Secondly,	we	used	a	simulation	of	the	elementary	degradation	model	to	estimate	
the	 concentration	 of	 growth-stimulating	 compounds	 in	 complete	 medium	
before	and	after	24	h	of	starvation.	Taking	the	average	of	the	3	estimates	for	the	
differences	between	0	and	24	h	in	starvation,	the	protein	expression	in	complete	
medium	was	1.5	times	higher	than	after	24	h	in	starvation	medium.	Therefore,	
we	assumed	that	the	E2-equivalent	concentration	in	complete	medium	would	
also	be	approximately	1.5	times	higher	than	in	starvation	medium	at	the	time	of	
exposure.	
	
Third,	to	obtain	an	estimate	for	the	E2-equivalent	concentration	in	starvation	
medium	at	the	time	of	exposure,	we	used	the	unnormalized	protein	expression	
data	after	exposure	(Supplementary	Figure	3D).	Because	the	degradation	of	the	
proteins	 in	 starvation	 medium	 was	 not	 entirely	 completed	 after	 24	 h,	 we	
observed	 an	 initial	 drop	 in	 intensity	 right	 after	 exposure,	 which	 was	
subsequently	 counteracted	by	exposure	 to	E2.	After	exposure	 to	0.01	nM	E2,	
TFF1	protein	expression	rapidly	 reached	 the	same	 level	as	at	 timepoint	0,	 as	
opposed	to	GREB1	and	PR	that	had	a	net	decrease	in	expression	even	long	after	
timepoint	 0	 (Supplementary	 Figure	 3D,	 second	 column).	 In	 contrast,	 PR	 and	
TFF1	expression	levels	attained	a	higher	level	than	at	timepoint	0	after	0.1	nM	
E2	exposure,	whereas	GREB1	stabilized	to	approximately	the	same	level	as	at	
timepoint	0	(Supplementary	Figure	3D,	third	column).	Therefore,	we	inferred	
that	the	actual	E2-equivalent	concentration	must	lie	between	0.01	and	0.1	nM	
and	assumed	 that	 the	E2-equivalent	 concentration	 in	 starvation	medium	 just	
before	exposure	would	be	similar	to	a	nominal	E2	concentration	of	0.055	nM,	
i.e.,	 the	 average	 of	 0.01	 and	 0.1	 nM.	 Thus,	 we	 used	 1.5	 times	 the	 effective	
concentration	at	0.055	nominal	concentration	as	estimate	for	the	E2-equivalent	
concentration	in	complete	medium,	i.e.,	0.104	·	1.5	=	0.156,	and	simulated	the	
model	until	GREB1,	PR	and	TFF1	protein	expressions	were	in	steady	state	and	
CDK1	 and	 APC	 displayed	 sustained	 oscillations.	We	 took	 this	 as	 the	 starting	
point	for	simulations	of	phase	1.	
	
To	 simulate	 dynamics	 for	 100	 individual	 cells	 during	 knockdown,	 starvation,	
and	 exposure,	 we	 chose	 initial	 states	 for	 CDK1	 and	 APC	 at	 100	 random	
timepoints	 within	 one	 cell	 cycle	 period	 (Fig.	 3F).	 To	 replicate	 knockdown	
conditions,	 we	 removed	 the	 positive	 terms	 from	 the	 ODE	 equations	 of	 the	
knocked	down	proteins.	We	described	the	24-hour	starvation	period	by	Hixing	
E2	at	0.	To	imitate	the	exposure	phase,	we	ran	simulations	with	an	effective	E2	
concentration	 of	 0.837,	 which	 corresponded	 to	 the	 100	 nM	 nominal	
concentration,	for	a	time	span	of	100	h.	
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Phase	duration	quantiUication	in	silico	
We	quantiHied	 the	 length	of	 the	G1	phase,	G1/S	 transition	phase	 and	S-G2-M	
phase	in	our	simulations	per	single	cell	simulation	based	on	the	CDK1	and	APC	
expression	pattern.	Following	Bae	et	al.	(2019)	55,	we	used	the	minimum	of	CDK1	
as	transition	point	from	S-G2-M	to	G1	phase.	We	adjusted	their	criterion	using	
the	minimum	of	APC	as	the	transition	from	G1	to	S-G2-M,	because	we	needed	to	
calculate	the	length	of	the	G1/S	transition	phase.	Therefore,	we	determined	a	
threshold	for	APC,	underneath	which	cells	were	considered	in	G1/S	transition.	
Thus,	when	APC	values	got	below	the	threshold,	cells	went	from	G1	into	the	G1/S	
transition	phase.	Similarly,	 if	APC	values	 rose	above	 the	 threshold,	 cells	went	
from	G1/S	transition	phase	into	S-G2-M	phase.	The	threshold	was	set	at	the	APC	
minimum	plus	5%	of	the	difference	between	the	Hirst	minimum	in	APC	and	the	
APC	maximum	that	followed	this	minimum.		
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47.	 Bossenmeyer-Pourié,	 C.	 et	 al.	 The	 trefoil	 factor	 1	 participates	 in	 gastrointestinal	 cell	
differentiation	by	delaying	G1-S	phase	 transition	and	 reducing	apoptosis.	 J.	 Cell	Biol.	157,	
761–770	(2002).	

48.	 Duijndam,	B.	et	al.	Physiologically	Relevant	Estrogen	Receptor	Alpha	Pathway	Reporters	for	
Single-Cell	 Imaging-Based	 Carcinogenic	 Hazard	 Assessment	 of	 Estrogenic	 Compounds.	
Toxicol.	Sci.	181,	187–198	(2021).	

49.	 Chen,	C.,	Baumann,	W.	T.,	Clarke,	R.	&	Tyson,	J.	J.	Modeling	the	estrogen	receptor	to	growth	
factor	receptor	signaling	switch	 in	human	breast	cancer	cells.	FEBS	Lett.	587,	3327–3334	
(2013).	

50.	 Oui\ki,	R.	&	Oke,	S.	I.	Mathematical	model	for	the	estrogen	paradox	in	breast	cancer	treatment.	
J.	Math.	Biol.	84,	28	(2022).	

51.	 Yao,	 G.,	 Lee,	 T.	 J.,	 Mori,	 S.,	 Nevins,	 J.	 R.	 &	 You,	 L.	 A	 bistable	 Rb-E2F	 switch	 underlies	 the	
restriction	point.	Nat.	Cell	Biol.	10,	476–482	(2008).	

52.	 Weis,	M.	C.,	Avva,	J.,	Jacobberger,	J.	W.	&	Sreenath,	S.	N.	A	data-driven,	mathematical	model	of	
mammalian	cell	cycle	regulation.	PLoS	One	9,	e97130	(2014).	

53.	 Saitou,	 T.	 &	 Imamura,	 T.	 Quantitative	 imaging	 with	 Fucci	 and	 mathematics	 to	 uncover	
temporal	dynamics	of	cell	cycle	progression.	Dev.	Growth	Differ.	58,	6–15	(2016).	

54.	 Ferrell,	J.	E.,	Jr,	Tsai,	T.	Y.-C.	&	Yang,	Q.	Modeling	the	cell	cycle:	why	do	certain	circuits	oscillate?	
Cell	144,	874–885	(2011).	

55.	 Bae,	H.,	Go,	Y.-H.,	Kwon,	T.,	Sung,	B.	J.	&	Cha,	H.-J.	A	Theoretical	Model	for	the	Cell	Cycle	and	
Drug	Induced	Cell	Cycle	Arrest	of	FUCCI	Systems	with	Cell-to-Cell	Variation	during	Mitosis.	
Pharm.	Res.	36,	57	(2019).	

56.	 Terhune,	 S.	 S.,	 Jung,	Y.,	 Cataldo,	K.	M.	&	Dash,	R.	K.	Network	mechanisms	and	dysfunction	
within	an	integrated	computational	model	of	progression	through	mitosis	in	the	human	cell	
cycle.	PLoS	Comput.	Biol.	16,	e1007733	(2020).	

57.	 Mura,	M.,	Feillet,	C.,	Bertolusso,	R.,	Delaunay,	F.	&	Kimmel,	M.	Mathematical	modelling	reveals	
unexpected	inheritance	and	variability	patterns	of	cell	cycle	parameters	in	mammalian	cells.	
PLoS	Comput.	Biol.	15,	e1007054	(2019).	

58.	 Conolly,	 R.	 B.	 et	 al.	 Quantitative	 Adverse	 Outcome	 Pathways	 and	 Their	 Application	 to	
Predictive	Toxicology.	Environ.	Sci.	Technol.	51,	4661–4672	(2017).	

59.	 Perkins,	E.	J.	et	al.	Building	and	Applying	Quantitative	Adverse	Outcome	Pathway	Models	for	
Chemical	Hazard	and	Risk	Assessment.	Environ.	Toxicol.	Chem.	38,	1850–1865	(2019).	

60.	 Zhou,	B.	P.	et	al.	Cytoplasmic	localization	of	p21Cip1/WAF1	by	Akt-induced	phosphorylation	
in	HER-2/neu-overexpressing	cells.	Nat.	Cell	Biol.	3,	245–252	(2001).	

61.	 Li,	 Y.,	 Dowbenko,	 D.	 &	 Lasky,	 L.	 A.	 AKT/PKB	 phosphorylation	 of	 p21Cip/WAF1	 enhances	
protein	 stability	 of	 p21Cip/WAF1	 and	 promotes	 cell	 survival.	 J.	 Biol.	 Chem.	277,	 11352–
11361	(2002).	

62.	 Sun,	 W.	 et	 al.	 Selenium	 supplementation	 protects	 against	 oxidative	 stress-induced	
cardiomyocyte	cell	cycle	arrest	through	activation	of	PI3K/AKT.	Metallomics	12,	1965–1978	
(2020).	

63.	 Sabbah,	 M.,	 Courilleau,	 D.,	 Mester,	 J.	 &	 Redeuilh,	 G.	 Estrogen	 induction	 of	 the	 cyclin	 D1	
promoter:	 involvement	 of	 a	 cAMP	 response-like	 element.	Proc.	Natl.	 Acad.	 Sci.	 U.	 S.	 A.	96,	
11217–11222	(1999).	

64.	 Yilmaz,	B.,	Terekeci,	H.,	Sandal,	S.	&	Kelestimur,	F.	Endocrine	disrupting	chemicals:	exposure,	
effects	 on	 human	 health,	 mechanism	 of	 action,	 models	 for	 testing	 and	 strategies	 for	
prevention.	Rev.	Endocr.	Metab.	Disord.	21,	127–147	(2020).	

65.	 Kuo,	C.-H.,	Yang,	S.-N.,	Kuo,	P.-L.	&	Hung,	C.-H.	Immunomodulatory	effects	of	environmental	
endocrine	disrupting	chemicals.	Kaohsiung	J.	Med.	Sci.	28,	S37-42	(2012).	



	

Interdependency	of	estradiol-mediated	ERα	activation	and	subsequent	PR	and	GREB1	
induction	to	control	cell	cycle	progression	

	 125	

4	

66.	 Rosenfeld,	C.	S.	&	Cooke,	P.	S.	Endocrine	disruption	through	membrane	estrogen	receptors	
and	novel	pathways	leading	to	rapid	toxicological	and	epigenetic	effects.	J.	Steroid	Biochem.	
Mol.	Biol.	187,	106–117	(2019).	

67.	 Lee,	H.-R.,	Hwang,	K.-A.,	Nam,	K.-H.,	Kim,	H.-C.	&	Choi,	K.-C.	Progression	of	breast	cancer	cells	
was	enhanced	by	endocrine-disrupting	chemicals,	triclosan	and	octylphenol,	via	an	estrogen	
receptor-dependent	signaling	pathway	in	cellular	and	mouse	xenograft	models.	Chem.	Res.	
Toxicol.	27,	834–842	(2014).	

68.	 Tsai,	T.	Y.-C.,	Theriot,	J.	A.	&	Ferrell,	J.	E.,	Jr.	Changes	in	oscillatory	dynamics	in	the	cell	cycle	of	
early	Xenopus	laevis	embryos.	PLoS	Biol.	12,	e1001788	(2014).	

69.	 Goldbeter,	A.	A	minimal	cascade	model	 for	 the	mitotic	oscillator	 involving	cyclin	and	cdc2	
kinase.	Proc.	Natl.	Acad.	Sci.	U.	S.	A.	88,	9107–9111	(1991).	

70.	 Conradie,	 R.	 et	 al.	 Restriction	 point	 control	 of	 the	 mammalian	 cell	 cycle	 via	 the	 cyclin	
E/Cdk2:p27	complex.	FEBS	J.	277,	357–367	(2010).	

71.	 Jung,	Y.,	Kraikivski,	P.,	Sha\iekhani,	S.,	Terhune,	S.	S.	&	Dash,	R.	K.	Crosstalk	between	Plk1,	p53,	
cell	cycle,	and	G2/M	DNA	damage	checkpoint	regulation	in	cancer:	computational	modeling	
and	analysis.	NPJ	Syst	Biol	Appl	7,	46	(2021).	

72.	 Vittadello,	S.	T.,	McCue,	S.	W.,	Gunasingh,	G.,	Haass,	N.	K.	&	Simpson,	M.	J.	Mathematical	Models	
for	Cell	Migration	with	Real-Time	Cell	Cycle	Dynamics.	Biophys.	J.	114,	1241–1253	(2018).	

73.	 Simms,	K.,	Bean,	N.	&	Koerber,	A.	A	mathematical	model	of	cell	cycle	progression	applied	to	
the	MCF-7	breast	cancer	cell	line.	Bull.	Math.	Biol.	74,	736–767	(2012).	

74.	 Haass,	N.	K.	et	al.	Real-time	cell	cycle	imaging	during	melanoma	growth,	invasion,	and	drug	
response.	Pigment	Cell	Melanoma	Res.	27,	764–776	(2014).	

75.	 Brooks,	R.	F.	Cell	Cycle	Commitment	and	the	Origins	of	Cell	Cycle	Variability.	Front	Cell	Dev	
Biol	9,	698066	(2021).	

76.	 Lord,	P.	G.	&	Wheals,	A.	E.	Variability	in	individual	cell	cycles	of	Saccharomyces	cerevisiae.	J.	
Cell	Sci.	50,	361–376	(1981).	

77.	 Beltman,	J.	B.,	Henrickson,	S.	E.,	von	Andrian,	U.	H.,	de	Boer,	R.	J.	&	Marée,	A.	F.	M.	Towards	
estimating	the	true	duration	of	dendritic	cell	interactions	with	T	cells.	J.	Immunol.	Methods	
347,	54–69	(2009).	

78.	 Spinu,	N.,	Cronin,	M.	T.	D.,	Enoch,	S.	J.,	Madden,	J.	C.	&	Worth,	A.	P.	Quantitative	adverse	outcome	
pathway	(qAOP)	models	for	toxicity	prediction.	Arch.	Toxicol.	94,	1497–1510	(2020).	

79.	 Paini,	A.	et	al.	Towards	a	qAOP	framework	for	predictive	toxicology	-	Linking	data	to	decisions.	
Comput	Toxicol	21,	100195	(2022).	

80.	 Di,	Z.	et	al.	Automated	analysis	of	NF-κB	nuclear	translocation	kinetics	 in	high-throughput	
screening.	PLoS	One	7,	e52337	(2012).	
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Supplementary	Data	

	
Supplementary	Figure	1.	Comparison	of	E2	signaling	model	variants.	 (A)	Inner	states	 for	all	
model	variables	in	Model	I.	(B)	Schematic	diagram	of	the	E2	signaling	model	II.	E2	and	ERα	form	an	
E2-ERα	 complex	 that	 stimulates	 TFF1	 in	 presence	 of	 PR	 and	 can	 bind	 GREB1.	 E2-ERα/GREB1	
complex	stimulates	synthesis	of	PR	and	GREB1,	the	latter	in	presence	of	PR.	Solid	arrows,	synthesis	
and	 degradation;	 dashed	 arrows,	modulation.	 (C)	Model	 simulations	 for	Model	 I,	 II	 and	 III	 after	
parameter	calibration	(solid	lines)	to	the	experimental	data	(points,	three	independent	replicates	
separately	shown).	(D)	Inner	states	for	all	model	variables	in	Model	II.	(E)	Predictions	of	GREB1,	PR	
and	TFF1	expression	after	complete	protein	knockdown	in	Model	II.	(F)	Inner	states	for	all	model	
variables	in	Model	III.	(G)	Simulated	protein	expression	dynamics	of	model	III	on	a	long	time	scale	
after	100	nM	E2	exposure.	 	
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Supplementary	 Figure	 2.	 Bifurcation	 plots	 of	 CDK1-APC	 cell	 cycle	 model.	 (A-B)	 Effect	 of	
interaction	 strength	 parameter	 k_greb1	 on	 CDK1	 (A)	 and	 APC	 oscillations	 (B).	 (C-D)	 Effect	 of	
multiplication	factor	r	on	CDK1	(C)	and	APC	oscillations	(D).	 	
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Supplementary	Figure	3.	Protein	expression	dynamics	in	starvation	medium	before	and	after	
E2	 exposure.	 (A)	 Timeline	 for	 four	 experimental	 conditions	 to	 measure	 protein	 expression	 in	
starvation	medium,	with	the	imaging	timepoints	indicated	in	grey.	(B)	GREB1,	PR	and	TFF1	protein	
expression	at	different	timepoints	in	starvation	medium.	(C)	Fits	of	elementary	degradation	model	
to	 the	 protein	 degradation	 data	 in	 starvation	 medium.	 (D)	 Unnormalized	 protein	 expression	
dynamics	after	exposure	to	different	concentrations	of	E2.	Error	bars	in	(B)	and	(D)	represent	SD	
across	replicates.	
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Supplementary	 Figure	 4.	 Cell	 cycle	 progression	 and	 population	 growth	 in	 different	 E2	
exposure	conditions.	(A)	Assigned	cell	cycle	phases	for	cells	in	control	DMSO	condition,	i.e.,	without	
E2	exposure.	(B)	Population	growth	in	GREB1-,	PR-	and	TFF1-GFP	cell	lines	at	different	E2	exposure	
concentrations.	Cell	counts	are	normalized	to	the	values	at	the	\irst	measurement	time	point.	
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Supplementary	 Figure	 5.	 Cell	 cycle	 phase	 classiWication	 after	 protein	 knockdown	 and	
exposure	to	100	nM	E2.	(A-D)	Assigned	cell	cycle	phases	for	cells	in	mock	condition	(A),	or	after	
PR	(B),	GREB1	(C)	and	TFF1	knockdown	(D).		
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Supplementary	 Table	 1.	Values	 and	 descriptions	 of	 the	 estimated,	 \ixed	 and	 calculated	model	
parameters.			
	
E2-signaling	model	parameters		

Parameter	 Value	 Unit	 Description*	
Model	I	 Model	II	 Model	III	

CONC1init	 0.001	 0.001	 0.001	
a.u.	 Fixed	initial	effective	

concentration	1	
CONC2init	 0.009	 0.149	 0.042	 a.u.	 Initial	effective	concentration	2	
CONC3init	 0.032	 0.655	 0.166	 a.u.	 Initial	effective	concentration	3	
CONC4init	 0.046	 1.048	 0.237	 a.u.	 Initial	effective	concentration	4	
CONC5init	 0.07	 2.455	 0.374	 a.u.	 Initial	effective	concentration	5	
CONC6init	 0.113	 999.981	 0.837	 a.u.	 Initial	effective	concentration	6	
ERinit	 0.026	 0.467	 0.126	 a.u.	 Initial	ERα	concentration	
GREB1init	 0.834	 0.915	 0.913	 a.u.	 Initial	GREB1	concentration	
PRinit	 0.781	 0.789	 0.794	 a.u.	 Initial	PR	concentration	
TFF1init	 0.959	 0.971	 0.967	 a.u.	 Initial	TFF1	concentration	

E2_ERinit	
0	 0	 0	 a.u.	 Fixed	initial	E2-ERα	complex	

concentration	

E2_ER_GREB1init	
0	 0	 -	 a.u.	 Fixed	initial	E2-ERα/GREB1	

concentration	

E2_ER_PRinit	
-	 -	 0	 a.u.	 Fixed	initial	E2-ERα/PR	

concentration	

E2_ER_PR_GREB1init	
-	 -	 0	 a.u.	 Fixed	initial	E2-

ERα/PR/GREB1	concentration	
dER	 0.028	 0.035	 0.022	 h-1	 ERα	degradation	rate	
dPR	 0.022	 0.010	 0.066	 h-1	 PR	degradation	rate	
dGREB1	 0.155	 0.287	 0.373	 h-1	 GREB1	degradation	rate	
dTFF1	 0.652	 0.000	 0.000	 h-1	 TFF1	degradation	rate	

bE2_ER	 7.487	 0.351	 1.000	
h-1	 Maximal	binding	rate	of	E2	

with	ERα	
dE2_ER	 0.359	 0.000	 0.246	 h-1	 Degradation	rate	of	E2-ERα	

bE2_ER_GREB1	 0.037	 0.431	
-	 h-1	 Maximal	binding	rate	of	E2-ERα	

with	GREB1	

dE2_ER_GREB1	 0.000	 0.018	
-	 h-1	 Degradation	rate	of	E2-

ERα/GREB1	

bE2_ER_PR	 -	
-	

0.025	
h-1	 Maximal	binding	rate	of	E2-ERα	

with	PR	
dE2_ER_PR	 -	 -	 0.814	 h-1	 Degradation	rate	of	E2-ERα/PR	

bE2_ER_PR_GREB1	 -	 -	 1.000	
h-1	 Maximal	binding	rate	of	E2-

ERα/PR	with	GREB1	

dE2_ER_PR_GREB1	 -	 -	 0.005	
h-1	 Degradation	rate	of	E2-

ERα/PR/GREB1	
stimPR	 63.502	 0.363	 67.697	 a.u.	·	h-1	 Maximal	stimulation	rate	of	PR		

stimGREB1	 673.314	 8.434	 1000.0	
a.u.	·	h-1**	 Maximal	stimulation	rate	of	

GREB1		

stimTFF1	 952.197	 2.874	 10.470	
h-1***	 Maximal	stimulation	rate	of	

TFF1		

sER	 0.001	 0.016	 0.003	
a.u.	·	h-1	 Calculated	ERα	basal	synthesis	

rate	(Eq.	18)	

sPR	 0.017	 0.008	 0.052	
a.u.	·	h-1	 Calculated	PR	basal	synthesis	

rate	(Eq.	19)	

sGREB1	 0.129	 0.263	 0.340	
a.u.	·	h-1	 Calculated	GREB1	basal	

synthesis	rate	(Eq.	20)	

sTFF1	 0.625	 0.000	 0.000	
a.u.	·	h-1	 Calculated	TFF1	basal	synthesis	

rate	(Eq.	21)	
[Table con+nues on next page.]  
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Cell	cycle	model	parameters		
Parameter	 Value	 Unit	 Description	

Model	I	 Model	II	 Model	III	
a1	 -	 -	 0.0018	 a.u.	·	h-1	 Fixed	CDK1	basal	synthesis	rate	
a2	 -	 -	 0.273	 h-1	 Fixed	APC	synthesis	rate	

a3	
-	 -	 0.273	 h-1	 Fixed	CDK1	autostimulatory	

synthesis	rate	
b1	 -	 -	 0.273	 h-1	 Fixed	CDK1	degradation	rate	
b2	 -	 -	 0.091	 a.u.-2	·	h-1	 Fixed	APC	degradation	rate	
K1	 -	 -	 0.5	 a.u.	 Fixed	half-saturation	constant	1	
K2	 -	 -	 0.5	 a.u.	 Fixed	half-saturation	constant	2	
K3	 -	 -	 0.5	 a.u.	 Fixed	half-saturation	constant	3	
n1	 -	 -	 8	 -	 Fixed	Hill	coefficient	1	
n2	 -	 -	 8	 -	 Fixed	Hill	coefficient	2	
n3	 -	 -	 8	 -	 Fixed	Hill	coefficient	3	

CDK1init	
-	 -	

0.124	
a.u.	 Initial	CDK1	concentration	

obtained	by	simulation	
APCinit	 -	 -	 0.526	 a.u.	 Initial	APC	concentration	

obtained	by	simulation	

kGREB1	
-	 -	

0.0001	
h-1	 Fixed	GREB1-dependent	CDK1	

synthesis	rate	
r	 -	 -	 2.2	 -	 Fixed	multiplication	factor	

*	Estimated	values	unless	stated	otherwise	
**	Unit	h-1	in	Model	II	
***	Unit	a.u.	·	h-1	in	Model	I	
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Supplementary	 Table	 2.	 Values	 and	 descriptions	 of	 the	 estimated	 degradation	 parameters	 in	
starvation	medium	without	E2	exposure	(see	Equations	24-26).	
	
Parameter	 Value	 Unit	 Description	
dPR	 0.0095	 h-1	 PR	degradation	rate	
dGREB1	 0.0191	 h-1	 GREB1	degradation	rate	
dTFF1	 0.0216	 h-1	 TFF1	degradation	rate	
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