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Abstract
This chapter provides an introduction to Hybrid Particle-Field Molecular Dynamics (hPF-MD), the basic theoretical framework and the main
ideas behind this recent methodology. The original implementation of hPF-MD in the massively parallel OCCAM code and the parallelization
strategy is also described together with several early applications to biologically oriented problems (biomembranes, surfactants, drug delivery,
bacterial lipids) and to materials science (polymers, nanocomposites, interfaces). The chapter ends with a discussion about open issues and
perspectives for future research.

Key Points

• Introduction to hPF-MD.

• hPF-MD allows simulations of detailed models on large time and length-scales.

• OCCAM code implementation of hPF-MD.

• Open issues and perspective for future research.

1 Introduction

The first two papers about Molecular Dynamics (MD) simulations were published in 1957 by Alder and Wainwright about phase
transitions in hard spheres1 and on the methodology of MD.2 After these two seminal papers, different efforts were devoted to
model realistic molecular systems for direct quantitative comparisons with experiments. In 1964 Rahman did the first simulation
of liquid argon3 and later in 1971 Rahman and Stillinger simulated liquid water using a model consisting of 216 rigid molecules at
mass density 1 g/cm3.4 After these very early atomistic models of liquids, several successful efforts have been made to extend the
molecular simulation approaches to liquids,5 proteins6 and biomembranes.7 For a complete account of the early history of
molecular simulations the reader can refer to a recent book of Battimelli, Ciccotti and Greco.8
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Nowadays atomistic simulations not only can provide good previsions and explanations for molecular mechanisms of several
macroscopic phenomena, but they can be an aid to experimentalists in the interpretation of data on proteins,9 to develop new materials10

and to improve their production.11 To this aim, several software packages are available to perform classical atomistic MD simulations,
including GROMOS, Amber, CHARMM, GROMACS, LAMMPS, YASP and NAMD and many applications to several challenging problems
have been pursued.

Computational models at atomic resolution, being the least affected by a need to effectively incorporate degrees of
freedom that are disregarded, are the ideal way to face this type of problems. Unfortunately, most of the time, the length and
time scales involved in relevant phenomena would require computational efforts that can be unaffordable on a routinely
basis or even out of reach for actual computer power. In this respect, some typical examples are protein folding12 and
membrane remodeling.13 For most of the proteins, atomistic modeling, due to the size of their conformational spaces, would
require time scales that are still too large to be studied. Remodeling of biological membranes is particularly difficult to study
because of their rich chemical composition. Moreover this problem is further complicated by membrane proteins and by
dynamical structural deformations happening during biological activity, like the appearance of mesoscopic structures such as
tubules, rafts, patches and undulations.14,15

The study of synthetic polymers can be considered the most paradigmatic example of the difficulty of modeling relevant
phenomena and scales at atomistic resolution. Long chain molecules forming condensed phases of polymeric materials are
intrinsically multiscale objects. Indeed, even the description of a single molecule cannot ignore strongly coupled scales ranging from
the monomer (or submonomer) to the entire chain. Moreover a sharp separation of different scales determining the behavior of
polymeric materials is difficult. Indeed the more local scales ranging from chemical bonds to chain conformations rearrangements
are strongly coupled to mesoscale multi-chain organization and this latter is again strongly overlapped with more macroscopic scales
related to mechanical properties usually described by continuum mechanics. For example, in the study of rheological properties of
polymers (viscoelasticity for example), taking into account the multiscale nature of this materials is mandatory.

For this reason, the community of polymer theoreticians and simulators has been among the first one developing coarse-
grained (CG) models and in general multiscale molecular simulation techniques aimed at bridging the different scales from
atomic up to continuum mechanics elements. To our knowledge, earliest examples of such an effort are the OCTA project carried
out in Japan at Nagoya University from 1998 to 2002,16 BMBF Kompetenzzentrum Materialsimulation carried out in Germany
from 2000 to 200517 (with some previous activities of the same German groups documented in Ref. 18), the development of
Dissipative Particle Dynamics (DPD) simulations and relative models at Unilever.19

Many ways to classify CG models are possible, the resolution of the model is one criterion. Among different degrees of
coarse-graining, the focus of this chapter are CG models close to atomistic resolutions. From this point of view,
MARTINI,20–22 SPICA23,24 approaches or CG models mapped starting from reference atomistic information are the reference
models.25,26 Another criterion to classify coarse-graining approaches can be based on discrete (based on effective beads) or
on continuum (based on fields for example) representations used. Particle-based CG models have been developed for real
polymers (polyethylene, polycarbonates, polystyrene).26–30 More in general, several reviews and CG models are available for
this subject and the reader can refer to Refs. 31–35. Particle-based CG approaches able to represent realistic systems are still
more computationally demanding than continuum models. As for continuum representations, there are mean field-based
approaches in which model systems are described by density fields. This approach, for a reader familiar with methods of
quantum chemistry, has many analogies with Density Functional Theory of electrons.36 The Self Consistent Field (SCF)
theory, in which mutual interactions between segments are decoupled and replaced by static external fields, is particularly
popular.37,38 External fields in SCF theories are determined by statistical averages of spatially inhomogeneous density
distributions of particles generated by independent molecules interacting only with these external fields. External fields and
particle density distributions must be determined in a consistent manner. SCF theory has been applied to a wide range of
materials, including block copolymers, proteins, polymer composites, and colloidal particles.37–39 SCF approaches can
unquestionably access length and time scales greater than chemistry-specific CG. With these precedents, hybrid models in
which particle and field coexist have been proposed as a way to solve this issue. The aim of the present chapter is to give an
overview of this emerging research field with particular emphasis to developments and applications addressed to achieve
chemical specific models and to provide a guide and an introduction to the hybrid particle-field MD technique (hPF-MD) for
chemists, physicists, biologist and engineers in both academic and industrial environments possibly interested in appli-
cations and/or developments of this recent simulation technique. The chapter is structured in the following way: the first
section is devoted to the basic theoretical background and its main results useful for the implementation of the hPF-MD
simulation technique including also a short description and the references to early hybrid approaches. In this section
complete derivations are not reported and the interested reader can refer to the Section 8. The second section is devoted to
the description of the implementation of hPF-MD in the massively parallel code OCCAM and its parallelization strategy.
Pseudo codes and strategies to turn any standard MD code into an hPF-MD one are also provided in this section. The third
section is devoted to the description of some example applications to biomolecules and surfactants in water (mainly
biomembranes, first subsection), polymer composites (second subsection) and all-atom models of polymer melts and
glasses (third subsection). The last section, before conclusions and perspective, is devoted to more recent developments
aimed to address dynamics in the hybrid models. The last section “further reading” contains a guide to books and useful
papers for the reader interested in a deeper understanding of the roots of the simulation technique.
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2 Hybrid Particle Field-Models: Theoretical Background

As was pointed out in the previous section, hybrid particle-field models are expected to be efficient in constructing a multi-scale
representation for systems with mesoscopic structures, such as polymers and surfactant systems. One of the first hybrid particle-
field approaches in this context was proposed by one of the authors of the present chapter for phase separating surfactant solutions
as a model of microemulsion.40–42 In this hybrid formulation, the phase separating binary mixture was described by a field
variable using Ginzburg-Landau model while the surfactant molecules are treated as coarse-grained discrete molecules. This hybrid
model was successful in reproducing the complex domain structures due to the reduction in the surface tension of surfactant-
adsorbed interfaces and the decelerated coarsening in the phase separating dynamics. Similar hybrid approaches were later applied
to phase separating binary mixtures containing impurity particles as fillers by Ginzburg et al.,43–45 by Zhu and Ma,46 and by Pinna
et al.,47 Laradji et al.48 were the first to employ density fields, calculated on the fly, in off-lattice Monte Carlo (MC) simulations to
examine the equilibrium characteristics of polymer brushes, while the mean-field technique described by Daoulas and Müller and
named Single Chain in Mean Field (SCMF) MC has been the first hybrid approach introduced in the context of SCF theory.49

3 Hybrid Particle-Field Molecular Dynamics

This section provides an overview of the hPF-MD approach. The hPF approach considers a molecule to interact with surrounding
molecules via an external field composed of non-homogeneous spatial density distributions of segments of independent molecules. The
main problem with this approach is determining the partition function of a single molecule in an external field, as well as obtaining an
appropriate expression for the external potential VK rið Þ and its spatial derivatives. Ref. 50 provides detailed derivations beginning with the
partition function definitions. It can be shown that the density-dependent external potential can be written as functional derivative once
the form of total energy is given. For example if one assumes the following functional form introduced by Helfand:51

W fK rð Þ½ � ¼
Z

dr
kBT
2

X
KK 0

χKK 0fK rð ÞfK 0 rð Þ þ 1
2κ

X
K

fK rð Þ � 1

 !2" #
; ð1Þ

according to saddle point approximation the external potential can be obtained as functional derivative of Eq. (1) and the potential acting
on the particle can be written in the following way:

kBT
X
i

X
K 0

χKK 0fK 0 rið Þ þ 1
κ

X
K

fK rið Þ � 1Þ
 !

;

 
ð2Þ

where each system component is designated by an index K. The mean field interaction parameter between a particle of type K and the
density field of particles of type K0 is denoted by χKK 0 . The notation adopted for the mean field interaction parameter refers to Flory
Huggins (FH) theory where χ is the adimensional mixing enthalpy.52 Here the χKK 0 has a similar physical meaning, but the density is a
field and, differently from FH theory, the interaction is with a local density at a position r. The density field of the species K at location r is
given by fK rð Þ, and κ is the compressibility term. This term is a penalty function introduced by Helfand, which penalizes differences with a
constant (background) value. In other words, if in a given region of the space there are too many or too few particles this term gives rise to
repulsive or to attractive forces, respectively. The Boltzmann constant is denoted by kB, while the system temperature is denoted by T. The
mean field potential in the basic situation of a two component mixture, A and B, of a single particle of type A at location r is:

VA rð Þ ¼ kBT χAAfA rð Þ þ χABfB rð Þ½ � þ 1
κ

fAðrð Þ þ fB rð Þ � 1Þ: ð3Þ

To be more specific about parameters, in the case of a hydrophobic particle type A in water (type B), the χAB would be large and
positive. Differently, for a hydrophilic particle χAB would be positive small or negative. The incompressibility condition keeps the
density homogeneous in the space and represents the excluded-volume interaction in traditional molecular dynamics simulations
based on pair potentials.

Then, the force acting on particle A at position r is:

FA rð Þ ¼ � ∂VA rð Þ
∂r

¼ � kBT χAA
∂fAðrÞ
∂r

þ χAB
∂fB rð Þ
∂r

� �
� 1

κ

∂fA rð Þ
∂r

þ ∂fB rð Þ
∂r

� �
ð4Þ

We would like to stress that, obviously, different functional forms of Eq. (1) would lead to different forms of the expression of
external potential and in turn of the force acting on particles. As will be shown later, from this point of view, the scheme handling
hPF-MD simulation is general and does not change if different functionals are adopted. We suggest, in strict analogy with classical
MD simulations, in order to avoid confusion in the audience, the functional form of intramolecular (bond, angle, dihedral terms)
and of the non-bonded potentials (energy functional for hPF and pair potential for traditional MD), together with corresponding
parameters, constitutes a hybrid force field for a given molecular system. It is worth noting that intra-molecular terms do not depend
on the field, and can be therefore simply adopted from the particle-based CG model that one considers. This is one of the main
advantages of hPF simulations in comparison with pure field models based on SCF theory. Indeed, in hPF-MD simulations any kind
of complex chemical structures or complicated functional forms of intramolecular interactions, differently from SCF theory, can be
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adopted. For example, using hPF-MD, combined potentials for the bending and the dihedral angle able to achieve models showing
secondary structure elements of polypeptides together with a field description of non-bonded interactions have been proposed.53

3.1 Electrostatic Interactions in the hPF Approach

The approach described in this section has been originally developed in Ref. 54 and the reader can refer to this paper for more complete
information. The electrostatic interactions between charged particles are evaluated through an electric field E-field which depends on the
spatially inhomogeneous distributions of charge densities.7,9 The E-field can be represented by dividing the simulation box (L1; L2; L3)
into N1 �N2 �N3 cells (the Na¼ number of cells in the direction La for a¼ 1;2;3). The location of lattice points is given by
l¼ l1L1=N1; l2L2=N2; l3L3=N3, where la is an integer number 0rlaoNa The total Coulomb energy can be written as:

E¼ 1
2

X
i

qicðriÞ; ð5Þ

where qi is the reduced charge of the i-th particle and c rð Þ is the electrostatic potential. Collecting the contribution over i-th particles
gives c rð Þ:

c rð Þ ¼ kbTlB
X
n

X
j

qj
jr � rj þ nj ð6Þ

The outer sum over n is, with periodic boundary conditions, over the vectors n¼ n1L1 þ n2L2 þ n3L3. The Bjerrum length is
lB ¼ e2

4pϵ0ϵr kBT
, where e is the elementary charge and ϵ0; ϵr are the vacuum permittivity, and the relative dielectric constant of the

medium. c rð Þ can be separated in long and short range contributions by using the Ewald summation:

cS rð Þ ¼ kBTlB
X
n

X
j

qjerfcðajr � r j þ njÞ
jr � r j þ nj ; ð7Þ

cL rð Þ ¼
X
ma0

ĉ
L
mð Þexpðim � rÞ: ð8Þ

The term ĉ
L
on the right hand of Eq. (8) is the long-range contribution of the electrostatic potential in the reciprocal space. It is

feasible to solve the Poisson’s equation in the reciprocal space using the Gaussian distribution of charge density and obtain ĉ
L
mð Þ:

ĉ
L
mð Þ ¼ 4pkBTlBexp � m2

4a2
� �

Vm2

XN
j ¼ 1

qjexp �im � rJþj
� � ð9Þ;

where V is the box volume and m¼ 2pðm1L�1 þm2L�2 þm1L�1Þ. The L�a are the conjugated reciprocal vectors defined by the relations
L�a � Lb ¼ δab; a; b¼ 1; 2; 3.

Using the discrete Fourier transform (DFT), the long-range contribution of the electrostatic potential at the lattice point of
special location L may be represented as follows:

cL lð Þ ¼
X
ma0

ĉ
L
mð Þexp im � lð Þ ¼

XN1�1

m1 ¼ 0

XN2�1

m2 ¼ 0

XN3�1

m3 ¼ 0

ĉ
L
mð Þ 2pi

m1l1
N1

þm2l2
N2

þm3l3
N3

� �� �
¼ F�1 CFðQÞ½ �ðl1; l2; l3Þ; ð10Þ

where Q is the charge density at lattice points, and FðQÞ is the DFT, and F�1 is the inverse DFT.
Because only mean field parameters are applicable in the hPF technique, short-range electrostatic interactions, which are

normally regarded pairwise interactions in traditional MD, can be assessed as follows. It is feasible to assess a χe parameter for the
short-range component of electrostatic interaction in analogy to the Flory-Huggins approach for lattice models:

χe ¼ z
kBT

2uCC0 � uCN þ uC0N

2

h i
¼ zlBerfc asð Þ

s
ð11Þ

where z is the coordination number (z¼ 6for a 3D cubic lattice), while uCC0 , uCN , uC0N are the pairwise short-range electrostatic
energies between a pair of adjacent lattice sites (uCC0 ¼ kBTlBercf ðasÞ=sÞ. s is related to the diameter of particles. The terms uCN¼
uC0N ¼ 0 for lattice sites occupied by one particle with ðeÞ and other one being neutral. The short-range part of the electrostatic
potential cS lð Þ can be obtained in the density field fashion:5

cS lð Þ ¼ χeQ l1; l2; l3ð ÞkBT: ð12Þ

3.2 Pressure Calculation

The calculation of pressure is an important ingredient for several applications of MD simulations. The evaluation of stress tensor for a hybrid
particle–field Hamiltonian is not a trivial task. The general formulation for the calculation of instantaneous pressure and the stress tensor in
hPF-MD simulations has been proposed in Ref. 55 and is summarized later in this section. For similar hybrid models, other strategies for the
pressure calculation and for isothermal isobaric simulations have been also proposed. In particular, Kremer and Daoulas implemented a
‘volume-changing’ move used in isothermal isobaric (NPT) simulations of standard potential-based models.56 Constant pressure simula-
tions have been implemented for hybrid particle-field models by using Field-accelerated Monte Carlo57 and hPF-MD simulations.58
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The intramolecular terms (bonds, angles, etc.) will not be treated here because standard virial approaches are applied to them
as in traditional MD simulations. Here we report the scheme developed in Ref. 55 and applied to the energy functional corre-
sponding to Eq. (1). The same derivation scheme can be applied to different hybrid molecular force-fields corresponding to
different energy functionals. In particular, starting from the expression of the free energy functional obtained using the SCF theory
for a system of M molecules (for simplicity we consider just one species):

F f rð Þ½ � ¼ � kBTlnzM þW f rð Þ½ � �
Z

drV rð Þf rð Þ þ kBTM lnM� 1ð Þ; ð13Þ

Let’s suppose we are deforming the box by multiplying all the components of the particle positions by a factor l. This is a
simple example of a uniform transformation

x
0 ¼ lx

y
0 ¼ ly

z
0 ¼ lz

:

8><
>: ð14Þ

For example, for the first coordinate x
0 ¼ xþ u xð Þ which means u xð Þ¼lx� x. If the deformation is a function of the position, the

Jacobian for the transformation will be

det

1þ ∂u
∂x

0 0

0 1þ ∂u
∂y

0

0 0 1þ ∂u
∂z

0
BBBBBB@

1
CCCCCCA
: ð15Þ

In this way, the change in the volume element will be dr0 ¼ drð1þr � uÞ. This factor is a Jacobian of the transformation which
should be a scalar quantity. This means that a scalar quantity A(r) that has the dimension of density should be transformed as
A0dr0 ¼ Adr due to the conservation of material, which leads to A0 ¼ Aj drdr0 j. The factor j drdr0 j is the inverse of the Jacobian
ð1þr � uÞ�1Bð1�r � uÞ.

In order to calculate the pressure tensor, we consider a virtual displacement r
0 ¼ r þ uðrÞ, which leads to a change in the area

element dr
0 ¼ drð1þr � uÞ. Then we have the following expressions for f and V in the transformed coordinates r

0

f0 r
0

� 	
¼ f rð Þ � f rð Þðr � uÞ; ð16aÞ

V 0 r
0

� 	
¼ V rð Þ � V rð Þðr � uÞ; ð16bÞ

Using these transformations, we can then calculate the pressure from free energy increase after deformation for the first three
terms of Eq. (13). For the complete derivation the reader can refer to Ref. 55. Here we report the final result including also the term
due to electrostatic interactions:

Pab ¼ �M kB T⟨ 1þ b
P

i V ðr iÞ
� �

⟩



� kB T
1
2V

X
KK 0 χKK 0

Z
drfK rð ÞfK 0 rð Þ

� �

þ 1
2κV

Z
dr 1�

X
K
f rð Þ

� 	2� �

þ 1
V

X
K

Z
drfKðrÞVKðrÞ

" #

� 1
2

X
i
qicðriÞ

h i� 1
3
δab ð17Þ

3.3 Different (“Non-Helfand”) Functionals

The functional of Eq. (1), which combines a cohesive energy term in the spirit of mean-field Flory-Huggins theory with an
excluded-volume term introduced by Helfand51 for imposing the weak compressibility of liquids, can be seen as the non-ideal part
of the free energy in self-consistent field theory for (block co-)polymer liquids. Indeed, simple and complex liquids deviate from
most other phases by the fact that they are mildly compressible (the isothermal compressibility of water is finite). The key
challenge in hPF-MD is in the mapping of non-bonded interactions of the pure particle-based description, at the desired atomistic
or coarse level of resolution, into representative values of the mean-field Flory interaction parameters χKK 0 and Helfand parameter κ
in hPF-MD. In reality, determining Flory parameters is the only challenge. The aim here is to capture all particle-particle (two-
body) interactions in an effective mean-field strength between each particle and all concentration fields. The value of κ can be
matched only once via the equations of state (EOS) for the pressure of a single particle type system in both descriptions.59

However, the EOS route is often deemed unnecessary, and it is common practice to base the choice of κ on considerations about
the permitted/reference (small) amplitude of fluctuations around the (fixed) total fluid density.
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Owing to the quadratic nature of the excluded volume term of Helfand used in (1), which penalises any deviation of the total
density from a fixed value anywhere in the volume and gives rise to a quadratic EOS for the pressure that lacks a so-called van der Waal
loop, this functional is not suited for phenomena that involve a pressure (or total density) difference over the simulation volume. Key
examples of interest to the soft matter community include the solvent evaporation that takes place upon thermal annealing of spin-
coated block copolymer films, which can strongly affect orientational order, and the phase transition/coexistence between gel (liquid
ordered) and fluid (liquid disordered) phases in (mixed) lipid membranes. In order to enable hPF-MD also to capture phase coex-
istences, the incorporation of higher order terms in the corresponding EOS is essential.60 This issue was previously identified and
addressed, albeit that application is somewhat limited due to additional parametrization required. A particle-based method known as
multi- or many-body DPD or DPD61–63 introduces density-dependent soft two-body interaction potentials to arrive at the desired
higher-order EOS. Two excluded-volume terms introduced for compressible SCF,64 one based on the familiar Carnahan-Starling (CS)
expression for hard spheres,65 have been adopted to arrive at a hPF-MD for two-phase systems (coined c-hPF-MD). Introducing a more
general excluded-volume term in the functional (1), and concentrating on CS and a single particle-type - we refer to the original paper
for more detail - the contribution of the excluded-volume in the external potential (2) is replaced by

VeðrÞ
kbT

¼ Zð4� 3ZÞ
ð1� ZÞ2 þ 4Z� 2Z2

ð1� ZÞ3 ð18Þ

with Z¼ ZðrÞ ¼ nrðrÞ and n the volume of the particle. Defining a dimensionless interaction parameter χ
B ¼ χ=kBTn, we can now write

the total force on each particle as

FðrÞ
kBT

¼ � χ
B þ 2ðZðrÞ � 4Þ

ð1� ZðrÞÞ4
" #

rZðrÞ; ð19Þ

which replaces the original force expression (4) of hPF-MD based on (1). We note that, in the original hPF-MD, the cohesive interaction
for a single-particle system vanishes (χ ¼ 0) by definition, leading to the situation were particles are homogeneously dispersed over the
simulation volume due to excluded volume repulsions, while the same system in c-hPF-MD will be also homogeneous for ~χ ¼ 0, but it
will phase separate into a coexisting gas and liquid domain for ~χo~χ c, with ~χ c ¼ 21;2024541158 as determined from mean-field
theory.60 In particular, the attraction due to a negative χ

B
balances the density-dependent repulsion due to CS term. For background

information, validation to analytic mean-field results, and basic examples, we refer to the published study.60 An interesting observation
is the finding of a critical exponent for c-hPF-MD that deviates from the theoretical mean-field value of 0.5, despite the clear mean-field
origin of hPF-MD. We note that incorporating other EOS are a viable option, and that, while the Flory interaction strength is
temperature dependent, the cohesive energy part of the functional (1) is not changed in c-hPF-MD (Fig. 1).

Fig. 1 (left) Illustrative snapshots of a single-bead system at different stages along the systems evolution, from the mixed starting structure
(top), phase separating intermediate (middle) and stable coexistent gas-liquid end (bottom) stage. The overall number density that sets the total
number of particles in the simulation volume is r0 ¼ 2.92 for this particular setup. (right). Phase diagram of a simple liquid. Reproduced from
Sevink, G.J.A., Blokhuis, E.M., Li, X., Milano, G., 2020. Efficient and realistic simulation of phase coexistence. Journal of Chemical Physics 153
(24). https://doi.org/10.1063/5.0027778.
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4 Implementation of hPF-MD: The OCCAM Code

A strategy for obtaining a smooth coarse-grained density function from particle locations is required to link particle and field
models. Fig. 2A depicts the iteration scheme utilized in the hPF-MD and the corresponding Fortran pseudocode. The initial setup
of the system at time t0 yields the starting value of the density dependent external potential. The forces acting on the particle come
from the total intramolecular interaction terms such as bonds, angles, dihedrals, and so on, as well as density dependent
interactions. Integrating the equation of motion of the particles from time t0 to time t0 þ Dt yields a new configuration. The
density is calculated according to the updated particle locations at each predetermined density update period. The new density
value is used to produce a new external potential, which is subsequently used to compute new forces from density spatial
derivatives. The central part of a code doing hPF-MD simulations is the calculation of density fields (i.e., the value of the number
density of the different particle types as function of the position in the three-dimensional space) and their spatial derivatives in the
Cartesian directions.

An effective approach to have these quantities is to define them on a grid of a given resolution. To calculate coarse-grained
density, the simulation box is divided into cells. According to their positions in the simulation box, all the particles are distributed
among these cells. In the implementation of OCCAM, the cells data structure can be implemented using the method of “linked
lists” that assures a rapid sorting of the particles.66 In this way density fields and their derivatives are used for the calculation of the
forces and they are both defined on three-dimensional lattice points obeying the periodic boundary conditions. The values of the
density field at position r between lattice points are evaluated using linear interpolation of the values at neighbor lattice points. To
calculate the density field values on the mesh at each update, fractions of a particle are assigned to its neighbor mesh points
according to the distances from the particle to the mesh points as explained in Fig. 2(B). In Fig. 2(C), we show three two-
dimensional density maps corresponding to a test configuration containing two n-pentane molecules in all trans conformation
lying in the xy plane at different grid resolutions starting from the top l ¼ 1.66, 0.83, and 0.66 Å.

The spatial derivatives of the density distribution are specified on a staggered lattice, as shown in Fig. 2(B). The density field
computation is accomplished, as shown in Fig. 2(A), by looping over the number of particles N to compute the coarse-grained density
on the vertexes of the cells where the density field is specified. Density derivatives on the staggered lattice are computed by looping over
the number of lattice points nlattice. In terms of computing efficiency, the hybrid hPF-MD technique provides a significant advantage over
traditional MD simulations. The most computationally expensive element of the MD simulations, namely the evaluation of inter-
molecular non-bonded forces and the relative neighbor lists (or similar), is totally replaced by an evaluation of particle-field forces
coming from individual particle interactions with density fields. This implies that at each time step, the double loop over particle pairs
used in standard MD simulations to calculate non-bonded forces is replaced with a single loop over N particles used to interpolate

Fig. 2 (A) The iteration scheme hPF-MD simulation and the relative pseudocode; (B) Scheme for particles assignment to lattice points (2D
simplified example). Fractions assigned are proportional to the area of a rectangle whose diagonal is the line connecting the particle position and
the mesh point on the opposite side of the cell (empty crosses indicate the staggered lattice where the derivatives are defined) and 3D scheme of
the gradient directions around a given lattice point; (C) 2D density maps corresponding to a test configuration containing two n-pentane molecules
at different grid resolutions (from the top l ¼ 0.166, 0.083, and 0.066 nm). Panels (B) and (C) reproduced from J. Chem. Phys. 130, 214106,
2009. https://doi.org/10.1063/1.3142103.
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density gradients (for each particle type) at particle locations. Following the computation of the force, a new configuration will be
obtained by integrating the equation of motion. In principle, for each new configuration, the coarse-grained density estimated from the
new coordinates should be updated. Because of the collective character of the density fields, an update frequency of the coarse-grained
densities may be defined, given the kinetic model (this issue is discussed later in the section about dynamics), without sacrificing
accuracy.49 In other words, the coarse-grained density values at lattice points are not updated at each timestep, but can only be
computed at each predetermined density-update time. This approximation in the context of SCMF MC simulations has been named by
Daoulas and Müller “quasi instantaneous field approximation”.49 The values of the densities on the lattice used to interpolate both density
and its derivatives during the particle movements at each timestep will then be unchanged between two updates.

Fig. 3(A) makes it evident that the most time-consuming part of serial MD simulations, which accounts for over 80% of total
simulation time, is the computation of non-bonded forces. Non-bonded forces cost is around 70 times more expensive than bond
forces and angle forces. Nevertheless, in hPF-MD simulations, forces between individual particles and the density field are
calculated in place of the costly intermolecular non-bonded forces. As a result, the overall duration of hPF-MD simulation is
drastically reduced. Hence, for example for the tests reported in Ref. 66, although the corresponding serial hPF-MD simulations
only take about 21 s, the serial MD simulation takes about 128 s (about six times slower than hPF-MD simulation). Moreover, the
serial hPF-MD simulation differs from serial MD in that it has a flat profile. The interpolation of density and density gradients
(which takes up 37% of the overall simulation time) and the computation of intramolecular interactions (which takes up around
18% of the total simulation time) are the two most time-consuming and expensive steps in the serial hPF-MD simulation. In the
end, the computation of density derivatives and the density-update from the particle locations only account for a tiny fraction
(0.005%) of the whole simulation.

The hPF-MD technique is very suitable to be efficiently parallelized. Below the main information about an efficient paralle-
lization of hPF-MD simulations are given.

In Fig. 3(B–E), the parallelization strategy is schematically depicted. In particular,N particles belonging toMmolecules are assigned to
P processors in accordance with the molecular decomposition criterion. Strictly speaking molecules, independently from their spatial
positions are assigned to a given processor. As a result, N/P particles are owned by each processor during the hPF-MD simulations. It is
important to remember that a molecule’s constituent particles are all allocated to the same processor. Therefore, Nbonds/P, Nangles/P, and
Ndihedrals/P, etc. respectively, are the amounts needed to calculate the intramolecular interaction forces (bonds, angles) (as shown in
Fig. 3C). As previously mentioned, the calculation of forces acting on each particle owing to density field takes the role of the traditional
MD simulations’ calculations of intermolecular non-bonded forces. Eqs. (2) and (4) state that the relative forces and potential energy of
particle-field interactions may be determined from particle locations by interpolating the values of the density fields and their spatial
derivatives. Moreover, rather than being derived from particle locations at each time step, the density field (and its derivatives) are
updated at lattice points only at a predetermined frequency. This implies that the computation of potential energy and forces acting on
the particles may be totally parallelized between two density updates and does not entail any processor communication.

The density on the lattice points is assessed at the beginning of the simulation and then at each subsequent update time, Dtupdate. In the
parallelized simulation, densities are evaluated for each processor’s individually only from the molecules owned by a given processor. The
total coarse-grained density on the lattice points is then obtained by performing an MPI_ALLREDUCE call with the MPI_SUM operator
and adding the partial densities held by each processor. Fig. 3(B) illustrates the parallelization strategy for the communication operation to
acquire the total density and the assessment of partial density. In the Fig. 3(B) an eight-molecule system in a concurrent simulation
running on four CPUs is depicted as an example. Initially, there are four groups of eight molecules in Fig. 3(C), each of which is allocated
to one of the four processors. The two molecules that each processor possesses (as shown in Fig. 3C), for instance, processor P0 is the

Fig. 3 (A) Serial MD and hPF-MD OCCAM code profiles obtained by gprof v2.17 in reference Zhao, Y., De Nicola, A., Kawakatsu, T., Milano, G.,
2012. Hybrid particle-field molecular dynamics simulations: parallelization and benchmarks. Journal of Computational Chemistry 33 (8), 868–880.
https://doi.org/10.1002/jcc.22883; (B–E) Simplified scheme of the parallelization strategy adopted in OCCAM.
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owner of molecules 1 and 2, and f0 represents the partial density field computed using only the atom locations of these two molecules
owned by P0. The partial densities fields of molecules held by processors P1 to P3 are similarly indicated by f1 and f3. To obtain the total
coarse-grained density, each processor must then expand the coarse-grained partial density over all processors and add it. The complete
number of lattice points are communicated with this operation in an all-to-all manner. It is important to note that in ordinary appli-
cations, cells typically contain one to ten particles.67 This indicates that the coarse-grained density cell size may often be 30 times smaller
than the size of the particle coordinates. We emphasize that the presented scheme fully parallelizes the computation of partial density, and
that, in contrast to traditional MD simulations, particle coordinates are never shared between multiple processors; only the density fields
are shared. We would like to emphasize that domain decomposition schemes would be not useful in hPF-MD simulations. Indeed,
sharing parts of a given molecule on different processors would cause the communication of particle positions (at each timestep) only for
the calculation of bonded terms causing a fatal decrease of code performances.

hPF-MD is also suited to exploit Graphic Processing Units (GPU) and an efficient implementation has been included in the
GALAMOST simulation software.68 To have a quantitative idea, from the test reported in Ref. 68 the performances of GALAMOST
in hPF-MD simulations measured on GeForce GTX 580 correspond to 96 CPUs (Intel E7330, 2.4 GHz). The GPU approach can be
extended efficiently for hybrid models to distributed architectures. Recently, Schneider and Müller using multi GPU architectures
with SOft coarse grained Monte-Carlo Acceleration (SOMA) software implementing SCMF MC have been able to simulate large
system sizes with up to billions of particles.69

5 Applications

Before describing the different applications of hPF-MD, it is important to clarify some concepts related to coarse-graining and in
what sense (or senses) hPF-MD is a coarse-graining technique. In Fig. 4 a schematization of two different types of coarse-graining
strategies is depicted. In particular, on the top a coarse-graining approach specifically defined as vertical is depicted, where
information is mapped from an atomistic level (or from a less coarse representation) to a coarser level: example of these coarse-
graining schemes are Reverse Monte Carlo70 or Iterative Boltzmann Inversion (IBI) approaches.25 In the reverse direction, the
procedure typically depends on the specific chemical structure that needs to be defined.29,71–74 A similar scheme could also
describe the parametrization of a classical force-field from a quantum chemical calculation. The second example is a horizontal
coarse-graining method, in which two different representations of the same system coexist, like in hPF models. A similar hor-
izontal approach is adopted, for example, in QM/MM simulations (where the same system is partitioned in two regions, one
described quantum-mechanically and one classically).75 Or, more similarly, the Hartree–Fock method for polyelectronic atoms
also named as electronic self-consistent field approach where a single electron is described as interacting with the mean field of the
remaining ones.76

According to the formulation of hPF-MD, in contrast to SCF theory, intramolecular bonded interactions of any type of
complexity can be directly imported from force-field employed in classical MD simulations. For this reason, complex molecular
representations can be treated using hPF-MD in a straightforward manner. All-atom models or CG models close to an atomic
description can be readily translated in their hPF counterparts. The adoption of CG models from MARTINI force-field22,67,77 or CG
models derived from IBI78,79 in the hPF scheme resulted in a beneficial combination of the vertical and horizontal CG approaches.
The aim of this combination is to achieve models having detailed chemical features, but, at the same time, able to efficiently
sample the emergence of mesoscale structures. According to this view the following test applications have been selected:

Fig. 4 Comparison of vertical and horizontal approaches in coarse-graining. The lower panel depicts the hPF approach where intramolecular
interactions are treated as in traditional MD models, while non-bonded interactions are described by density fields.
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Fig. 5 (A) Mapping scheme adopted for DPPC, water and TX100 according to MARTINI; (B) Self-assembly of DPPC lipids at different water
concentrations; (C) Snapshots of hPF-MD simulations of a model biomembrane solubilization process in the presence of TX100; (D) Mechanism of
poration of a biomembrane in the presence of a CNT bundle observed in hPF-MD simulation; (E) Mechanism of interaction of a micelle of Pluronic
containing a hydrophobic drug (left panel); Insertion of a Pluronic block copolymer inside a lipid bilayer in hairpin conformation. Panels (A), (B)
reproduced from: Theor. Chem. Acc., 131:1167, 2012. https://doi.org/10.1007/s00214-012-1167-1. Panel C from: Phys. Chem. Chem. Phys., 2017,
19, 29780-29794. https://doi.org/10.1039/C7CP03871B. Panel D from: Chemical Physics Letters, 595-596, 156-166, 2014. https://doi.org/10.1016/
j.cplett.2014.01.057. Panel E: Phys. Chem. Chem. Phys, 2014, 16, 5093. https://doi.org/10.1039/c3cp54242d.
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(1) Surfactants in water: phospholipids, models of biological membranes and their interactions with nanosized objects, synthetic
surfactants with complex architectures, charged bacterial lipids having complex architectures (gram negative bacteria);

(2) Polymer Nanocomposites: large scale CG models of Carbon Nanotubes (CNT) dispersed in polymer melts, silica nano-
particles dispersed in polystyrene;

Moreover all-atom models of polymer melts of large molecular weights have been also considered to give an example
application of hPF-MD on atomic scale. In the following sections these three different types of applications are reviewed.

5.1 Biomolecules and Surfactants in Water Solutions, Lipid Bilayers and Self-Assembled Structures

Surfactants provide a number of difficulties from the perspective of simulation because, particularly for biosurfactants, a precise
representation of the complex ensemble of interactions occurring in the self-assembling processes at the molecular level is
required.80 Moreover, if the surfactants are charged, the long-ranged nature of electrostatic interactions creates additional
difficulties.81

Phospholipids exhibit a vast variety of phases at different water compositions. They can yield diluted micellar phases as well as non-
lamellar phases like the hexagonal and cubic phases. Tubular aggregates, hexagonal phases can be made up of either normal or reverse
aggregates. Curved bilayers or micelles make up cubic phases. Lipids can aggregate as regular (‘oil in water’) or reverse (’water in oil’)
micelles, depending on the amount of water present. Test simulations have demonstrated the model’s aptitude for accurately reproducing
non-lamellar phases. Particularly, particle-field models are capable of accurately describing the many morphologies that are found
experimentally, such as micelles and reverse micelles, by changing the water content. The results obtained in Ref. 77 are summarized in
Fig. 5. In Fig. 5(A) the mapping scheme of DPPC phospholipid and Triton X-100 (discussed later) CG models is shown. In Fig. 5(B)
snapshots of the spontaneous formation of reverse micelles, lipid bilayers, bicelles, and micelles transitions from a low to high water
content are reported. In the same figure, the hexagonal packing of tubular aggregates for the system at reduced water content are also
reported. We want to emphasize that while all the CG beads are included in the models, they are not implicit solvent models, since the

Fig. 6 (A) Chain conformations of a polyelectrolyte in solution at relative dielectric constants of 3.9, 20.0, 78.0 (upper panel from left to right);
Radius of gyration of the polyelectrolyte chain as function of relative dielectric constant for different grid resolutions; (B) Snapshots of neat (left)
and salt-doped (right) PMMA-b-PEO block copolymer CG models; (C) Mapping schemes for two different variants of Lipid A; (D) Time evolution of
the assembly of Lipid A molecules, a spontaneous of a vesicle by fusion of smaller micelles is observed in the last stages of the hPF-MD
simulation. Panels (A),(B) reproduced from: Phys. Chem. Chem. Phys 2016, 18, 9799-9808. https://doi.org/10.1039/C5CP06856H. Panels (C),(D)
from: BBA General Subjects 1865 (2021), 129570. https://doi.org/10.1016/j.bbagen.2020.129570.
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interactions between them are determined using dynamically generated density fields. In this way, similar to conventional particle-based
models, variable concentrations can be represented by simply changing the ratio between water and surfactant molecules.

It is important to note that comparable outcomes were also achieved for different systems; specifically, mixtures of several
triblock-copolymers with water at various concentrations have been studied.82 For the triblock copolymers named Pluronic L62
and L64, in particular, the ability of the hPF models in the accurate reproduction of micellar and non-micellar phases has been
investigated. The diverse morphologies that are experimentally observed can be accurately described by hPF models at various
polymer concentrations. Moreover, it has been possible to replicate the hexagonal phase of Pluronic L64 but not for L62. While the
two copolymers are remarkably similar, in good agreement with several experimental findings, only in the case of L64 a
stable hexagonal phase in tiny region of the phase diagram is observed in hPF-MD simulations.

Triton X-100 (TX-100), a common detergent used in biological applications, has been modeled by hPF approach.83 The critical
micelle concentration, shape transition in isotropic micellar phase,84 and emergence of hexagonal ordered phase in the experimental
ranges described in the literature are all reproduced by the coarse-grained (CG) hPF model, which has been accurately validated in a
wide range of concentrations. By using a proper reverse mapping procedure, the CG model’s fine resolution made it possible to
obtain atomistic configurations of micellar assemblies and of the hexagonal phase. Using the same CG model, the complex process
of membrane solubilization has been explored in order to validate the mechanism that has been described in the literature. As a
series of complex events, it has been possible to simulate a solubilization process that is consistent with the most widely accepted
three-stage model (Fig. 5C).85 Furthermore, based on the rapid or slow detergent partitions, different solubilization paths have been

Fig. 7 (A) Snapshots of assemblies of CNTs having lengths (I) 15 nm, (II) 28 nm and (III) 43 nm. The bottom panel sketches typical
representation of CNT bundles connected by a dendritic network as hypothesized in several literature studies. (B) Conductivity calculated from
several hPF-MD simulations of CNTs assembled in templated matrices of lamellar phases of block copolymers; in the right panel two types of CNT
assemblies intra-lamellar (pizza shaped) and interfacial (2D dendritic) are highlighted. (C) Joule heating simulation of a CNT assembly, temperature
isosurfaces are depicted. Panels (A),(B) reproduced from: Nanoscale, 2016, 8, 15538. https://doi.org/10.1039/C6NR03304K. Panel (C) from:
Nanoscale Advances 2020, 2 (8), pp 3164-3180. https://doi.org/10.1039/D0NA00238K.
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observed in hPF-MD simulations. The simulated solubilization mechanisms are consistent with experimental data presented by
Stuart,86 Kragh-Hansen,85 and Lichtenberg’s original three-stage model mechanism generalization.86,87

CG hPF models close to an atomistic resolution have also been used to study how biomembranes interact with nanoscopic
particles like micelles or carbon nanotube (CNT) bundles.88 Using simulations on the microsecond scale, the formation and
insertion/rearrangement of CNTs bundles inside lipid bilayers, which serve as models of biological membranes, have been
described and investigated in depth. As depicted in Fig. 5(D), lipid molecules coat the surfaces of the bundles during the insertion
process, and systems undergoing the insertion of bundles consisting of longer CNTs reveal more significant bilayer distortions.
Moreover hPF-MD simulations show lipid adsorption on CNT surfaces causing a transitory poration. This finding suggested a
membrane disruption mechanism in which bundles are responsible for creating solvent-rich compartments inside biomembranes.

The most successful block-copolymer micelles in nanomedicines, including those being studied in phase I/II as anticancer agents, are
those based on pluronics.89 hPF-MD simulations of large-scale systems were carried out to investigate the interactions of Pluronic micelles
with DPPC lipid bilayers on the microsecond timescale.90 The migration of Pluronic chains from the micelle to the bilayer has observed
in hPF-MD simulations in agreement with the findings from different experimental investigations (Fig. 5E). hPF-MD simulations revealed
also that the micelle’s size is altered by this chains release. According to the simulations, interactions between the drug and the micelle
core as well as between the block copolymer and the bilayer contribute to the stability of the micelles. The hydrophobicity of the drug
molecules encapsulated in the micelle’s core shows a considerable dependence on the equilibrium size of the drug vector.

Fig. 6(A) reports typical conformations of a polyelectrolyte chain in solution at relative dielectric constants. Using hPF-MD extension
to charged models the polyelectrolyte chain’s globule coil-stretch transition as the dielectric constant grows has been observed in a test
model.54 As shown in Fig. 6(B), the chain size at different values of dielectric constant produced by the hPF simulations converges to
values obtained by reference MD simulations when the grid size approaches the particle diameter. In addition to the test system
previously described, realistic CG models of charged surfactants have been implemented in the same publication.54 Specifically, the
phase separation of PMMA-b-PEO block copolymers caused by salt utilizing hPF models with a MARTINI-like mapping scheme has
been modeled (Fig. 6B). Following the same approach, CG models based on MARTINI-like mapping schemes of sodium dodecyl
sulfate (SDS) surfactant and palmitoyloleoylphosphatidylglycerol (POPG) lipid bilayers in an aqueous environment were proposed
and validated.91 These models were then used in comparison to experiments to explain the emergence of micellar morphologies of SDS
water solutions at different concentrations.92 More recently, more elaborate models of the lipids composing the gram-negative bacteria’s
outer membranes have been developed and validated in the framework of hPF-MD.93 CG models of biological variants of Lipid A have

Fig. 8 (A) Mapping scheme for CG model of atactic PS; (B) CG models of Silica NPs distance of separation d used for PMF calculations. A third
NP is added at a distance D3 to estimate three body effects in the PMF. (C) Typical snapshot of the simulated Silica PS composite, only one chain
is shown the remaining chains are depicted using light representation for clarity. (D) Two body and three body PMF for NPs separations calculated
using Thermodynamic Integration of hPF-MD simulations. Panels (B), (D) reproduced from: Nanoscale 2018, 10, 21656-21670. https://doi.org/
10.1039/C8NR05135F Panels (A), (C) from: Eur. Phys. J. Spec. Top. 2016 225, 1817. https://doi.org/10.1140/epjst/e2016-60127-0.
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been considered (see Fig. 6C). More specifically, as shown in Fig. 6(D), the stability of Lipid A bilayers for two distinct hexa- and tetra-
acylated architectures has been considered. hPF-MD simulations, starting with a randomly dispersed initial distribution of Lipid A
molecules with counterions in water, predict the expected self-assembled structures of different lamellar and micellar phases. Moreover,
a spontaneous vesiculation process, obtained by fusion micellar aggregates, has been observed.

5.2 Polymer Nanocomposites

To explain the macroscopic characteristics of polymer nanocomposites, such as the dispersion of fillers, heat conductivities, and electrical
conductivities, one must have a thorough understanding of the structure of the material on both the chemical and mesoscopic scales.
Indeed, both the bulk material and the interfaces affect these characteristics. For instance, the miscibility and level of dispersion in polymers
are closely connected to the size of the fillers as well as their surface characteristics. This seems reasonable given that fillers and polymer
structure can interact at many levels along the length scales of a typical polymer chain, which range from a single repeating unit (1 nm) to
the persistence length to the radius of gyration of an entire chain (30–100 nm). In light of this, it is obvious why models that can account
for characteristics from a molecular scale up to a realistic filler size (at least 100 nm) would be highly desirable for this class of materials.

Since CNTs were discovered by Iijima94 in 1991 and the first polymer nanocomposite with CNTs as a filler were described in 1994,95

CNTs have attracted a lot of interest in the field of polymer nanocomposites. The dramatic increase in electrical conductivity of
nanocomposites around the percolation threshold has recently sparked an increasing interest in percolation of CNT/polymer nano-
composites in experimental and theoretical research fields.96,97 There have been a number of research addressing the percolation process
that are based on statistical models of polymer nanocomposites. Monte Carlo (MC) simulations have been used extensively in these
investigations98,99 focused on statistical percolation models, in which fillers are dispersed randomly (i.e., uniformly) throughout the
matrix and form percolating clusters as their concentrations is increased. The most important aspects of the percolation process have
been studied statistically, however the interactions between the fillers in the matrix are frequently left out and handled using excluded
volume conditions (i.e., hard or soft core non-superposition). For CNTs with various aspect ratios, the use of an explicit polymer matrix
and the characterization of the simulated structures have been described for the first time using hPF models.100 To accurately char-
acterize the physics of the CNT assembly and produce the final morphology, the degrees of freedom of the polymer chains must be
explicitly included. Indeed, it is expected that entropic effects brought on by the conformational degrees of freedom of the polymer
chains would be crucial. In fact, in polymer composites, the chains restricted in the space between the two nanoparticles with high
aspect ratios really dominate the free energy of interaction between CNTs. The hPF-MD made possible to simulate large-scale systems

Fig. 9 (A) Scheme explaining the hierarchical structural organization of CB fillers; (B) Typical chain conformation of polymer chains at a solid
surface. Yellow beads belong to train, blue correspond to loop and red to tail conformations. Comparison between top (primary particle) and lower
panels (ideal planar graphitic geometry) shows how different are chain arrangements. (C) Different length-scales involved in modeling CB from
atomic level up to agglomerate of Level 2. In the bottom panel a model system of an agglomerate of Level 1 embedded in a polymer melt is
shown. The optimized version of the massively parallel code OCCAM makes the simulations of systems of this size (about 8 million of beads)
routinely. Reproduced from: J. Chem. Theory Comput. 2021, 17, 3, 1755–1770. https://doi.org/10.1021/acs.jctc.0c01095.

Hybrid Particle-Field Molecular Dynamics: A Primer 649

Author's personal copy

https://doi.org/10.1021/acs.jctc.0c01095


(up to 1.5 million beads) with flexible rod-like particles (modeling CNTs) in various matrices consisting of bead spring chains on a
millisecond time scale. The equilibrium morphologies for longer CNTs were in good agreement with the results obtained in a number
of experiments that postulated a two level "multiscale" structure of CNT assemblies. Morphologies of CNTs assemblies are reported in
Fig. 7(A). These morphologies have been obtained by hPF-MD starting from homogenous mixtures of CNT and polymer chains. Going
from panel (I) (low aspect ratio) to panel (III) (higher aspect ratio) of Fig. 7(A) the emergence of dendritic morphologies having CNT
bundles connected by few CNTs is apparent. As for electrical properties of the obtained CNTs morphologies, the power laws fitted from
experimental results are comparable with the electrical characteristics of the structures determined by hPF models. In particular, for the
power law dependence of the electrical conductivity on the CNT fraction, systems close to "kinetic percolation" show exponents close to
1.7, while systems in which the CNTs are homogenously dispersed show exponents close to 2.0, according to the interpretation
established by the systematic studies of Bauhofer and Kovacs.96 In Fig. 7(B) the morphologies of templated self-assembled structures of
CNT obtained starting from lamellar morphologies of symmetric and incompatible block copolymers are reported.

Using similar models, in a recent paper, the impact that CNT morphologies, concentrations, and working conditions have on
Joule heating have been examined and other experiments have been carried out as well using the hPF models as a foundation.101

The results of targeted tests conducted in conjunction with simulations are in both qualitative and quantitative agreement with

Fig. 10 (A) Isosurfaces calculated from density fields calculated from a chain of PMMA (in two different conformations with grid resolution going
from l ¼ 3.2 nm B Radius of gyration of the chain to l ¼ 0.2 nm o submonomer scale). (B) X-ray scattering intensities calculated using hPF-
MD procedure compared with very long MD simulations and experiments (left panel); radial distribution functions for several atom pairs together
with a scheme showing the repeating unit structure and atom labels. Reproduced from: J. Chem. Theory Comput., 2014, 10 (12), 5651–5667.
https://doi.org/10.1021/ct500492h.
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studies and trends documented in recent literature. In Fig. 7(C) the isosurfaces of temperatures obtained in different regions of
CNT assemblies during a simulation of Joule heating after the application of an external electric potential difference are shown.

Due to the large amount of experimental literature, polymer nanocomposites made of silica nanoparticles (NPs) dispersed in atactic
polystyrene have been considered as well characterized system102 to be investigated as test systems for hPF-MD. The mapping scheme
adopted for these models (parametrized for intramolecular interactions using IBI to reproduce reference atomistic simulations and for
non-bonded interactions to reproduce reference atomistic density profiles) is shown in Fig. 8(A), while in Fig. 8(B) typical configurations
of these systems are shown. In order to examine the interfacial characteristics and potential of mean force (PMF) for separating
nanoparticles in a melt, a systematic application of thermodynamic integration (TI) using hPF models of silica NPs has been applied in
Ref. 78. Aiming to shed light on the interactions between free and grafted chains (several experimental papers consider silica NPs grafted
with the same polymer of the dispersing matrix to increase the compatibility)103 regulating the dispersion of NPs in the nanocomposite,
silica nanoparticles that are either bare or grafted with polystyrene chains have been specifically studied in this work. The wet-brush-to-
dry-brush transition is captured by the suggested hybrid models. Moreover these models have shown good abilities to capture the local
structure of the chains and, in particular, their density profiles. These models have been used to compute the free energy of separation
between pairs of grafted and ungrafted NPs in a polystyrene matrix. In addition, the PMF’s three-particle contribution and its role in
controlling nanometer-scale phase separation observed in experiments, has been also calculated by including a third particle at a fixed
distance in TI calculations. The schematic morphological diagram for grafted NPs embedded in a PS matrix is shown in the figure after
computing the second virial coefficient and taking into account the three-body PMF. The corresponding self-assembled structures
obtained by transmission electron microscopy are displayed in the same figure. The various experimental morphologies seen at low
grafting densities can be well explained by a balance between the two particle and the multi-particle contribution to the PMF. For
example, as shown in Fig. 8(D), the two body PMF, corresponding to the grafting density where NPs strings are observed, is very attractive
at short distances and it keeps to be attractive in the whole range, while the effect of the presence of a third particle makes the PMF
positive and repulsive in the whole range. This can explain why arranging NPs in strings can minimize the two particle contribution to
free energy without including the three particle repulsive contribution. Later on it has also been investigated how the local structure and
with the PMF between silica nanoparticles (NPs) in a polystyrene melt are affected by the bidispersity of polymer chains.83 The computed
trends are quite general and correlate with a number of studies that have been documented in the literature; they are not just applicable to
the particular situation of silica-PS nanocomposites. Bidispersity, grafting density, and multibody contact interact in a complicated way,
leading to a rich phase behavior that qualitatively matches the experimental data on these systems that are currently available.104 These

Fig. 11 (A) Racemo r and meso m diads in polypropylene. (B) Fractions of gauche and trans conformations obtained from hPF-MD simulations compared
with literature results of Tzounis et al.; (C) Structure factors calculated from hPF-MD simulations for syndiotactic PP compared with experimental data. Plots
are shifted to better compare the data. (D) Chemical structure of the repeating unit of PEI; typical arrangements of water molecules at low and high
concentrations in PEI (lower panel) and X-ray scattering of PEI all atom model obtained by the procedure of successive hPF-MD equilibrations at different
grid resolutions compared with experiments (right panel). Panels (A)-(C) reproduced from: Soft Materials 2020, 18, 228. https://doi.org/10.1080/
1539445X.2020.1716801. Panel (D) from: J. Phys. Chem. B 2017, 121 (14), pp 3162–3176. https://doi.org/10.1021/acs.jpcb.7b00992.
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results show that hPF-MD can provide a useful chemically specific computational tool for the research of the composite stability under a
wide range of situations since it can capture microscopic interactions at the molecular level.

The most recent use of hPF-MD to simulate polymer composites are CG models made up of carbon black (CB) and polyethylene that
are adequate for filler/polymer interactions (PE).105 In Fig. 9(A) a schematization of the hierarchical structure of CB aggregates is depicted.
Starting at the lowest scale (atomic or molecular, 1 nm or less), according to the findings of adsorption tests,106 the surface of CB is
distinguished by several adsorption sites. Microcrystallites are arranged spherically in primary particles, with a radius of 10 nm.107–109 CB
fillers are not found in polymer composites as single graphitic units or even as single primary particle. Conversely, the smallest dispersible
units in polymeric materials typically consist of two or four primary particles, which are often grouped in clusters of nine to ten (on
average) and have a radius of about thirty nanometers (nm). With this in mind, it is clear how, in addition to the surface characteristics of
CB (such as the presence of high energy surface sites), the size of the primary particles, the aggregate morphology of a specific CB grade,
and the compounding conditions all have a significant impact on the miscibility and degree of dispersion in polymers. In this framework,
the computational efficiency of the hPF CG model enabled large-scale simulations of realistically sized (20 nm) CB primary particles
embedded in PEmelts but, at the same time, describing the details of the CB surface structure. By analyzing the conformational behavior of
PE chains adsorbed on various surface regions of CB primary particles, which differs from simplified models based on flat infinite surfaces,
it is possible to obtain a detailed description of the bound layers. In Fig. 9(B) the conformations of PE chains in contact with the surface of
the CB particles are compared with those obtained using idealized flat surfaces. In the same study an optimized version of the OCCAM
software for massive MD parallel runs (up to more than 8 million of beads) has also been proposed according to the features of these
systems. The computational effectiveness of the optimized code opens up the possibility for a computational screening of the bound layer
that takes into account the desirable surface chemistry, size, and shape of CB aggregates, and the molecular weight distribution of the
polymers, resulting in a significant tool to address the polymer/fillers interface and interphase engineering in the polymer industry.

5.3 hPF-MD All-Atom Simulations

Starting from the early studies aimed at accomplishing molecular/atomistic scale relaxed structures of dense polymer melts, two
main challenges are still subject of intense research and must be addressed: (1) Appropriate coarse-graining methods, which entails
developing a mapping scheme and related automated protocols to incorporate features from all-atom reference simulations; (2)
the appropriate back-mapping strategy to arrive at reliable all-atom configurations. For a very recent and comprehensive review of
polymer multiscale simulation, the reader can refer to Ref. 35.

Initial applications of all-atom hPF-MD simulations have been made to achieve this goal. A strategy that produces well-relaxed all-atom
structures of polymer melts has been applied to melts of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) as test
systems,110 and later to polypropylene at various tacticities.111 In Fig. 10(A) the equilibration procedure, consisting in successive MD
simulations using different density grid resolutions, is schematized for PMMA. Using this approach all-atom structures with structural
correlations identical to those obtained by lengthy MD relaxations have been obtained, demonstrating that even subtle effects on the final
melt structures can be adequately described. The suggested method results in computational costs that are more closely related to system
size than to chain length, indeed due to the softness of hPF forces, chains can cross each other. Beside this, the suggested method has a
number of benefits over conventional coarse-graining/reverse mapping techniques. No parametrization is needed to generate relaxed
structures of different polymers at different scales or resolutions. To show this, for example in Fig. 10(B), radial distribution functions
calculated with respect to different atom pairs compared with the ones obtained by long equilibrations using traditional MD are reported.
X-ray scattering of all-atom relaxedmodels obtained from very longMD simulations, experiments and hPF-MD simulations are reported in
the same figure. These results show how sensible the hPF approach is towards details of chemical structures if the proper grid resolution is
chosen. To better test this issue the same procedure proposed for PMMA and PEO has been applied to polypropylene (PP) in order to
understand if fine details of chain topology related stereoregularity (a scheme explaining the meso and racemo diad of PP is reported in
Fig. 11(A)) and their consequences on the melt structure could be grasped by hPF models. This represents a very hard test for the
methodology because structural effects of tacticity are very relevant in the solid crystalline state of polymers, but very tiny for melts,
especially if the lateral group of the main chain is small as in PP. In Fig. 11(B) the average trans and gauche conformations fractions are
reported as function of the r diad percentage for hPF-MD simulations and compared with literature results of long MD all atom
simulations. In Fig. 11(C) the experimental structure factors are compared with the ones obtained from hPF-MD simulations. Recently this
approach has been also successfully applied to polymers with complicated architectures, containing several rings in the main chain, such as
poly-etherimides (PEI). The chemical structure of the repeating units is reported in Fig. 11(D) and in the same Figure the calculated X-Ray
scattering compared with experiments is also reported. Relaxed all-atom structures utilized to study the behavior of water112 and carbon
dioxide113 at low activity in comparison with spectroscopic, gravimetric experiments and theoretical models have been obtained for this
class of polymers. In Fig. 11(D) the typical arrangements of water molecules present in PEI and verified by FTIR measurements are
reported.112 We would like to stress that, differently from traditional CG approaches based on particle reductions, here is no need for
special algorithms or back-mapping schemes to change the resolution of the models. Indeed the procedure involves only a change of
resolution of the coarse-grained density and all the atoms degrees of freedom are always present during the successive equilibrations. Then
there is no need to reinsert them. This characteristic makes the procedure general and its extension to other polymer architectures is
straightforward. The generation of all-atom structures of block copolymer melts and polymer nanocomposites could well be accomplished
using similar techniques. The reported all-atom results obtained using hPF models look promising and an extensive use of all-atom hPF-
MD simulations can be foreseen for the investigation of biomolecules.
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6 Dynamics

Analysing the evolution of a system from simulated CG trajectories can be challenging; more generally, the kinetic description in CG
methodologies should be considered with some care. hPF-MD is no exception. The effective acceleration of particles (effective beads or
atoms) motion compared to the corresponding atomistic models is caused by several factors. Among others, the softening of interactions
that comes with coarsening lowers the energetic barriers for important stochastic events, for instance the escape from a molecular cage,
which illustrates that smoother energy landscapes result in a reduced effective bead friction owing to smoother forces involved in non-
bonded interactions. Moreover, according to the equipartition theorem, thermal energy is distributed over a different number of degrees of
freedom. A practical way to match time scales of hPF-MD simulations, provided that the scaling is linear, is by direct comparison of
dynamical properties determined using hPF and atomistic simulations. One approach, previously applied to models derived by IBI, is to

Fig. 12 Snapshots after 50,000 time steps of hPF-MD with MPCD (A) and after 1,000,000 time steps with an Andersen thermostat (B), starting from the
same random mixture of lipids (represented as H3ðC4Þ2) and water (W). In both cases, flat membranes spanning the 22� 22� 22 simulation volume (all
in units of rc ; nl ¼ 764;Dt� ¼ 0:01) are formed. All particles are shown, with red/blue/iceblue representing H/C/W particles. (C) Comparison of the evolution
(logarithmic time axis) of the mean-field free energy W ½f� for the self-assembled membranes shown above (red: MPCD, black: Andersen thermostat).
Reproduced from: Soft Matter, 2017, 13, 1594-1623. https://doi.org/10.1039/C6SM02252A.
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compare the diffusion coefficients estimated from atomistic simulations with coarse-grained models, which, for several models of
surfactants, provided a speedup factor of about 20.114 This type of straightforward scaling can be useful to have a semi-quantitative idea of
the relevant timescales, but a lot of care has to be taken if dynamical properties need to be obtained from hPF models. Indeed, the
complexity in soft matter systems is the multitude of energy barriers that are all approximately equal in height, and a common issue is that
typically all barriers are not decreased in the same manner by the CG representation. A correct description of dynamics is rooted in the
consideration of the important physical ingredients related to the systems under consideration. Here we give two examples, one related to
the incorporation of long-range hydrodynamic interactions and a second related to the dynamics of polymer melts in entangled regime.

One of the most attractive aspects of computationally-efficient hybrid methodology is that simulations may be started quite far from
the actual structure or situation that one is really interested in, in some relevant metric, owing to the fact that the sampling of phase space is
significantly enhanced (or more ergodic) compared to standard particle-based methods. Especially in soft matter systems, where the
thermodynamic driving forces for structural transitions are rather small, this is a very advantageous attribute, as it offers a straightforward
solution for dealing with biases that may be introduced by the choice of the initial setup. From the viewpoint of a realistic kinetic
description, re-introducing factors that are affected by the smoothing employed in hPF-MD, for instance, the effects of particular particle
correlations that are at the basis of entanglement and the discussed caging phenomenon in standard particle-based methods, is an
important goal. In addition, including the long-range (hydrodynamic) interactions that are known to considerably speed up the phase
separation dynamics is both important for a more realistic dynamic representation and for maximizing the sampling rate in phase space.

The standard course of action in setting up a computational evaluation of any soft matter system is to first perform simulation
in a NPT ensemble, generally using a barostat that brings the system to a desired pressure, followed by NVT ensemble simulation.
Options for hybrid simulation at constant pressure have been discussed in an earlier section. Next, we discuss the thermostat that
is needed for performing hPF-MD simulations in an NVT ensemble. For additional background material and references to related
literature we refer to a published study.115

A key requirement for the choice of the thermostat in hPF-MD is that the decoupling between particles located on different
molecules is conserved, since it enables calculation of non-bonded interactions between many particles via a few global fields. It is
exactly this attribute that most contributes to the high efficiency of hPF-MD when compared to standard particle-based approaches
at the same resolution, see the section about Implementation. The other factor, the time step, is constrained by intramolecular
bond stretching, and thus in most cases it is not affected by the smoothing due to the hybridization. Unfortunately, most available
thermostats that are Galilean invariant, i.e., momentum conserving and thus accounting for hydrodynamics,116 including the
Lowe–Andersen117 and the Nosé–Hoover thermostat,118,119 are based on velocity-differences between pairs of particles. By
requiring a so-called neighbor list, which dynamically keeps track of all particle neighbors within a certain Euclidian distance, they
violate this important requirement for efficient implementation.

The so-called local Andersen thermostat,120 which resets the velocity of a set of randomly selected particles in order to maintain
a preferred temperature via the Maxwell-Boltzmann distribution, is one of the options that does not require particle pairs, and thus
most applications of hPF-MD up to this moment have employed this thermostat. Unfortunately, the second desired property,
momentum conservation, is not satisfied by this simple thermostat. The most apparent consequence of this violation of Galilean
invariance can be seen in hPF-MD simulations of aggregation. In the absence of other longer-ranged interactions, e.g. electrostatics,
the rate with which structure coarsens is rather sensitive to hydrodynamics, and motion (and thus coalescence of small aggregates)
slows down considerably with increasing aggregate size.

Fig. 13 (A) Distribution of end-to-end distance for atomistic models of polyethylene. Results from hPF-MD (hollow), slip-spring hPF-MD (filled), and
MD (black) simulations are compared. (B) Scaling behavior of the diffusion coefficients as function of number of repeating units. For hPF-MD simulations
(red squares), diffusion coefficients scale as BN�1; For slip-spring hPF-MD simulations (blue circles), the diffusion coefficients scales as N�2; The
results are compared with traditional MD simulations (green inverted triangle) and other MD simulations of polyethylene melts made using pair potentials.
Reproduced from: J Comput Chem. 2021. 42, 6–18. https://doi.org/10.1002/jcc.26428.
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A decoupled solution to the issue of momentum conservation, and a way to re-introduce the particle ‘entanglement’ that is
automatically present in particle-based methods, is Multi-Particle Collision Dynamics (MPCD).121 This discrete-time method was
originally defined for point-like particles that only kinetically interact by undergoing streaming (ballistic motion) and collision
(momentum exchange) steps, in the absence of the usual interaction potentials. Collisions take place in a grid of computational
cells, and since only the center of mass velocity of each cell needs to be calculated for the collision, that is also thermostated, pair
interactions are not needed.121 In particular, the streaming step is given by

riðt þ δtÞ ¼ riðtÞ þ viðtÞδt ð20Þ
for each particle indexed by i, with δt the time increment between collisions, ri the particle positions and vi.their velocities. Given
the center of mass velocity for nc particles in a cell of size a� a� a given by

vcm ¼ 1
nc

Xnc
j ¼ 1

vj ð21Þ

the velocity update for each of the nc particles is given by

vi ¼ vcm þ Rðvi � vcmÞ ð22Þ
with R a 3� 3 matrix that rotates vectors by a fixed angle a around an axis that is randomly selected for each cell. It was shown that
MPCD is Galilean invariant if cells are additionally shifted by a small random vector prior to collision.122 The Green-Kubo
relations can be used to derive hydrodynamic properties in terms of ncðor aÞ; a; and δt, establishing a link between these para-
meters and actual systems. In hPF-MD/MPCD, the streaming step is replaced by the standard position update of MD.115 The key
choice, currently still under consideration, for applying MPCD to an interacting solvent/solute system like a lipid membrane is
whether the rotation in the collision step should be applied only to the solvent or to the solute as well.

Application of hFP-MD/MPCD to a single-particle system (χ ¼ 0) in which particles only experience excluded volume inter-
actions characterized by a chosen κ value, showed that introducing collisions by MPCD gives rise to fluctuations in the velocity-
autocorrelation function (VACF) and negative values at short time scales, reflecting caging.115 Moreover, with decreasing κ, or for
less compressible systems, this effect is amplified, as expected. Direct comparison of the system evolution between hPF-MD with
an Andersen thermostat and using MPCD, see Fig. 12, shows that the introduction of long-range hydrodynamic interactions via
MPCD indeed substantially speeds up the formation of a membrane.115

Due to chain crossability, the entangled dynamics of polymer melts is lost in hPF-MD simulations. Chains can cross because
the non-bonded interactions are essentially soft-core due to the field treatment. To mimic the topological limitations of entan-
glements, a multi-chain slip-spring model124 into the hPF scheme has been included.123 The addition of slip-springs had little
impact on the polymer chains’ structure (see Fig. 13A), which is compatible with that of typical MD simulations, this approach has
been also proved for the knotting behavior of polymer chains125 and for branched polymers.126 During long timeframes,
dynamical characteristics including mean-square displacements and reorientational relaxation times are in good agreement with
conventional MD simulations and theoretical predictions (see Fig. 13B), despite the modest deviations observed at short times. A
similar approach can be also applied to hPF simulations of CG models having effective beads representing a specific polymer. In
particular, the hPF-MD approach has been combined with a frequency-controlled slip-spring model using a CG model.127 This
useful combination of slip-spring and hPF representation of polymer models has been named as RoBerTo approach. Using this set
up, a reptation behavior can be clearly observed consistently with the predictions of the tube theory, and with a quantitative
prediction power using a parameterization strategy from existing experimental or simulation data.

7 Conclusions

In the nearly fifteen years since the publication of the first paper on hPF-MD,50 several extensions, improvements, and sophis-
ticated applications have been made. The hPF-MD formulation, its extension to charged systems, to solid nanoparticles and other
technical improvements of this methodology allowed applications to several classes of systems. Models with high chemical detail
(such as atomistic models or CG with near atomistic resolution) have been explored on time and length scales that are generally
inaccessible to equivalent models based on pair potentials. Test applications have been explored for several systems such as
biological lipids, surfactants, synthetic polymers and proteins. One attractive feature of hPF-MD is the ability to import intra-
molecular interaction terms from traditional MD simulations (based on representation of all atoms or coarse-grained beads) and
to extend their applicability through a mean-field treatment of non-bonded interactions. Many challenges and different aspects of
this research field need to be addressed in the future. The development of functionals able to correctly describe the physics of the
specific problems under investigation is an important task. Some efforts have been already addressed in this direction, but, due to
the various applications and the rapid diffusion of hPF-MD technique, the need of new or modified functionals will increase. The
majority of hPF-MD applications have been produced using CG representations, although a few applications (targeted to synthetic
polymers), obtained using all-atom models, have yielded encouraging results. This suggests continuing to develop and apply all-
atom models. This will encourage the creation of new strategies better suited to the atomic scale in addition to the importation of
numerous techniques currently established for atomic scale MD simulations. The development of physically inspired techniques to
accurately represent the dynamics as function of the degree of coarse-graining of the hPF models will be a highly intriguing issue
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following the here described promising attempts. All these interesting targets can be reached including more researchers now
outside the small community that develops, validates, and employs hPF methodologies. For this reason, the lack of reliable and
efficient freely accessible simulation engines for many of the recent improvements should be addressed because it makes the
application extremely difficult for non-experts. This need is not confined to hPF methodologies but is more general and involves
all the community developing coarse-graining approaches in molecular simulations.128

8 Further Reading

This section is intended to guide the reader to the basics of hPF-MD. A good introduction to SCF Theory is the book “Statistical
Physics of Polymers”, reference 37 of the bibliography of this chapter. In particular, the third chapter is a smooth introduction to
field theory including also essential mathematical tools needed to follow the derivations. After being used with the book
previously mentioned, papers50 and66 contain all useful information on the formulation of hPF-MD and its implementation in
computer codes. As for the parametrization of mean field models, in paper67 an approach and the relative formulas able to
translate parameters of CG models like MARTINI in corresponding χ parameters is provided. For more specific points the body of
the chapter contains the basic information and the relative bibliography.

Relevant Websites

The website of OCCAM contains the main information about input format and code usage. The name OCCAM is not an acronym
but it is the latinized spelling Ockham. William of Ockham, also known as the “Doctor Invincibilis”, was an English Franciscan
friar. He is considered to be one of the major figures of medieval thought. Among many things, he is known for his OCCAM razor:
“Frustra fit per plura quod potest fieri per pauciora". The Occam's razor can be considered as the first statement of a "Coarse Graining
Philosophy".

Researchers interested in becoming users and/or code developers can contact giuseppe.milano@unina.it
OCCAM website
https://sites.google.com/view/occammd
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