
Quantum machine learning: on the design, trainability and
noise-robustness of near-term algorithms
Skolik, A.

Citation
Skolik, A. (2023, December 7). Quantum machine learning: on the design,
trainability and noise-robustness of near-term algorithms. Retrieved from
https://hdl.handle.net/1887/3666138

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3666138

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3666138

ch
ap

te
r

6
Equivariant quantum circuits for learning on
weighted graphs

In Chapter 5, we described that the three key architectural choices one has to
make for a variational QML model are i) the data encoding technique, ii) the
circuit ansatz, and iii) the observable to measure. In that chapter, we have focused
on how to encode data and pick suitable observables for a variational Q-learning
algorithm. In this chapter, we turn to the question of how to design ansatzes that
are tailored to a specific learning problem.

It is known that the right choice of ansatz is of key importance for the performance
of these models. Much work has been dedicated to understand how circuits have to
be structured to address problems in optimization [59, 227] or chemistry [71, 228].
For QML however, it is largely unknown which type of ansatz should be used for a
given type of data. In absence of an informed choice, general architectures as the
hardware-efficient ansatz [170] are often used [120]. It is known that ansatzes with
randomly selected structure scale badly as the width and depth of the circuit grows,
most prominently because of the barren plateau phenomenon [229, 52, 47] where the
gradients of a PQC vanish exponentially as the system size grows and thus render
training impossible, as we have described in detail in Section 2.2.1.2. This situation
can be compared to the early days of NNs, where fully connected feedforward NNs
were the standard architecture. These types of NNs also suffer from trainability
issues that prevent their large-scale usage [230]. Recent breakthroughs in deep
learning were in part possible because more efficient architectures that are directly
motivated by the training data structure have been developed [29, 30, 231]. In
fact, a whole field that studies the mathematical properties of successful NN
architectures has emerged in the past decade, known as geometric deep learning.

90

permutation

(a) equivariant
function, e.g.

(b) invariant
function, e.g.

5
1

2
4

3

5

5 c 5 c

1

1 c 1 c

3

3 c 3 c

2

2 c 2 c

4

4 c 4 c

5 + 3 + 1 + 4 + 2 = 15 1 + 3 + 4 + 2 + 5 = 15

Figure 6.1: Depiction of two functions that respect important symmetries of
graphs: a) The permutation equivariant function will yield the same output values
for each graph permutation, but reordered according to the reordering of nodes.
The above example shows a simple function that takes node features as an input
and multiplies them with a constant. b) An invariant function will yield the same
output, regardless of the permutation. The above example shows a simple function
that takes node features as input and computes their sum. Which type of symmetry
is preferable depends on the task at hand.

This field studies the properties of common NN architectures, like convolutional
NNs or graph NNs, through the lens of group theory and geometry and provides an
understanding of why these structured types of models are the main drivers of recent
advances in deep learning. The success of these models can largely be attributed to
the fact that they preserve certain symmetries that are present in the training data.
Graph NNs, for example, take graph-structured data as input and their layers are
designed such that they respect one of two important graph symmetries: invariance
or equivariance under permutation of vertices [232], as depicted in Figure 6.1.
Graph-structured data is ubiquitous in real-world problems, for example to predict
properties of molecules [30] or to solve combinatorial optimization problems [108].
Even images can be viewed as special types of graphs, namely those defined on a
lattice with nearest-neighbor connections. This makes graph NNs applicable in
a multitude of contexts, and motivated a number of works that study quantum
versions of these models [149, 233, 234, 172]. However, the key questions of how to
design symmetry-preserving ansatzes motivated by a concrete input data structure
and how these ansatzes perform compared to those that are structurally unrelated
to the given learning problem remain open.

91

In this work, we address these open questions by introducing a symmetry-preserving
ansatz for learning problems where the training data is given in form of weighted
graphs, and study its performance both numerically and analytically. To do this,
we extend the family of ansatzes from [172] to incorporate weighted edges of
the input graphs and prove that the resulting ansatz is equivariant under node
permutations. To evaluate this ansatz on a complex learning task where preserving
a given symmetry can yield a significant performance advantage, we apply it in a
domain where classical graph NNs have been used extensively: neural combinatorial
optimization (NCO) [108]. In this setting, a model is trained to solve instances of a
combinatorial optimization problem. Namely, we train our proposed ansatz to find
approximate solutions to the Traveling Salesperson Problem (TSP). We numerically
compare our ansatz to three non-equivariant ansatzes on instances with up to 20
cities (20 qubits), and show that the more the equivariance property of the ansatz
is broken, the worse performance becomes and that a simple hardware-efficient
ansatz completely fails on this learning task. Additionally, we analytically study
the expressivity of our model at depth one, and show under which conditions there
exists a parameter setting for any given TSP instance of arbitrary size for our
ansatz that produces the optimal tour with the learning scheme that is applied in
this work.

The neural combinatorial optimization approach presented in this work also pro-
vides an alternative method to employ near-term quantum computers to tackle
combinatorial optimization problems. As problem instances are directly encoded
into the circuit in form of graphs without the need to specify a cost Hamiltonian,
this approach is even more frugal than that of the quantum approximate optimiza-
tion algorithm (QAOA) [59] in terms of the requirement on the number of qubits
and connectivity in cases where the problem encoding is non-trivial. For the TSP
specifically, standard Hamiltonian encodings require n2 variables where n is the
number of cities (or n log(n) variables at the cost of increased circuit depth) [235],
whereas our approach requires only n qubits and two-body interactions. We do
note that the theoretical underpinnings and expected guarantees of performance
of our method are very different and less rigorous than those of the QAOA, so the
two are hard to compare directly. However, we establish a theoretical connection
to the QAOA based on the structure of our ansatz, and in addition numerically
compare QAOA performance on TSP instances with 5 cities to the performance of
the proposed neural combinatorial optimization approach. We find that our ansatz
at depth one outperforms the QAOA even at depth up to three. From a pragmatic

92

6.1 Geometric learning - quantum and classical

point of view, linear scaling in qubit numbers w.r.t. number of problem variables,
as opposed to e.g. quadratic scaling as in the case of the TSP, dramatically changes
the applicability of quantum algorithms in the near- to mid-term.

Our work illustrates the merit of using symmetry-preserving ansatzes for QML on
the example of graph-based learning, and underlines the notion that in order to
successfully apply variational quantum algorithms for ML tasks in the future, the
usage of ansatzes unrelated to the problem structure, which are popular in current
QML research, is limited as problem sizes grow. This work motivates further study
of “geometric quantum learning” in the vein of the classical field of geometric deep
learning, to establish more effective ansatzes for QML, as these are a prerequisite
to efficiently apply quantum models on any practically relevant learning task in
the near-term.

6.1 Geometric learning - quantum and classical

Learning approaches that utilize geometric properties of a given problem have lead
to major successes in the field of ML, such as AlphaFold for the complex task of
protein folding [30, 31] and have become an increasingly popular research field
over the past few years. Arguably, the prime example of a successful geometric
model is the convolutional NN (CNN), which has been developed at the end of the
20th century in an effort to enable efficient training of image recognition models
[104]. Since then, it has been shown that one of the main reasons that CNNs are so
effective is that they are translation invariant: if an object in a given input image is
shifted by some amount, the model will still “recognize” it as the same object and
thus effectively requires fewer training data [100]. While CNNs are the standard
architecture used for images, symmetry-preserving architectures have also been
developed for time-series data in the form of recurrent NNs [236], and for graph
data with GNNs [107]. GNNs have seen a surge of interest in the classical machine
learning community in the past decade [107, 232]. They are designed to process
data that is presented in graph form, like social networks [107], molecules [106],
images [237] or instances of combinatorial optimization problems [108].

The first attempt to implement a geometric learning model in the quantum realm
was made with the quantum convolutional NN in [55], where the authors introduce
a translation invariant architecture motivated by classical convolutional NNs.
Approaches to translate the GNN formalism to QNNs were taken in [149], where

93

6.1 Geometric learning - quantum and classical

input graphs are represented in terms of a parametrized Hamiltonian, which is
then used to prepare the ansatz of a quantum model called a quantum graph neural
network (QGNN). While the approach in [149] yields promising results, this work
does not take symmetries of the input graph into account.1 The authors of [233]
introduce the so-called quantum evolution kernel, where they devise a graph-based
kernel for a quantum kernel method for graph classification. Again, their ansatz is
based on alternating layers of Hamiltonians, where one Hamiltonian in each layer
encodes the problem graph, while a second parametrized Hamiltonian is trained
to solve a given problem. A proposal for a quantum graph convolutional NN was
made in [234], and the authors of [238] propose directly encoding the adjacency
matrix of a graph into a unitary to build a quantum circuit for graph convolutions.
While all of the above works introduce forms of structured QML models, none of
them study their properties explicitly from a geometric learning perspective or
relate their performance to unstructured ansatzes.

The authors of [172] take the step to introduce an equivariant model family for
graph data and generalize the QGNN picture to so-called equivariant quantum
graph circuits (EQGCs). EQGCs are a very broad class of ansatzes that respect the
connectivity of a given input graph. The authors of [172] also introduce a subclass
of EQGCs called equivariant quantum Hamiltonian graph circuits (EH-QGCs),
that includes the QGNNs by [149] as a special case. EH-QGCs are implemented in
terms of a Hamiltonian that is constructed based on the input graph structure, and
they are explicitly equivariant under permutation of vertices in the input graph.
The framework that the authors of [172] propose can be seen as a generalization
of the above proposals. Different from the above proposals, EQGCs use a post-
measurement classical layer that performs the functionality of an aggregation
function as those found in classical GNNs. In classical GNNs, the aggregation
function in each layer is responsible for aggregating node and edge information in
an equivariant or invariant manner. Popular aggregation functions are sums or
products, as they trivially fulfill the equivariance property. In the case of EQGCs,
there is no aggregation in the quantum circuit, and this step is offloaded to a
classical layer that takes as input the measurements of the PQC. Additionally, the
EQGC family is defined over unweighted graphs and only considers the adjacency
matrix of the underlying input graph to determine the connectivity of the qubits.
The authors of [172] also show that their EQGC outperforms a standard message

1However, in an independent work prepared at the time of writing this manuscript, one of
the authors of [149] shows that one of their proposed ansatzes is permutation invariant [173].

94

6.2 Neural combinatorial optimization with reinforcement learning

passing neural network on a graph classification task, and thereby demonstrate a
first separation of quantum and classical models on a graph-based learning task.
A work on invariant quantum machine learning models was published by the
authors of [173]. They prove for a number of selected learning tasks whether an
invariant quantum machine learning model for specific types of symmetries exists.
Their work focuses on group invariance, and leaves proposals for NISQ-friendly
equivariant quantum models as an open question.

Our proposal is most closely related to EH-QGCs, but with a number of deviations.
First, our model is defined on weighted graphs and can therefore be used for
learning tasks that contain node as well as edge features. Second, the initial state
of our model is always the uniform superposition, which allows each layer in the
ansatz to perform graph feature aggregation via sums and products of node and
edge features, as discussed in Section 6.3. Third, we do not require a classical
post-processing layer, so our EQC model is purely quantum. Additionally, in
its simplest form as used in this work, the number of qubits in our model scales
linearly with the number of nodes in the input graph, while the depth of each layer
depends on the graph’s connectivity, and therefore it provides one answer to the
question of a NISQ-friendly equivariant quantum model posed by [173].

6.2 Neural combinatorial optimization with rein-
forcement learning

The idea behind NCO is to use a ML model to learn a heuristic for a given
optimization problem based on data. When combined with RL, this data manifests
in form of states of an environment, while the objective is defined in terms of
a reward function, as we described in Section 3.2. To do NCO in this setting,
the reward function is defined such that maximizing the expected return (see
Equation (3.16)) corresponds to finding the optimum of the given combinatorial
optimization problem. In this work, we use a Q-learning agent as introduced in
Section 5.1 as the learning model in this NCO scheme, and train it in an evironment
that is specified to solve instances of the TSP.

95

6.2 Neural combinatorial optimization with reinforcement learning

6.2.1 Solving the Traveling Salesperson Problem with rein-
forcement learning

To evaluate the performance gains of an ansatz that respects certain symmetries
relevant to the problem at hand, we apply our model to a practically motivated
learning task on graphs. The TSP is a low-level abstraction of a problem commonly
encountered in mobility and logistics: given a list of locations, find the shortest
route that connects all of these locations without visiting any of them twice.
Formally, given a graph G(V, E) with vertices V and weighted edges E , the goal
is to find a permutation of the vertices such that the resulting tour length is
minimal, where a tour is a cycle that visits each vertex exactly once. A special
case of the TSP is the 2D Euclidean TSP, where each node is defined in terms
of its x and y coordinates in Euclidean space, and the edge weights are given
by the Euclidean distance between these points. In this work, we deal with the
symmetric Euclidean TSP on a complete graph, where the edges in the graph are
undirected. This reduces the number of possible tours from n! to (n−1)!

2 . However,
even in this reduced case the number of possible tours is already larger than 100k
for instances with a modest number of ten cities, and the TSP is a well-known
NP-hard problem.

To solve this problem with a RL approach, we follow the strategy introduced in
[239]. In this work, a classical GNN is used to solve a number of combinatorial
optimization problems on graphs. The authors show that this approach can
outperform dedicated approximation algorithms defined for the TSP, like the
Christofides algorithm, on instances of up to 300 cities. One episode of this learning
algorithm for the TSP can be seen in Figure 6.3, and a detailed description of the
learning task as implemented in our work is given in Section 6.4.1.

6.2.2 Solving the TSP with the QAOA

The quantum NCO scheme that we propose in this work poses an alternative to the
well known quantum approximate optimization algorithm (QAOA), and for this
reason we provide a comparison to this algorithm in addition to the comparison to
non-equivariant ansatzes. The QAOA is implemented as a PQC by a Trotterization
of Adiabatic Quantum Computation (AQC) [59]. In general, for AQC, we consider
a starting Hamiltonian H0, for which both the formulation and the ground state
are well known, and a final Hamiltonian HP , that encodes the combinatorial

96

6.2 Neural combinatorial optimization with reinforcement learning

optimization problem to be solved. The system is prepared in the ground state
of the Hamiltonian H0 and then it is evolved according to the time-dependent
Hamiltonian:

H(t) := (1− s(t))H0 + s(t)HP ,

where s(t) is a real function called annealing schedule that satisfies the boundary
conditions: s(0) = 0 and s(T) = 1, with T the duration of the evolution. To
implement this as a quantum circuit we use the following approximation:

eA+B ≈
(
e

A
r e

B
r

)r

, r → +∞, (6.1)

which is knwon as the Trotter-Suzuki formula. By using this formula to approximate
the evolution according to H(t) and by parameterizing time we obtain:

e−iβpH0e−iγpHP · · · e−iβ1H0e−iγ1HP . (6.2)

All of these matrices are unitary since the Hamiltonians in the argument of the
exponential are all Hermitian. We define a parameter p (integer known as the
depth, or level) of QAOA which has the same role as r in Equation (6.1). Increasing
the depth p adds additional layers to the QAOA circuit, and thus more closely
approximates the H(t) [59].

In QAOA, all qubits are initialized to |+⟩⊗n , which is the ground state of H0 =∑
i σ

(i)
x . Alternating layers of Hp and H0 are added to the circuit (p times),

parameterized by γ and β as defined in Equation (6.2). The values of γ and β

are found by minimizing the expectation value of Hp, and thus approximate the
optimal solution to the original combinatorial optimization problem. When using
QAOA, we do not solve the TSP directly, but a QUBO representation of this
problem. This representation is well-known, and can be found in [235]:

∑
(i,j)∈E

N∑
t=1

εi,j

W
xi,txj,t+1 +

∑
i∈V

(
1−

N∑
t=1

xi,t

)2

+

+
N∑

t=1

(
1−

∑
i∈V

xi,t

)2

+
∑

(i,j)/∈E

N∑
t=1

xi,txj,t+1.

Here, εi,j are the distances between two nodes i, j ∈ V and W := max(i,j)∈E εi,j .
The variables xv,t are binary decision variables denoting whether node v is visited
at step t. We optimize the β and γ parameters for p = 1 by performing a
uniform random search over the space [0, 2π]2, and selecting the best configuration
found.

97

6.3 Equivariant quantum circuit

6.3 Equivariant quantum circuit

In this section, we formally introduce the structure of our equivariant quantum
circuit (EQC) for learning tasks on weighted graphs that we use in this work.
Examples of graph-structured data that can be used as input in this type of
learning task are images [231], social networks [240] or molecules [30]. In general,
when learning based on graph data, there are two sets of features: node features
and edge features. Depending on the specific learning task, it might be enough to
use only one set of these features as input data, and the specific implementation of
the circuit will change accordingly. As mentioned above, an example of an ansatz
for cases where encoding node features suffices is the family of ansatzes introduced
in [172]. In our case, we use both node and edge features to solve TSP instances.
In case of the nodes, we encode whether a node (city) is already present in the
partial tour at time step t to inform the node selection process described later
in Definition 6.2. For the edges, we simply encode the edge weights of the graph
as these correspond to the distances between nodes in the TSP instance’s graph.
In this work, we use one qubit per node in the graph, but in general multiple
qubits per node are also possible. We discuss the details of this in ??. We now
proceed to define the ansatz in terms of encoding node information in form of α
(see Definition 6.1) and edge information in terms of the weighted graph edges
εij ∈ E . For didactic reasons we relate the node and edge features to the concrete
learning task that we seek to solve in this work, however, we note that this encoding
scheme is applicable in the context of other learning tasks on weighted graphs as
well.

6.3.1 Ansatz structure and equivariance

Given a graph G(V, E) with node features α and weighted edges E , and trainable
parameters β,γ ∈ Rp, our ansatz at depth p is of the following form

|E ,α,β,γ⟩p = UN (α, βp)UG(E , γp) . . . UN (α, β1)UG(E , γ1) |s⟩ , (6.3)

where |s⟩ is the uniform superposition of bitstrings of length n,

|s⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ , (6.4)

98

6.3 Equivariant quantum circuit

UN (α, βj) with Rx(θ) = e−i θ
2 X , is defined as

UN (α, βj) =
n⊗

l=1
Rx(αl · βj), (6.5)

and UG(E , γj) is
UG(E , γj) = exp(−iγjHG) (6.6)

with HG =
∑

(i,j)∈E εijσ
(i)
z σ

(j)
z and E are the edges of graph G weighted by εij . A

5-qubit example of this ansatz can be seen in Figure 6.2.

For p = 1, we have

|E ,α, β, γ⟩1 = UN (α, β)UG(E , γ) |s⟩

= 1√
2n

·
∑

x∈{0,1}n

(
cosα1β

2 + · · · − isinαlβ

2 − · · · − isinαnβ

2

)
︸ ︷︷ ︸

weighted bitflip terms

· exp

 ∑
(i,j)∈E

diag(ZiZj)|x⟩ · −i
π

2 γεij

︸ ︷︷ ︸

edge weights

|x⟩ , (6.7)

where diag(ZiZj)|x⟩ = ±1 is the entry in the matrix corresponding to each ZiZj

term, e.g., I1 ⊗ · · · ⊗Zi ⊗ Ik ⊗ · · · ⊗Zj ⊗ · · · ⊗ In, corresponding to the basis state
|x⟩. (E.g., the first term on the diagonal corresponds to the all-zero state, and
so on.) We see that the first group of terms, denoted weighted bitflip terms, is a
sum over products of terms that encode the node features. In other words, in the
one-qubit case we get a sum over sine and cosine terms, in the two-qubit case we
get a sum over products of pairs of sine and cosine terms, and so on. The terms in
the second part of the equation denoted edge weights is the exponential of a sum
over edge weight terms. As we start in the uniform superposition, each basis state’s
amplitude depends on all node and edge features, but with different signs and
therefore different terms interfering constructively and destructively for every basis
state. This can be regarded as a quantum version of the aggregation functions used
in classical graph NNs, where the k-th layer of a NN aggregates information over
the k-local neighborhood of the graph in a permutation equivariant way [100]. In
a similar fashion, the terms in Equation (6.7) aggregate node and edge information
and become more complex with each additional layer in the PQC.

99

6.3 Equivariant quantum circuit

. . .𝑈𝐺(ℰ, 𝛾1)

one layer

𝑈𝑁(𝛼, 𝛽1)

Figure 6.2: EQC used in this work. Each layer consists of two parts: the first part
UG encodes edge features, while the second part UN encodes node features. Each of
the two parts is parametrized by one parameter βl, γl, respectively.

The reader may already have observed that this ansatz is closely related to an ansatz
that is well-known in quantum optimization: that of the quantum approximate
optimization algorithm [59]. Indeed, our ansatz can be seen as a special case of
the QAOA, where instead of using a cost Hamiltonian to encode the problem, we
directly encode instances of graphs and apply the “mixer terms" in Equation (6.5)
only to nodes not yet in the partial tour. This correspondence will later let us
use known results for QAOA-type ansatzes at depth one [241] to derive exact
analytical forms of the expectation values of our ansatz, and use these to study its
expressivity.

As our focus is on implementing an ansatz that respects a symmetry that is
useful in graph learning tasks, namely an equivariance under permutation of
vertices of the input graph, we now show that each part of our ansatz respects this
symmetry.

Theorem 6.1 (Permutation equivariance of the ansatz). Let the ansatz of depth p
be of the type as defined in Equation (6.3) with initial state |+⟩⊗n and parameters
β,γ ∈ Rp, that represents an instance of a graph G with nodes V and the list of edges
E with corresponding edge weights εij , and node features α ∈ Rn with n = |V|. Let
σ be a permutation of the vertices in V, Pσ ∈ Bn×n the corresponding permutation
matrix that acts on the weighted adjacency matrix A of G, and P̃σ ∈ B2n×2n a
matrix that maps the tensor product |v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vn⟩ with |vi⟩ ∈ C2 to

100

6.3 Equivariant quantum circuit∣∣vp̃σ(1)
〉
⊗
∣∣vp̃σ(2)

〉
⊗ · · · ⊗

∣∣vp̃σ(n)
〉
. Then, the following relation holds,

|EA,α,β,γ⟩p = P̃σ

∣∣E(P T
σ APσ), P

T
σ α,β,γ

〉
p
, (6.8)

where E(·) denotes a specific permutation of the adjacency matrix A of the given
graph. We call an ansatz that satisfies this property permutation equivariant.

Proof of Theorem 6.1. We want to prove that our ansatz is equivariant under
permutations of the nodes of the input graph G(V, E),

|E(P T
σ APσ), P

T
σ α,β,γ⟩p = P̃σ|EA,α,β,γ⟩p. (6.9)

For this, we have to prove that the unitaries that are used to construct the full
circuit are permutation equivariant, i.e.,

P̃σUG(EA, γl)P̃ †
σ = UG(E(P T

σ APσ), γl) (6.10)

and
P̃σUN (α, βl)P̃ †

σ = UN (PT
σ α, βl). (6.11)

We begin with the edge-encoding unitary UG:

P̃σUG(EA, γl)P̃ †
σ = P̃σe

−iγlHG P̃ †
σ (6.12)

= e−iγlP̃σHG P̃ †
σ (6.13)

= e
−iγlHG(P T

σ APσ) (6.14)
= UG(E(P T

σ APσ), γl), (6.15)

where line (6.13) holds because for any unitary U we have Ue−iHGU† = e−iUHGU† ,
and line (6.14) holds because HG =

∑
ε∈E εijZiZj is defined completely through

the adjacency matrix and the edge weights of the input graph G, and P̃σ and Pσ

are defined through permutations σ on the nodes of G. Similarly, we get

P̃σUN (α, βl)P̃ †
σ = P̃σ

|V|⊗
i

Rx(αi, βl)P̃ †
σ (6.16)

= P̃σ

|V|⊗
i

exp
(
−iαiβl

2 X

)
P̃ †

σ (6.17)

=
|V|⊗
i

exp
(
−i
ασ−1(i)βl

2 X

)
(6.18)

= UN (PT
σ α, βl). (6.19)

101

6.3 Equivariant quantum circuit

As each of the unitaries in the circuit is equivariant under permutations of the
graph nodes, and the initial state is trivially permutation invariant |+⟩ = P̃σ |+⟩,
we arrive at Equation (6.9).

As mentioned before, our ansatz is closely related to those in [172], and the authors
of this work prove permutation equivariance of unitaries that are defined in terms
of unweighted adjacency matrices of graphs. In order to prove equivariance of our
circuit, we have to generalize their result to the case where a weighted graph is
encoded in the form of a Hamiltonian, and parametrized by a set of free parameters
as described in Equation (6.3). In the non-parametrized case this is trivial, as
edge weights and node features are directly permuted as a consequence of the
permutation of the graph. When introducing parameters to the node and edge
features, however, we have to make sure that the parameters themselves preserve
equivariance, as the parameters are not tied to the adjacency matrix but to the
circuit itself. To guarantee this, we make the parametrization itself permutation
invariant by assigning one node and edge parameter per layer, respectively, and
this makes us arrive at the QAOA-type parametrization shown in Equation (6.3).
Another difference of our proof to that in [172] is that we consider a complete
circuit including its initial state, instead of only guaranteeing that the unitaries
that act on the initial state are permutation equivariant.

The above definition and proof are given in terms of a learning problem where we
map one vertex to one qubit directly. However, settings where we require more
than one qubit to encode node information are easily possible with this type of
architecture as well. In order to preserve equivariance of our ansatz construction,
three conditions have to hold: i) the initial state of the circuit has to be permutation
invariant or equivariant, ii) the two-qubit gates used to encode edge weights have
to commute, iii) the parametrization of the gates has to be permutation invariant.
In the case where each vertex or edge is represented with more than just one gate
per layer, one has freedom on how to do this as long as the above i)-iii) still hold. A
simple example is when each vertex is represented by m qubits: i) the initial state
remains to be the uniform superposition, ii) the topology of the two-qubit gates
that represent edges has to be changed according to the addition of the new qubits,
but ZZ-gates can still be used to encode the information, iii) the parametrization
is the same as in the one-qubit-per-vertex case.

102

6.3 Equivariant quantum circuit

6.3.2 Trainability of ansatz

Our goal in this work is to introduce a problem-tailored ansatz for a specific data
type that provides trainability advantages compared to unstructured ansatzes. One
important question that arises in this context is that of barren plateaus, where
the variance of derivatives for random circuits vanishes exponentially with the
system size [229]. This effect poses challenges for scaling up circuit architectures
like the hardware-efficient ansatz [170], as even at a modest number of qubits and
layers a quantum model like this can become untrainable [44, 47, 52]. Therefore it
is important to address the presence of barren plateaus when introducing a new
ansatz. In a recent work [57], it has been proven that barren plateaus are not
present in circuits that are equivariant under the symmetric group Sn, namely
the group of permutations on n elements, in this case all permutations over the
qubits. While our circuit is also permutation equivariant, we define permutations
based on the input graphs and not the qubits themselves, so our approach differs
from the equivariant quantum neural networks in [57] as a) the incorporation of
edge weights into the unitaries prevents the unitaries from commuting with all
possible permutations of qubits, and b) multiple qubits can potentially correspond
to one vertex. While permutation equivariance poses some restrictions on the
expressibility of the ansatz and one would expect a better scaling of gradients
than in, e.g., hardware-efficient types of circuits, the results of [57] do not directly
translate to our work for the above reasons.

To get additional insight, one can also turn to results on barren plateaus related
to QAOA-type circuits, due to the structural similarity that our ansatz has to
them. The authors of [242] investigate the scaling of the variance of gradients of
two related types of ansatzes. They characterize ansatzes given by the following
two Hamiltonians: the transverse field Ising model (TFIM),

HTFIM =
nf∑
i=1

ZiZi+1 + hx

n∑
i=1

Xi, (6.20)

where nf = n− 1 (nf = n) for open (periodic) boundary conditions, and a spin
glass (SG),

HSG =
∑
i<j

hiZi + JijZiZj +
n∑

i=1
Xi, (6.21)

with hi, Jij drawn from a Gaussian distribution. Based on the generators of those
two ansatzes, the authors of [242] show that an ansatz that consists of layers given

103

6.3 Equivariant quantum circuit

by the TFIM Hamiltonian has a favorable scaling of gradients. An ansatz that
consists of layers given by HSG, on the other hand, does not. Considering the
results for the two above Hamiltonians, one can expect that whether our ansatz
exhibits barren plateaus will strongly depend on the encoded graphs, i.e., the
connectivity, edge weights and node features. Which types of graphs lead to a
favorable scaling of gradients, and for what learning tasks our ansatz exhibits good
performance at a number of layers polynomial in the input size, is an interesting
question that we leave for future work.

Additionally to barren plateaus that are a result of the randomness of the circuit,
there is a type of barren plateau that is caused by hardware noise, called noise-
induced barren plateaus (NIBPs) [49]. This problem can not be directly mitigated
by the choice of circuit architecture, as eventually all circuit architectures are
affected by hardware noise, especially when they become deeper. We do not expect
that our circuit is resilient to NIBPs, however, the numerical results in Section 6.5
show that the EQC already performs well with only one layer for the environment
we study in this work as we scale up the problem size. This provides hope that,
at least in terms of circuit depth, the EQC will scale favorably in the number of
layers as the number of qubits in the circuit is increased, and therefore the effect
of NIBPs will be less severe than for other circuit architectures with the same
number of qubits.

Another important question for the training of ML models is that of data efficiency,
i.e., how many training data points are required to achieve a low generalization
error. Indeed, one of the key motivating factors behind the design of geometric
models that preserve symmetries in the training data is to reduce the size of the
training data set. In the classical literature, it was shown that geometric models
require fewer training data and as a result often fewer parameters as models that
do not preserve said symmetries [243]. Recent work showed that this is also true for
Sn-equivariant quantum models [57], where the authors give an improved bound
on the generalization error compared to the bounds that were previously shown to
exist for general classes of PQCs [244]. However, the results from [57] do again
not directly translate to our approach as stated in the context of barren plateaus
above.

104

6.4 Quantum neural combinatorial optimization with the EQC

6.4 Quantum neural combinatorial optimization
with the EQC

Combinatorial optimization problems are ubiquitous, be it in transportation and
logistics, electronics, or scheduling tasks. These types of problems have also
been studied in computer science and mathematics for decades. Many interesting
combinatorial optimization problems that are relevant in industry today are NP-
hard, so that no general efficient solution is expected to exist. For this reason,
heuristics have gained much popularity, as they often provide high-quality solutions
to real-world instances of many NP-hard problems. However, good heuristics
require domain expertise in their design and they have to be defined on a per-
problem basis. To circumvent hand-crafting heuristic algorithms, machine learning
approaches for solving combinatorial optimization problems have been studied.
One line of research in this area investigates using NNs to learn algorithms for
solving combinatorial optimization problems [108, 245], which is known as NCO.
Here, NNs learn to solve combinatorial optimization problems based on data,
and can then be used to find approximate solutions to arbitrary instances of the
same problem. First approaches in this direction used supervised learning to find
approximate solutions based on NN techniques from natural language processing
[246]. A downside of the supervised approach is that it requires access to a large
amount of training data in form of solved instances of the given problem, which
requires solving many NP-hard instances of the problem to completion. At large
problem sizes, this is a serious impediment for the practicability of this method.
For this reason, RL was introduced as a technique to train these heuristics. These
RL-based approaches have been shown to successfully solve even instances of
significant size in problems with a geometric structure like the convex hull problem
[239], chip placement [247] or the vehicle routing problem [248]. To implement
NCO in this work we use Q-learning as described in Section 3.2 and Section 5.1
following [239].

In this section, we formally define the NCO task that we address in this work, and
the specific setup of the EQC and its observables. We show that each component
of the QNCO scheme is equivariant under permutation of the vertices, and then
analytically study the expressivity of our ansatz at depth one.

105

6.4 Quantum neural combinatorial optimization with the EQC

6.4.1 Formal definition of learning task and figures of merit

Our goal is to use the ansatz described in Section 6.3 to train a model that, once
trained, implements a heuristic to produce tours for previously unseen instances of
the TSP. The TSP consists of finding a permutation of a set of cities such that
the resulting length of a tour visiting each city in this sequence is minimal. The
heuristic takes as input an instance of the TSP problem in form of a weighted
2D Euclidean graph G(V, E) with n = |V| vertices representing the cities and edge
weights εij = d(vi, vj), where d(vi, vj) is the Euclidean distance between nodes
vi and vj . Specifically, we are dealing with the symmetric TSP, where the edges
in the graph are undirected. Given G, the algorithm constructs a tour in n − 2
steps. Starting from a given (fixed) node in the proposed tour Tt=1, in each step t
of the tour selection process the algorithm proposes the next node (city) in the
tour. Once the second-before-last node has been added to the tour, the last one is
also directly added, hence the tour selection process requires n− 2 steps. This can
also be viewed as the process of successively marking nodes in a graph as they are
added to a tour. In order to refer to versions of the input graph at different time
steps where the nodes that are already present in the tour are marked, we now
define the annotated graph.

Definition 6.1 (Annotated graph). For a graph G(V, E), we call G(V, E ,α(t)) the
annotated graph at time step t. The vector α(t) ∈ {0, π}n specifies which nodes are
already in the tour Tt (α(t)

i = 0) and which nodes are still available for selection
(α(t)

i = π).

In each time step of an episode in the algorithm, the model is given an annotated
graph as input. Based on the annotated graph, the model should select the next
node to add to the partial tour Tt at step t. The annotation can be used to
partition the nodes V into the set of available nodes Va = {vi|α(t)

i = π} and the
set of unavailable nodes Vu = {vi|α(t)

i = 0}. The node selection process can now
be defined as follows.

Definition 6.2 (Node selection). Given an annotated graph G(V, E ,α(t)), the node
selection process consist of selecting nodes in a tour in a step-wise fashion. To add
a node to the partial tour Tt, the next node is selected from the set of available
nodes Va. The unavailable nodes Vu are ignored in this process.

After n− 2 steps, the model has produced a tour Tn. A depiction of this process
can be found in Figure 6.3. To assess the quality of the generated tour, we compare

106

6.4 Quantum neural combinatorial optimization with the EQC

EQC

state actionagent

one episode

n-2 times

input: graph output: tour

Figure 6.3: An illustration of one episode in the TSP environment. The agent
receives a graph instance as input, where the first node is already added to the
proposed tour (marked red), which can always be done without loss of generality. In
each time step, the agent proposes which node should be added to the tour next.
After the second-to-last node has been selected, the agent returns a proposed tour.

the tour length c(Tn) to the length of the optimal tour c(T ∗), where

c(T) =
∑

{i,j}∈ET

εij (6.22)

is the sum of edge weights (distances) for all edges between the nodes in the
tour, with ET ⊂ E . We measure the quality of the generated tour in form of the
approximation ratio

c(Tn)
c(T ∗) . (6.23)

In order to perform Q-learning we need to define a reward function that provides
feedback to the RL agent on the quality of its proposed tour. The rewards in this
environment are defined by the difference in overall length of the partial tour Tt at
time step t, and upon addition of a given node vl at time step t+ 1:

r(Tt, vl) = −c(T(t+1,vl)) + c(Tt). (6.24)

Note that we use the negative of the cost as a reward, as a Q-learning agent will
always select the action that leads to the maximum expected reward.

107

6.4 Quantum neural combinatorial optimization with the EQC

The learning process is defined in terms of a DQN algorithm, where the Q-function
approximator is implemented in form of a PQC (which is described in detail in
Section 6.3). Here, we define the TSP in terms of an RL environment, where the
set of states S = {Gi(V, E ,α(t)) for i = 1, . . . , |X | and t = 1, . . . , n− 1} consists of
all possible annotated graphs (i.e., all possible configurations of values of α(t)) for
each instance i in the training set X . This means that the number of states in this
environment is |S| = 2n−1|X |. The action that the agent is required to perform
is selecting the next node in each step of the node selection process described in
Definition 6.2, so the action space A consists of a set of indices for all but the
first node in each instance (as we always start from the first node in terms of
the list of nodes we are presented with for each graph, so α

(t)
1 = 0, ∀ t), and

|A| = n− 1.

The Q-function approximator gets as input an annotated graph, and returns as
output the index of the node that should next be added to the tour. Which index
this is, is decided in terms of measuring an observable corresponding to each of the
available nodes Va. Depending on the last node added to the partial tour, denoted
as vt−1, the observable for each available node vl is defined as

Ovl
= εvt−1,vl

Zvt−1Zvl
(6.25)

weighted by the edge weight εvt−1,vl
, and the Q-value corresponding to each action

is
Q(Gi(V, E ,α(t)), vl) =

〈
E ,α(t),β,γ

∣∣∣
p
Ovl

∣∣∣E ,α(t),β,γ
〉

p
, (6.26)

where the exact form of
∣∣E ,α(t),β,γ

〉
p

is described in Section 6.3. The node that
is added to the tour next is the one with the highest Q-value,

argmaxvl
Q(Gi(V, E ,α(t)), vl). (6.27)

All unavailable nodes vl ∈ Vu are not included in the node selection process, so we
manually set their Q-values to a large negative number to exclude them, e.g.,

Q(Gi(V, E ,α(t)), vl) = −10000 ∀ vl ∈ Vu.

We also define a stopping criterion for our algorithm, which corresponds to the agent
solving the TSP environment for a given instance size. As we aim at comparing
the results of our algorithm to optimal solutions in this work, we have access to a
labeled set of instances and define our stopping criterion based on these. However,

108

6.4 Quantum neural combinatorial optimization with the EQC

note that the optimal solutions are not required for training, as a stopping criterion
can also be defined in terms of number of episodes or other figures of merit that
are not related to the optimal solution. In this work, the environment is considered
as solved and training is stopped when the average approximation ratio of the past
100 iterations is < 1.05, where an approximation ratio of 1 means that the agent
returns the optimal solution for the instances it was presented with in the past 100
episodes. We do not set the stopping criterion at optimality for two reasons: i) it is
unlikely that the algorithm finds a parameter setting that universally produces the
optimal tour for all training instances, and ii) we want to avoid overfitting on the
training data set. If the agent does not fulfill the stopping criterion, the algorithm
will run until a predefined number of episodes is reached. In our numerical results
shown in Section 6.5, however, most agents do not reach the stopping criterion
of having an average approximation ratio below 1.05, and run for the predefined
number of episodes instead. Our goal is to generate a model that is, once fully
trained, capable of solving previously unseen instances of the TSP.

6.4.2 Equivariance of algorithm components

We showed in Section 6.3.1 that our ansatz of arbitrary depth is permutation
equivariant. Now we proceed to show that the Q-values that are generated
from measurements of this PQC, and the tour generation process as described in
Section 6.4.1 are equivariant as well. While the equivariance of all components of an
algorithm is not a pre-requisite to harness the advantage gained by an equivariant
model, knowing which parts of our learning strategy fulfill this property provides
additional insight for studying the performance of our model later. As we show
that the whole node selection process is equivariant, we know that the algorithm
will always generate the same tour for every possible permutation of the input
graph for a fixed setting of parameters, given that the model underlying the tour
generation process is equivariant. This is not necessarily true for a non-equivariant
model, and simply by virtue of giving a permuted graph as input, the algorithm
can potentially return a different tour.

Theorem 6.2 (Equivariance of Q-values). Let Q(G(V, E ,α), vl) = Q(G, vl) be
a Q-value as defined in Equation (6.26), where we drop instance-specific sub-
and superscripts for brevity. Let σ be a permutation of n = |V| elements, where
the l-th element corresponds to the l-th vertex vl and σQ be a permutation that
reorders the set of Q-values Q(G) = {Q(G, v1), . . . , Q(G, vn)} in correspondence

109

6.4 Quantum neural combinatorial optimization with the EQC

to the reordering of the vertices by σ. Then the Q-values Q(G) are permutation
equivariant,

Q(G) = σQQ(Gσ), (6.28)

where Gσ is the permuted graph.

Proof. We know from Theorem 6.1 that the ansatz we use, and therefore the
expectation values ⟨Ovl

⟩, are permutation equivariant. The Q-values are defined
as Q(G, vl) = εij⟨Ovl

⟩ (see Equation (6.26)) and therefore additionally depend on
the edge weights of the graph G. The edge weights are computed according to the
graph’s adjacency matrix, and re-ordered under a permutation of the vertices and
assigned to their corresponding permuted expectation values.

As a second step, to show that all components of our algorithm are permutation
equivariant, it remains to show that the tours that our model produces as described
in Section 6.4.1 are also permutation equivariant.

Corollary 6.1 (Equivariance of tours). Let T (G,β,γ, v0) be a tour generated by a
permutation equivariant agent implemented with a PQC as defined in Equation (6.3)
and Q-values as defined in Equation (6.26), for a fixed set of parameters β,γ and
a given start node v0, where a tour is a cycle over all vertices vl ∈ V that contains
each vertex exactly once. Let σ be a permutation of the vertices V, and σT a
permutation that reorders the vertices in the tour accordingly. Then the output
tour is permutation equivariant,

T (G,β,γ, v0) = σTT (Gσ,β,γ, vσ(0)). (6.29)

Proof. We have shown in Theorem 6.2 that the Q-values of our model are permuta-
tion equivariant, meaning that a permutation of vertices results in a reordering of
Q-values to different indices. Action selection is done by vt+1 = argmaxvQ(G(t)

i , v),
and the node at the index corresponding to the largest Q-value is chosen. To
generate a tour, the agent starts at a given node v0 and sequentially selects the
following n − 1 vertices. Upon a permutation of the input graph, the tour now
starts at another node index vσ(0). Each step in the selection process can now be
seen w.r.t. the original graph G and the permuted graph Gσ. As we have shown
in Theorem 6.1, equivariance of the model holds for arbitrary input graphs, so in
particular it holds for each G and Gσ in the action selection process, and the output
tour under the permuted graph is equal to the output tour under the original
graph up to a renaming of the vertices.

110

6.4 Quantum neural combinatorial optimization with the EQC

6.4.3 Analysis of expressivity

In this section, we analyze under which conditions there exists a setting of β, γ for
a given graph instance Gi for our ansatz at depth one that can produce the optimal
tour for this instance. Note that this does not show anything about constructing the
optimal tour for a number of instances simultaneously with this set of parameters,
or how easy it is to find any of these sets of parameters. Those questions are
beyond the scope of this work. The capability to produce optimal tours at any
depth for individual instances is of interest because first, we do not expect that
the model can find a set of parameters that is close-to-optimal for a large number
of instances if it is not expressive enough to contain a parameter setting that is
optimal for individual instances. Second, the goal of a ML model is always to find
similarities within the training data that can be used to generalize well on the
given learning task, so the ability to find optimal solutions on individual instances
is beneficial for the goal of generalizing on a larger set of instances. Additionally,
how well the model generalizes also depends on the specific instances and the
parameter optimization routine, and therefore it is hard to make formal statements
about the general case where we find one universal set of parameters that produces
the optimal solution for arbitrary sets of instances.

For our model at p = 1, we can compute the analytic form of the expectation
values of our circuit as defined in Equation (6.25) and Equation (6.26) as the
following, by a similar derivation as in [241],

⟨Ovl
⟩ = εvt−1,vl

· sin(βπ) sin(εvt−1,vl
γ) ·

∏
(vl,k)∈E
k ̸=vt−1

cos(εvl,kγ), (6.30)

where vt−1 is the last node in the partial tour and vl is the candidate node.
Note that due to the specific setup of node features used in our work where the
contributions of nodes already present in the tour are turned off, these expectation
values are simpler than those given for Ising-type Hamiltonians in [241]. For
a learning task where contributions of all nodes are present in every step, the
expectation values of the EQC will be the same as those for Ising Hamiltonians
without local fields given in [241], with the additional node features α. Due to
this structural similarity to the ansatz used in the QAOA, results on the hardness
to give an analytic form of these expectation values at p > 1 also transfer to our
model. Even at depth p = 2 analytic expressions can only be given for certain types

111

6.4 Quantum neural combinatorial optimization with the EQC

of graphs [249, 250], and everything beyond this quickly becomes too complex. For
this reason, we can only make statements for p = 1 in this work.

In order to generate an arbitrary tour of our choice, in particular also the optimal
tour, it suffices to guarantee that for a suitable choice of (fixed) γ, at each step
in the node selection process the edge we want to add next to the partial tour
has highest expectation. One way we can do this is by controlling the signs of
each sine and cosine term in Equation (6.30) such that only the expectation values
corresponding to edges that we want to select are positive, and all others are
negative.

To understand whether this is possible, we can leverage known results about the
expressivity of the sine function. For any rationally independent set of {x1, ..., xn}
with labels yi ∈ (−1, 1), the sine function can approximate these points to arbitrary
precision ϵ as shown in [251], i.e., there exists an ω s.t.

|sin(ωxi)− yi| < ϵ for i = 1, . . . , n. (6.31)

In general, the edge weights of graphs that represent TSP instances are not
rationally independent.1 However, in principle they can easily be made rationally
independent by adding a finite perturbation ϵ′i to each edge weight. The results in
[251] imply that almost any set of points x1, . . . , xn with 0 < xi < 1 is rationally
independent, so we can choose ϵ′i to be drawn uniformly at random from (0, ϵmax].
As long as these perturbations are applied to the edge weights in a way that does
not change the optimal tour, as could be done by ensuring that ϵmax is small
enough so that the proportions between edge weights are preserved, we can use
this perturbed version of the graph to infer the optimal tour. (Such an ϵmax can
be computed efficiently.) In this way we can guarantee that the ansatz at depth
one can produce arbitrary labelings of our edges, which in turn let us produce
expectation values such that only the ones that correspond to edges in the tour
of our choice will have positive values. We note that in the analysis we assume
real-valued (irrational) perturbations, which of course cannot be represented in the
computer. However, by using the results of [251] and approximating ±1 within a
small epsilon, we can get a robust statement where finite precision suffices.

1The real numbers x1, . . . , xn are said to be rationally independent if no integers k1, . . . , kn

exist such that x1k1 + · · · + xnkn = 0, besides the trivial solution ki = 0 ∀ k. Rational
independence also implies the points are not rational numbers, so they are also not numbers
normally represented by a computer.

112

6.4 Quantum neural combinatorial optimization with the EQC

Theorem 6.3 (Ansatz can generate optimal tours for rationally independent edge
weights). There exists a setting (β, γ)∗ for each graph instance of the symmetric
TSP such that the ansatz at depth one described in Section 6.3 will produce the
optimal tour T ∗ with the node selection process described in Definition 6.2, given
that the edge weights εij of the graph are rationally independent and

εijγ ̸=
π

4 + nπ ∀ n ∈ Z.

Proof. As known from [251], we can find a parameter ω such that we can approxi-
mate an arbitrary labeling in [−1, 1] for our rationally independent edge weights
with the sine function. Given that this labeling exists, we now show how to use
this labeling to generate the optimal tour with the EQC at depth one.

For p = 1, we can compute the analytic form of the expectation values of our
circuit as defined in Equation (6.25) and Equation (6.26) as the following, by a
similar derivation as in [241],

⟨Ovl
⟩ = εvt−1,vl

· sin(βπ) sin(εvt−1,vl
γ) ·

∏
(vl,k)∈E
k ̸=vt−1

cos(εvl,kγ), (6.32)

where vt−1 is the last node in the partial tour and vl is the candidate node. By
the identity cos(θ) = sin(π

2 − θ) we can rewrite Equation (6.30) as

⟨Ovl
⟩ = εvt−1,vl

· sin(βπ) sin(εvt−1,vl
γ) ·

∏
(vl,k)∈E
k ̸=vt−1

sin
(π

2 − εvl,kγ
)
. (6.33)

Let us now assume that we want to construct a fixed (but arbitrary) tour T . First,
we notice that the term sin(βπ) does not depend on vt−1 or vl and is the same
for all vl. This means that this term can merely flip the sign of all ⟨Ovl

⟩, and
from now on w.l.o.g. we assume that β is such that the term is positive. Now we
can again formulate the tour generation task in terms of a binary classification
problem, where we want to find a configuration of labels for our remaining sin
terms in Equation (6.33) s.t. the product will have the highest expectation value
in each node selection step for the edge that produces the ordering we have chosen
for T . Again, we can accomplish this for arbitrary settings of edge weights by
only considering the sign of the resulting product. This means that we have to
find an assignment of the edges εij to the classes f± that at each step of the node
selection process will lead to the node being picked that we specify in T . As all
edges can occur in the above products multiple times during the node selection
process, this is a non-trivial task. However, if we can guarantee that each ⟨Ovl

⟩t at

113

6.4 Quantum neural combinatorial optimization with the EQC

node selection step t contains at least one unique term that is only present in this
specific expectation value, we can use this term to control the sign of this specific
value. Each εij occurs either in the leading term sin(εijγ) (corresponding to the
candidate edge to be potentially added in the next step) or in the product term as
sin(π

2 − εijγ) (corresponding to an outgoing edge from the current candidate). We
can easily see that the leading term only appears in the case when we ask for this
specific εij to be the next edge in the tour, and from Definition 6.2 we know that
this only happens once in the node selection process. In all other expectations,
εij appears only with the “offset” of π

2 . This means that this leading term is the
unique term that we are looking for, as long as sin(εijγ) ̸= sin(π

2 − εijγ), so as
long as sin(εijγ) ̸= cos(εijγ). We know that cos(θ) = sin(θ) for θ = π

4 + nπ with
n ∈ Z. So as long as

εijγ ̸=
π

4 + nπ ∀ n ∈ Z, εij ∈ E , (6.34)

and all εij are unique, our ansatz can construct the desired tour T . In this case,
we have a guarantee that we can construct the tour T for any configuration of
edges that fulfills Equation (6.34). In particular, this means that we can construct
the optimal tour in this way.

However, we point out that the parameter γ that leads to the construction of the
optimal tour can in principle be arbitrarily large and hard to find. We do not go
deeper into this discussion since in fact we do not want to rely on this proof of
optimality as a guiding explanation of how the algorithm works.

The reason for this is that in some way, this proof of optimality works despite
the presence of the TSP graph and not because of it. This is similar in vein
to universality results for QAOA-type circuits, where it can be shown that for
very specific types of Hamiltonians, alternating applications of the cost and mixer
Hamiltonian leads to quantum computationally universal dynamics, i.e., it can
reach all unitaries to arbitrary precision [195, 252], but these Hamiltonians are
not related to any of the combinatorial optimization problems that were studied
in the context of the QAOA. While these results provide valuable insight into
the expressivity of the models, in our case they do not inform us about the
possibility of a quantum advantage on the learning problem that we study in this
work. In particular, we do not know from these results whether the EQC utilizes
the information provided by the graph features in a way in which the algorithm
benefits from the quantumness of the model, at depth one or otherwise. As it is

114

6.5 Numerical results

b) NEQC

c) HWETE

d) HWE

a) EQC

Figure 6.4: One layer of each of the circuits studied in this work. a) The EQC
with two trainable parameters β, γ per layer. b) The same set of gates as in the
EQC, but we break equivariance by introducing one individual free parameter per
gate (denoted NEQC). c) Similar to the NEQC, but we start from the all-zero state
and add a final layer of trainable one-qubit gates and a ladder of CZ-gates (denoted
hardware-efficient with trainable encoding, HWETE). d) Same as the HWETE, but
only the single-qubit Y-rotation parameters are trained (denoted HWE).

known that the QAOA applied to ground state finding benefits from interference
effects, investigating whether similar results hold for our algorithm is an interesting
question that we leave for future work.

Additionally, we note that high expressivity alone does not necessarily lead to a
good model, and may even lead to issues in training as the well-studied phenomenon
of barren plateaus [229], or a susceptibility to overfitting on the training data. In
practice, the best models are those that strike a balance between being expressive
enough, and also restricting the search space of the model in a way that suits
the given training data. Studying and designing models that have this balance is
exactly the goal of geometric learning, and the permutation equivariance we have
proven for our model is a helpful geometric prior for learning tasks on graphs.

6.5 Numerical results

After proving that our model is equivariant under node permutations and ana-
lytically studying the expressivity of our ansatz, we now numerically study the
training and validation performance of this model on TSP instances of varying size

115

6.5 Numerical results

in a NCO context. The training data set that we use is taken from [246], where the
authors propose a novel classical attention approach and evaluate it on a number
of geometric learning tasks.1 To compute optimal solutions for the TSP instances
with 10 and 20 cities we used the library [253].

We evaluate the performance of the EQC on TSP instances with 5, 10 and 20 cities
(corresponding to 5, 10, and 20 qubits, respectively). As described in Section 6.4.1,
the environment is considered as solved by an agent when the running average of
the approximation ratio over the past 100 episodes is less than 1.05. Otherwise,
each agent will run until it reaches the maximum number of episodes, that we set
to be 5000 for all agents. Note that this is merely a convenience to shorten the
overall training times, as we have access to the optimal solutions of our training
instances. In a realistic scenario where one does not have access to optimal solutions,
the algorithm would simply run for a fixed number of episodes or until another
convergence criterion is met. When evaluating the final average approximation
ratios, we always use the parameter setting that was stored in the final episode,
regardless of the final training error. When variations in training lead to a slightly
worse performance than what was achieved before, we still use the final parameter
setting. We do this because as noted above, in a realistic scenario one does not
have knowledge about the ratio to the optimal solutions during training. Unless
otherwise stated, all models are trained on 100 training instances and evaluated
on 100 validation instances.

As we are interested in the performance benefits that we gain by using an ansatz
that respects an important graph symmetry, we compare our model to versions
of the same ansatz where we gradually break the equivariance property. We
start with the simplest case, were the circuit structure is still the same as for
the EQC, but instead of having one βl, γl in each layer, every X- and ZZ-gate is
individually parametrized. As these parameters are now tied directly to certain
one- and two-qubits gates, e.g. an edge between qubits one and two, they will not
change location upon a graph permutation and therefore break equivariance. We
call this the non-equivariant quantum circuit (NEQC). To go one step further,
we take the NEQC and add a variational part to each layer that is completely
unrelated to the graph structure: namely a hardware-efficient layer that consists

1We note that we have re-computed the optimal tours for all instances that we use, as the
data set uploaded by the authors of [246] erroneously contains sub-optimal solutions. This was
confirmed with the authors, but at the time of writing of this work their repository has not been
updated with the correct solutions.

116

6.5 Numerical results

of parametrized Y-rotations and a ladder of CZ-gates. In this ansatz, we have a
division between a data encoding part and a variational part, as is often done in
QML. To be closer to standard types of ansatzes often used in QML, we also omit
the initial layer of H-gates here and start from the all-zero state (which requires
us to switch the order of X- and ZZ-gates)1. We denote this the hardware-efficient
with trainable embedding (HWETE) ansatz. Finally, we study a third ansatz,
where we take the HWETE and now only train the Y-rotation gates, and the
graph-embedding part of the circuit only serves as a data encoding step. We call
this simply the hardware-efficient (HWE) ansatz. A depiction of all ansatzes can
be seen in Figure 6.4.

We start by comparing the EQC to the NEQC on TSP instances with 5, 10 and
20 cities. We show the training and validation results in Figure 6.5. To evaluate
the performance of the models that we study, we compute the ratio to the optimal
tour length as shown in Equation (6.23), as the instances that we can simulate the
circuits for are small enough to allow computing optimal tours for.2 To provide an
additional classical baseline, we also show results for the nearest-neighbor heuristic.
This heuristic starts at a random node and selects the closest neighboring node
in each step to generate the final tour. The nearest-neighbor algorithm finds a
solution quickly also for instances with increasing size, but there is no guarantee
that this tour is close to the optimal one. However, as we know the optimal tours
for all instances, the nearest-neighbor heuristic provides an easy to understand
classical baseline that we can use. Additionally, we add the upper bound given by
one of the most widely used approximation algorithms for the TSP (as implemented
e.g. in Google OR-Tools): the Christofides algorithm. This algorithm is guaranteed
to find a tour that is at most 1.5 times as long as the optimal tour [254]. In the
case where any of our models produces validation results that are on average above
this upper bound of the Christofides algorithm, we consider it failed, as it is more
efficient to use a polynomial approximation algorithm for these instances. However,
we stress that this upper bound can only serve to inform us about the failure of
our algorithms and not their success, as in practice the Christofides algorithm
often achieves much better results than those given by the upper bound. We
also note that both the Christofides and nearest-neighbor algorithms are provided

1However, in practice it did not make a difference whether we started from the all-zero or
uniform superposition state in the learning task that we study.

2For reference, the authors of [246], who generated the training instances that we use, stop
comparing to optimal solutions at n = 20 as it becomes extremely costly to find optimal tours
from thereon out.

117

6.5 Numerical results

0 200 400 600 800 1000
Episode

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ra
tio

 to
 o

pt
im

al
 to

ur
 le

ng
th

EQC-TSP5
EQC-TSP10
EQC-TSP20
NEQC-TSP5
NEQC-TSP10
NEQC-TSP20

(a) Training performance, 1 layer

TSP5 TSP10 TSP20

1.0

1.1

1.2

1.3

1.4

1.5

Ap
pr

ox
im

at
io

n
ra

tio

EQC
NEQC
NN

(b) Validation performance, 1 layer

0 200 400 600 800 1000
Episode

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ra
tio

 to
 o

pt
im

al
 to

ur
 le

ng
th

EQC-TSP5
EQC-TSP10
EQC-TSP20
NEQC-TSP5
NEQC-TSP10
NEQC-TSP20

(c) Training performance, 4 layers

TSP5 TSP10 TSP20

1.0

1.1

1.2

1.3

1.4

1.5

Ap
pr

ox
im

at
io

n
ra

tio

EQC
NEQC
NN

(d) Validation performance, 4 layers

Figure 6.5: Comparison between the EQC and its non-equivariant version (NEQC)
in terms of approximation ratio (lower is better) of ten trained models on a set of 100
previously unseen TSP instances for each instance size. The boxes show the upper
quartile, median and lower quartile for each model configuration, the whiskers of the
boxes extend to 1.5 times the interquartile range, and the black diamonds denote
outliers. We additionally show the means of each box as white circles. In the NEQC
each gate is parametrized separately but the ansatz structure is otherwise identical
to the EQC, as described in Section 6.5. Results are shown on TSP instances with
5, 10 and 20 cities (TSP5, TSP10 and TSP20, respectively). To provide a classical
baseline, we also show results for the nearest-neighbor heuristic (NN). a) and b)
show the training and validation performance for both ansatzes with one layer, while
c) and d) show the same for four layers. The dashed, grey line on the left-hand side
figures denotes optimal performance. The dotted, black line on the right-hand side
figures denotes the upper bound of the Christofides algorithm, a popular classical
approximation algorithm that is guaranteed to find a solution that is at most 1.5
times as long as the optimal tour. Figures a) and c) show the running average over
the last ten episodes.

118

6.5 Numerical results

here to assure that our algorithm produces reasonable results, and not to show
that our algorithm outperforms classical methods as this is not the topic of the
present manuscript. The bound is shown as a dotted black line in Figure 6.5 and
Figure 6.6.

Geometric learning models are expected to be more data-efficient than their
unstructured counterparts, as they respect certain symmetries in the training data.
This means that when a number of symmetric instances are present in the training
or validation data, the effective size of these data sets is decreased. This usually
translates into models that are more resource-efficient in training, e.g. by requiring
fewer parameters or fewer training samples. In our comparison of the EQC and the
NEQC, we fix the number of training samples and compare the different models in
terms of circuit depth and number of parameters to achieve a certain validation
error and expect that the EQC will need fewer layers to achieve the same validation
performance as the NEQC. This comparison can be seen in Figure 6.5. In Figure 6.5
a) and b), we show the training and validation performance of both ansatzes at
depth one. For instances with five cities, both ansatzes perform almost identically
on the validation set, where the NEQC performs worse on a few validation instances.
As the instance size increases, the gap between EQC and NEQC becomes bigger.
We see that even though the two ansatzes are structurally identical, the specific
type of parametrizations we choose and the properties of both ansatzes that result
from this make a noticeable difference in performance. While the EQC at depth
one has only two parameters per layer regardless of instance size, the NEQC’s
number of parameters per layer depends on the number of nodes and edges in
the graph. Despite having much fewer parameters, the EQC still outperforms the
NEQC on instances of all sizes. Increasing the depth of the circuits also does not
change this. In Figure 6.5 c) and d) we see that at a depth of four, the EQC still
beats the NEQC. The latter’s validation performance even slightly decreases with
more layers, which is likely due to the increased complexity of the optimization
task, as the number of trainable parameters per layer is (n−1)n

2 + n, which for the
20-city instances means 840 trainable parameters at depth four (compared to 8
parameters in case of the EQC). This shows that at a fraction of the number of
trainable parameters, the EQC is competitive with its non-equivariant counterpart
even though the underlying structure of both circuits is identical. Compared to
the classical nearest-neighbor heuristic, both ansatzes perform well and beat it
at all instance sizes, and both ansatzes are also below the approximation ratio
upper bound given by the Christofides algorithm on all validation instances. The

119

6.5 Numerical results

box plots in Figure 6.5 show a comparison of the EQC and NEQC in terms of the
quartiles of the approximation ratios on the validation set. As it is hard to infer
statistical significance of results directly from the box plots, especially when the
distributions of data points are not very far apart, we additionally plot the means
of the distributions and their standard error, and compute p-values based on a
t-test to give more insight on the comparison of these two models in Chapter 8.
To show statistical significance of the comparison of the EQC and NEQC, we
perform a two-sample t-test with the null-hypothesis that the averages of the
two distributions are the same, as is common in statistical analysis, and compute
p-values based on this. The p-values confirm that there is indeed a statistical
significance in the comparison between models for the 10- and 20-city instances,
and that we can be more certain about the significance as we scale up the instance
size. The average approximation ratios in case of the 5-city instances are roughly
the same, as we can expect due to the fact that there exist only 12 permutations
of the TSP graphs of this size. However, even for these small instances the EQC
achieves the same result with fewer parameters, namely 2 per layer instead of the
15 per layer required in the NEQC.

Next, we compare the EQC to ansatzes in which we introduce additional variational
components that are completely unrelated to the training data structure, as
described above. We show results for the HWETE and the HWE ansatz in
Figure 6.6. To our own surprise, we did not manage to get satisfactory results with
either of those two ansatzes, especially at larger instances, despite an intensive
hyperparameter search. Even the HWETE, which is basically identical to the
NEQC with additional trainable parameters in each layer, failed to show any
significant performance. To gauge how badly those two ansatzes perform, we
also show results for an algorithm that selects a random tour for each validation
instance in Figure 6.6. In this figure, we show results for TSP instances with five
and ten cities for both ansatzes with one and four layers, respectively. Additionally,
we show how the validation performance changes when the models are trained
with either a training data set consisting of 10 or 100 instances, in the hopes of
seeing improved performance as the size of the training set increases. We see
that in neither configuration, the HWETE or HWE outperform the Christofides
upper bound on all validation instances. Additionally, in almost all cases those
two ansatzes do not even outperform the random algorithm. This example shows
that in a complex learning scenario, where the number of permutations of each
input instance grows combinatorially with instance size and the number of states

120

6.5 Numerical results

10 100
Number of training instances

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Ap
pr

ox
im

at
io

n
ra

tio

EQC
HWETE
HWE
random

(a) TSP5, 1 layer

10 100
Number of training instances

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Ap
pr

ox
im

at
io

n
ra

tio

EQC
HWETE
HWE
random

(b) TSP5, 4 layers

10 100
Number of training instances

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ap
pr

ox
im

at
io

n
ra

tio

EQC
HWETE
HWE
random

(c) TSP10, 1 layer

10 100
Number of training instances

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ap
pr

ox
im

at
io

n
ra

tio

EQC
HWETE
HWE
random

(d) TSP10, 4 layers

Figure 6.6: Comparison between EQC and two hardware-efficient ansatzes where
we gradually break the equivariance of the original ansatz. We show results for TSP
instances with five and ten cities (TSP5, TSP10 respectively) for models trained
on 10 and 100 instances, and with one and four layers. Each box is computed
over results for ten agents. The hardware-efficient ansatz with trainable embedding
(HWETE) consists of trainable graph encoding layers as those in the EQC, with an
additional variational part in each layer that consists of parametrized single-qubit
Y-gates and a ladder of CZ-gates. The HWE ansatz is the same as the HWETE, but
where the graph-embedding part is not trainable and only the Y-gates in each layer
are trained. We also show approximation ratios of a random algorithm, where a
random tour is picked as the solution to each instance. The dotted, black lines denote
the upper bound of the Christofides algorithm. We see that the HWE ansatzes
perform extremely badly and barely outperform picking random tours only in some
cases.

121

6.5 Numerical results

in the RL environment grows exponentially with the number of instances, a simple
hardware-efficient ansatz will fail even when the data encoding part of the PQC is
motivated by the problem data structure. While increasing the size of the training
set and/or the number of layers in the circuit seems to provide small advantages in
some cases, it also leads to a decrease in performance in others. On the other hand,
the EQC is mostly agnostic to changes in the number of layers or the training data
size. Overall, we see that the closer the ansatz is to an equivariant configuration,
the better it performs, and picking ansatzes that respect symmetries inherent to
the problem at hand is the key to success in this graph-based learning task.

In Section 6.3 we have also pointed out that the EQC is structurally related to the
ansatz used in the QAOA. The main difference in solving instances of the TSP
with the NCO approach used in our work and solving it with the QAOA lies in the
way in which the problem is encoded in the ansatz, and in the quantity that is used
to compute the objective function value for parameter optimization. We give a
detailed description of how the TSP is formulated in terms of a problem Hamiltonian
suitable for the QAOA and how parameters are optimized in Section 6.2.2. As the
QAOA is arguably the most explored variational quantum optimization algorithm
at the time of writing, and due to the structural similarity between the EQC and
the QAOA’s ansatz, we also compare these two approaches on TSP instances with
five cities.

For p = 2 and 3, we optimized the circuit parameters using Constrained Opti-
mization BY Linear Approximation (COBYLA). In addition, similar to [255], we
employed a p-dependent initialization technique for the circuit parameters. Specifi-
cally, (p + 1)-depth QAOA circuit parameters were initialized with the optimal
parameters from the p-depth circuit, as follows:

γ = (γ1, . . . , γp′ , 0),

β = (β1, . . . , βp′ , 0).

This way we are allowing the parameter training procedure to start in a known
acceptable state based on the results of the previous step. In Figure 6.7 we show
our results for five-city instances of the TSP. The approximation ratio shown is
derived by dividing the tour length of the best feasible solution, measured as the
output of the trained QAOA circuit, by the optimal tour length of the respective
instance. In addition, we compute results for two different p = 3 QAOA circuits:
the first is trained in the procedure described above (where the parameters are

122

6.5 Numerical results

1 2 3 3, conc.
p

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ap
pr

ox
im

at
io

n
ra

tio

Figure 6.7: Approximation ratio of QAOA up to depth three. Dashed black line
denotes average final performance of the EQC at depth one during the last 100
iterations of training on the same instances. Last box shows the results for the
best parameters found for one instance at p = 3 applied to all training instances,
following a parameter concentration argument. The dotted, black line denotes the
upper bound of the Christofides algorithm.

trained for each instance). The second uses the parameters of the best QAOA
circuit out of those for all instances evaluated at p = 3, following a concentration
of parameters argument as presented in [61]. The second method is closer to what
is done in a ML context, where one set of parameters is used to evaluate the
performance on all validation samples.

Due to the number of qubits required to formulate a QUBO for the TSP, we
were not able to run QAOA for all TSP instances. For example, an instance with
six cities already requires 25 qubits (we can fix the choice of the first city to be
visited without loss of generality, requiring only (n − 1)2 variables to formulate
the QUBO). A different formulation of the QUBO problem presented in [256],
that needs O(n log(n)) qubits, avoids this issue by modifying the circuit design.
However, this proposal increases the circuit depth considerably and is therefore
ill-suited for the NISQ era.

In Figure 6.7, we can see that finding a good set of parameters for QAOA to
solve TSP is hard even for five-city instances. We note that the performance
of QAOA improves with higher p, however, QAOA performance is still far from

123

6.6 Discussion

matching the approximation ratios obtained by EQC even for p = 3, which can be
seen in Figure 6.7 as a black dashed line. Furthermore, we note that significant
computational effort is required to obtain these results: methods like COBYLA
are based on gradient descent, which requires us to evaluate the circuit many times
until either convergence or the maximum number of iterations is reached. We also
note that due to the heuristic optimization of the QAOA parameters themselves,
we are not guaranteed that the configuration of parameters is optimal, which may
result in either insufficient iterations to converge or premature convergence to
sub-optimal parameter values. In an attempt to mitigate this, we tested several
optimizers (Adam, SPSA, BFGS and COBYLA) and used the best results, which
were those found by COBYLA.

We see in Figure 6.7 that already on these small instances, the QAOA requires
significantly deep circuits to achieve good results, that may be out of reach in a
noisy near-term setting. The EQC on the other hand i) uses a number of qubits
that scales linearly with the number of nodes of the input graph as opposed to the
n2 number of variables required for QAOA, and ii) already shows good performance
at depth one for instances with up to 20 cities. In addition to optimizing QAOA
parameters for each instance individually, we also show results of applying one
set of parameters that performed well on one instance at depth three, on other
instances of the same problem following the parameter concentration argument
given in [61] and described in more detail in Section 6.2.2. While we find that
parameters seem to transfer well to other instances of the same problem in case of
the TSP, the overall performance of the QAOA is still much worse than that of
the EQC.

6.6 Discussion

After providing analytic insight on the expressivity of our ansatz, we have numeri-
cally investigated the performance of our EQC model on TSP instances with 5,
10, and 20 cities (corresponding to 5, 10, 20 qubits respectively), and compared
them to other types of ansatzes that do not respect any graph symmetries. To
get a fair comparison, we designed PQCs that gradually break the equivariance
property of the EQC and assessed their performance. We find that ansatzes that
contain structures that are completely unrelated to the input data structure are
extremely hard to train for this learning task where the size of the state space
scales exponentially in the number of input nodes of the graph. Despite much

124

