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Appendix

Layerwise learning for quantum neural networks

As alluded to in Section 4.1, LL and CDL perform similarly in a perfect simulation
scenario, where we assume neither shot nor hardware noise. Figure 1 a) shows
a comparison of LL and CDL under perfect conditions, i.e. infinite number of
measurements and a batch size that corresponds to the number of samples, which
enables computation of exact gradients. Here, the magnitude of gradients doesn’t
affect the learning process severely, as the Adam optimizer uses adaptive learning
rates for each parameter and can therefore handle different ranges of gradient
magnitudes well as long as there is some variance in the computed gradients. In
this regime, both approaches show similar performance.

The convergence rate of a PQC increases proportionally to the number of parameters
in a model [188], so the number of experiment repetitions is almost equal for LL
and CDL. LL has less parameters and needs more epochs to converge due to this,
whereas CDL needs more calls to the quantum device for one update step, but in
turn needs less epochs to converge. In terms of cross entropy, both LL and CDL
converge to a value of roughly 0.51. The corresponding test error of all approaches,
except for the randomly initialized CDL, reaches almost 0 but doesn’t converge
there and settles around an error of roughly 0.1 eventually, as seen in Figure 1
b).
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Figure 1: a) Cross entropy of LL and CDL during training with exact gradient
calculation corresponding to infinite number of measurements. When one assumes
the unphysical situation of infinite measurements (m = ∞) all methods seem to
perform similarly. In particular, we compare LL to CDL with zero and random
initialization, where the initial parameters for the latter are chosen uniformly from
[0, 2π). The hyperparameters for all configurations were set to m = ∞, b = 100 and
η = 0.01. (For computing the number of experiment repetitions as defined in
Section 4.2.3, we drop m.) b) Test error corresponding to the runs shown in Figure
1. This further supports the observation that when one allows unphysical, arbitrary
precision queries(m = ∞), all tuned training strategies seem to perform similarly.
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Quantum agents in the Gym: A variational quan-
tum algorithm for deep Q-learning

Visualization of a learned Q-function
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Figure 2: Visualization of the approximate Q-function learned by a quantum
Q-learning agent solving Cart Pole. Due to the 4 dimensions of the state space in
Cart Pole, we represent the Q-values associated to the actions “left” (green) and
“right” (blue) on 3 subspaces of the state space by fixing unrepresented dimensions to
0 in each plot. As opposed to the analogue values (i.e., unnormalized policy) learned
by policy-gradient PQC agents in this environment [150], the approximate Q-values
appear nicely-behaved, likely due to the stronger constraints that Q-learning has on
well-performing function approximations.

Model hyperparameters

In the following, we give a detailed list of the hyperparameters for each configuration
in fig. 5.3, fig. 5.4, fig. 5.5, fig. 5.6 and fig. 5.7. The hyperparameters that
we searched over for each model were the following (see explanations of each
hyperparameter in table 1):

• Frozen Lake v0 : update model, update target model, η

• Cart Pole v0, quantum model: batch size, update model, update target
model, η, train wd, train wo, ηwd

, ηwo

• Cart Pole v0, classical model: number of units per layer, batch size, update
model, update target model, η
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Hyperparameter explanation

qubits number of qubits in circuit

layers number of layers

γ discount factor for Q-learning

train wd train weights on the model input as defined in section 5.1.1

train wo train weights on the model output as defined in section 5.1.2

η model parameter learning rate

ηwd
input weight learning rate

ηwo
output weight learning rate

batch size number of samples shown to optimizer at each update

ϵinit initial value for ϵ-greedy policy

ϵdec decay of ϵ for ϵ-greedy policy

ϵmin minimal value of ϵ for ϵ-greedy policy

update model time steps after which model is updated

update target model time steps after which model parameters are copied to target model

size of replay memory size of memory for experience replay

data re-uploading use data re-uploading as defined in section 5.1.1

Table 1: Description of hyperparameters considered in this work

Frozen Lake v0, fig. 5.3 Cart Pole v0, optimal Cart Pole v0, sub-optimal

qubits 4 4 4

layers 5, 10, 15 5 5

γ 0.8 0.99 0.99

train wd no yes, no yes, no

train wo no yes, no yes, no

η 0.001 0.001 0.001

ηwd
– 0.001 0.001

ηwo
– 0.1 0.1

batch size 11 16 16

ϵinit 1 1 1

ϵdec 0.99 0.99 0.99

ϵmin 0.01 0.01 0.01

update model 5 1 10

update target model 10 1 30

size of replay memory 10000 10000 10000

data re-uploading no yes, no yes, no

Table 2: Hyperparameter settings of PQCs in fig. 5.3, fig. 5.4 and fig. 5.5
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layers 5 10 15 20 25 30

qubits 4 4 4 4 4 4

γ 0.99 0.99 0.99 0.99 0.99 0.99

train wd yes yes yes yes yes yes

train wo yes yes yes yes yes yes

η 0.001 0.001 0.001 0.001 0.001 0.001

ηwd
0.001 0.001 0.001 0.001 0.001 0.001

ηwo
0.1 0.1 0.1 0.1 0.1 0.1

batch size 16 64 32 16 64 16

ϵinit 1 1 1 1 1 1

ϵdec 0.99 0.99 0.99 0.99 0.99 0.99

ϵmin 0.01 0.01 0.01 0.01 0.01 0.01

update model 1 10 10 10 10 10

update target model 1 30 30 30 30 30

size of replay memory 10000 10000 10000 10000 10000 10000

data re-uploading yes yes yes yes yes yes

Table 3: Hyperparameter settings of PQCs in fig. 5.6 a)

units in hidden layers (10, 10) (15, 15) (20, 20) (24, 24) (30, 30) (64, 64)

γ 0.99 0.99 0.99 0.99 0.99 0.99

η 0.001 0.001 0.001 0.001 0.001 0.001

batch size 64 16 64 64 64 16

ϵinit 1 1 1 1 1 1

ϵdec 0.99 0.99 0.99 0.99 0.99 0.99

ϵmin 0.01 0.01 0.01 0.01 0.01 0.01

update model 1 1 1 1 1 1

update target model 1 1 1 1 1 1

size of replay memory 10000 10000 10000 10000 10000 10000

Table 4: Hyperparameter settings of NNs in fig. 5.6 b)
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Equivariant quantum circuits for learning on weighted
graphs

Additional results on statistical significance of comparison
between EQC and NEQC

To make statements on the statistical significance of the difference between the
performance of the EQC and NEQC shown in Figure 6.5, we perform a two-sample
t-test on the two models for the same instance sizes (i.e., for the data in the two
boxes for each instance size) with the null hypothesis that the averages of the two
distributions are the same. Based on this, we compute p-values to quantify the
statistical significance of the differences between models.

Figure 3 a) shows p-values for the depth-one EQCs and NEQCs from Figure 6.5 b).
For the 5-city instances, we can not reject the null hypothesis. Indeed, it is already
visible by looking at the boxes that the distributions are very similar, which can
be expected as the number of permutations of a graph with five vertices is small.
However, as we scale up the instance size to ten cities, the corresponding p-value
is much smaller than 0.05, which means that we can reject the null hypothesis that
the two distributions have the same average with high confidence. This is also the
case for the instances with twenty cities, where the p-value is less than 0.01.

Figure 3 b) shows p-values for the depth four EQCs and NEQCs from Figure 6.5
d). Again, the p-value of the 5-city instances is very high with 0.74, so that we
can not reject the null hypothesis. Also similarly to the above, the p-values get
smaller as we scale up the instance size. For the depth-four ansatzes, the p-value is
smallest for the twenty city instances, with a value much smaller than 0.05.

To provide additional insight, we also plot the means and their standard error
for both the 1-layer (EQC-1, NEQC-1) and 4-layer (EQC-4, NEQC-4) models in
Figure 6.5. As a rule of thumb, one can expect that when the error bars given by
the standard errors of two means do not overlap, the p-value can be smaller than
0.05, while in the case that they do overlap, the p-value is likely much larger. The
error bars in Figure 4 are in line with this statement, where we see that the error
bars for the five-city instances overlap for both circuit depths, while this is not the
case for the larger instance sizes and in addition the distance between the means
increases for those instance sizes. Remarkably, we also see that the difference
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Figure 3: P-values for comparison of EQCs and NEQCs at depth one and four
from Figure 6.5 b) and d).

177



6 8 10 12 14 16 18 20
Instance size

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16
Ap

pr
ox

im
at

io
n 

ra
tio

EQC-1
NEQC-1
EQC-4
NEQC-4

Figure 4: Mean and standard error of the mean for the one- and four-layer EQCs
and NEQCs in Figure 6.5 b), d).

between the EQC at depths one and four is very small, and that increasing the
circuit depth does not provide much benefit on this learning task.
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Robustness of quantum reinforcement learning un-
der hardware errors

Gaussian Noise Analysis

In this Appendix we perform the noise analysis of a scalar function whose pa-
rameters are corrupted by independently distributed Gaussian perturbations.
Let f : RM → R be the function under investigation, whose parameters θ =
(θ1, . . . , θM ) ∈ RM are corrupted by a Gaussian noise θi → θi + δθi with zero mean
and variance σ2, i.e.

δθi ∼ N (0, σ2) ∀i = 1, . . . ,M ,

E[δθi] = 0 ,

E[δθiδθj ] = σ2δij .

(1)

Since the perturbations are independently distributed and Gaussian, all higher
order moments can be evaluated starting from two-point correlators of the form
E[δθiδθj ], as dictated by Wick’s formulas for multivariate normal distributions
[305]

E[δθi1 · · · δθi2n+1 ] = 0 ,

E[δθi1 · · · δθi2n
] =

∑
P

E[δθk1δθk2 ] · · ·E[δθk2n−1δθk2n
] , (2)

where with P we denote all the possible distinct (2n−1)!! pairings of the n variables,
as these can be used to express all higher order even moments in terms of products of
second moments. Note that all the terms involving an odd number of perturbations
δθi vanish, and only even moments remain. For example, expression (2) for the
fourth-order moment (n = 4) amounts to

E[δθiδθjδθkδθm] = E[δθiδθj ]E[δθkδθm] + E[δθiδθk]E[δθjδθm] + E[δθiδθm]E[δθjδθk]

= σ4(δijδkm + δikδjm + δimδjk

)
.

(3)

We now proceed considering the multi dimensional Taylor expansion of the function
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f(θ + δθ) around the noise-free point. Up to arbitrary order, this reads

f(θ + δθ) = f(θ) +
M∑

i=1

∂f(θ)
∂θi

δθi + 1
2!

M∑
i,j=1

∂2f(θ)
∂θi∂θj

δθiδθj

+ 1
3!

M∑
i,j,k=1

∂3f(θ)
∂θi∂θj∂θk

δθiδθjδθk + . . . . (4)

where we used the equal sign because we are considering the full Taylor series, and
we assume that this converges to the true function (this statement can be made
precise by showing that the remainder term of the expansion goes to zero as the
order of expansion goes to infinity).

Before proceeding, we simplify the notation to make the calculation of the Taylor
expansion easier to follow. First, we denote the partial derivatives with respect to
parameter θi as ∂i := ∂/∂θi, and similarly for higher order derivatives, for example
∂ij = ∂2/∂θi∂θj . Also, we suppress the explicit dependence of the function on
θ, using the short-hand f instead of f(θ). At last, we make use of Einstein’
summation notation where repeated indexes imply summation.

With this setup, using Eqs. (1), (2) and (3) in (4), one can evaluate the expectation
value of the function over the perturbations’ distributions as

E[f(θ + δθ)] = f(θ) + ∂if E[δθi] + 1
2∂ijf E[δθiδθj ] + 1

3!∂ijkf E[δθiδθjδθk]

+ 1
4!∂ijkmf E[δθiδθjδθkδθm] + . . .

= f(θ) + σ2

2 ∂ijf δij + σ4

4! ∂ijkmf (δijδkm + δikδjm + δimδjk) + . . .

= f(θ) + σ2

2
∑

i

∂2f

∂θ2
i

+ σ4

4! 3
∑

ij

∂4f

∂θ2
i ∂θ

2
j

+ . . .

(5)
where in the last line we simplified the fourth order term as

E[f (4)] = σ4

4! ∂ijkmf
(
δijδkm + δikδjm + δimδjk

)
= σ4

4!

(∑
ik

∂4f

∂θ2
i ∂θ

2
k

+
∑

ij

∂4f

∂θ2
i ∂θ

2
j

+
∑
im

∂4f

∂θ2
i ∂θ

2
m

)

= σ4

4! 3
∑

ij

∂4f

∂θ2
i ∂θ

2
j

.
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Since the expectation values involving an odd number of perturbations vanish,
only the even order terms survive, and these can be expressed as

E[f (2n)] = σ2n

(2n)! (2n− 1)!!
∑

i1,...,in

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

. (6)

where the coefficient (2n − 1)!! is the number of distinct pairings of 2n objects,
which comes from Eq. Equation (1).

Thus, the full Taylor series can be formally written as

E[f(θ + δθ)] = f(θ) +
∞∑

n=1

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

(7)

= f(θ) + σ2

2 Tr[H(θ)] +
∞∑

n=2

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

,(8)

where we introduced the Hessian matrix H(θ), whose elements are given by
[H(θ)]ij = ∂ijf(θ), and we see that this term represent the first non-vanishing
correction to the function caused by the perturbation.

Our goal is to bound the absolute error

εθ := |E[f(θ + δθ)]− f(θ)| =

∣∣∣∣∣∣
∞∑

n=1

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

∣∣∣∣∣∣(9)

caused by the gaussian noise, and we can do that by using the property that all the
derivatives of most PQC (Parametrized Quantum Circuit) are bounded. In fact,
for those circuits for which a parameter-shift rule holds [? ? ], one can show that
any derivative of the function f(θ) = ⟨O⟩ = Tr

[
OU(θ) |0⟩⟨0|U†(θ)

]
obeys∣∣∣∣∂α1+...αM f(θ)

∂θα1
1 . . . ∂θαM

M

∣∣∣∣ ≤ ∥O∥∞ , (10)

where ∥O∥∞ is the infinity norm of the observable, namely its largest absolute
eigenvalue. We give a proof of this below in Sec. 8.

Plugging this in Eq. (9), we can obtain an upper bound to the error εθ as desired.
Indeed, remembering that for even numbers the double factorial can be expressed
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as (2n− 1)!! = (2n)!/(2nn!), it holds

εθ =

∣∣∣∣∣∣
∞∑

n=1

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

∣∣∣∣∣∣ (11)

≤
∞∑

n=1

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∣∣∣∣ ∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

∣∣∣∣︸ ︷︷ ︸
≤∥O∥∞

≤
∞∑

n=1

σ2n

(2n)! (2n− 1)!! ∥O∥∞ Mn (12)

= ∥O∥∞

∞∑
n=1

1
(2n)!

(2n)!
2nn! (σ2M)n = ∥O∥∞

∞∑
n=1

(Mσ2/2)n

n!

= ∥O∥∞

(
eσ2M/2 − 1

)
=⇒ εθ = |E[f(θ + δθ)]− f(θ)| ≤ ∥O∥∞

(
eMσ2/2 − 1

)
, (13)

where in the last line we used the definition of the exponential function ex =∑∞
n=0

xn

n! .

One can see that the noise variance σ2 must scale as the inverse of the number of
parameters σ2 ∈ O

(
M−1) in order to have small deviations induced by the noise.

Also, note that since the difference between the noise-free function f(θ) and its
perturbed version f(θ + δθ) cannot be larger than twice the maximum eigenvalue
of O, |f(θ + δθ)− f(θ)| ≤ |f(θ + δθ)| + |f(θ)| = 2∥O∥∞, the bound (11) is
informative only as long as exp

[
Mσ2/2

]
− 1 < 2.

It is worth noticing that an identical procedure can be used to bound the average
error obtained by approximating the perturbed function with its first non-vanishing
correction given by the Hessian. Indeed, starting from Eq. (8) are repeating the
same calculation from above, one obtains∣∣∣∣E[f(θ + δθ)]− f(θ)− σ2

2 Tr[H(θ)]
∣∣∣∣ ≤ ∥O∥∞

(
eMσ2/2 − 1− Mσ2

2

)
. (14)

Parameter-Shift rule and bounds to the derivatives

Let f(θ) = Tr
[
OU(θ) |0⟩⟨0|U†(θ)

]
be the expectation value of an observable O on

the parametrized state |ψ(θ)⟩ = U(θ) |0⟩ obtained with a parametrized quantum
circuit U(θ). When the variational parameters θ ∈ RM enter in the quantum
circuit via rotation gates of the form V (θi) = exp[−iθiP/2] with P 2 = 1 being

182



Pauli operators, then the parameter-shift rule can be used to evaluate gradients of
the expectation value [39, 33], as described in Section 2.2.1.1,

∂f(θ)
∂θi

= 1
2

(
f
(
θ + π

2 ei
)
− f

(
θ − π

2 ei
))

, (15)

where ei is the unit vector with zero entries and a one in the i−th position
corresponding to angle θi. Similarly, by applying the parameter-shift rule twice
one can express second order derivatives as follows using four evaluations of the
circuit [280, 306]

∂2f(θ)
∂θiθj

= 1
2

[
∂

∂θi
f
(
θ + π

2 ej
)
− ∂

∂θi
f
(
θ − π

2 ej
)]

(16)

= 1
4[f(θ + π

2 ej + π

2 ei)− f(θ + π

2 ej −
π

2 ei) (17)

−f
(
θ − π

2 ej + π

2 ei
)

+ f
(
θ − π

2 ej −
π

2 ei
)

]. (18)

In particular, for the diagonal elements i = j, one has

∂2f(θ)
∂θ2

i

= 1
4[f(θ + πei)− 2f(θ) + f(θ − πei)]

= 1
2 [f(θ + πei)− f(θ)] , (19)

where we used the fact that f(θ + πei) = f(θ − πei). This last equality can be
seen intuitively from the 2π periodicity of the rotation gates or by direct evaluation.
In fact, let U(θ) = U2 exp[−iθiPi/2]U1 be a factorization of the parametrized
unitary where we isolated the dependence on the parameter θi to be shifted. Then,
since exp[−i 2πP/2] = cosπ I− i sin π P = −I, one has

|ψ(θ − πei)⟩ = U2 exp[−i(θi − π)Pi/2]U1 |0⟩

= U2 exp[−i(θi − π)Pi/2]− exp[−i 2π Pi/2]︸ ︷︷ ︸
I

U1 |0⟩

= −U2 exp[−i(θi − π + 2π)Pi/2]U1 |0⟩

= − |ψ(θ + πei)⟩ ,

(20)

and thus ⟨ψ(θ − πei)|O|ψ(θ − πei)⟩ = ⟨ψ(θ + πei)|O|ψ(θ + πei)⟩.

Hence, using Eq. (19) it is possible to estimate the diagonal elements of the Hessian
matrix with just two different evaluations of the quantum circuit.
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By repeated application of the parameter-shift rule one can also evaluate arbitrary
higher-order derivatives as linear combinations of circuit evaluations [280, 51]. Let
α = (α1, . . . , αM ) ∈ NM be a multi-index keeping track of the orders of derivatives,
and let |α| =

∑M
i=1 αi. Then

∂αf(θ) := ∂|α| f(θ)
∂θα1

1 . . . ∂θαM

M

= 1
2|α|

2|α|∑
m=1

smf(θ̃m) , (21)

where sm ∈ {±1} are signs, and θ̃m are angles obtained by accumulation of shifts
along multiple directions.

Since the output of any circuit evaluation is bounded by the infinity norm
(i.e, the largest absolute eigenvalue) of the observable ∥O∥∞ = max{|oi| , O =∑

i oi |oi⟩⟨oi|}

|f(θ)| = |Tr[O ρ(θ)]| ≤ ∥O∥∞∥ρ(θ)∥1 = ∥O∥∞ ∀θ ∈ RM , (22)

then one can bound the sum in Eq. (21) simply as

|∂αf(θ)| ≤ 1
2|α|

2|α|∑
m=1

∣∣∣f(θ̃m)
∣∣∣ ≤ ∥O∥∞ . (23)

Average value of the Hessian of random PQCs

In this section we derive the formulas (7.16) and (7.17) for the expected value
of the Hessian as shown in the main text. Consider a system of n qubits
and a parametrized quantum circuit with unitary U(θ) ∈ U(2n), where U(2n)
is the group of unitary matrices of dimension 2n. Given a set of parameter
vectors {θ1,θ2, . . . ,θK}, one can construct the corresponding set of unitaries
U = {U1, U2, . . . , UK}, with Ui = U(θi) and clearly U ∈ U(2n).

It is now well known that sampling a parametrized quantum circuit from a random
assignment of the parameters is approximately equal to drawing a random unitary
from the Haar distribution, a phenomenon which is at the root of the insurgence
of barren plateaus (BPs) [48, 229, 44]. Specifically, it is numerically observed that
parametrized quantum circuits behave like unitary 2-designs, that is averaging over
unitaries Ui sampled from U yields the same result of averaging over Haar-random
unitaries, up until second order moments.

As standard in the literature regarding BPs, in the following we assume that the
considered parametrized unitaries (and parts of them) are indeed 2-designs, and so
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we make use of the following relations for integration over random unitaries [289,
307, 288, 48, 44]

EU [UAU†] =
∫
dµ(U)UAU† = 1Tr[A]

2n
(24)

EU [AUBU†CUDU†] = Tr[BD] Tr[C]A+ Tr[B] Tr[D]AC
22n − 1 (25)

−Tr[BD]AC + Tr[B] Tr[C] Tr[D]A
2n(22n − 1) (26)

Statistics of the Hessian

Let f(θ) = Tr
[
OU(θ) |0⟩⟨0|U(θ)†] and assume that the observable O is such that

Tr[O] = 0 and Tr
[
O2] = 2n, as is the case of measuring a Pauli string. As shown

in Eq. (19), diagonal elements of the Hessian matrix H can be calculated as

Hii = ∂2f(θ)
∂θ2

i

= 1
2[f(θ + πei)− f(θ)] . (27)

For simplicity, from now on we drop the explicit dependence on the parameter
vector θ when not explicitly needed. The variational parameters enter the quantum
circuit via Pauli rotations e−iθiPi/2 with Pi = P †

i and P 2
i = 1, and so the shifted

unitary U(θ + πei) can be rewritten as

U(θ + πei) = ULe
−iπPi/2UR = −i ULPiUR , (28)

where UL and UR form a bipartition of the circuit at the position of the shifted
angle, so that U(θ) = ULUR.

Assuming that the set of unitaries UL generated by UL is at least a 1-design, one
has that

EUL
[f(θ + πei)] = EUL

[
Tr
[
OULPiUR |0⟩⟨0|U†

RPiU
†
L

]]
(29)

= Tr
[
OEUL

[
ULPiUR |0⟩⟨0|U†

RPiU
†
L

]]
(30)

= Tr

O Tr
[
PiUR |0⟩⟨0|U†

RPi

]
1

2n

 = Tr[O]
2n

= 0 , (31)

where in the first line we exchanged the trace and the expectation value since
both are linear operations, and in the second line we made use of Eq. (24) for the
first moment of the Haar distribution. Similarly, one can show that if UR forms a
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1-design, then averaging over it yields the same result, namely EUR
[f(θ+πei)] = 0.

The same calculation for f(θ) shows that EUR
[f(θ)] = EUL

[f(θ)] = 0.

Thus, for every diagonal element of the Hessian, if either UL or UR is a 1-design
(that is Eq. (24) hold), then its expectation value vanishes

EUR,UL
[Hii] = 0 ∀i if either UL or UR is a 1-design. (32)

The variance of the diagonal elements can be calculated in a similar manner, even
though the calculation is more involved. Substituting Eq. (27) in the defition of
the variance, one obtains

Var[Hii] := E[H2
ii]− E[Hii]2 = E[H2

ii]

= 1
4
[
E[f(θ + πei)2] + E[f(θ)2]− 2E[f(θ + πei)f(θ)]

]
. (33)

In order to use Eq. (26) for second moment integrals, we can rewrite these expec-
tation values as follows

E[f(θ + πei)2] = E
[
Tr
[
OULPiUR |0⟩⟨0|U†

RPiU
†
L

]2
]

= E
[
Tr
[
OULPiUR |0⟩⟨0|U†

RPiU
†
L

]
⟨0|U†

RPiU
†
LOULPiUR|0⟩

]
= E

[
Tr
[
OULPiUR |0⟩⟨0|U†

RPiU
†
LOULPiUR |0⟩⟨0|U†

RPiU
†
L

]]
= Tr

[
E[OULPiUR |0⟩⟨0|U†

RPiU
†
LOULPiUR |0⟩⟨0|U†

RPiU
†
L]
]
, (34)

and similarly for the remaining two terms. Assuming that the set of unitaries UL

generated by UL is a 2-design, then

EUL
[f(θ + πei)2] = Tr

EUL
[OUL PiUR |0⟩⟨0|U†

RPi︸ ︷︷ ︸
B

U†
LOUL PiUR |0⟩⟨0|U†

RPi︸ ︷︷ ︸
B

U†
L]


(35)

= Tr
[

Tr
[
B2]Tr[O]O + Tr[B]2O2

22n − 1 −
Tr
[
B2]O2 + Tr[B]2 Tr[O]O

2n(22n − 1)

]
(36)

=
Tr[O]2 + Tr

[
O2]

22n − 1 −
Tr
[
O2]+ Tr[O]2

2n(22n − 1) = 1
2n + 1 , (37)

where in the second line we made use of Eq. (26), and the third line the used that
Tr[B] = Tr

[
B2] = 1 since B = PiUR |0⟩⟨0|U†

RPi is a projector, and that Tr[O] = 0
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and Tr
[
O2] = 2n. Similarly, one can show that integration over UR yields the same

result. Also, the same calculation leads to EUL
[f(θ)2] = EUR

[f(θ)2] = 1/(2n + 1).
Thus, if either UL or UR is a 2-design then

EUR,UL
[f(θ)2] = EUR,UL

[f(θ+πei)2] = 1
2n + 1 ∀i if either UL or UR is a 2-design.

(38)

Now we evaluate the correlation term E[f(θ + πei)f(θ)]. If UL is a 2-design,
then

EUL
[f(θ + πei)f(θ)] = Tr

[
EUL

[
OULPiUR |0⟩⟨0|U†

RU
†
LOULUR |0⟩⟨0|U†

RPiU
†
L

]]
= Tr

Tr
[
PiUR |0⟩⟨0|U†

R

]2
O2

22n − 1 − O2

2n(22n − 1)


= 1

22n − 1

[
2n Tr

[
PiUR |0⟩⟨0|U†

R

]2
− 1
]
. (39)

While if UR is a 2-design instead it holds

EUR
[f(θ + πei)f(θ)] = Tr

[
OULPi EUR

[
UR |0⟩⟨0|U†

RU
†
LOULUR |0⟩⟨0|U†

R

]
PiU

†
L

]
= Tr

[
OULPi

(2n − 1)U†
LOUL

2n(22n − 1) PiU
†
L

]

= 1
2n(2n + 1) Tr

[
OULPiU

†
LOULPiU

†
L

]
. (40)

If both of them are 2-designs, then continuing from Eq. (40), one obtains

EUL,UR
[f(θ + πei)f(θ)] = 1

2n(2n + 1) Tr
[
EUL

[
OULPiU

†
LOULPiU

†
L

]]
= 1

2n(2n + 1) Tr
[

Tr[Pi]2O2 + Tr
[
P 2

i

]
Tr[O]O

22n − 1 −
Tr
[
P 2

i

]
O2 + Tr[Pi]2 Tr[O]O
2n(22n − 1)

]

= − 1
2n(2n + 1)

Tr
[
P 2

i

]
Tr
[
O2]

2n(22n − 1) = − 1
(2n + 1)(22n − 1) ∈ O

(
2−3n

)
(41)
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Finally, plugging Eqs. (39), (40) and (41) in Eq. (33), one has ∀i = 1, . . . ,M

VarUL,UR
[Hii] = 1

2E[f(θ)2]− 1
2E[f(θ + πei)f(θ)]

= 1
2(2n + 1) −

1
2



1
22n − 1

[
2n Tr

[
PiUR |0⟩⟨0|U†

R

]2
− 1
]
∀i , if UL 2-design

1
2n(2n + 1) Tr

[
OULPiU

†
LOULPiU

†
L

]
∀i , if UR 2-design

− 1
(2n + 1)(22n − 1) ∀i , if UL,UR 2-designs

(42)

where UR = U(i)
R and UL = U(i)

L are defined as in Eq. (28) and actually depend on
the index i of the parameter.

Not surprisingly, as it happens for first order derivatives, also second order deriva-
tives of PQCs are found to be exponentially vanishing [51, 48], as from Eq. (42)
one can check that Var[Hii] ∈ O(2−n).

Statistics of the trace of the Hessian

The average value of the trace of the Hessian is easily found to be zero using
Eq. (32), in fact

EUR,UL
[Tr[H]] =

M∑
i=1

E
U

(i)
R

,U
(i)
L

[Hii] = 0 , (43)

where we assume that for every parameter i either U(i)
R or U(i)

L is a 1-design. The
variance of the trace is instead

VarUR,UL
[Tr[H]] = Var

[
M∑

i=1
Hii

]
=

M∑
i=1

Var[Hii] + 2
M∑

i<j

Cov[HiiHjj ] . (44)

We can upper bound this quantity using the covariance inequality [308],

|Cov[Hii, Hjj ]| ≤
√

Var[Hii] Var[Hjj ] ≈ Var[Hii] ,

were we assumed that Var[Hii] ≈ Var[Hjj ]∀i, j. Using that Var[Hii] ∈ O(2−n)
one finally has

VarUR,UL
[Tr[H]] ≤

M∑
i=1

Var[Hii] + 2
M∑

i<j

Var[Hii] ∈ O
(
M2

2n

)
. (45)
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Alternatively, one can obtain a tighter yet qualitative approximation by explicitly
considering the nature of the sums in Eq. (44). First, by using Eq. (27), the
covariance term is explicitly

Cov[Hii, Hjj ] = E[HiiHjj ]

= 1
4E[(fi − f)(fj − f)]

= 1
4E[f2] + 1

4E[fifj ]− 1
4E[fif ]− 1

4E[fjf ] ,

(46)

where for ease of notation we defined fi,j = f(θ + πei,j) and f = f(θ). Note that
except for the first term which is always positive, all remaining correlations terms
can be both positive and negative. Also, all of these terms are bounded from above
by the same quantity, as via Cauchy-Schwarz it follows

|E[fifj ]| ≤
√
E[f2

i ]E[f2
j ] = 1

2n + 1 and |E[fif ]| ≤
√

E[f2
i ]E[f2] = 1

2n + 1 ,
(47)

where we have used E[f2] = E[f2
i ] = 1/(2n + 1) from Eq. (38). Then, the variance

can be written as

VarUR,UL
[Tr[H]] =

M∑
i=1

Var[Hii] + 2
M∑

i<j

E[HiiHjj ]

=
M∑

i=1

E[f2]− E[fif ]
2 + 2

M∑
i<j

E[f2] + E[fifj ]− E[fif ]− E[fjf ]
4

= 1
2

 M∑
i=1

+
M∑

i<j

E[f2]− 1
2

 M∑
i=1

E[fif ] +
M∑

i<j

E[fif ] +
M∑

i<j

E[fjf ]

+ 1
2

M∑
i<j

E[fifj ]

= M(M + 1)
4 E[f2]− M

2

M∑
i=1

E[fif ] + 1
2

M∑
i<j

E[fifj ]︸ ︷︷ ︸
∆

. (48)

Numerical simulations In addition to Figure 7.6 in the main text, in Figure 5
we report numerical evidence for the trace of the Hessian for two common hardware-
efficient parametrized quantum circuit ansatzes. The histograms represent the
frequency of obtaining a given value of the trace of the Hessian Tr[H(θ)] upon
random assignments of the parameters. The length of the arrows are, respectively:
“Numerical 2σ" (black solid line) twice the statistical standard deviation computed
from the numerical results, “Approximation" (dashed red) twice the square root of
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Figure 5: Simulation results of evaluating the trace of the Hessian matrix for two
different hardware-efficient ansatzes with random values of the parameters. The
plot on the left is obtained using the layer template shown in the figure for n = 6
qubits and l = 6 layers. The plot on the right instead with n = 5 and l = 5 layers of
the template shown in the corresponding inset. The simulations are performed by
sampling 2000 random parameter vectors θm with θi ∼ Unif[0, 2π[, evaluating the
trace of the Hessian matrix Tr[H(θ)], and then building the histogram to show its
frequency distribution. In both experiments the measured observable is Z⊗n. The
length of the arrows are respectively: “Numerical 2σ" (black solid line) twice the
numerical standard deviation, “Approximation" (dashed red) twice the square root
of the approximation in Eq. (49), “Bound" (dashed-dotted green) twice the square
root of the upper Bound in Eq. (45). These parametrized circuits correspond to the
templates BasicEntanglinLayer and Simplified2Design defined in Pennylane [?
], and used for example in [44] to study barren plateaus.
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the Eq. (48) with ∆ = 0, “Bound" (dashed-dotted green) twice the square root of
the upper Bound in Eq. (45).

All simulations confirm the bound (45), and, more interestingly, both the circuit
on the left of Fig. 5 and the one in Fig. 7.6 in the main text, have a numerical
variance which is very well approximated by Eq. (48) with ∆ = 0. We conjecture
this is due to the fact that all correlation terms in Eq. (48) are roughly of the
same order of magnitude (see Eq. (47)), and can be either positive and negative,
depending on the parameter and the specifics of the ansatz. Thus, one can expect
the whole contribution to either vanish ∆ ≈ 0, or be negligible with respect to the
leading term. If this is the case, then substituting E[f2] = 1/(2n + 1), the variance
of the Hessian is approximately

VarUR,UL
[Tr[H]] ≈ M(M + 1)

4 E[f2] = M(M + 1)
4(2n + 1) ≈

1
4
M2

2n
, (49)

which is four times smaller then the upper bound Eq. (45), but clearly has the
same scaling. While we numerically verified it also at other number of qubits, more
investigations are needed to understand if and when this approximation holds, and
we leave a detailed study of this phenomenon for future work.
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Additional results for flexible vs. fixed number of shots in
Q-learning
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Figure 6: Performance of agents trained with a fixed number of 100 shots (blue)
and mmax = 100 with flexible shot allocation (purple), compared to model trained
without shot noise (black dotted curve).
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Visualization of CartPole policies obtained with Q-learning

(a) σ = 0

(b) σ = 0.2

Figure 7: Visualization of the Q-functions learned in the noise-free (a) and noisy
(b) settings. The red surface shows Q-values for pole angle and cart position, orange
for pole angle and cart velocity, and magenta for pole angle and pole velocity.
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