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Introduction	
Animal	 testing	remains	a	necessary	step	during	 the	preclinical	phase	of	drug	
development.	However,	the	drug	failure	rate	in	clinical	testing	phases	I,	II	and	III	
is	approximately	90%,	which	can	be	partly	ascribed	to	unmanageable	toxicity	1.	
Moreover,	 toxicity	 studies	 in	 animals	 are	 poor	 predictors	 for	 human	 adverse	
effects,	with	congruence	rates	of	around	50%	between	humans	and	animals,	and	
among	 animal	 species	 being	 commonly	 observed	 2.	 Finding	 alternatives	 to	
animal	testing	has	been	a	topic	of	research	since	the	1960s,	when	the	principle	
of	 the	3Rs	was	 introduced:	 replacement,	 reduction	and	 reHinement	of	 animal	
experimentation	 3.	 In	 vitro	 research	 methods	 with	 human	 cells	 are	 already	
widely	 used	 for	 preclinical	 toxicity	 testing	 and	 new	 approaches	 are	 being	
developed	 to	 improve	 their	 predictive	 capacity	 for	 healthy	 human	 tissue.	 In	
addition,	there	is	an	ever	increasing	interest	in	computational	methods	to	assist	
hazard	and	risk	assessment,	with	a	more	than	10	fold	increase	in	the	number	of	
papers	using	 in	silico	modeling	to	support	safety	predictions	published	in	the	
years	between	1990	and	2015	4.	The	mechanistic	insight	gained	with	modeling	
is	essential	for	our	understanding	of	adverse	effects	and	useful	for	the	prediction	
of	adversity	for	novel	compounds.	In	this	thesis,	we	investigate	the	link	between	
intracellular	 molecular	 processes	 and	 adverse	 effects	 using	 mathematical	
modeling.	 In	 this	way,	we	couple	phenomena	that	occur	on	different	 levels	of	
biological	 organization,	 which	 generates	 hypotheses	 about	 the	 mechanisms	
behind	adversity	and	provides	openings	for	future	experimental	testing	as	well	
as	approaches	to	predict	adversity	without	animal	experiments.		
	
Chemical-induced	disruption	of	homeostasis	
Besides	 understanding	 the	 pharmacokinetics	 of	 a	 drug	 that	 describes	 the	
process	 of	 absorption,	 distribution,	 metabolism	 and	 excretion	 (ADME),	 it	 is	
essential	to	gain	insight	in	its	pharmacodynamics,	i.e.,	the	intracellular	signaling	
pathways	 and	 cellular	 activation	 cascades	 at	 tissue	 level	 (e.g.,	 recruitment	 of	
speciHic	immune	cells)	that	are	activated	upon	exposure.	Moreover,	to	unravel	
the	mechanisms	behind	adverse	effects,	we	need	to	understand	how	signaling	
cascades	 regulate	 cell	 fate.	 Under	 normal	 conditions,	 healthy	 cells	 are	 in	
homeostasis,	 i.e.,	 the	 concentration	 of	 intracellular	 biomolecules	 such	 as	
proteins	do	not	change	over	time	or	do	so	 in	a	highly	regulated	manner	(e.g.,	
circadian	rhythms).	Upon	chemical-induced	molecular	stress,	cells	have	to	adapt	
to	 the	 new	 conditions,	 repair	 the	 damage	 inHlicted	 by	 the	 chemicals	 and	
eliminate	toxicants.	To	achieve	this,	cells	activate	stress	response	pathways	that	
are	typically	regulated	by	one	or	a	few	central	transcription	factors.	Depending	
on	the	 type	and	severity	of	stress,	distinct	 transcription	 factors	are	activated,	
each	of	which	 induces	 the	 transcription	of	 its	 own	downstream	 targets.	This	
gene	activation	results	in	protein	expression	dynamics	that	are	speciHic	for	the	
exposure	 scenario.	 Among	 the	 most	 well-studied	 chemical-induced	 stress	
response	pathways	are	 the	oxidative	stress	 response	 (OSR),	unfolded	protein	
response	(UPR),	inHlammatory	stress	response	(ISR)	and	DNA	damage	response	
(DDR).	 Several	 proteins	 that	 cells	 start	 to	 express	 upon	 activation	 of	 these	
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pathways	 are	 involved	 in	 the	 regulation	 of	 cell	 fate,	 such	 as	 an	 increased	 or	
decreased	level	of	proliferation,	and	different	forms	of	cell	death.		
	
High	 stress	 levels	 can	 lead	 to	 irreversible	 adverse	 effects,	 some	of	which	 are	
highly	dependent	on	protein	signaling	cascades,	e.g.,	apoptosis	and	senescence,	
whereas	others	are	considered	to	be	largely	passive	processes	such	as	necrosis.	
In	 contrast,	 low	and	 intermediate	 levels	 of	 stress	usually	 lead	 to	 an	 adaptive	
stress	 response,	 in	 which	 cells	 temporarily	 change	 their	 normal	 behavior	 to	
overcome	chemical	insults.	Cell	cycle	arrest,	that	can	occur	among	others	upon	
oxidative	5–7,	unfolded	protein	 8	 and	DNA	damage	stress	9,10,	permits	a	cell	 to	
resolve	damage	before	committing	 to	mitosis,	 such	 that	cell	progeny	remains	
uninjured.	Regulation	of	cell	cycle	progression	often	involves	activation	of	the	
transcription	factor	p53,	encoded	by	the	TP53	gene.	This	protein	is	central	to	the	
DDR,	but	is	also	associated	to	other	pathways.	For	example,	cell	cycle	arrest	as	a	
consequence	of	protein	misfolding	is	p53-dependent	11.	In	addition,	the	OSR	and	
DDR	 pathways	 interact	 closely:	 p53	 can	 induce	 the	 production	 of	 reactive	
oxygen	 species	 (ROS)	 12,13,	 and	 vice	 versa,	 oxidative	 stress	 can	 result	 in	DNA	
damage	and	activation	of	p53	 14,15.	Although	novel	drugs	are	rarely	genotoxic	
because	this	would	immediately	disqualify	them	as	an	appropriate	medicine,	the	
hub	 function	 of	 p53	 makes	 this	 protein	 an	 important	 subject	 for	 studying	
adverse	effects.	
	
Underlining	the	central	function	of	p53	in	cell	homeostasis	is	the	large	number	
of	genes	it	regulates.	p53	has	more	than	300	downstream	targets	of	which	many	
are	involved	in	responses	such	as	cell	cycle	arrest,	DNA	repair,	metabolism	and	
apoptosis	16.	Some	of	these	targets	can	be	used	as	markers	for	cell	fate.	The	well-
known	 p53	 target	 CDKN1A/p21	 is	 an	 important	 driver	 of	 transient	 and	
permanent	 cell	 cycle	 arrest	 and	 therefore	 serves	 as	 one	 of	 the	 hallmarks	 of	
senescence	17,18.	Yet,	complex	processes	such	as	cell	cycle	regulation	are	typically	
not	 coordinated	 by	 a	 single	 protein,	 but	 by	 a	 complex	 system	 of	 interacting	
biomolecules,	and	must	thus	be	studied	as	such.	In	addition,	parenchymal	cells	
are	 subject	 to	 extracellular	 factors	 such	 as	 damage-associated	 molecular	
patterns	 (DAMPs),	 senescence-associated	 secretory	 phenotype	 (SASP),	
immune-cell	 derived	 mitogens	 and	 cytokines,	 that	 can	 all	 modulate	 cell	
responses.	Mitogens	stimulate	cell	cycle	progression	and	mitosis	19,20,	whereas	
the	release	of	SASP	can	induce	paracrine	senescence	in	neighboring	cells	21,22.	
Thus,	 to	 understand	 the	 processes	 underlying	 cell	 fate	 determination,	 both	
intra-	and	intercellular	dynamics	should	be	explored.		
	
Unraveling	protein	dynamics	of	stress	response	pathways	
Human	cell	lines	are	still	widely	used	in	well-established	2D	culture	methods	for	
high-throughput	drug	testing	as	well	as	in	advanced	methods	using	organ-like	
cell	 systems	 such	 as	 organs-on-a-chip	 and	 organoids.	 Cells	 from	 an	
immortalized	cell	line	can	proliferate	indeHinitely	and	are	therefore	easy-to-use	
in	vitro	systems	for	experimentation.	Cell	lines	can	represent	a	wide	variety	of	
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different	cell	types,	which	depends	on	their	original	source.	For	example,	there	
are	 cell	 lines	 that	 originate	 from	 liver	 tissue,	 such	 as	 the	 hepatocellular	
carcinoma	cell	line	HepG2	or	hepatic	progenitor	cell	line	HepaRG,	from	kidney	
tissue	(e.g.,	RPTEC),	or	from	breast	cancer	tissue	(e.g.,	MCF7).	Because	the	liver	
is	the	primary	organ	responsible	for	drug	metabolization,	this	organ	is	especially	
sensitive	to	drug-induced	injury	23,24.	Indeed,	drug-induced	liver	injury	(DILI)	is	
prevalent	 during	 clinical	 trials	 as	 well	 as	 after	 drug	 approval	 25.	 Therefore,	
testing	for	hepatotoxicity	in	a	liver-originating	cell	line	such	as	HepG2	could	be	
particularly	relevant	to	assure	drug	safety.	
	
Continued	 developments	 in	 in	 vitro	 methodology	 and	 technology	 greatly	
augment	the	volume	and	quality	of	data	used	to	study	the	effects	of	drugs	on	an	
organism.	Instead	of	blotting,	for	which	cells	need	to	be	lysed,	the	use	of	confocal	
microscopy	 in	 combination	 with	 Hluorescent	 protein	 tagging	 allows	 one	 to	
measure	protein	expression	in	living	cells.	With	this	live-cell	imaging	technique,	
a	population	of	cells	can	be	monitored	over	 time	which	permits	one	to	study	
drug	effects	over	time	on	a	single-cell	level.	The	relative	abundance	of	proteins	
over	time	in	response	to	drug	exposure	can	be	measured	with	a	broad	panel	of	
stress	 response	 HepG2	 BAC-GFP	 reporter	 cells	 26.	 Because	 each	 signaling	
pathway	 typically	 has	 one	 or	 more	 central	 regulators,	 activation	 of	 these	
proteins	indicated	by	an	increase	in	intensity	of	the	Hluorescent	signal	indicates	
the	occurrence	of	a	speciHic	type	of	molecular	stress.	For	example,	cisplatin	and	
etoposide,	two	chemotherapeutic	agents	that	serve	as	positive	control	 for	the	
activation	of	 the	DDR,	 indeed	activate	p53,	as	well	as	 its	downstream	targets	
MDM2,	p21	and	BTG2	27.	Similarly,	diethyl	maleate	(DEM)	activates	SRXN1	via	
activation	of	the	OSR	transcription	factor	NRF2	27.		
	
Despite	the	practicality	of	cell	lines	for	culturing	and	experimentation,	they	do	
not	respond	in	exactly	the	same	manner	as	cells	in	healthy	tissue.	Cell	lines	are	
isolated	from	the	body	and	therefore	lack	the	inHluence	of	other	cell	types	and	
interactions	with	surrounding	cells.	In	addition,	cell	lines	often	have	a	distinct	
gene	 and	 protein	 expression	 pattern	which	 distinguishes	 them	 from	 healthy	
cells	 28,29.	 Instead,	 primary	 human	 hepatocytes	 (PHHs)	 can	 function	 as	 an	
appropriate	 cell	 system	 representing	healthy	human	 liver	 tissue	due	 to	 their	
high	 expression	 of	 enzymes	 and	 transporters	 30.	 The	 potential	 divergence	 in	
sensitivity	 to	 drug	 exposure	 in	 various	 cell	 types	 is	 well-illustrated	 by	 the	
response	 to	 cisplatin	 and	 acetaminophen	 (APAP)	 in	 HepG2	 and	 PHHs.	 Both	
HepG2	cells	and	PHHs	elicit	the	DDR	upon	cisplatin	exposure.	However,	APAP,	a	
compound	that	is	known	to	elicit	oxidative	stress	in	liver	tissue	31,	does	not	cause	
activation	of	NRF2	in	HepG2	cells	27,	whereas	PHHs	do	elicit	the	OSR	upon	APAP	
exposure	 32.	 However,	 PHHs	 are	 currently	 not	 suitable	 for	 long-term	 culture,	
which	complicates	the	study	of	protein	dynamics	and	cell	fate	determination	in	
these	cells.	Thus,	it	depends	on	the	research	question	which	biological	in	vitro	
cell	system	is	best	suited	to	use	for	experimentation.		
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Impact	of	chemical	exposure	on	cell	fate	
To	 understand	 how	 intracellular	 protein	 dynamics	 relate	 to	 cell	 fate	
determination,	we	Hirst	need	to	elucidate	cell	behavior	during	homeostasis.	In	
homeostatic	 conditions,	many	 biochemical	 reactions	 in	 the	 cell	 are	 in	 steady	
state,	 i.e.,	 the	 protein	 concentrations	 stay	 approximately	 constant	 over	 time.	
However,	cell	cycle	progression	is	a	cyclic	process,	which	implies	that	proteins	
involved	 in	 cell	 cycle	 progression	 are	 only	 on	 average	 in	 steady	 state.	 The	
Hluctuations	 in	protein	 abundance	during	 a	 single	 cycle	make	 the	 cell	 cycle	 a	
complex	 subject	 of	 study.	 A	 cycling	 cell	 goes	 through	 four	 distinct	 cell	 cycle	
phases.	At	the	start	of	the	cycle,	cells	are	in	growth	or	gap	phase	1	(G1).	Once	
cells	 commit	 to	 proliferation,	 they	 replicate	 their	 DNA	 in	 the	 DNA	 synthesis	
phase	(S).	The	S	phase	is	followed	by	gap	phase	2	(G2),	during	which	cells	are	
preparing	and	committing	to	division	in	the	mitotic	phase	(M).	The	main	drivers	
of	cell	cycle	progression	are	cyclins	and	cyclin-dependent	kinases	(CDKs).	The	
abundance	of	cyclins	changes	during	cell	cycle	progression	33.	Cyclins	C	and	D	
are	abundant	during	G1	phase	and	E-type	cyclins	are	highly	expressed	during	S	
phase.	In	addition,	cyclins	A	and	B	accumulate	in	S	phase,	after	which	cyclin	A	
peaks	in	G2	and	cyclin	B	in	M	phase.	CDKs	accomplish	their	enzymatic	activity	
and	promote	 transitions	 throughout	 the	cell	 cycle	by	binding	 to	 these	cyclins	
33,34.	Apart	from	cyclin/CDK	complexes,	many	other	proteins	are	involved	in	cell	
cycle	regulation,	some	of	which	play	a	role	in	chemical-induced	changes	during	
cell	 cycle	progression.	Such	chemical-induced	effects	can	either	be	 inhibitory,	
i.e.,	 leading	 to	 a	 slowing	 down	of	 cell	 cycle	 progression	 and	 potentially	 even	
completely	block	cell	cycle	arrest,	or	stimulatory,	 i.e.,	 leading	to	fast	cell	cycle	
progression	and	potentially	to	cancer	induction.	
	
The	Hirst	possibility	(disturbance	of	normal	cell	behavior	and	induction	of	cell	
cycle	arrest)	can	occur	at	intermediate	stress	intensities,	for	example	resulting	
from	DNA	damage.	 Cyclin-dependent	 kinase	 inhibitors	 (CKIs)	 target	 CDKs	or	
cyclin/CDK	complexes	and	thereby	interfere	with	normal	cell	cycle	progression.	
The	p21	protein,	that	is	induced	upon	DNA	damage,	functions	as	CKI,	as	it	binds	
multiple	cyclin/CDK	complexes	and	induces	a	G1	cell	cycle	arrest	35–38.	Cell	cycle	
inhibition	 induced	by	p21	 is	dependent	on	binding	of	retinoblastoma	protein	
(RB)	 and	 E2F	 transcription	 factor	 complex	 38:	 due	 to	 the	 inactivation	 of	
cyclin/CDKs	by	p21,	RB	becomes	hypo-phosphorylated	and	binds	to	E2F.	This	
RB/E2F	 complex	 subsequently	 binds	 to	 the	 DNA	 and	 thereby	 prevents	 gene	
transcription,	which	causes	cell	cycle	arrest.	E2F	transcriptionally	regulates	the	
expression	of	many	genes	involved	in	cell	cycle	progression,	among	which	are	
Geminin	 and	 Cdt1	 39.	 Geminin	 is	 inhibited	 by	 Anaphase	 Promoting	
Complex/Cyclosome	(APC/C),	which	is	another	core	component	of	the	cell	cycle	
responsible	for	continuation	of	the	G1/S	transition	and	entry	into	S	phase40,41.	
APC/C	 is	 a	 multimeric	 ubiquitin	 E3-ligase	 that	 controls	 the	 degradation	 of	
multiple	cyclins	and	other	proteins	involved	in	the	cell	cycle	42.		
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The	 second	 possibility	 (promotion	 of	 cell	 cycle	 progression)	 is	 frequently	
induced	by	steroid	hormones	and	endocrine	disrupting	chemicals	(EDCs).	EDCs	
are	 present	 in	 many	 products	 encountered	 in	 everyday	 life,	 such	 as	 food,	
pesticides	 and	 cosmetics,	 and	 can	 bind	 hormone	 receptors	 which	 causes	
interference	with	normal	cell	cycling.	Disruption	of	endocrine	signaling	by	EDCs	
can	cause	developmental	problems	and	has	been	associated	with	an	increased	
risk	to	develop	cancer,	reviewed	in	43.	One	of	the	important	hormone	receptors	
affected	by	EDCs	is	the	estrogen	receptor	alpha	(ERα).	Binding	of	a	ligand	to	this	
receptor	causes	transcriptional	activation	of	downstream	targets	involved	in	cell	
cycle	progression,	cell	growth	and	survival,	and	cellular	maintenance	44,	as	well	
as	downregulation	of	targets	involved	in	cell	cycle	arrest	45.	Growth-regulating	
estrogen	 receptor	 binding	 1	 (GREB1)	 is	 a	 critical	 regulator	 of	 cell	 cycle	
progression	 upon	 activation	 of	 ERα	 by	 17β-estradiol	 (E2)	 46.	 Two	 other	 ERα	
targets,	progesterone	receptor	(PR)	and	trefoil	factor	1	(TFF1),	have	also	been	
associated	 to	 cell	 cycle	 progression,	 although	 the	 underlying	 mechanism	
remains	 to	 be	 elucidated	 47.	 Therefore,	 how	 ERα	 signaling	 affects	 cell	 cycle	
progression	is	an	ongoing	topic	of	research.	
	
In	contrast	to	low	concentrations	of	chemical	compounds	that	typically	lead	to	
reversible	 cell	 fates	 such	 as	 the	 discussed	 temporary	 cell	 cycle	 arrest,	 high	
concentrations	can	cause	stress	to	the	degree	that	irreversible	cell	fates	arise,	
such	 as	necrosis,	 apoptosis	 and	 senescence.	 Senescence	 is	 characterized	 as	 a	
permanent	and	 irreversible	cell	cycle	arrest,	 that	occurs	 in	severely	damaged	
cells	 to	 prevent	 propagation	 of	 damaged	 cells	 and	 thereby	 suppress	
tumorigenesis	48.	In	senescent	cells,	the	CDK	inhibitors	p21	and	p16	accumulate	
and	 activate	 RB,	 which	 causes	 inactivation	 of	 E2F	 and	 subsequent	 cell	 cycle	
arrest	49.	The	transcription	factor	p53	is	responsible	for	induction	of	p21	and	is	
therefore	 one	 of	 the	 triggers	 of	 senescence.	 However,	 p53	 is	 also	 one	 of	 the	
primary	 regulators	of	 apoptosis	 and	 induces	 the	production	of	pro-apoptotic	
proteins	 such	 as	p53	upregulated	modulator	 of	 apoptosis	 (PUMA),	 apoptosis	
regulator	 BAX	 and	 Bcl-2	 homologous	 antagonist/killer	 (BAK1).	 The	 choice	
between	induction	of	the	different	cell	fates	depends	on	the	modulation	of	DNA	
binding	 by	 p53	 through	 DNA	 sequence	 and	 chromatin	 structure,	 and	 post-
translational	modiHications,	 interactions	with	co-factors,	 expression	dynamics	
and	oligomerization	state	of	p53	50,51.	This	highlights	once	again	the	complexity	
of	the	regulation	of	cell	fate	by	intracellular	signaling	cascades.		
	
Integrating	different	levels	of	biological	organization		
To	 achieve	 a	 quantitative	 coupling	 of	 protein	 expression	 to	 cell	 fate,	
experimental	 information	 about	 high-level	 cell	 behavior	 is	 needed	 to	
complement	 protein	 expression	 data.	 There	 are	 many	 methods	 to	
experimentally	 determine	 cell	 cycle	 progression	 and	 cell	 death.	 A	 well-
established	method	to	demonstrate	cell	proliferation	uses	the	incorporation	of	
thymidine	analogues	BrdU	or	EdU	during	DNA	replication	in	S	phase,	and	thus	
indicates	 cell	 cycling	 52.	 Because	 this	 method	 depends	 on	 visualization	 with	
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antibodies	 using	 immunohistochemistry	 or	 immunoHluorescence,	 it	 requires	
Hixation	of	the	cells	prior	to	imaging,	which	prevents	one	from	monitoring	cell	
cycle	progression	over	time	in	single	cells.	In	contrast,	measuring	DNA	content	
with	time-lapse	Hlow	cytometry	does	allow	live-cell	monitoring	over	time	53,	yet	
this	method	determines	cell	cycle	progression	for	a	population	of	cells	and	can	
therefore	 not	 be	 used	 to	 track	 long-term	 dynamics	 in	 individual	 cells.	
Alternatively,	high-content	confocal	microscopy	readouts	based	on	Hluorescent	
staining	of	cells	can	be	used	to	determine	cell	cycle	progression.	For	example,	
the	expression	of	Hluorescently	labelled	p21	protein	has	been	used	as	marker	for	
cell	cycle	progression	in	single	cells	54.	This	method	requires	single	cell	tracks	
(i.e.,	a	sequence	of	images	that	captures	at	least	two	phases	of	the	cell	cycle	in	a	
single	 cell)	 that	 visualize	 mitotic	 events	 and	 p21	 dynamics	 in	 both	 control	
conditions	and	in	exposure	scenarios	to	determine	cell	cycle	phase.	In	contrast,	
Hluorescent	 labelling	 of	 Geminin	 and	 Cdt1	 in	 the	 Hluorescent	 ubiquitination-
based	cell	cycle	indicator	(FUCCI)	technology	allows	cell	cycle	determination	for	
cells	in	a	single	image,	because	Geminin	and	Cdt1	are	expressed	during	distinct	
phases	of	the	cell	cycle	55.	In	addition,	with	sufHicient	time	resolution	and	image	
quality,	the	expression	of	these	marker	proteins	and	thus	cell	cycle	progression	
can	be	monitored	over	time	in	individual	living	cells.	
	
Similar	to	the	large	number	of	methods	to	monitor	cell	cycle	progression,	there	
are	numerous	assays	to	measure	cell	viability.	These	include	generic	assays	that	
measure	 cell	 death	 regardless	 of	 the	 type	 of	 death,	 such	 as	 the	 detection	 of	
release	of	lactate	dehydrogenase	(LDH)	enzymes	into	the	culture	medium,	but	
there	are	also	methods	that	speciHically	detect	apoptosis,		autophagy	or	necrosis	
56.	Live-cell	imaging	is	also	a	powerful	tool	to	monitor	cell	death	occurrences	in	
a	single	population	of	cells	over	time.	For	this	purpose,	propidium	iodide	(PI)	or	
Annexin	V	(AnV)	can	be	added	to	the	medium	and	Hluorescently	stain	cells	upon	
their	death	56.		
	
To	unravel	the	mechanism	underlying	cell	fate	determination,	solely	measuring	
protein	expression	and	determining	cell	fate	is	not	sufHicient.	In	addition,	due	to	
the	vast	number	of	proteins	involved	in	cell	fate	regulation	and	the	complexity	
of	their	 interactions,	 it	 is	difHicult	to	discern	the	key	determinants	of	cell	 fate.	
SimpliHication	of	such	a	biological	system	with	mathematical	modeling	can	help	
to	 unravel	 the	 core	 actors	 necessary	 to	 explain	 cell	 fates	 like	 cell	 cycle	
progression	or	arrest.	Different	 types	of	mathematical	models	can	be	used	to	
create	an	in	silico	representation	of	a	biological	process	and	it	depends	on	the	
biological	question	which	model	type	is	most	suited	to	answer	it.	In	drug	safety	
testing,	 creating	 an	 adverse	 outcome	 pathway	 (AOP)	 is	 a	 commonly	 used	
method	to	describe	a	sequence	of	biological	events	that	occur	at	different	levels	
of	biological	organization	within	a	single	conceptual	framework.	In	this	context,	
the	 applicability	 of	 quantitative	 methods	 is	 highest	 when	 they	 naturally	
integrate	 with	 other	 models,	 to	 create	 a	 single	 computational	 model	 that	
simulates	 the	 effect	 of	 drug	 exposure	 on	 molecular	 and	 systems	 level.	 A	
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frequently	 used	 modeling	 method	 in	 biochemistry	 is	 ordinary	 differential	
equation	(ODE)	based	modeling.	ODE	models	describe	the	temporal	dynamics	
of	variables,	such	as	chemical	compounds	and	proteins,	or	the	number	of	cells	
in	a	certain	state.	Separate	ODE	models	can	be	easily	coupled,	which	makes	these	
models	highly	suitable	for	modeling	biological	processes	of	different	types	and	
are	 therefore	 one	 of	 the	 preferred	 tools	 for	 quantitative	 AOPs	 57.	 Another	
appropriate	 method	 to	 integrate	 molecular	 dynamics	 with	 cell	 outcome	 is	
provided	by	the	cellular	Potts	model	(CPM)	58,59.	A	CPM	can	be	used	to	model	
cells	 and	 tissues	 on	 a	 2D	 or	 3D	 lattice	 while	 accommodating	 diversity	 in	
characteristics	such	as	cell	size	and	shape	amongst	cell	types.	The	CPM	model	
formalism	can	incorporate	intracellular	protein	dynamics,	thereby	providing	a	
natural	way	 to	 integrate	molecular	signaling	with	cell	 fate.	Thus,	a	CPM	 is	an	
accessible	method	to	combine	multiple	biological	processes	in	a	single	model,	
yet	 it	 is	 key	 not	 to	 create	 an	 overly	 complicated	 model.	 An	 optimal	 model	
describes	 real-life	 observations	 by	 focusing	 on	 essential	 processes	 and	
disregarding	 insigniHicant	 mechanisms.	 As	 such,	 it	 provides	 a	 framework	 to	
generate	 testable	 hypotheses	 that	 further	 advance	 our	 understanding	 of	 the	
mechanisms	underlying	biological	phenomena	like	cell	fate	decisions.		
	
Thesis	outline	
In	this	thesis,	we	study	how	stress	pathway	activation	is	linked	to	cell	fate.	By	
means	 of	 computational	 models,	 we	 describe	 various	 intracellular	 protein	
signaling	cascades	and	couple	the	expression	dynamics	to	cell	outcomes	such	as	
transient	cell	cycle	arrest,	cell	cycle	progression,	senescence	and	necrosis.		
	
First,	 we	 study	 the	 activation	 of	 the	 DNA	 damage	 response	 upon	 cisplatin-
induced	DNA	damage	in	HepG2	cells	by	creating	an	ODE	model	that	describes	
the	 activation	 of	 TP53/p53	 and	 its	 downstream	 targets	 MDM2/MDM2,	
CDKN1A/p21	 and	 BTG2/BTG2	 on	 mRNA	 and	 protein	 level	 (Chapter	 2).	 To	
investigate	whether	 this	HepG2-based	model	 can	be	used	 to	predict	pathway	
activation	 in	 PHHs,	 we	 exploit	 this	 model	 to	 create	 simulations	 of	 protein	
dynamics	in	virtual	PHH	sample	donors,	and	compare	the	correlations	between	
the	expression	of	TP53	and	its	downstream	targets	in	the	virtual	donors	to	the	
correlations	 found	 in	 experimentally	 determined	 PHH	 data.	 The	 predicted	
positive	TP53-CDKN1A	and	TP53-BTG2	correlations	based	on	model	simulations	
agree	 with	 the	 correlations	 in	 PHHs,	 but	 the	 slightly	 negative	 TP53-MDM2	
correlation	in	PHHs	cannot	be	reproduced	with	our	model.	Although	the	model	
Hits	the	data	of	the	protein	dynamics	very	well,	this	incongruence	between	the	
model-based	 virtual	 donors	 and	 PHHs	 indicates	 that	 either	 the	 cisplatin-
induced	DDR	dynamics	in	HepG2	cells	deviate	from	the	dynamics	in	PHHs,	or	
that	our	model	 is	missing	essential	 interactions	to	explain	the	experimentally	
observed	negative	relation	between	TP53	and	MDM2	expression.		
	
Next,	 we	 investigate	 whether	 the	 DDR	 protein	 dynamics	 can	 explain	 the	
cisplatin-	 and	etoposide-induced	 cell	 cycle	 arrest	 that	 occurs	 for	 exposure	 to	



	
Introduction	

	 17	

1	

pre-cytotoxic	concentrations	of	these	compounds	(Chapter	3).	For	this	purpose,	
we	utilize	the	DDR	model	proposed	in	Chapter	2,	couple	it	to	a	cell	cycle	model	
that	simulates	the	number	of	cells	in	each	cell	cycle	phase,	and	calibrated	the	
model	parameters	to	time-resolved	data	of	the	number	of	HepG2-FUCCI	cells	in	
each	phase.	These	cell	population-level	data	exhibit	an	accumulation	of	cells	in	
S-G2-M	phase	already	at	low	doses	of	the	chemotherapeutic	agents,	but	also	a	
continuation	of	the	cell	cycle	to	G1	phase	at	late	time	points.	With	our	model,	we	
show	that	BTG2	expression	alone	is	sufHicient	to	explain	the	cisplatin-induced,	
but	not	the	etoposide-induced	G2	arrest.	In	addition,	the	detailed	dynamics	of	
the	subsequent	cell	cycle	continuation	cannot	be	explained	in	full	by	p21	or	by	
BTG2,	because	the	expression	of	these	proteins	remains	high	at	late	time	points.	
This	highlights	the	complexity	of	cell	cycle	regulation	and	the	requirement	of	
model	extensions	to	predict	(temporary)	cell	cycle	arrest.	
	
Following	our	study	of	cell	cycle	arrest	on	cell	population	level,	we	examine	the	
estrogen	 response	 pathway	 and	 its	 connection	 to	 cell	 cycle	 progression,	 this	
time	on	single	cell	level	(Chapter	4).	This	requires	a	novel	approach,	in	which	
we	 couple	 estrogen-induced	 protein	 signaling	 of	 ERα,	 GREB1	 and	 PR	 to	 an	
elementary	cell	cycle	model	previously	constructed	by	Ferrell	et	al.	(2011)	60	and	
subsequently	 exploited	 by	 Bae	 et	 al.	 (2019)	 61	 to	 determine	 cell	 cycle	 phase	
durations.	To	evaluate	the	accuracy	of	our	model,	we	experimentally	determine	
cell	 phase	 durations	 for	 individual	 cells.	 For	 this	 purpose,	 we	 use	 live-cell	
imaging	of	MCF7-FUCCI	cells	and	develop	a	convolutional	neural	network	 for	
high-quality	cell	segmentation,	and	subsequent	single	cell	tracking.	Our	model	
successfully	 predicts	 the	 G1	 arrest	 that	 follows	 PR	 knockdown	 and	 the	
prolonged	S-phase	that	is	a	result	of	GREB1	knockdown.		
	
Finally,	we	expand	our	single-cell	approach	to	liver	tissue	level	to	gain	insight	in	
the	 interplay	 between	 intra-	 and	 intercellular	 factors	 that	 drive	 cell	 fate	
(Chapter	 5).	 We	 construct	 a	 spatial	 model	 that	 simulates	 the	 distribution,	
uptake,	 metabolism,	 and	 excretion	 of	 APAP.	 Our	 model	 describes	 cellular	
behaviors	at	low	and	high	APAP	concentrations	in	a	single	liver	lobule	and	the	
consequent	liver	damage	and	-	if	possible	-	recovery.	In	this	theoretical	model,	
we	 use	 intracellular	 DDR	 signaling	 with	 p21	 as	 most	 important	 readout	 as	
determinant	for	the	induction	of	senescence,	whereas	immune	cells	have	a	dual	
role	by	promoting	senescence	on	the	one	hand,	but	by	clearing	senescent	cells	
and	 by	 stimulating	 recovery	 through	 the	 release	 of	 mitogenic	 biomolecules.	
With	this	model,	we	investigate	these	counteracting	stimulants	for	senescence	
and	 proliferation,	 and	 demonstrate	 the	 applicability	 of	 the	 model	 by	
investigating	the	effect	of	various	therapies	to	APAP	overdosing	in	silico.	
	
In	our	Hinal	Chapter	6,	we	discuss	how	our	models	help	to	unravel	intracellular	
protein	 dynamics	 as	 a	 consequence	 of	 chemical-induced	 stress	 and	 provide	
testable	hypotheses	for	future	exploration.	In	addition,	we	further	highlight	how	
modeling	allows	us	to	quantitatively	integrate	processes	on	different	levels	of	
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biological	 organization	 and	 provides	 insight	 into	 mechanisms	 that	 lead	 to	
adverse	effects.		
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