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Metabolic reprogramming of cancer cells generates a tumor microenvironment 
(TME) characterized by nutrient restriction, hypoxia, acidity and oxidative stress. 
While these conditions are unfavorable for infiltrating effector T cells, accumulating 
evidence suggests that regulatory T cells (Tregs) continue to exert their immune-
suppressive functions within the TME. The advantages of Tregs within the TME 
stem from their metabolic profile. Tregs rely on oxidative phosphorylation for 
their functions, which can be fueled by a variety of substrates. Even though Tregs 
are an attractive target to augment anti-tumor immune responses, it remains a 
challenge to specifically target intra-tumoral Tregs. We provide a comprehensive 
review of distinct mechanistic links and pathways involved in regulation of Treg 
metabolism under the prevailing conditions within the tumor. We also describe 
how these Tregs differ from the ones in the periphery, and from conventional T 
cells in the tumor. Targeting pathways responsible for adaptation of Tregs in the 
tumor microenvironment improves anti-tumor immunity in preclinical models. 
This may provide alternative therapies aiming at reducing immune suppression 
in the tumor.
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Introduction

Tumor cells frequently exhibit increased metabolism compared to normal cells to fulfil 
their metabolic demands to sustain proliferation [1]. They perform aerobic glycolysis, 
also known as the “Warburg effect”, wherein glucose-derived pyruvate is shunted to 
lactate instead of being metabolized in the mitochondria despite the presence of 
oxygen [2]. In addition, increased mitochondrial respiration in tumor cells is essential for 
the biosynthesis of macromolecules and for tumorigenesis [3]. On the other hand, tumor 
hypoxia, mainly caused by defective vasculature in fast-growing tumors, forces cancer 
cells to rely on aerobic glycolysis, consequently increasing lactic acid production [4, 5]. 
While lactic acid is a major contributing factor to tumor acidity, also carbonic acid formed 
during oxidative phosphorylation can acidify the tumor microenvironment (TME) [6, 
7]. Tumor cells produce elevated level of reactive oxygen species (ROS), which in turn 
can lead to increased basal metabolic activity and mitochondrial dysfunction [8–11]. 

Substrates for the tri-carboxylic acid (TCA) cycle can vary from glucose-derived pyruvate, 
oxidation of fatty acids, glutamine-derived α-ketoglutarate (via glutaminolysis), or 
through the conversion of branched chain amino acids (BCAA) [11]. Increased uptake 
of amino acids by tumors is also essential for nucleic acid synthesis, to maintain redox 
balance and to mediate epigenetic regulation [12]. The TME is thus devoid of nutrients 
while being enriched in metabolic intermediates such as lactic acid, glutamate, kynure-
nine and ROS [7, 13–16]. Nutrient restriction, hypoxia, acidity and oxidative stress are 
all described to impair the function of tumor-infiltrating effector T cells [17, 18]. 

Regulatory T cells (Tregs), characterized by the expression of the transcription factor 
forkhead box P3 (Foxp3), are a heterogeneous population of immunosuppressive cells, 
which are critical for establishing peripheral tolerance [19, 20]. They originate either 
from the thymus after positive selection (termed tTregs or nTregs) or can be induced 
in the periphery (pTregs) from naïve CD4+ T cells after T cell receptor stimulation in the 
presence of transforming growth factor beta (TGF-β) and interleukin-2 (IL-2) [21–23]. 
Both subsets are present in the tumor and independently contribute to immune sup-
pression [24–26]. The presence of immune suppressive cytokines in the tumor can also 
lead to conversion of conventional CD4+ T cells to Tregs [27, 28]. In the review, we will 
refer in general to tumor-infiltrating Tregs (TI-Tregs), comprising both subsets.

Tregs can suppress immune responses via secretion of granzymes and perforins, 
immune-suppressive cytokines (IL-10, TGF-β, IL-35), or by expressing co-inhibitory 
molecules such as CTLA-4, PD-1, LAG-3, TIM-3 and TIGIT [29–31]. In addition, they can 
degrade extracellular adenosine triphosphate (ATP) or adenosine diphosphate (ADP) 
to immune-suppressive adenosine by combined activities of the ecto-enzymes CD39 
and CD73 [30]. High Foxp3+ Treg infiltration is associated with tumor progression and 
poor recurrence-free and overall survival across melanomas, cervical, renal and breast 
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cancers [32]. Transient systemic Treg depletion in metastasized melanoma patients, 
achieved by administering IL-2 conjugated to diphtheria toxin fragments A and B, 
causes significant regression of the tumors [33]. This supports previous mouse studies 
in which transient Treg depletion correlated with increased effector T cell activation, 
delayed tumor growth, and enhanced survival in a range of solid tumors [34–36]. In 
addition, Treg depletion by the use of the anti-CD25 antibody Daclizumab resulted in 
increased immune response in combination with dendritic cell vaccination in breast 
cancer patients [37]. This was, however, not observed in another trial with melanoma 
patients [38]. The limited success of such Treg depleting strategies could be attributed 
to their lack of specificity to TI-Tregs [36]. Of note, long-term systemic depletion of 
Tregs results in fatal autoimmunity in adult mice, which also raises concerns regarding 
autoimmune side effects in human trials with long term systemic Treg depletion [39].

Selective inhibition of Tregs in the tumor is therefore critical for developing safe and 
effective therapies to overcome immune suppression. Increasing evidence points out 
to the metabolic differences between peripheral and TI-Tregs and between TI-Tregs and 
effector T cells. Therefore, we aim to outline the current knowledge about metabolic 
profiles of Tregs in the TME and highlight several pathways of metabolic adaptation 
engaged by TI-Tregs that support their survival and suppressive activity.

Metabolic profile of Tregs: balance between glycolysis and 
mitochondrial respiration

The metabolic differences between conventional T cells (Tconv) and Tregs in normal 
physiology and during inflammation are being increasingly highlighted over the past 
years [40–46]. When Tconv cells are activated, they shift their metabolism from oxidative 
phosphorylation (OXPHOS) to aerobic glycolysis, to support cell growth and prolifera-
tion, much like tumor cells [47, 48]. Mammalian target of rapamycin (mTOR), consisting 
of complexes I and II, modulates glycolysis in T cells [49]. Upregulation of glycolysis is 
also observed during activation of Tregs. Stimulating mouse tTregs with TLR1 and TLR2 
agonist Pam3CSK4 induces mTORC1 signaling, increases glycolysis and results in highly 
proliferative Tregs [42]. However, such glycolytic Tregs lost their suppressive capabili-
ties in vitro [42]. Likewise, increase in glycolysis in Tregs induced by overexpression of 
glucose transporter (GLUT)-1 also caused a loss of suppressive function in vitro and in 
vivo in an inflammatory bowel disease model [42]. The migratory capacity of Tregs to 
the secondary lymphoid organs is dependent on mTORC2-mediated upregulation of 
glycolytic enzymes suggesting that Tregs utilize glycolysis for migration [50]. It was, 
however, not determined if the glycolytic Tregs were able to suppress Tconv cells in 
this model [50]. 
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While glycolysis seems to be imperative for the proliferation and migration of Tregs, 
their functionality is dependent on alternative metabolic routes involving mitochondrial 
metabolism. For instance, impaired OXPHOS by Treg-specific deletion of mitochondrial 
complex III in adult mice results in loss of Treg suppressive functions, while there is 
no effect on the expression of FoxP3 or the number of FoxP3+ Tregs [51]. Mice lacking 
the metabolic sensor Lkb1 in Tregs develops lethal autoimmunity due to disrupted 
mitochondrial metabolism, further highlighting the essentiality of OXPHOS for Treg 
functionality [52, 53]. Moreover, Tregs take up exogenous fatty acids rather than relying 
on de novo fatty acid synthesis for their survival and functionality [44]. Inhibiting lipid 
uptake by knockdown of fatty acid-binding protein (FABP) 5, or acute treatment with 
the FABP inhibitor BMS309403, impaired OXPHOS, lipid metabolism finally disrupting 
mitochondrial structure specifically in Tregs (Fig 1) [54]. Interestingly, such Tregs sup-
pressed effector responses through increased IL-10 production [54]. It is not clear from 
the former studies if impaired OXPHOS in Tregs also caused alterations in mitochondrial 
structure or led to release of mitochondrial DNA. Moreover, it is conceivable that a 
specific metabolic pathway in Tregs dictates their mode of suppression. 

The ability of Tregs to switch between different metabolic routes has been attributed 
to the expression of FoxP3. Upon activating murine naïve CD4+ T cells in vitro in the 
presence of TGF-β, induced FoxP3+ Tregs had increased mitochondrial respiration 
compared to their FoxP3- counter-parts [55]. In addition, exogenous expression of 
FoxP3 in activated CD4+ T cells causes a shift towards OXPHOS [42]. Expression of FoxP3 
suppresses Myc signaling, by binding to its promoter, which in turn affects glycolysis 
and glutaminolysis [55, 56]. The importance of metabolic regulation for Treg function-
ality was reiterated using in the Foxp3∆EGFPiCre mouse model, wherein Tregs harbor loss 
of FoxP3 while expressing humanized Cre recombinase fused with enhanced green 
fluorescent protein, enabling the tracing of FoxP3- Tregs [57]. Such FoxP3- Tregs have 
increased glycolysis and OXPHOS. Treg-specific deletion of mTORC2 reduces glycolysis 
and restores the phenotype and functionality of FoxP3- Tregs and reduces inflammation 
in vivo. Interestingly, mTORC2 deficiency does not upregulate mitochondrial metabo-
lism suggesting that alternative pathways are responsible [57]. In summary, current 
results indicate that Tregs utilize glycolysis for proliferation and migration, while their 
suppressive function is dependent on mitochondrial respiration [42, 43, 50, 51]. Tregs 
might switch their metabolic profile in response to inflammatory cues, which in turn 
affects their functionality, thereby allowing immune resolution only after pathogen 
clearance. While these studies have deciphered the metabolic profile of Tregs in the 
context of normal physiology or by using models of autoimmune disorders, the unique 
metabolic feature of Tregs could prove advantageous in the metabolically restrictive 
tumor microenvironment as well. 
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Tregs in the tumor microenvironment

Nutrient Depletion

Glucose and free fatty acids
Reliance on OXPHOS for functionality might prove beneficial to Tregs in the nutrient-
depleted TME, since they can utilize substrates either derived from glycolysis or from 
fatty acid oxidation (FAO) (Fig 1) [43, 44, 58]. Accordingly, Tregs increase glycolytic as 
well as oxidative capacity within the tumor compared with Tconv cells [59]. TI-Tregs 
from MC-38 tumor-bearing mice have higher intracellular lipid content compared 
with TI-Tconv cells and with splenic Tregs. However, there was no increased uptake of 
fatty acids by these cells, suggesting that fatty acid synthesis (FAS) contributed to the 
increased lipid pool in TI-Tregs. The tri-carboxylic acid (TCA) cycle intermediates for FAS 
mostly originated from glycolysis, since inhibiting this with 2-deoxy-D-glucose (2DG) 
caused a reduction in lipid accumulation in TI-Tregs (Fig 1) [59].

On the contrary, studies utilizing similar tumor models, conclude that fatty acid uptake 
contributes to the increased lipid pool of TI-Tregs (Fig 1) [60, 61]. In low glucose condi-
tions, human Tregs utilize fatty acids efficiently for their expansion, survival and for sup-
pressive functions in vitro [62]. In mice bearing GL-261 glioblastoma tumors, Tregs have 
higher lipid uptake compared with Tconv cells within the tumor [60]. Surface expression 
of the fatty acid transporters CD36 and SLC27A1 is significantly increased in Tregs in the 
brain compared to Tregs in the periphery. Of note, increased levels of fatty acid were 
found within the tumor compared with surrounding healthy brain tissue, suggesting 
that TME with high level of fatty acid might allow for accumulation of Tregs [60]. This 
was confirmed in a recent study, wherein the proliferation and suppressive function 
of effector Tregs was increased with higher doses of fatty acid palmitate in vitro [62]. 
Furthermore, gastric tumors harboring Ras homolog family member A (RHOA) mutation 
produce more fatty acid compared with wild-type (WT) tumors, which in turn allows 
expansion and increased suppression by TI-Tregs [62]. Accordingly, CD36 is selectively 
upregulated in TI-Tregs, and this is accompanied by higher fatty acid uptake and a higher 
lipid content compared with peripheral Tregs [61]. In line with this, Treg-specific genetic 
ablation of CD36 severely decreased lipid uptake and content in TI-Tregs, which then 
impaired OXPHOS and skewed their metabolic preference towards aerobic glycolysis. As 
a result, CD36-deficient TI-Tregs, displayed reduced suppressive capacity ex vivo while 
their splenic counterparts displayed comparable suppressive capacity. This suggests 
that CD36-mediated fatty acid uptake is specific to TI-Tregs [61]. 

While most studies imply that Tregs employ OXPHOS for their functionality in the TME, 
TI-Treg cell lines generated from primary melanoma or breast cancer tumors were highly 
glycolytic and upregulated glucose transporters [63]. The competition for glucose in 
turn caused senescence of effector T cells, which did not occur in high glucose condi-
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Fig 1: Tumor infiltrating (TI)-Tregs adapt to the metabolic stresses often experienced in the tumor 
microenvironment (TME) 
TI-Tregs increase their glucose uptake via glucose transporters (GLUT) converting it to pyruvate via 
glycolysis. The conversion of pyruvate to lactate seldom occurs in TI-Tregs. Pyruvate is instead converted 
to acetyl CoA and metabolized in the mitochondria to fuel the tri-carboxylic acid (TCA) cycle. Alternatively, 
TI-Tregs can take up free fatty acids (FA) from the TME via fatty acid transporters (e.g.: CD36). This process is 
aided by the presence of fatty acid binding proteins (FABP). FA is then converted to Fatty acyl CoA to further 
be oxidized in the mitochondria, termed fatty acid oxidation (FAO). In addition, the TCA cycle can also be 
fueled by the derivatives of amino acid metabolism. For example, glutamate produced from glutamine is 
converted to α-ketoglutarate which enters the TCA cycle. Furthermore, TI-Tregs have increased expression 
of metabotropic glutamate receptor 1 (mGluR1), which allows the uptake of glutamate from the TME. 
The reducing equivalents NADH and FADH2 are synthesized during the TCA cycle which in turn transfers 
electrons to the electron transport chain (ETC). The direction of electron transfer across the ETC complexes 
is depicted by dashed lines. The membrane potential created by the ETC drives phosphorylation of ADP 
to ATP in the presence of oxygen (OXPHOS). The intermediates of TCA cycle can also be utilized for fatty 
acid synthesis (FAS) by TI-Tregs. The reactive oxygen species (ROS) produced due to increased OXPHOS is 
scavenged by glutathione thereby protecting TI-Tregs from oxidative stress. Inhibitors that are shown to 
alter TI-Treg metabolism and their targets are depicted in red. 
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tions [63]. However, the extent of glucose limitation in the TME and the potential effect 
of this on TI-Tregs were not described. The reliance of TI-Tregs on glycolysis for their 
suppressive functions is not shown by additional studies. Hence, TI-Tregs presumably 
rely on mitochondrial metabolism for their functionality which endows them with a 
broader choice of substrates obtained either from glucose or from fatty acids in the TME. 



Chapter 5

118

Amino acids
Amino acid metabolism also plays an important role in Treg development, thereby 
allowing their adaptation within the TME. During stimulation of naïve T cells, depriving 
glutamine in the media or addition of the glutaminase inhibitor 6-diazo-5-oxo-l-
norleucine (DON) results in increased FoxP3 expression in vitro in a TGF-β dependent 
manner [64, 65]. Such Tregs induced under glutamine limitation maintain suppressive 
function and can persist in vivo [64]. In addition, FoxP3+ Tregs obtained from healthy 
human donors are resilient to glutamine restriction in vitro [66]. Moreover, high 
glutamate concentration altered cytokine production by dendritic cells which in turn 
fostered Tregs in an experimental autoimmune encephalomyelitis model [67]. Increased 
glutamate can also directly alter Tregs and enhance their proliferation and suppressive 
function [68]. Tumor cells have increased consumption of glutamine, converting it to 
glutamate, which can be exported in exchange for cystine, rendering the TME low in 
glutamine and high in glutamate levels, potentially sustaining TI-Tregs [13, 69, 70]. In 
line with this, vascular endothelial growth factor (VEGF) blockade increased glutamate 
production in murine glioblastoma tumors, thereby favoring Treg accumulation [68]. 
Depleting Tregs prior to VEGF blockade in this model led to tumor growth control and 
increased survival [68]. 

Moreover, tumor cells express indoleamine 2,3-dioxygenase (IDO) which mediates the 
conversion of tryptophan to kynurenine [71]. IDO-mediated tryptophan depletion and 
the resulting tryptophan metabolites facilitate induction of FoxP3+ Tregs and activate 
suppressive function of Tregs in a dendritic cell-dependent manner [72–75]. Kynurenine 
is also known to activate and signal through the aryl hydrocarbon receptor (AHR), which 
is essential for TGFβ dependent Treg induction [76, 77]. Furthermore, overexpression 
of IDO in mouse B16 melanoma tumor resulted in increased expression of AHR on 
TI-Treg and also enhanced their suppressive functions [78]. Tissue resident Tregs and 
activated Tregs from peripheral blood can deplete arginine due to their high expres-
sion of arginase and also utilize this pathway to suppress proliferation of effector T 
cells [79]. Such Tregs with high expression of arginase were also seen in tumors from 
melanoma patients, suggesting additional mode of TI-Treg mediated suppression [79]. 
Taken together, these studies imply that TI-Tregs can utilize the amino acid profiles 
within the TME for induction, survival and function. 

Feeding mice a diet low in isoleucine or a Treg-specific deletion of amino acid transporter 
SLC3A2 resulted in low Treg numbers in vivo due to reduced proliferation suggesting 
that isoleucine is essential to sustain Treg proliferation [80]. Isoleucine, valine and 
leucine, collectively termed as the branched-chain amino acids (BCAA) are taken up by 
the tumor to sustain increased metabolic demands [11, 81, 82]. However, the level of 
BCAA in the TME and their effect on tumor growth is different across tumor types [81, 
82]. It would thus be interesting to further explore the effect of altered BCAA levels in 
the TME on metabolic rewiring of TI-Tregs.   
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Hypoxia
The hypoxic TME actively recruits Tregs due to enhanced intra-tumoral expression of 
chemokine CCL-28 [83, 84]. Moreover, hypoxia induces upregulation of TGFβ1 through 
hypoxia-inducible factor (HIF)-1α binding to its promoter, thereby inducing Foxp3 
expression in CD4+ T cells both in vitro and in vivo [85, 86]. Some studies also show an 
increased Treg suppressive function in hypoxic conditions [87, 88]. HIF-1α stimulates 
glycolysis by inducing glucose transporters and glycolytic enzymes, while inhibiting 
mitochondrial respiration [5]. Genetic deletion of HIF-1α in Tregs increased mitochon-
drial metabolism ex vivo compared with Tregs from WT mice, thereby enhancing their 
suppressive functions [60]. Interestingly, enhanced suppression by HIF-1α knockout 
(KO) Tregs was limited to hypoxic conditions, indicating that Tregs utilize a HIF-1α 
driven metabolic switch only under hypoxia, such as in the tumor [60]. However, it was 
not evaluated in this model if Tregs can cope with increased mitochondrial activity 
despite possibly low oxygen levels in the tumor for prolonged duration. HIF-1α stabili-
zation under hypoxia is essential to reduce oxygen consumption thereby assisting cell 
survival, whereas HIF-1α KO cells continue to consume oxygen eventually disrupting 
intracellular oxygen tension [89]. It is therefore possible that 1% oxygen can sustain 
mitochondrial activity in HIF-1α KO conditions albeit for a short duration. In line with 
the earlier observations, loss of glycolytic capacity of Tregs lacking HIF-1α reduced their 
migratory capability into the TME, contributing to the increased survival of mice bearing 
GL-261 brain tumor [50, 60]. Thus, targeting HIF-1α could prevent migration into the 
tumor, but this might improve inhibitory function for Tregs already present in the tumor.

Acidity
Increased extracellular lactic acid due to high aerobic glycolysis by tumor cells is a major 
source for acidification of the TME [14]. The conversion of glucose derived pyruvate 
to lactate regenerates NAD+, which is essential to sustain glycolysis. This process also 
occurs in activated Tconv cells. As a result, the presence of extracellular lactic acid or the 
pH neutral form- sodium lactate causes loss of proliferation of Tconv cells since they are 
unable to excrete lactate produced due to loss of gradient [55, 90]. On the contrary, Tregs 
prefer to oxidize pyruvate in the mitochondria, instead of converting it to lactic acid, which 
is supported by their increased ratio of NAD/NADH (Fig 1) [55]. Consequently, Tregs are 
able to proliferate and suppress Tconv cells in the presence of pH neutral extracellular 
lactate. In addition, presence of extracellular lactate increases the frequency of iTregs 
in a TGF-β dependent manner [55]. Furthermore, the increased frequency of iTregs 
(CD4+FoxP3+) in the presence of extracellular lactate in low glucose condition is due to 
a relative reduction in proliferation of non iTregs (CD4+FoxP3-) [55]. While these results 
indicate that the survival and functional advantage of FoxP3+ Tregs in high lactate envi-
ronments mainly stems from their preference to oxidize pyruvate in the mitochondria, 
Tregs could potentially utilize lactate as an alternative fuel source for OXPHOS. 
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However, it is described that loss of proliferation and cytokine production by human 
effector T cells in the presence of lactic acid is a consequence of acidification which 
can be reversed by buffering the pH of the medium [90]. Furthermore, sodium lactate 
at physiological pH did not inhibit Tconv function [90, 91]. It is thus interesting to 
determine if Tregs also have an advantage in low pH conditions. This was recently 
addressed using Tregs induced in the presence of tumor conditioned medium [61]. 
Such Tregs had a survival advantage in the presence of extracellular lactic acid in vitro 
due to the upregulation of the fatty acid transporter CD36 [61]. Knock out of CD36 in 
Tregs reversed this advantage due to reduced mitochondrial respiration which depleted 
their NAD pool [61]. It is, however, not completely deciphered if the ability to survive 
in the presence of lactic acid is limited to TI-Tregs due to their increased CD36 expres-
sion or if Tregs in general are more resistant to extracellular acidification owing to their 
reduced glycolytic rates. 

Oxidative stress
Tregs have elevated intracellular ROS levels compared with effector T cells combined 
with low level of antioxidant regulator NRF2 and its associated gene transcripts, 
thus being relatively sensitive to oxidative stress in the TME [55, 92]. TI-Tregs sorted 
and expanded from human ovarian tumors were highly apoptotic. Culturing mouse 
Tregs with human ovarian cancer ascites also induced apoptosis in Tregs, due to their 
increased ROS production [92]. Surprisingly, apoptotic Tregs retain their capability to 
suppress anti-tumor immune response in vivo in MC38 and B16-F10 tumor models. Sup-
pressive function of such apoptotic Tregs was dependent on the ecto-enzymes CD39 
and CD73. These apoptotic Tregs released high levels of ATP via pannexin-1-dependent 
channels, and in turn metabolized it to the immune-suppressive adenosine by the 
combined activity of CD39 and CD73 [92]. 

On the contrary, it was shown earlier that human nTregs show greater resilience towards 
ROS mediated cell death compared with Tconv cells due to increased levels of anti-
oxidant- thioredoxin-1 [93]. Moreover, iTregs have lower intracellular ROS compared 
with activated Tconv cells despite their increased mitochondrial metabolism [94]. This 
enhanced capability of scavenging intracellular ROS is due to increased levels of the anti-
oxidant glutathione (Fig 1) [94]. Glutathione is synthesized by the enzyme glutamate 
cysteine ligase (Gclc) utilizing glutamine, glycine and cysteine [95]. Genetic deletion of 
Gclc specifically in Tregs caused severe autoimmunity in mice. Gclc deficiency in Tregs 
triggered an intracellular accumulation of serine due to feedback regulation of serine 
by glutathione. This in turn resulted in increased mTOR activation and dysregulated 
Treg metabolism causing reduced FoxP3 expression and loss of Treg functionality in 
both mice and human Tregs [94]. The requirement of glutathione by Tregs is also note-
worthy and points out to a potential dependence of Tregs on cysteine availability [95]. 
It is also interesting to evaluate if cysteine limitation in the tumor microenvironment 
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might in turn engage trans-sulphuration pathway in TI-Tregs [96, 97]. Furthermore, 
Treg Gclc deletion led to slower growth of tumors in B16-F10 melanoma model. It was 
not evaluated if Tregs underwent apoptosis or if apoptotic Tregs also contributed to 
immune suppression in this model [94]. It is thus imperative to determine how ROS 
levels vary across tumor models and if this in turn leads to differences in Treg metabolic 
profiles determining maintenance and suppressive functions. 

Targeting intra-tumoral Treg metabolism

The differences in metabolic profile of TI-Tregs compared with peripheral Tregs and 
Tconv cells provide opportunities to tackle the persistent problem of selective TI-Treg 
targeting. Since glycolysis is essential for the migration of Tregs, inhibiting glycolysis 
in Tregs could prevent recruitment into the TME [50, 60]. It is, however, possible that 
glycolysis inhibition might result in improved suppressive function of Tregs already 
present in the TME [63]. This could be circumvented by preceding glycolysis inhibition 
with transient Treg depletion. Additional studies are, however, essential to find targets 
that can modulate glycolysis specifically in Tregs, sparing other immune subtypes. 
Expression of FoxP3 is known to downregulate mTOR activation in Tregs which further 
reduces glycolysis [42]. Chronic activation of mTOR in Tregs could therefore destabilize 
their metabolism, reducing their functionality in tumor models. 

Since inhibition of OXPHOS reduces suppressive function of Tregs in vitro and in vivo, this 
strategy can also be used to target suppressive function of intra-tumoral Tregs [51, 57]. 
5-tetradecyloxy-2-furoic acid (TOFA) is known to inhibit acetyl-CoA carboxylase, thereby 
inhibiting fatty acid synthesis (Fig 1). Abolishing fatty acid accumulation in Tregs by 
treatment with TOFA, significantly inhibits the proliferation of Tregs [59]. However, the 
effect on tumor growth control in vivo was due to a direct toxicity on tumor cells rather 
than immune-mediated events [59]. TI-Tregs are enriched in the expression of the fatty 
acid transporter CD36 in melanoma models (Fig 1) [61]. Treatment with a monoclonal 
antibody blocking CD36 reduced accumulation of TI-Tregs without systemic loss of 
Treg numbers or functions thereby leading to a significant increase in infiltration and 
effector functions of CD8+ T cells in the tumor. Subsequently, reduced tumor growth 
was observed [61]. CD36 blockade also reduced TI-Tregs and increased the ratio of CD8+ 
T cells to Tregs in the RHOA mutant MC38 colon cancer model, characterized by high 
production of free fatty acids [62]. VT1021, a peptide that induces thrombospondin-1 
(Tsp-1), in turn targeting CD36, is currently being evaluated in a phase 1/2 clinical trial 
[98]. Determining its effect on TI-Treg functionality could provide additional insights 
into the potential of targeting Treg metabolism.

Treatment with Etomoxir, known to inhibit FAO by inhibiting carnitine palmitoyl-trans-
ferase 1a, severely affects Treg proliferation and suppressive capability by the inhibition 
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of lipid metabolism (Fig 1) [59, 60]. Intracranial administration of Etomoxir into mice 
bearing GL-261 brain tumor led to an increased ratio of effector T cell/ Tregs resulting 
in an immune-mediated improvement in survival, suggesting that blocking FAO might 
specifically target Treg functionality [60]. This must be further verified with additional 
specific inhibitors for FAO, since Etomoxir was shown to have off-target effects such as 
reduced electron transport chain (ETC) activity and increased induction of oxidative 
stress [99–101]. In addition, dysregulated mitochondrial metabolism of effector CD8+ T 
cells in the TME results in reduced effector functions thereby increasing tumor growth 
[102–104]. It is thus probable that broad inhibitors of fatty acid metabolism, while 
reducing Treg functionality might also hamper effector responses. 

Studies that evaluate the potential of modulating TI-Treg metabolism to enhance 
the efficacy of checkpoint blockade are recently surfacing. Encouragingly, anti-PD-1 
monoclonal antibody effectively limited tumor progression and prolonged survival in 
mice lacking CD36 in Tregs, indicating that CD36 and PD-1 targeting could synergize 
to control tumor growth [61]. In line with this observation, combination of CD36 
blockade and anti-PD-1 antibody significantly reduced growth of RHOA mutated MC38 
tumors, while either antibody alone did not lead to tumor growth control [62]. Injecting 
apoptotic Tregs along with tumor diminished the beneficial effect of PD-L1 antibody 
on anti-tumor T cell response and control of MC38 tumor, indicating that modulat-
ing TI-Treg metabolism likely augments response to immune therapy [92]. Targeting 
Tregs by the use of CTLA-4 blocking antibody in combination with PD-1 blockade 
caused regression of RHOA mutant MC38 tumors that are otherwise resistant to either 
treatment alone [62]. Signaling via CTLA-4 is known to reduce glycolysis in Tregs [50]. 
It is therefore interesting to evaluate the potential of CTLA-4 blockade on modulat-
ing TI-Treg metabolism and if this in part contributes to the efficacy of the antibody. 
Preliminary results showed that CTLA-4 blockade in low glycolytic tumors destabilized 
Treg functions and led to increased survival in mice (conference abstract) [105]. 

Decreased ratios of Teff/Tregs in the tumor are often associated with poor prognosis 
in cancer and impaired outcome upon checkpoint inhibition [32, 106, 107]. Favorable 
ratios can also be achieved by empowering Tconv to overcome the metabolic stresses 
in the TME. To do so, one could make use of the lessons learnt from TI-Treg metabolic 
profiles. In contrast to Tregs, Tconv produces lactic acid owing to increased aerobic 
glycolysis, as a result of which they lose their functionality in TME with high level of 
extracellular lactic acid [55, 90]. Treatment with the LDH inhibitor GSK 2837808A in vitro 
rescued the Tconv from L-lactate inhibition [55]. In line with this observation, blocking 
LDH (with NCI-737) and IL-21 synergistically rewired the metabolic profile of CD8+ T 
cells and led to reduced tumor growth and longer survival in B16 melanoma bearing 
mice [108]. Alternatively, promoting mitochondrial biogenesis and function in CD8+ T 
cells also improved anti-tumor activity in vivo [102, 103, 109, 110]. 
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Concluding remarks

Despite the plethora of metabolic challenges such as nutrient restriction, hypoxia, 
acidity and oxidative stress, imposed by TME on infiltrating immune cells, Tregs can 
still survive and function. In this review, we provided a comprehensive understand-
ing of how Tregs deal with these metabolic stresses. While most studies indicate that 
Tregs rely on OXPHOS for their suppressive functions in normal physiology and during 
disease [42, 43, 51, 60], the substrate for this in the tumor could either be derived from 
glucose or from fatty acids [54, 59, 61]. Though it seems plausible that the preference 
for a particular fuel source can be specific to a certain microenvironment, there are 
discrepancies across studies that utilize similar tumor models [59, 61]. It is evident that 
the metabolic reprogramming of TI-Tregs is not dependent on a single pathway, but 
it is an amalgamation of responses of Treg-intrinsic regulators to the environmental 
cues. Further characterization of the regulators of Treg metabolic responses to TME is 
required. The competitive advantage of Tregs due to their metabolism, however, could 
also become their Achilles’ heel, which provides new avenues for specific therapeutic 
targeting, which already shows promising early results [60, 61]. One can envision that 
such approaches may synergize with current effective anti-tumor immune therapies, 
like T cell therapies or checkpoint inhibition, thereby providing an additional and 
independent approach in cancer immunotherapy [61, 62].
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