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Robustness of quantum reinforcement learning
under hardware errors

One of the reasons that VQAs have gained increased interest in the past years
is that their hybrid nature, where a large part of the computation is offloaded
to a classical device, is hypothesized to make them robust to quantum hardware
noise to some extent [261, 14]. This hypothesis is also inspired by classical neural
networks, which are robust under certain types of noise. In the classical setting,
one can broadly distinguish between two types of noise: benign noise that does not
severely impact the training procedure or can even improve generalization [262,
263, 264, 265], and adversarial noise which is deliberately constructed to study
where neural networks fail [266, 267, 268, 269]. Furthermore, we can distinguish
between noise that is present during training, and noise that is present when
using the trained model. Adversarial noise is usually of the latter case, where
a trained neural network can produce completely wrong outputs due to small
perturbations of the input data [270]. The benign type of noise mentioned above
on the other hand is usually present at training time in form of perturbations of
the input data, activation functions, weights or structure of the neural network,
and has even been established as a method to combat overfitting in the classical
literature [262, 263, 264, 265, 271].

These results inspired the hypothesis that variational quantum algorithms possess a
similar robustness to certain types of noise and may even benefit from its presence
when trained on a quantum device. However, thorough investigations that confirm
such robustness of VQAs against hardware-related noise, or even a beneficial
effect from it, are still lacking. In terms of negative results for the trainability
of VQAs under noise, it has been shown that optimization landscapes of noisy
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Figure 7.1: Summary of the scenarios analysed in the present work. We consider two
models for quantum reinforcement learning (QRL) agents and test their performances
on two environments, CartPole and the Travelling Salesperson Problem (TSP). We
analyse the performances of the agents when these are trained and used in the
presence of most common noise sources found on real quantum hardware, namely
statistical fluctuations due to shot noise, coherent errors due to imperfect control or
calibration of the device, and finally incoherent errors coming from the unavoidable
interaction of the quantum hardware with its environment.

quantum circuits become increasingly flat at a rate that scales exponentially with
the number of qubits under local Pauli noise when the circuit depth grows linearly
with the number of qubits [49]. In the case of the variational quantum eigensolver,
where the goal is to find the ground state of a given Hamiltonian, the presence of
noise has been shown to lead to increasing deviation from the ideal energy [272].
Similar effects have been studied in the context of the quantum approximate
optimization algorithm (QAOA) [59], where the goal is to find the ground state
of a Hamiltonian that represents the solution to a combinatorial optimization
problem [273, 68].

When it comes to QML, in-depth studies on the effect of noise on the trainability
and performance of VQAs are scarce. Apart from the work mentioned above on
noise-induced barren plateaus [49], the authors of [166] provided first insights into
how the data encoding method used in a quantum classifier influences its resilience
to varying types of noise. As for the potential benefit of noise, the authors of [274]
show that the stochasticity induced by measurements in a QML model can help
the optimizer to escape saddle points. The above results show that, on the one
hand, too much noise will make the model untrainable, while on the other hand,
modest amounts of noise can even improve trainability [274]. However, it remains
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unclear how large the gap is between tolerable and harmful amounts of noise [261],
and it is not expected that this can be answered in a general way for all different
types of learning algorithms and noise sources.

In this chapter, we shed light on this question from the angle of variational
quantum reinforcement learning. Classical reinforcement learning models have
been shown to be sensitive to noise, either during training [275] or in the form
of adversarial samples [276, 277]. Additionally, it is known that a bottleneck
of RL algorithms is their sample inefficiency, i.e., many interactions with an
environment are needed for training [278]. Still, RL resembles human-type learning
most closely among the main branches of modern ML, and therefore motivates
further studies in this area. Among these studies, RL with VQAs has been
proposed and extensively investigated in the noise-free setting over the past few
years [153, 154, 150, 75, 157, 199, 76, 279, 156]. These results provide promising
perspectives, as quantum models have empirically been shown to perform similarly
to neural networks on small classical benchmark tasks [75, 76], while at the same
time an exponential separation between classical and quantum learners can be
proven for specific contrived environments based on classically hard tasks [150, 75].
These results motivate further studies on how large the above-mentioned gap
between tolerable and too much noise is in the case of variational RL algorithms,
and how close the algorithm performance can get to the noise-free setting for
various types of noise that can be present on near-term devices.

We investigate this for two types of variational RL algorithms, Q-learning and the
policy gradient method, by performing extensive numerical experiments for both
types of algorithms with two different environments, CartPole and the Travelling
Salesperson Problem, and under the effect of a wide class of noise sources, namely
shot noise, coherent and incoherent errors. In Figure 7.1 we summarise the
approach of the present work showing the QRL models, environments and noise
sources considered in the analysis. We start by considering the trade-off between the
number of measurement shots taken for each circuit evaluation and the performance
of variational agents. As the number of shots required by a QML algorithm can be
a bottleneck on near-term devices and RL is known to require many interactions
with the environment to learn, we propose a method for Q-learning to reduce
the number of overall measurements by taking advantage of the structure of
the underlying RL algorithm. Second, we model coherent errors with a random
Gaussian perturbation of the variational parameters, and analytically study the
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7.1 Environments and implementation

effect of these perturbations on the output of parameterised quantum circuits,
similarly to [280]. We provide an upper bound on the perturbation induced by such
Gaussian coherent noise based on the Hessian matrix of the circuit, and theoretically
and numerically show that hardware-efficient ansätze may be particularly resilient
against this type of error due to small second derivatives [51]. Finally, we analyse
the performance of the above algorithms under the action of incoherent errors
coming from the unavoidable interaction of the qubits with the environment which
we have no control over. To study this type of noise, we start by investigating the
effect of single-qubit depolarization channels. In addition, we consider a custom
noise model that combines various types of errors present on hardware, and study
the effect of this noise model with error probabilities that are present in currently
available superconducting quantum hardware. Our results show that both policy
gradient methods and Q-learning exhibit a robustness to noise that may enable
successfully running them on near-term devices. This motivates further study in
the quest to find a real-world problem of interest where a quantum advantage for
variational RL could be possible.

7.1 Environments and implementation

Our goal is to get insight into the effect of noisy training on quantum RL algorithms.
For this, we consider quantum versions of the two main paradigms in RL that
have been introduced in previous sections: value-based methods (see Section 3.2.2)
and policy gradient methods (see Section 3.2.3). As we are interested in the
effect of noisy training on models that have otherwise been proven to work well in
the noise-free setting, we study models and environments that have been already
investigated in this setting before [150, 75, 174]. In this way, we have evidence
that the models and hyperparameters that we choose are suitable for the studied
environments, and can focus our efforts on understanding the effect that noise
has on the training and performance of these agents. The code that was used to
generate the numerical results in this work can be found on Github [281].

7.1.1 CartPole

The first environment that we study is the CartPole environment from the OpenAI
Gym [282] that was also studied in Chapter 5. For a detailed description of
the environment and the implementation of the quantum Q-learning agent, we
refer the reader to Section 5.1. For the policy gradient method, we follow the
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Figure 7.2: Parameterised circuits used in this work. (a) Hardware-efficient ansatz
for Q-learning in the CartPole environment from [75], (b) hardware-efficient ansatz
for policy gradient method in the CartPole environment from [150], (c) equivariant
quantum circuit for Q-learning and policy gradient method in the TSP environment
from [174]. For (a) and (b) we use 5 repetitions of the template shown above, while
for (c) we use just one layer.
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implementation used in [150] and made available at [283], which uses five layers
of the same hardware-efficient ansatz used for the Q-learning agent, except that
each layer has an additional trainable rotation around the x-axis on each qubit
(see Figure 7.2(b)), and the action observables are defined as OL = Z1Z2Z3Z4 and
OR = I−OL. As before, input features are multiplied with an additional trainable
parameter each. Since the policy is a probability distribution, a final SoftMax
layer is used to map the expectation values ⟨Oa⟩s,θ ∈ [−1, 1] to the appropriate
range [0, 1], and so probabilities for each action eventually become

πθ(a|s) = eβ⟨Oa⟩s,θ∑
a′ e

β⟨Oa′ ⟩s,θ

, (7.1)

where β ∈ R is a also a trainable parameter. A depiction of both circuits can be
seen in Figure 7.2 a) and b).

7.1.2 Traveling Salesperson Problem

The second environment that we study is the TSP environment from Chapter 6,
where again the Q-learning agent and the environment are implemented as described
in Section 6.2 and the ansatz can be seen in Figure 7.2 c). For policy gradient
agents the ansatz is the same as in the Q-learning case, but as the policy has to
be a probability distribution we again use a final SoftMax layer with a trainable
inverse temperature β on the observable, as in Equation (7.1). The authors of [150]
have shown that using this type of final layer can be highly beneficial for policy
gradient training, compared to only using the probability distribution resulting
from the quantum state directly. This is due to the fact that the trainable inverse
temperature enables the agent to tune its level of exploration of the state space.
As the optimal solutions to TSP instances are deterministic, it is favourable in
this environment to have a tunable inverse temperature that allows exploration of
the large state space early in training, as well as close-to-deterministic decisions
towards the end.

7.2 Shot noise

We start our studies with the type of noise that is arguably the simplest to
characterize: noise induced by statistical errors that result from the probabilistic
nature of quantum measurements. For each circuit evaluation, be it for action
selection of the RL agent or for computing parameter updates via the parameter
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7.2 Shot noise

shift rule, we take a fixed number of measurements M and compute the resulting
expectation value. The precision ϵ of this expectation value depends on M and
scales as ϵ ∼ 1/

√
M , as we will explain in more detail below.

Variational algorithms often require a very large number of measurements to be
executed, and this problem is exacerbated in QML tasks that typically involve
separate circuit evaluations for all training data points. For this reason, it is
not only important to understand the effect of shot noise on the trainability and
performance of QML models, but it is also desirable to develop methods that
lead to a smaller shot footprint than simply assigning a fixed number of shots to
each circuit evaluation. Depending on knowledge of the algorithm itself, it can be
possible to make an informed decision on the number of shots that suffice in each
step. In this section, we develop such a method specifically for Q-learning that is
a natural extension to the original algorithm.

7.2.1 Reducing the number of shots in a Q-learning algo-
rithm

As described in Section 3.2.2, a Q-learning agent selects actions based on the
following rule (see Equation (3.18))

at = argmaxaQπ(st, a;θ),

that is, it chooses actions according to the largest Q-value.1 Now, consider a
quantum agent that only has access to noisy estimates of the Q-values Q̃(st, at;θ)
resulting from the statistical uncertainty of a measurement process involving a finite
number of shots M . If the sample size is large enough M ≫ 1, then by the central
limit theorem each noisy Q-value can be described as a random variable

Q̃(st, at;θ) = Q(st, at;θ) + ϵ , (7.2)

where Q(st, at;θ) is the true noise-free value, and ϵ is a random variable sampled
from a Gaussian distribution centered in zero µϵ = E[ϵ] = 0, and with standard
deviation inversely proportional to the square root of the number of measurement
shots σϵ = Std[ϵ] ∼ 1/

√
M . Since actions are selected through an argmax function,

1In the ϵ-greedy policy (see Section 3.2.2) we consider here, the agent picks either the action
corresponding to the argmax Q-value, or a random action. As no circuit evaluation is required to
pick a random action, we only consider the steps with actual action selection by the agent in this
section.
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the perturbation ϵ will not affect the action selection process as long as the order
between the largest and the remaining Q-values remains unchanged. Then, one
may ask: is there a minimal number of shots that suffice to reliably distinguish
the largest Q-value Qmax and the second-largest Q-value Q2?

When the observables associated to the actions are non-commuting, they have to
be estimated independently from each other, and one has the freedom of choosing
how to allocate the measurement shots among the observables of interest, possibly
in a clever way. In our case, the goal is to estimate which of the observables has
the highest Q-value while trying to be shot-frugal, and this task can be related to
the theory of multi-armed bandits [284]. The multi-armed bandit is a RL problem
in which an agent can allocate only a limited amount of resources between a
number of choices, e.g., a number of arms on a bandit machine, and is asked to
determine which of these choices leads to the highest expected reward. There exists
a trade-off between exploration (i.e., trying the different arms) and exploitation
(always choosing the arm that appears best according to the current knowledge),
and the upper confidence bound (UCB) [285, 286] algorithm shows how to use
statistical confidence bounds to allocate exploratory resources. The UCB algorithm
could be used in the scenario described above where a number of non-commuting
observables have to be estimated, and we want to find the optimal strategy to
allocate a fixed budget of measurement shots to the task of identifying the largest
Q-value.

However, in the specific implementations of QRL agents based on recent literature
that we study in this work [150, 75, 174], only commuting observables are used,
hence it is not necessary to apply the UCB procedure to determine which one
should be measured more often. Nonetheless, inspired by the UCB algorithm, we
can still define a rather general simple heuristic that can be used to reduce the
overall number of shots required to train the Q-learning models as those studied in
this work. The idea is to use the knowledge about the scaling of the estimation error
with respect to the number of measurements (see Equation (7.2)), to determine
with confidence whether we have taken enough shots to determine the maximum
Q-value.

The procedure goes as follows. First, we take a small number of initial measurements
minit, for example minit = 100, of all observables to compute the estimates
Q̃minit(st, a), ∀ a ∈ A. Based on these values, we compute the absolute difference
between the largest and the second largest Q-values. If this difference is larger
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Algorithm 1 Algorithm to reduce the number of measurements in Q-learning
Input minit, minc, mmax

Output mest

mest ← minit

while mest < mmax do
Q̃(st, a1) = ⟨Oa1⟩mest

Q̃(st, a2) = ⟨Oa2⟩mest

∆Q̃ = |Q̃(st, a1)− Q̃(st, a2)|
if ∆Q̃ < 2/√mest then

mest ← mest +minc

else
return min(mest,mmax)

end if
end while
return min(mest,mmax)

than twice the estimation error ϵ = 2/√minit (as both of the Q-values are noisy),
we have found the largest Q-value with high confidence and we stop here. On
the other hand, if the difference is smaller, we increment the sample size with
additional minc measurements each, and recompute the estimated Q-values with
the minc +minit shots. We again compute the absolute difference of the two largest
Q-values and determine whether the number of measurements suffices based on
the error ϵ = 2/

√
minit +minc. This measure-and-compare scheme is performed

until either the two largest Q-values can be distinguished with high confidence,
or a fixed shot budget mmax is reached. In Algorithm 1 we provide a description
of this procedure, where for the sake of simplicity we describe the case where
there are only two possible actions, and we therefore only have to find the larger
of two Q-values. However, the scheme can be used for an arbitrary number of
Q-values, as it is only important to distinguish between the highest and the second-
highest Q-value with high confidence. The algorithm takes as input the number
of initial measurements minit, the number of additional measurements in every
step minc, and the maximum number of measurements that are allowed in one
run of the shot-allocation algorithm (i.e., finding the largest Q-value) mmax. The
output is the number of measurements mest that are sufficient to find the argmax
Q-value with high confidence based on the rules above. The values ⟨Oai⟩mest are
the expectation values of observables Oai

corresponding to action ai, estimated
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with mest shots. Note that the proposed scheme works both for commuting or
non-commuting observables, where in the former case one can spare shots by
computing the observables from the same set of measurement outcomes. Moreover,
note that we ignore the coefficients in the statistics of the Q-values coming from ??,
when considering the measurement stopping criterion. This choice has no impact
on the effectiveness of the proposed method, as it is always found to be very well
performing in the presented form.

While this algorithm can clearly determine the optimal number of shots in the
action selection process in a methodical manner, one should check that this will
not introduce errors in the remaining parts of the variational Q-learning model, i.e.,
during the parameter update step. Recall that each parameter update of the model
is computed based on the output of the model itself (see Equation (3.19))

Qπ(st, at;θ)← rt+1 + γmax
a

Qπ(st+1, a;θ),

which means that in the parameter update step we do not need to perform action
selection, but instead care about the actual Q-values in order to compute the
loss function. The question is now to what precision we need to approximate the
Q-values in order to learn a good Q-function. Technically, even the noise-free
Q-function is only an approximation of the true Q-function, which is the whole
point of doing Q-learning with function approximators. This suggests that there is
some leeway to make even the approximate function itself an approximation by
taking only as many measurements as are necessary to find the argmax Q-value
with high confidence. Indeed, it has been shown in [75] that even the Q-functions
of agents that successfully solve an environment can produce Q-values that are far
from the optimal Q-values, and that learning the correct order of Q-values is more
important in this setting than approximating the optimal Q-value as precisely as
possible. Consequently, when we compute the Q-values that are used to perform
parameter updates, we use the same algorithm as that in Algorithm 1 to determine
the number of measurements to take.

7.2.2 Numerical results

We now numerically compare the performance of agents in the CartPole and TSP
environments in settings where a fixed number of shots is used in each circuit
evaluation, and where the number of shots in each step is determined by the
algorithm we introduced in Section 7.2.1. To give an overview of the number of
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CP, fixed CP, flexible TSP, fixed TSP, flexible

Figure 7.3: Comparison of the cumulative number of shots per observable over a full
training run, for the flexible shot allocation technique (blue) and for a standard fixed
measurement scheme using the same number of shots for every circuit evaluation
(orange), both for CartPole (triangles) and TSP (circles). Each data point shows
the average over ten trained agents.

shots used in one training run under varying hyperparameter settings, we show
the average cumulative number of shots for different settings in Figure 7.3. For the
CartPole environment (triangles), the number of cumulative shots grows quickly
with the number of shots in each step in the fixed setting (orange). This is not
true for the flexible shot allocation technique (blue), where for values of mmax ∈
{100, 1000, 10000} the cumulative number of shots is relatively similar. As we see
in Figure 7.4 a), a low number of shots such as 1000 is already sufficient to achieve
close to optimal performance in the CartPole environment. Therefore, we focus
on comparing settings with 100 and 1000 (maximum) shots per circuit evaluation
in that figure. Comparing the cumulative number of shots for mfixed = 100 and
mmax = 1000 in Figure 7.3, we see that these two configurations use almost the
same number of measurements overall. Still, the final performance of the agents
trained with the flexible shot allocation technique is almost optimal, while those
trained with a fixed number of shots in each circuit evaluation are below a final
score of 175 on average. However, as we allow agents to use even less than 100 shots
per evaluation with the flexible allocation method of Algorithm 1, performance
starts to degrade, so at least 100 shots are required in this setting. To not clutter
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the figure we show the results for agents that use fewer than 100 shots per circuit
evaluation in Figure 6 in the Appendix.

In the TSP environment, each step in an episode constitutes of a constant and
(compared to CartPole) relatively low number of circuit evaluations. We still see
that the higher the setting for the (maximum) number of shots is, the bigger the
gap in average cumulative number of shots becomes. For agents trained in the TSP
environment, shown in Figure 7.4 b), the final performance remains unchanged by
the additional noise introduced by the flexible shot allocation technique, and agents
reach the same accuracy of those trained with a corresponding but fixed number of
shots per circuit evaluation. The only difference between the two approaches is that
the agents using the flexible shot allocation method take slightly longer to converge
in some cases. Independently from the estimation method used (flexible or fixed),
it is clear from Figure 7.4 that it is the number of shots available that plays the
major role in determining the performance of the noisy agents, as measured by the
proximity to the average approximation ratios reached in the noise-free scenario,
namely when agents have access to exact the expectation values (M →∞). In this
environment, there is a trade-off between delayed convergence due to less precision
in the approximation of the Q-function, and using a higher number of shots to
arrive at the same final performance.

To summarize, we have seen that Q-learning models can be successfully trained
even in the presence of statistical noise introduced by a measurement processes
carried out with a limited number of shots. In addition, by leveraging the specifics
of the Q-learning algorithm, we introduced an easy-to-implement and effective
method that can be used to reduce the number of shots needed to train variational
Q-learning agents. How many shots one can save during training with this method
depends on the agents’ resilience to shot noise, as well as the specific characteristics
of the environment. In the CartPole environment, where one bad decision does not
lead to immediate failure, the additional noise introduced by estimating expectation
values with a low number of measurements and approximating an imprecise Q-
function does not affect performance severely. In the TSP environment on the
other hand, where one bad choice of the next city in the tour can lead to a much
longer path, we observe that the number of measurements has to be relatively
high to get close to optimal performance. However, even in this setting we can
achieve a reduction in the overall number of measurements by taking an informed
approach at when to measure an observable more often.
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Figure 7.4: Comparison of Q-learning with shot noise using the informed shot-
allocation method (labeled “max shots") proposed in this work, and a standard
measurement scheme that simply assigns a fixed number of shots to each circuit
evaluation (labeled “shots"). Results are averaged over ten agents for each config-
uration. (a) Shows results for agents trained in CartPole environment, (b) shows
results for agents in the TSP environment.
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7.3 Coherent noise

In this section, we turn our attention to coherent noise, that is, errors that preserve
the unitary evolution of the quantum circuit but still change its output [287].
In our analysis, we model coherent noise as an over- or under-rotation of the
parametrized gates, by adding a random Gaussian perturbation to the variational
parameters in the considered circuits.

This type of error could occur in real quantum devices as a drift in the parameters
for example due to an imperfect control of the system or a miscalibration of
the hardware, and it is therefore an important component of the overall picture
of an imperfect quantum device. Specifically, we assume that the perturbation
remains unchanged during the estimation a given observable, i.e. it does not change
considerably between repeated measurements on the same experimental setup.
However the perturbation amount change whenever the experiment is changed,
for example due to measuring a different observable, or using the circuit with a
different set of parameters.

Gaussian coherent noise is also an interesting model because it lends itself very
well to theoretical analysis, and one can estimate the effect of such an error on
the output of a parameterised quantum circuit. In the following, we first proceed
with an analytical treatment of the error introduced by Gaussian perturbations
on variational circuits, and then proceed with the numerical results for the two
environments considered in this work.

7.3.1 Effect of Gaussian coherent noise on circuit output

Consider a general parametrized quantum circuit acting on a system of n qubits,
with unitary U(θ) ∈ C2n ×C2n and parameter vector θ = (θ1, . . . , θM ) ∈ RM . Let
O be on observable and ρ = |0⟩⟨0| the initial state of the quantum system, the
outcome of the variational circuit is the expectation value

f(θ) = ⟨O⟩θ = Tr
[
OU(θ)ρU†(θ)

]
. (7.3)

Suppose that the parameters are affected by a noise process that adds a perturba-
tion

θ → θ + δθ , (7.4)
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where δθ = (δθ1, . . . , δθM ) ∈ RM are i.i.d. according to a Gaussian distribution
N (µ, σ) with zero mean µ = 0 and equal variance σ2, namely

δθi ∼ N (0, σ2) ,

E[δθi] = 0 , ∀i ∈ {1, . . . ,M} (7.5)

E[δθiδθj ] = σ2δij .

As discussed earlier, in our analysis in this section and in the numerical simulations
in section 7.3.3.1, we assume that the perturbed parameters remain the same
during the evaluation of a single expectation value. In a real experiment on
quantum hardware, this would mean that for all measurements used to estimate
the expectation value, the perturbations stay at least approximately unchanged. Of
course, without this assumption, the resulting noise model could not be considered
unitary, and one may then resort to a noise channel formulation of Gaussian noise
as proposed in [261, 280]. Hence, in the following we restrict our attention to the
setting described above.

The effect of Gaussian noise on the circuit can be evaluated by Taylor expanding the
circuit around the unperturbed parameters θ. For ease of explanation, we hereby
report only the main ideas and results, and we refer to Appendix 8 for a complete
and detailed derivation of all the calculations performed in this section.

Let f(θ + δθ) be the function evaluated on the perturbed parameters, its Taylor
expansion up to fourth-order reads

f(θ + δθ) ≈f(θ) +
M∑

i=1

∂f(θ)
∂θi

δθi + 1
2

M∑
i,j=1

∂2f(θ)
∂θi∂θj

δθiδθj

+ 1
3!

M∑
i,j,k=1

∂f(θ)
∂θi∂θj∂θk

δθiδθjδθk +O
(
δθ4) . (7.6)

With this expression one can evaluate the expected value of the noisy func-
tion E[f(θ + δθ)] over the distribution of the Gaussian perturbations, E(·) =
Eδθi∼N (0,σ2)(·). Since every odd moment of a Gaussian distribution vanishes, using
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relations (7.5) in the expansion (7.6) one obtains

E[f(θ + δθ)] ≈ f(θ) + 1
2
∑

ij

∂f(θ)
∂θi∂θj

E[δθiδθj ]

≈ f(θ) + 1
2σ

2
∑

ij

∂f(θ)
∂θi∂θj

δij

≈ f(θ) + 1
2σ

2 Tr[H(θ)] +O
(
σ4),

(7.7)

where Tr[H(θ)] denotes the trace of the Hessian matrix

Hij(θ) = ∂2f(θ)
∂θi∂θj

i, j = 1 . . . ,M. (7.8)

Thus, the first non-vanishing correction term caused by the noise is proportional
to the noise variance σ2, and the Hessian of the parametrized quantum circuit,
which conveys geometric information about the curvature of the function landscape
around the unperturbed point θ.

Higher-order terms in the expansion can be evaluated in a similar way, specifically
making use of so-called Wick’s relations for multivariate normal distributions as
shown in Appendix 8. If all the derivatives of the function f(θ) are bounded, as
it is the case for parametrized quantum circuits, then it is possible to derive an
upper bound on the error induced by the perturbations which only depends on
the noise strength σ2 and the total number of parameters M , as we show in the
following.

Using the parameter shift rule [33, 39], one can show that any derivative of
a parametrized quantum circuit can be expressed as a linear combination of
circuit outcomes evaluated at specific points in parameter space [280, 51]. Let
α = (α1, . . . , αM ) ∈ NM be a multi index keeping track of the order of partial
derivatives, define the derivative operator

∂α := ∂|α|

∂θα1
1 · · · ∂θ

αM

M

, (7.9)

where |α| :=
∑M

i=1 αi. By nested applications of the parameter shift rule, one can
show that

∂αf(θ) = 1
2|α|

2|α|∑
i=1

sm f(θm) , (7.10)
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where sm ∈ {±1} are signs, and θm are parameters obtained shifting the parameter
vector θ along different directions. Now, since the measurement outcome of every
circuit is bounded by the maximum absolute eigenvalue of the observable, i.e.
|f(θ)| ≤ ∥O∥∞, consequently it also holds that |∂αf(θ)| ≤ ∥O∥∞ (see Appendix
8). Note that we only consider bounded observables here, like the Pauli operators
commonly used in variational RL algorithms [153, 154, 150, 75].

Since all the derivatives of the function are bounded, it is possible to bound every
term in the Taylor series and then compute an upper bound to the error caused
by the perturbation. In fact, defining the absolute (average) error caused by the
noise as

εθ := |E[f(θ + δθ)]− f(θ)| , (7.11)

one can prove that this is upper bounded by (see Appendix 8)

εθ ≤ ∥O∥∞

(
eσ2M/2 − 1

)
. (7.12)

Note that since εθ ≤ 2∥O∥∞ is always true, the bound is informative only as long
as eσ2M/2 − 1 < 2.

This expression only depends on the noise strength σ2, the total number of noisy
parameters M , and the operator norm of the observable ∥O∥∞, and it can be used
to estimate a sufficient condition on the noise strength to guarantee a desired error
threshold εθ. Rearranging Equation (7.12), a sufficient condition to have error εθ
not larger than ϵ, is to have Gaussian perturbations satisfying

σ ≤
√

2
M

log
(

1 + ϵ

∥O∥∞

)
. (7.13)

As the allowable error is small ϵ≪ 1, by approximating the logarithm log(1 + x) ≈
x, one derives that the perturbations must follow the scaling

σ ∈ O
(

ϵ

M1/2∥O∥∞

)
. (7.14)

Note that a similar scaling law was recently derived also in [280], though via a
slightly different method based on the moment generating function of the probability
distribution characterising the perturbations.

To provide an example, assume one is willing to tolerate an error of ϵ = 10%,
that ∥O∥∞ = 1 as for measuring a Pauli operator and that the PQC consists
of M = 100 noisy parametrized gates, then one can be sure of such accuracy if

143



7.3 Coherent noise

σ ∼ 0.1/
√

100 = 0.01. However, we stress again that the scaling Equation (7.13)
is only a sufficient but not necessary condition for achieving an error ϵ. In fact,
apart from the requirement of bounded derivatives, Equation (7.13) is agnostic
with respect to the specifics of the function, and such bound can be quite loose in
real instances where a much larger noise level still causes a small error, as shown
in Figure 7.5.

In Figure 7.5, we report simulation results obtained by simulating the parametrized
ansatz depicted in Figure 7.2(b) subject to Gaussian coherent noise of increasing
strength. It is clear that the output of the circuit closely follows the approximation
of Equation (7.7) given by the Hessian even at moderately large value of the noise
σ ⪅ 0.15. When the noise is too strong (σ > 0.2), the circuit becomes essentially
random, and the average expectation value when measuring a Pauli operator is
zero. This is a consequence of PQCs often behaving like unitary designs upon
random initialization of the parameters [229, 44], a fact which we discuss in detail
in Sec. 7.3.2. At last, as discussed earlier, while the upper bound (7.12) holds, it
is indeed very loose and only holds tightly at small σ ⪅ 0.01.

We now proceed discussing why hardware-efficient parametrized quantum circuits
can be resilient to Gaussian coherent noise. Roughly, this is because such circuits are
found to behave like random unitaries upon random assignment of the parameters,
which implies that the derivatives of such circuits tend to vanish as the system
size grows large [51].

7.3.2 Resilience of Hardware-Efficient ansatzes to Gaussian
coherent noise

The previous analysis showed that Gaussian perturbations induce an error depend-
ing on the Hessian of the circuit (see Equation (7.7)), so that up to fourth order in
the perturbation it holds that

E[f(θ + δθ)] ≈ f(θ) + 1
2σ

2 Tr[H(θ)] . (7.15)

This equation tells us that if the optimization landscape is flat or close to being
flat, then the Hessian is small, and so the perturbation will have little effect on the
output of the circuit. On the contrary, in the presence of a very curved landscape,
noise will have a great impact and the output of the circuit may change sensibly. It
is known that the curvature of the optimization landscape produced by a PQC is
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Figure 7.5: Effect of Gaussian coherent noise on the output of the parametrized
quantum circuit shown in Figure 7.2(b). The plot is obtained by first choosing a
parameter vector θ0 ∈ R92 corresponding to a the ideal noise-free expectation value
f(θ0) = ⟨O⟩ with O = Z⊗4. With this baseline fixed, random Gaussian perturbations
are added to the angles θnoisy = θ0 + δθ, and the resulting noisy expectation vales
⟨O⟩noisy are computed. Each point in the plot is the average over N = 105 different
perturbation vectors sampled from a multivariate Gaussian distribution of a given σ.
The experiments are then repeated for increasing values of the noise strength σ. The
error bars show the statistical error of the mean. For small noise levels, the output of
the quantum circuit closely follows the behaviour predicted by Equation (7.7), where
the Hessian is evaluated at the unperturbed value H = H(θ0). When the error is
too large the circuit behaves as a random circuit whose output is on average zero,
hence the error plateaus to the unperturbed expectation value ε = |⟨O⟩| = |f(θ0)|).
The upper bound predicted by Equation (7.12) is very loose in general, and holds
tightly only for very small values of σ ⪅ 0.01.
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closely related to the barren plateau phenomenon [229, 44, 48], where the variance
of the first and second derivative vanishes exponentially in the number of qubits
and layers in a random circuit. Additionally, the hardware-efficient ansatz we use
for some of the environments in this work is known to suffer from barren plateaus
when the system size is large. As the curvature of the optimization landscape
of these types of circuits is very flat, it can also be expected that the type of
noise induced by the Gaussian perturbations on parameters that we study in this
work should not affect circuits that generally produce small first and second order
derivatives. While circuits that are in the barren plateau regime are obviously
undesirable as they quickly become untrainable, one can consider circuits of the
size such that the variance in gradients is relatively small, but the circuit has
not yet converged to an approximate 2-design, as shown in [229]. We make this
statement more formal in the following.

We can use standard results on averages of unitary designs [288, 289] to characterize
the Hessian of hardware-efficient circuits, and thus gain insight on their performance
under Gaussian noise. We report the main results of our analysis here, full
derivations can be found in Chapter 8. In the following, we suppose that sampling
a random value of the parameter vector θ in the parametrized circuit U(θ), is
equivalent to sampling a unitary from a unitary 2-design, defined as a set of unitary
matrices that match the Haar distribution up to the second moment. Also, we
consider observables O being Pauli strings, so that Tr[O] = 0 and Tr

[
O2] = 2n.

In order to distinguish from the previous notation where averages were computed
over the Gaussian distribution of the perturbations, we use EU [·] and VarU [·] to
denote average values and variances evaluated over the random unitaries.

Then, under reasonable and usual assumptions on parts of the parametrized
quantum circuit being 2-designs, it is possible to show that the diagonal elements
of the Hessian Hii = ∂2f(θ)/∂θ2

i satisfy [51] (see also Appendix 8 for an explicit
derivation)

EU [Hii] = 0 , VarU [Hii] ∈ O
(

1
2n

)
. (7.16)

That is, in addition to first order derivatives, also second order derivatives of
random parameterized quantum circuits are found to be zero on average, and with
a variance which is exponentially vanishing.
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Figure 7.6: Simulation results of evaluating the trace of the Hessian matrix for the
circuit shown in Fig. 7.2(b) with random assignments of the parameters and O = Z⊗4.
The simulations are performed by sampling 2000 random parameter vectors {θm}2000

m=1

with θi ∼ Unif[0, 2π[ and then evaluating the trace of the corresponding Hessian
matrix Tr[H(θm)]. These values are used to build the histogram showing the fre-
quency distribution of Tr[H]. The length of the arrows are, respectively: “Numerical
2σ" (black solid line) twice the numerical standard deviation, “Approximation"
(dashed red) twice the square root of the approximation in Eq. (7.18), “Bound"
(dashed-dotted green) twice the square root of the upper bound in Eq. (7.17).

Starting from the results above, one can calculate the statistics of the trace of the
Hessian, for which it holds

EU [Tr[H]] = 0 , VarU [Tr[H]] ⪅ M2

2n
. (7.17)

Furthermore, our numerical simulations suggest that the variance of the trace of the
Hessian is actually smaller, and is well captured by the following expression

VarU [Tr[H]] ≈ M(M + 1)
4(2n + 1) ≈

1
4
M2

2n
, (7.18)

a fact which we justify and discuss in Chapter 8.

In Figure 7.6 we report simulation results of evaluating the trace of the Hessian
matrix for the circuit shown in Figure 7.2(b). The histogram represents the
frequency of obtaining a given value of the trace of the Hessian Tr[H(θ)] upon
random assignments of the parameters. Indeed, there is a very good agreement
between the variance obtained via numerical simulations (black solid line), and
the one calculated with the approximation (7.18) (dashed red line).

The circuit used has M = 92 parameters and n = 4 qubits, and plugging these
values in Equation (7.18) yields a standard deviation σU = StdU [Tr[H]] ≈ 11.
Then, if the behaviour of the PQCs in practical scenarios is well described by its
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Figure 7.7: Q-learning agents on the CartPole environment trained and evaluated
at varying perturbations σ. Panel (a) shows training performance, while panel (b)
shows the performance of the same agents after training and evaluated under different
perturbation levels than those present during training. Each point is computed as
the average score of the 10 agents under the perturbation indicated on the x-axis.
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Figure 7.8: Policy gradient agents on the CartPole environment trained and
evaluated at varying perturbations σ. Panel (a) shows training performance, while
panel (b) shows the performance of the same agents after training and evaluated
under different perturbation levels than those present during training. Each point is
computed as the average score of the 10 agents under the perturbation indicated on
the x-axis.
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random parameter regime, one expects the trace of the Hessian to be on average
zero and in general not much bigger (in absolute value) than σU ≈ 11. With this
order of magnitude for the trace, the first order correction Equation (7.15) even
with a Gaussian noise level of σ = 0.1 is very small, as it amounts to

|E[f(θ + δθ)]− f(θ)| ≈ 1
2σ

2|Tr[H(θ)]| ≈ 0.05 .

Summing up, for those PQCs whose cost landscape is close to being flat, then
Gaussian perturbations on the variational parameters will have a limited impact
on the output of the quantum circuit.

7.3.3 Numerical results

7.3.3.1 CartPole

First, we evaluate the performance of policy gradient and Q-learning algorithms
when Gaussian perturbations are applied at each circuit evaluation during training.
In Figure 7.7 (a) and (b), we show the training and evaluation performance,
respectively, of Q-learning agents in the CartPole environment with perturbations
in the range σ ∈ {0, 0.1, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2}. Only the agent trained
with noise level σ = 0.1 learns the environment successfully and remains close to
optimal performance. As suggested by our theoretical analysis in Section 7.3.1,
performance starts to degrade as we consider higher perturbations of σ > 0.1,
and none of those agents manage to achieve a better performance than a score of
125 on average. In Figure 7.7 (b) we evaluate the performance of trained agents
when they act in an environment with different perturbation levels than those
present when they were trained. Even agents that do not perform well during
training achieve close to optimal performance when evaluated in the noise-free
setting. This suggests that despite their bad training performance due to the added
perturbations, these agents still learn a good Q-function. Notably, the agents
trained without noise perform worst when they are evaluated under various levels
of perturbations.

Results for agents trained with the policy gradient method are shown in Figure 7.8
(a). While again only the agents trained with a perturbation of σ = 0.1 perform
well and even reach optimal performance, agents with higher perturbations also
largely stay close to optimal performance with a final score of 125 on average.
Even the agent trained with a relatively high σ = 0.2 is robust in this setting, even
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(a) pole angle, cart position (PG) (b) pole angle, cart position (QL)

(c) pole angle, cart velocity (PG) (d) pole angle, cart velocity (QL)

(e) pole angle, pole velocity (PG) (f) pole angle, pole velocity (QL)

Figure 7.9: Comparison of average learned policies (PG) and Q-functions (QL) of
agents from Figure 7.7 and Figure 7.8, in the noise-free setting (blue) and with a
perturbation level σ = 0.2 (yellow).
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though it requires by far the most training episodes to get to a good score. This
positive trend is also visible in Figure 7.8(b), where we see that all agents achieve
close to optimal performance when evaluated with perturbation levels σ ≤ 0.1,
which is again in line we our theoretical analysis in section 7.3.1. The difference
between agents trained with Gaussian perturbations and those trained without is
not as large as in the Q-learning setting, and at evaluation time both algorithms
perform similarly. Another observation about the policy gradient agents is that
those trained with σ = 0.2 achieve optimal or close to optimal performance in
the environment under various perturbation levels at evaluation time, and are the
most robust out of all agents trained in this setting. Overall, the policy gradient
method shows a larger resilience to Gaussian noise in our experiments for the
CartPole environment. It is an open question why this is the case, however, we
did not observe better performance of the policy gradient algorithm under noise in
general, as results in later sections will show.

In addition to studying the performance of Q-learning and policy gradient agents
at training and evaluation time, we visualize the learned policies and Q-functions
of both in the noisy and noise-free setting in Figure 7.9. As learned policies and
Q-functions can look different even when training the same agent twice, we show
averages of the ten agents shown in Figure 7.7 and Figure 7.8 for both algorithms,
and for perturbation levels of σ = 0 (blue) and σ = 0.2 (yellow), respectively.
The CartPole environment has four inputs: cart position and velocity, and pole
angle and velocity. To visualize the learned policies and Q-functions, we show the
probabilities and Q-values for taking the action “right” as a function of pairs of
state values. The state inputs that are not in the figure are set to zero, and for the
sake of clarity we do not apply perturbations to the parameters when visualizing
the policy. In Figure 7.9 (a), (c), and (e), we see results for policy gradient agents.
Overall, it can be seen that the agents trained without perturbations learn smoother
policies, hence for most states there is a clear decision on which action to take.
Training with perturbations makes the policies slightly more rippled, but they still
mostly follow the contours of the policy learned under ideal conditions.

The approximated Q-functions can be seen in Figure 7.9 (b), (d), and (f). One
observation we make here is that the range that Q-values take blows up considerably
compared to the noise-free setting. This is due to the trainable output weights that
the expectation values are multiplied with in the Q-learning setting (see Section 7.1)
becoming considerably larger for agents trained in the noisy setting. However, as
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we can see in the Appendix in Figure 7, the shapes of the learned Q-functions of
the noise-free and noisy agents are still very similar, which explains why even the
agents trained with σ = 0.2 perform almost optimally when evaluated without
perturbations in Figure 7.7 (b). We also note that the range of Q-values of both
the noisy and noise-free agents is much larger than the range of optimal Q-values
given in [75]. This can be understood as the agent consistently overestimating the
expected return, a problem known to arise in classical Q-learning, and which is
exacerbated by noise [290]. However, the authors of [75] also point out that in the
function approximation setting, it is more important to learn the order of Q-values
for each state (i.e., preserving that the argmax Q-value corresponds to the optimal
action) than learning a close representation of the optimal Q-values.

7.3.3.2 Traveling Salesperson Problem

In this section, we study the performance of Q-learning and policy gradient
algorithms with Gaussian coherent noise in the TSP environment. Panels (a) and
(b) in Figure 7.10 show the training and evaluation performance of Q-learning
agents in this environment under perturbations in the range

σ ∈ {0, 0.1, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2}.

We note that the Q-learning agents trained without noise already converge after
600 episodes on average, but to get an equal runtime in terms of episodes for
all settings, we also let them run for 10000 episodes. This unnecessarily long
runtime causes the optimizer to leave the local minimum again, which we ignore
as an artifact here and consider the lowest average approximation ratio for the
comparison with the other models.

For the TSP environment, we observe that with increasing levels of Gaussian
perturbations, convergence of agents is delayed and their final approximation ratio
becomes worse compared to the noise-free agents’ performance. Still, all agents
seem to learn very similar policies despite being trained with different settings
of σ, as we can see by their almost identical performance at evaluation time
shown in Figure 7.10 (b). Despite a drop in performance during training, the final
performance of the models on a test set of previously unseen TSP instances stays
almost unaffected by the noise present during training. While we see that agents
trained with more noise seem to learn more noise-robust policies as in the case
of the CartPole environment, this effect is not as pronounced here. Additionally,
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Figure 7.10: Training and evaluation of Q-learning agents in the TSP environment
under various perturbations σ. Panel (a) shows the effect of perturbations during
training, panel (b) shows results for the same agents evaluated on varying perturba-
tion levels after training, different to those present at training time.
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Figure 7.11: Training and evaluation of policy gradient agents in the TSP envi-
ronment under various perturbations σ. Panel (a) shows the effect of perturbations
during training, panel (b) shows results for the same agents evaluated on varying
perturbation levels after training, different to those present at training time.
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we again see that performance of trained models in Figure 7.10 (b) starts to drop
at σ > 0.1, as indicated by our theoretical analysis in Section 7.3.1. While the
policy gradient method shows a certain robustness to noise during training in the
CartPole environment, this is not the case for the TSP environment, as we show
in Figure 7.11 (a). The only agent that gets close in performance to the noise free
agent is the one trained with σ = 0.1, while higher perturbations yield agents that
are relatively bad with an approximation ratio between 1.4 and 1.6 on average.
However, again, all agents seem to learn similar policies as indicated by their test
performance in Figure 7.11 (b). Similar to CartPole, the agents’ performance on
the test set under varying perturbation levels closely matches that of the noise-free
agents, and again we see a large drop in performance for perturbations that are
higher than σ = 0.1.

Overall, the Q-learning algorithm performs better in the TSP environment than the
policy gradient method. The optimal tour for each TSP instance is deterministic, so
using a stochastic policy as in the policy gradient approach introduces an additional
source of error, as there is always a non-zero probability to chose a non-optimal
action. This leads to an increased susceptibility to the Gaussian perturbations
present during the evaluation of the policy gradient algorithm. This is not the case
for Q-learning, where choices are made based on the argmax Q-value. Additionally,
the ansatz that we use does not separate between data encoding and trainable
parameters as described in Section 7.1. As the optimal tour of a TSP instance does
not change upon small perturbations of the edge weights, this leads to a relative
robustness of this ansatz used in conjunction with Q-learning to Gaussian coherent
noise in this environment.

7.4 Incoherent noise

The Gaussian perturbation noise that we studied in Section 7.3 is well-suited to
model coherent errors due to imprecision in the control of the quantum device, but
it does not reflect noise that results from undesired interactions of the quantum
system with its environment. To study the effect of this type of incoherent noise
we perform additional experiments in this section.

We simulate this type of noise with TensorFlow Quantum (TFQ) [224], where they
are implemented through a Monte-Carlo trajectory sampling method [291, 292]
that approximates the effect of noise by averaging over state vectors generated from
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a probabilistic application of the noise channel. This method of simulating noise
essentially trades off the overhead in memory needed to store the 2n × 2n sized
density matrices necessary to simulate incoherent noise, with a runtime overhead.
The precision of this approximation is determined by the number of repetitions,
which specifies how many “noisy” state vectors are used. This adds a stochastic
element to the simulation of the noise channels, and we get closer to simulating
the exact noise model as the number of trajectories increases. Depending on the
environments, we choose the number of trajectories so that it is possible to perform
simulations in a reasonable time frame, and specify this number individually for
each of the experiments below. We note that the runtime requirements for CartPole
when simulating this type of noise are especially high, as the number of time steps
in each episode, as well as the number of episodes itself depends strongly on the
performance of the agent. In particular, agents that perform neither very well
nor very poorly, which are exactly the noise configurations we are interested in
studying here, take especially long to simulate, as they do not converge early by
solving the environment, but still take on the order of 100 time steps in each
episode. Therefore we focus our attention mainly on the TSP environment in this
section.

7.4.1 Depolarizing noise

Depolarizing noise affects a quantum state by either replacing it with the completely
mixed state with probability p, or leaving it untouched otherwise [293]. Let ρ be
the density matrix of a qubit, then depolarizing noise is defined by the map

Dp(ρ) = (1− p)ρ+ p
1

2 . (7.19)

We model depolarization noise with Cirq [291] and TFQ [224] by appending a layer
of local depolarizing channels to every qubit after each time step of the computation,
where a time step is defined as the largest set of gates that can be implemented
simultaneously. This implementation takes into account the possibility of cross-talk
between qubits [294]. Also, note that while the use of depolarizing channels alone
may not be a good approximation of real single qubits errors, it may become a
good effective description of the overall noise process for the case where many
qubits and layers are used [295].

In our simulations, we assume that both single- and two-qubits gates are noisy, and
consist of a composition of the ideal gates followed by local depolarizing channels
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of equal probability p, acting independently on each qubit. In particular, the
application of a depolarizing noise channel is implemented by performing one out
of four actions at each circuit execution (trajectory): do nothing with probability
1− p, or apply at random one of the three Pauli operators with probability p, and
then average over the results. We remark that the average gate error of single-qubit
gates in currently available superconducting quantum computing hardware is of
the order of r ⪅ 0.01, with gate fidelities exceeding > 99%. Finally, we note that
one can relate the depolarisation strength p to the average gate error r over single
qubit Cliffords, as measured by Randomized Benchmarking (RB) [296, 294, 296]
and commonly reported for quantum devices [297, 298], via r = p/2. However, our
circuits do not only use Cliffords, and moreover, estimates for the gate error in RB
depend on the basis gates available on the device. Therefore, one should consider
our simulations with depolarizing noise of strength p as a proxy for a quantum
device whose average error rate r is of the same order of magnitude of p. While a
single-qubit error noise model may not be accurate enough to closely mimic the
behaviour of a real quantum device, it gives us the possibility to study the effect
of single-qubit errors separately, before we go on to study a noise model that also
includes two-qubit gate errors in section 7.4.2.

As mentioned above, simulating incoherent noise has high runtime requirements, so
in the following we limit our studies to: (i) Q-learning in the CartPole environment,
and (ii) the policy gradient method in the TSP environment. We pick these settings
as they were the ones that were more sensitive to Gaussian coherent noise in our
studies in Section 7.3, and in that sense represent the worst case instances from
the previous section. To simulate the noisy quantum circuits, we use the Monte
Carlo sampling as described above, where the number of trajectories used depends
on the environment. As the CartPole environment requires a very high number
of environment interactions (the better the agent, the more circuit evaluations
are required per episode), we use 100 trajectories in this setting. In the TSP
environment, the number of steps in each episode is constant and therefore we can
use a higher number of 1000 trajectories and still perform simulations in a timely
manner.

Figure 7.12 shows results of Q-learning agents trained in the CartPole environment
with various error probabilities p. Agents with a realistic error probability of up to
p = 0.01 still solve the environment in less than 2000 episodes on average. Agents
trained with error probability p = 0.005 reach higher scores almost as quickly as
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Figure 7.12: Q-learning agents trained with varying probabilities p of depolarization
errors, and five layers of the circuit depicted in Figure 7.2 a). Noise is simulated
with 100 Monte Carlo trajectories. The noisy curves are averaged over 5 agents, the
exact one is averaged over 10 agents as in previous figures.
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Figure 7.13: Policy gradient agents trained in the TSP environment with varying
probabilities p of depolarization error, with one layer of the circuit depicted in
Figure 7.2 c). Noise is simulated with 1000 Monte Carlo trajectories. All curves are
averaged over 10 agents.
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agents trained in the noise-free setting, but stay somewhat unstable until they
solve the environment after 3500 episodes on average. When the noise probability
is increased to p = 0.1, we see that agents fail to make any learning progress at
all.

Figure 7.13 shows the performance of the policy gradient method under one-qubit
depolarization errors in the TSP environment. In this setting, agents trained
with error probability p = 0.01, as is a realistic assumption on current devices,
perform noticeably worse than agents in the noise-free setting with a drop in
approximation ration of around 0.2 on average. Only when we consider an error
probability of p = 0.001 do we get performance that is almost exactly the same as
that in the noise-free case. Similar to the results of the Q-learning agent in the
CartPole environment, agents trained with an error probability of p = 0.1 show no
meaningful learning progress.

7.4.2 Noise model based on current hardware

After studying the effect of single-qubit depolarization errors in Section 7.4.1, we
now study the performance of the Q-learning algorithm in the TSP environment
in the presence of a more realistic noise model that captures the behaviour of a
near-term superconductive quantum device. The error sources we incorporate into
this noise model are the following: single-qubit and two-qubit depolarization errors,
single qubit amplitude damping error, and measurement noise. While hardware
providers like IBM and Google offer the possibility of simulating noise models of
specific devices, we do not want to take device-specific factors like qubit topology
and native gate sets into account in this work, as the performance in these settings
also depends strongly on the quality of the circuit compiled to the native gate set
and qubit connectivity [299]. Instead, we define a custom noise model based on
gate fidelities published by hardware vendors, but do not take the above details
into account. To determine realistic settings for the error probability of each noise
source, we use calibration data published by IBM [300] at the time of writing. The
noise model used in our simulation is specified as follows:

• Depolarization error: Single qubit depolarization channels with p = 0.001
are applied after every single qubit gate. Two-qubit depolarization errors,
defined by properly adjusting the definition in Equation (7.19), with p2 = 0.01
are applied after every two-qubit gate on the corresponding pair of qubits.
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Error source a) b) c) d)
Depolarization (1Q) 0.001 0.001 0.01 0.1
Depolarization (2Q) 0.01 0.01 0.1 0.2
Amplitude damping 0.0003 0.03 0.03 0.1
Bitflip (measurement) 0.01 0.01 0.1 0.1

Table 7.1: Error strengths for the configurations of the custom noise model
used in Figure 7.14. Depolarization (1Q) indicates the single qubit depolarising
channel applied after each single-qubit gate, and similarly for 2Q for two-qubit gates.
Configuration a) in bold is based on error rates published by IBM at the time of
writing, as described in the main text.

• Amplitude damping error: Amplitude damping channels with decay
parameter γ = 0.003 are applied after each single- and two-qubit gate on the
corresponding qubits. Such a decay rate is valid for real devices having single
qubit gate durations of t = 35ns, and average qubit decay times T1 ≈ 100µs,
which correspond to a decay parameter of γ = 1− exp(−t/T1) ≈ 0.0003.

• Measurement noise Measurement errors are modeled by appending a
bit-flip channel with probability p = 0.01 to every qubit right before the
measurement process.

We recall that the circuit ansatz for the TSP environment is the one depicted
in Figure 7.2(c), where input information about the edge weights of the TSP
instance is encoded by means of two-qubit gates. We therefore chose to study this
ansatz in the context of a noise model that incorporates two-qubit errors, as we
expect that these types of errors will affect performance of an ansatz that encodes
crucial information in two-qubit gates more severely. Additionally, it is hard to
perform simulations in this setting for the CartPole environment in a reasonable
amount of time, as discussed above. For these reasons, we restrict our attention to
the TSP environment in this section.

Figure 7.14 shows results averaged over five Q-learning agents in the TSP environ-
ment for each of the error probability configurations of the custom noise model
described above. We show the specific error probabilities used for the simulations
in Table 7.1. Configuration a) corresponds to error probabilities that are consistent
with those present on current quantum hardware as described above. Based on
this, we specify three other error probabilities b) - d) by increasing the error on
varying error sources. We note that while the error probabilities themselves in
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Figure 7.14: Q-learning agents trained in the TSP environment with one layer of
the circuit depicted in Figure 7.2 c) and custom noise model, using 1000 Monte Carlo
trajectories. The labels indicate the custom noise configurations defined in Table 7.1,
results are averaged over five agents in each curve, except for the exact curve which
is averaged over ten agents as done in previous figures.

configuration a) are consistent with those on current hardware, our simulation is
only an approximation of this error due to the Monte Carlo trajectory sampling
method described in Section 7.4. To perform simulations in a reasonable time
frame, we use 1000 trajectories for each circuit evaluation. The circuit that we
simulate has 145 gates (counting a ZZ-gate as two CNOTs and one Z gate), and
for small error probabilities the chance of applying each of the noise channels is
relatively small. This means that in each trajectory, a relatively small number
of noise channels is applied. Hence we expect that the results in Figure 7.14 are
slightly better than what we would get if the exact noise model was simulated (i.e.,
in the limit of a large number of trajectories, or by considering the full density
matrix).

Looking at the results in Figure 7.14, we see that for configuration a) (blue), the
performance of the agents matches those of the noise-free ones (dotted black)
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almost exactly, and the noise model based on realistic error strengths of current
devices does not affect training. We see a slight drop in performance when we
increase the error probability of the amplitude damping channels from 0.0003
to 0.03 (orange), as described in Table 7.1, column b). For configuration c), we
also increase the other remaining error sources’ probabilities, which leads to a
considerable drop in performance. In configuration d), we assume extremely high
error probabilities for each of the noise channels, which leads to a complete failure
of the agents to make any meaningful learning progress in this environment.

7.5 Conclusions

Our goal in this chapter was to evaluate the resilience of variational RL algorithms
to various types of noise that are present on real quantum hardware. First, we
investigated shot noise, which results from the probabilistic nature of quantum
measurements. We introduced a method to reduce the number of shots to train
a Q-learning agent, motivated by the specific structure of the underlying RL
algorithm. Our shot allocation technique enables a more shot-frugal training of
variational Q-learning models with little or no effect on the final performance of
the agents.

After considering shot noise, we moved on to study the effect of Gaussian coherent
errors that can arise on real hardware due to miscalibration of the device, or
imprecise pulse sequences that implement the parameterised gates in the quantum
circuit. We gave an analytic expression for how this type of noise affects the output
of a quantum RL agent, and provided a bound on the standard deviation of the
Gaussian error that elucidates the tolerable magnitude of the error on the output
of a quantum model. We confirm this bound in our simulations, where we study
the effect of various levels of Gaussian perturbations on the performance of training
policy gradient and Q-learning agents in two different environments. For one of
these environments, we find that agents trained with higher noise probabilities
also learn more robust policies and Q-functions, in the sense that under evaluation
of different perturbation levels, these agents achieve optimal or close to optimal
performance more often.

Finally, we studied incoherent noise that emerges in real hardware due to undesired
interactions of the qubits with the surrounding environment, as the device is not
completely shielded from external effects. To this end, we consider single-qubit
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depolarization errors, as well as a custom noise model that combines single- and two
qubit depolarization errors, amplitude damping errors, and bitflip (measurement)
errors. For the latter, we perform simulations with realistic error probabilities for
each of the noise channels, in line with data published for IBM devices at the time
of writing.

Overall, we find that the effect of noise on training variational RL algorithms for
Q-learning and the policy gradient method depends strongly on the strength of
the noise, as well as the type of noise itself. For some cases, like decoherence errors
with realistic error probabilities of current devices, the drop in performance is
relatively small. On the other hand, we find that large Gaussian perturbations
as well as errors induced by the probabilistic nature of quantum measurements
can affect performance in highly detrimental ways. Additionally, we find that for
Gaussian coherent noise agents that are trained with higher perturbations learn
more noise-robust policies in some cases, similar to results in classical literature,
where noise is used as a regularization technique.

While our results were performed in a regime that is still efficiently simulable on
classical computers, it is an interesting question for future work to consider the
implications of noise-robustness of large-scale quantum models in light of recent
results which show that in certain settings, the outputs of noisy quantum circuits
can be efficiently approximated classically [50, 301]. This raises the question to
what extent an inherent noise-robustness of hybrid variational quantum machine
learning affects the possibility to achieve a quantum advantage with these types of
models.

On the practical side, the optimization procedures that we used in this work were
the same as those commonly used to train models in noise-free simulations and are
not tailored to account for quantum hardware specific noise. This raises the question
on how optimization methods that are tailored for the special characteristics of
variational quantum models could further improve the performance of these types
of models in a noisy setting. For the optimization of PQC parameters in the
combinatorial optimization or quantum chemistry setting, it is known that some
optmization methods, like simultaneous perturbation stochastic approximation
(SPSA), actually become better with noise. It is an interesting area of future
research to design quantum-specific optimization routines for machine learning
that address or even combat specific types of noise, for example leveraging effective
quantum error mitigation techniques [302, 303, 304]. This work motivates the study
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of these types of optimization methods, as well as continued efforts to find learning
tasks where variational RL algorithms can potentially provide an advantage.
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