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1. Introduction
This thesis faces the problem of joint modelling
of hospitalizations and survival of patients af-
fected by Heart Failure, with a focus on the ef-
fect that a pharmacological treatment based on
ACE Inhibitors has on these two processes.
Heart Failure is a chronic condition consisting in
the deterioration of the function of a patient’s
heart. Its study is considered to be of primar-
ily importance, due to its prevalence and impact
over the sanitary system.
We investigate Survival analysis tools able both
to model two correlated processes, the former
regarding recurrent events (i.e. hospitalizations)
and the latter terminal ones (i.e. deaths), and
to assess the effect that exogenous variables (e.g.
ACE inhibitors therapy) have on them. We
identify frailty models [4], which are Cox models
in which a random effect is added to the linear
predictor, as a suitable tool both in a recurrent
and terminal events framework. Moreover, their
application allows the simultaneous modelling of
the two processes through the linking of the hos-
pitalizations and death frailties [5]. Our main
contribution is represented by an innovative ap-
proach extending the state of the art joint model
proposed by Ng et al. in [3], in which the two

processes’ frailties follow a bivariate non para-
metric discrete distribution. This frailty formu-
lation reveals a big potential from an interpre-
tative point of view, especially for the applica-
tion at hand. In fact, it enables a more direct
analysis of the induced partition of patients in
subpopulations characterized by different levels
of fragility, which can be easily translated in a
providers’ assessment. We finally provide a com-
parative study to verify the effectiveness of our
model in a controlled setting.

2. ACE Inhibitors Dataset
We consider data coming from an administrative
database of Regione Lombardia, which records
clinical courses and pharmacological prescrip-
tions of subjects affected by Heart Failure. We
focus on patients who undergo an ACE in-
hibitors treatment in the period from January
1st, 2006 to December 31st, 2012. For each pa-
tient, the index date coincides with the discharge
after the first hospitalization due to Heart Fail-
ure. We adopt a gap times timescale, i.e. each
patients clinical history is declined in repeated
observations, characterized by a time-to-event
variable GapEvent which expresses the days
elapsed from the previous patient’s hospitaliza-
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tion to the next one. The last gap time of each
patient expresses the time elapsed from the last
known hospitalization to the terminal event,
which may be death or censoring. The nature of
each event is kept track of through two dummy
variables, respectively Event and Death.
To assess the effect of the considered ACE in-
hibitors treatment on survival and hospitaliza-
tions, we extend the approach proposed in [1],
designing a time dependent binary classifier for
adherent subjects (variable Adherent). At each
event in a patient’s history, we compute the pro-
portion of days covered by prescriptions of ACE
inhibitors since the patient index date; then, if
this proportion exceeds a threshold of 80% the
patient is considered adherent to treatment, oth-
erwise not.
Moreover, each entry in the dataset compre-
hends two time-dependent variables, AgeEvent
and Comorbidity, which respectively indicate
the age and the number of known comorbidities
of a patient at the beginning of the correspond-
ing gap time. Finally, the last variable included
in the modelling is the patient gender (Sex).
Table 1 reports as an example the data table of
a patient in the ACE inhibitors dataset.

3. Methods
In our context, we need a tool to model the ef-
fect of exogenous variables on possibly censored
time-to-event outcomes regarding the hospital-
izations and death processes, taking into account
the heterogeneous fragilities of patients.

3.1. Frailty Models
We initially model the two processes separately
through Cox proportional hazard frailty models
[4]. They express the hazard (i.e. the probabil-
ity of experiencing an event at time t) similarly
to the Cox model, but they exploit the intro-
duction of a random unobserved covariate (the
frailty) that describes the heterogeneity at pa-
tient level unexplained by the observed set of co-
variates. In our case, they can be applied to ac-
count for within-subject correlated times, which
are now assumed to be independent condition-
ally on the covariate vector and on the unob-
served random effects. In particular, we express
the hospitalization and death hazards for each
patient i, i = 1, ...N, as follows

hRi (t|xR
i (t)) = hR0 (t) exp{βTxR

i (t) + ui}
hDi (t|xD

i (t)) = hD0 (t) exp{γTxD
i (t) + vi}

(1)

where t refers to a gap time with respect to
the last known hospitalization event; hR0 and
hR0 are the hospitalization and death baseline
hazard functions, respectively; xR

i (t) and xD
i (t)

are the observed covariates at time t; β and γ
are the estimated coefficients of the two models;
ui and vi are patient-specific additive frailties,
which follow two independent Normal distribu-
tions, centered in zero and characterized by their
variances parameters

p(u) = N(0, θ2u)

p(v) = N(0, θ2v).

(2)

We fit the model to our data using the R package
coxme, which implements the estimation proce-
dure proposed in [4].

3.2. Joint Models
Joint frailty models allow to study the joint evo-
lution over time of our two correlated survival
processes by linking the two processes’ frailties.
In our work we consider at first the model pro-
posed by Rondeau et al. [5] in 2007. It com-
prehends a single random frailty, η, which is
normally distributed, but acts differently on the
two processes’ hazards through the parameter
α. Following the notation adopted in Equation
1, the hazards are modelled as follows

{
hi(t|ηi,xR

i (t)) = hR0 (t) exp{ηi + βTxR
i (t)}

hi(t|ηi, α,xD
i (t)) = hD0 (t) exp{αηi + γTxD

i (t)}

(3)

The model is fitted to data through the R pack-
age frailtypack.
Then, we consider a model proposed by Ng et
al.[3] in 2020, where the hazards are modeled
as in Equation 1, but the two processes’ frail-
ties are jointly modelled as a bivariate Normal
distribution

p
(
[ui, vi]|E

)
= N2(0,E) (4)

where E stands for

E =

[
θ2u ρθuθv

ρθuθv θ2v

]
(5)
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ID Sex Adherent AgeEvent Comorbidity GapEvent Event Death
10003004 F 0 75 5 229 1
10003004 F 1 75 6 131 1
10003004 F 0 76 6 168 1
10003004 F 0 77 7 353 1
10003004 F 1 79 7 1,153 0 1

Table 1: Data table of patient 10003004.

This formulation allows a well-defined interpre-
tation of all the parameters involved, being θ2u
and θ2v the quantifiers of unobserved heterogene-
ity in the two processes, while ρ models their
dependence. In [3], the authors propose aswell
an innovative estimation routine for the model,
which has not been implemented in a dedicated
R package yet. Thus, we develop our custom
implementation to fit the model to data.

3.3. Joint Discrete Nonparametric
Frailty Model

Our main contribution consists in the develop-
ment of a model which assumes the same shape
for the hospitalization and death hazards as in
Equation 1, but a bivariate non parametric dis-
crete distribution for the frailties. This choice
stems from the fact that a discrete distribu-
tion of frailties is easier to understand and may
translate in a providers’ assessment. We design
and implement a specific EM algorithm for the
model’s training, which was inspired by [2].
According to our formulation, random effects ui
and vi are distributed according to P ∗, which is
an unknown measure on R2

[u, v]i
iid∼ P ∗ ∀i = 1..N (6)

Such measure in supposed to be discrete and
with a finite support, thus it can be character-
ized by a vector of points in R2, P , and a vector
of weights, w. Notice that each weight expresses
the probability of a patient to be assigned to a
certain point l, l = 1, ..., L and thus the sum of
the weights is constrained to be unitary. More-
over, the number of points constituting the sup-
port of the distribution, L, is assumed to be un-
known a priori.
Initially considering this parameter as fixed, we
can write each patient’s contribution to the like-
lihood of the model as a mixture of L compo-
nents. Each component coincides with the prod-
uct of the individual contributions (relative to

patient i) to the full loglikelihood of two inde-
pendent Cox models with fixed intercept, mod-
elling respectively the recurrent and terminal
event process

L(Ω;data|zil) =
L∏
l=1

N∏
i=1

[
Lfull
i (Ω; data|[u, v]i = Pl)

]zil .
(7)

The abscissa and ordinata of each point Pl spec-
ify, respectively, the fixed intercept of the re-
current and terminal event Cox models, while
zil are a set of binary auxiliary random vari-
ables indicating if a patient i is assigned to
the point l. In order to obtain estimates for
Ω = [β,γ,w,P , hR0 (t), h

D
0 (t)], we design a spe-

cific EM algorithm, in which at each iteration
the model likelihood is firstly averaged with re-
spect to the zil variables and then maximized.
The EM algorithm is then generalized to cope
with an a priori unknown number of support
points L through its integration into a wrap-
per support reduction procedure. The first step
consists in the definition of a grid of points in
R2, which ideally covers the region in which the
support of the discrete distribution is believed
to lie. We evaluate two methods: the former in-
volves sampling an high number of points from
a bivariate Normal distribution, whose parame-
ters are set according to previous knowledge (e.g.
looking at estimates of the disjoint or Ng et al.
model), and initializing their weights according
to the corresponding Normal density; the latter
consists in defining a uniform distribution over
a rectangle in R2, whose boundaries are set still
according to available knowledge. We decide to
adopt the second method, as it is less informa-
tive and results more robust with respect to ran-
domization. At the start of each iteration, we
merge the minimum distance couple of points in
the actual grid whose Euclidean distance is less
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Figure 1: Comparison of estimated hazard ratios and
their 95% CI in the trained models. Considered models
are: disjoint (pink), Rondeau et al. (pistachio green), Ng
et al. (teal), Discrete Nonparametric Frailty with Gaus-
sian Initialization (light blue) and Discrete Nonparamet-
ric Frailty with Uniform Initialization (purple).

than a threshold (MinDist). The new point is
simply defined as the median of the old ones con-
necting segment, while its weight as the sum of
the old points ones. The procedure is repeated
until any couple of points distance is under the
threshold. The last step consists in the deletion
of eventual masses to which no patients are as-
signed in the latent partition extracted after the
maximization step. The algorithm stops when
a given number of iterations is reached or the
number of masses in the discrete distribution is
stable (no reduction happens in the current it-
eration) and the difference between old and up-
dated weights of the discrete distribution, com-
puted in maximum norm, is less than 1e-03.

4. Results
In the fitting of all models we consider for both
processes the whole set of available covariates
(Sex, Adherence, AgeEvent and Comorbid-
ity). The nonparametric discrete frailty models
are fitted using a MinDist value of 0.25, which
is initially believed to be suitable to spot sig-
nificantly different fragility classes of patients.
The trained models are compared from two per-
spectives: coefficients’ estimation and random
effects’ characterization.
From the coefficients’ estimation point of view,
we expect all different models to yield consis-
tently similar values. In Figure 1 are visualized
the Hazard Ratio estimates and their respective
95% confidence intervals, which confirm this ex-
pected result.
Actually, the only significant difference regards

Variables Estimate StdDev HR CI95 pvalue
Recurrent Events
Sex [M] 0.039 0.019 1.039 [1.003,1.079] 0.034
Adherent [1] -0.259 0.019 0.771 [0.743,0.800] <2e-16
AgeEvent -0.015 0.001 0.985 [0.984,0.987] <2e-16
Comorbidity 0.123 0.005 1.131 [1.119,1.143] <2e-16
Recurrent Events
Sex [M] 0.169 0.073 1.184 [1.025,1.366] 0.021
Adherent [1] -0.407 0.078 0.665 [0.571,0.755] 1.7e-07
AgeEvent 0.039 0.004 1.041 [1.032,1.049] <2e-16
Comorbidity 0.429 0.020 1.535 [1.476,1.597] <2e-16
Frailty P1 P2 P3 P4 P5 P6
u -0.466 -0.194 0.079 0.231 0.468 0.679
v -1.872 -0.859 -0.090 1.166 2.277 3.088
w 0.208 0.234 0.206 0.217 0.071 0.063

Table 2: Summary of the Nonparametric Discrete Frailty
model with Uniform initialization. For categorical vari-
ables, the considered stratum is indicated between brack-
ets. Points of the identified frailty discrete distribution
are characterized through their abscissa (u), ordinata (v)
and weight (w).

the comorbidity coefficient estimated by Ron-
deau et al. model, which is likely to be an er-
ror due to numerical instability in its estima-
tion routine. As reference, we analyze in the
following the estimates provided by the discrete
nonparametric frailty model with Uniform ini-
tialization (see Table 2).
Looking at the hazard ratio of the covariate Sex,
male subjects are suggested to be slightly more
prone to risk of hospitalization (HR=1.035) and
death (HR=1.197).
The covariate Adherent results statistically sig-
nificant at any level for the two processes in all
trained models. According to the Uniform ini-
tialization discrete nonparametric model, being
adherent yields a 22.9% decrease in the risk of
a new hospitalization (HR=0.771) and a 33.5%
decrease in the risk of death. From a clinical
point of view, such results finally endorse the ef-
ficacy of the ACE inhibitors treatment for heart
failure, as it leads to a significant reduction of
the hospitalizations rate (and thus of critical HF
events) of adherent patients during their clini-
cal path, in addition to increasing their survival
probability.
The covariate AgeEvent results, for both pro-
cesses, statistically significant at all levels in all
trained models. Its effect on the hospitalization
hazard is a 1.5% reduction of the risk of
hospitalization per year (HR=0.985), while on
the death hazard it yields an increase of the
risk of 4.1% (HR=1.040). Clinically speaking
this can be explained by the fact that part of
the risk of experiencing a new hospitalization
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Figure 2: Discrete Distribution of Random Effects. The
color of points ranges from blue (strong subjects) to red
(weak subjects), while their size is representative of the
probability of a patient to belong to the corresponding
latent population.

is replaced by the risk to die when patients get
older. This is reasonable especially in our case,
as we are considering elderly persons (median
age at first hospitalization of 74, IQR=[66;80]),
but is likely to be different when young subjects
are involved.
The covariate Comorbidity results to be in
all models statistically significant for both the
processes. It yields an increase of 13.1% in the
risk of hospitalization and a very high increase
of 53.5% in the risk of death per comorbidity
registered. The role comorbidities have in
increasing the mortality and hospitalizations
of heart failure patients is well documented in
medical literature and confirmed by our analysis.

From the frailties characterization point of view,
the disjoint model yields estimates of θ2u = 0.093
and θ2v = 0.428 for, respectively, the hospitaliza-
tion and death random effects’ variances. Gen-
erally, the fact that the within-patient variabil-
ity is very low in the hospitalizations process,
while is quite high in the death one, may be due
to the fact that the two processes show differ-
ent timescales and are trained on very different
amounts of data. (15,978 against 3,232). This
difference may also be explained from a clini-
cal point of view, as subjectivity is likely to be
more relevant on mortality that on hospitaliza-
tions, which are regulated by fixed procedures.
As mentioned in [3], when the frailties’ are not
jointly modelled the heterogeneity involved in
two correlated processes is likely to be underes-
timated. In Rondeau et al. model, the estimated
variance of the random effect η is slightly

Figure 3: Stratified Survival Probability Baseline curves
of the terminal event process, associated to the discrete
distribution of random effects identified in the Uniform
Initialization model. The color of each curve is the same
of the corresponding random effect point as in Figure 2.
The white line represents the survival probability base-
line curve of the model without random effects.

higher than its disjoint model counterpart (0.114
against 0.093). The estimated α parameter, in-
stead, is 2.660: since it acts multiplicatively on
the random effect (see Equation 3), it yields a
variance of 0.799, which is significantly higher
than the independent model one (0.428). How-
ever, this joint frailty formulation seems too sim-
plistic, in addition to the fact that the α param-
eter has not a clear interpretation.
Ng et al. model yields estimates of θ2u = 0.124
and θ2v = 1.378 for the hospitalization and death
frailties’ variances. This magnification effect
(with respect to the estimates provided by the
disjoint model) is likely to be due to the very
strong dependence between the two processes
that the model identifies: the estimate for the
correlation parameter is ρ = 0.879, which sug-
gests that in our cohort patients which are nat-
urally more prone to the risk of a new hospi-
talization are also naturally more prone to the
risk of death. However, even if highly correlated,
the strong difference between the two processes
random effects variances suggests a far more im-
portant role of randomicity in the terminal event
process.
Our nonparametric frailty model identifies the
discrete distribution reported in the third
section of Table 2 and visualized in Figure 2.
The estimated discrete distribution consists
in six points disposed in a diagonal pattern,
whose range is consistent with the variance
estimates obtained in Ng et al. model, and
show left skewness: point P1 and P2, asso-
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Figure 4: AIC curve as function of the MinDist parame-
ter, computed through the Uniform initialization discrete
nonparametric frailty model.

ciated with a probability of 21% and 23%,
identify respectively a Highly Protected and a
Protected subpopulation; Point P3 is related to
a subpopulation Neutral to random effects, with
almost a 20% probability for a patient to belong
to it; Point P4 identifies a relevant group of
patients (At Risk) slightly more prone to the
risk of a new hospitalization and death, with a
probability of 20.5%. Point P5 and P6 identify
two outlier subpopulations of Fragile and Very
Fragile patients, associated with small proba-
bilities (respectively, 7% and 6%). To quantify
the influence of the identified frailties discrete
distribution on the two processes we look at
the induced stratified baseline survival curves.
As an example, Figure 3 reports the terminal
event process induced stratified baselines. We
note that they show very different profiles in
terms of survival, in particular the Fragile and
Very Fragile subpopulations (red curves), whose
subjects are likely to depart within a short time.

Finally, we investigate the change in the MinDist
threshold, which turns out to be the main fac-
tor influencing the final distribution discovered.
We look at the dependence between the param-
eter to be tuned and a simple fitting criterion,
the Akaike Information Criterion, in order to
identify promising candidates. In Figure 4 is
reported the curve obtained considering a set of
37 values for MinDist ranging from 0.1 to 1,
which are apart from each other of 0.025. We
choose MinDist = 0.875, where the curve
achieves its minimum, as the most promising
candidate. It yields the discrete distribution
reported in bottom panel of Figure 5, which
comprehends a main Protected subpopulation

Figure 5: Discrete distribution of random effects related
to relevant values of MinDist spotted analyzing Figure 4

(purple point, probability of 54.9%) and an-
other relevant At Risk subpopulation (magenta
point, probability of 36%), in addition to an out-
lier point representative of Very Fragile patients
(small red point, probability of 9%).

5. Conclusions
Our innovative approach results to be an effec-
tive inferential tool to jointly model hospitaliza-
tions and survival of patients. It yields covari-
ate coefficients estimates consistent with models
used in literature, providing an easy to under-
stand but richer frailty characterization, as it
enables further analyses. For example, it allows
us to argue that the assessed positive effect that
adherence to the ACE inhibitors treatment have
in reducing the hospitalization and death rates
is likely to be unappreciable for outlier patients
belonging to the identified Very Fragile class,
due to their personal fragility.
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