
Quantum machine learning: on the design, trainability and
noise-robustness of near-term algorithms
Skolik, A.

Citation
Skolik, A. (2023, December 7). Quantum machine learning: on the design,
trainability and noise-robustness of near-term algorithms. Retrieved from
https://hdl.handle.net/1887/3666138

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3666138

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3666138

ch
ap

te
r

5
Quantum agents in the Gym: A variational
quantum algorithm for deep Q-learning

The focus of Chapter 4 was to introduce a training method for VQAs that addresses
the problem of barren plateaus, while reducing the number of trained parameters
in ever update step of the optimization routine. While we demonstrated the
feasibility and effectiveness of our method on a supervised learning task, the
learning problem itself was not the focus of that work. In this chapter, we go
deeper into investigating the use of VQAs for a specific type of ML algorithm. Many
proposals for QML algorithms have been made in supervised [39, 74, 126, 26, 137]
and unsupervised [194, 28, 148, 195, 143, 196] learning. In contrast, RL is a subfield
of machine learning that has received less attention in the QML community
[197, 198], and especially proposals for VQA-based approaches are only now
emerging [153, 154, 199, 120, 150]. RL is essentially a way to solve the problem
of optimal control. In a RL task, an agent is not given a fixed set of training
data, but learns from interaction with an environment. Environments are defined
by a space of states they can be in, and a space of actions that an agent uses to
alter the environment’s state. The agent chooses its next action based on a policy
(probability distribution over actions given states) and receives a reward at each
step, and the goal is to learn an optimal policy that maximizes the long-term reward
the agent gets in the environment. State and action spaces can be arbitrarily
complex, and it’s an open question which types of models are best suited for these
learning tasks. In classical RL, using NNs as function approximators for the agents’
policy has received increased interest in the past decade. As opposed to learning
exact functions to model agent behavior which is infeasible in large state and action
spaces, this method of RL only approximates the optimal function. These types
of RL algorithms have been shown to play Atari arcade games as well as human

60

players [119], and even reach super-human levels of performance on games as
complex as Go [29], Dota [200] and StarCraft [201]. RL algorithms can be divided
into policy-based and value-based methods, as described in Section 3.2. These two
methods constitute related but fundamentally different approaches to solve RL
tasks, and both have their own (dis-)advantages. Interestingly, these two methods
can also be combined in a so-called actor-critic setting which leverages the strengths
of both approaches [114]. Actor-critic methods are among the state-of-the-art
in current RL literature [115], and therefore both value-based and policy-based
algorithms are areas of active research.

RL is one of the hardest modes of learning in current ML research, and is known
to require careful tuning of model architectures and hyperparameters to perform
well. For NN-based approaches, one unfavorable hyperparameter setting can lead
to complete failure of the learning algorithm on a specific task. Additionally,
these hyperparameters and architectures are highly task dependent and there is
no a-priori way to know which settings are best. Well-performing settings are
found by experts via trial-and-error, and the ability to quickly find these settings
is considered a “black art that requires years of experience to acquire” [202]. Thus
a whole field of heuristics and numerical studies has formed on finding good sets
of hyperparameters like NN architectures [203, 204, 205], activation functions
[206, 207, 208], or learning rates and batch sizes [202, 209]. An increasingly
investigated branch of research focuses on methods to automate the whole process
of finding good architectures and hyperparameters, among which there is neural
architecture search [210] and automated machine learning [211].

It is thus to be expected that quantum models in a VQA-based RL setting also need
to be selected carefully. Even more so, it is still an open question whether VQAs are
suitable for function approximation in RL at all. This question is directly related to
choices made when defining an architecture for a VQA. There are three important
factors to consider: the structure (or ansatz) of the model, the data-encoding
technique, and the readout operators. For the choice of structure, there is a
trade-off between the expressivity and trainability of a model, as certain structures
are subject to the barren plateau phenomenon as described in Section 2.2.1.2. On
the other hand, overparametrization has been observed to simplify optimization
landscapes and lead to faster convergence for certain VQAs [212, 213]. Apart
from that, the choice of structure is also limited by hardware constraints like the
topology of a certain quantum device. While the model structure is an important

61

factor in training VQAs that has received much attention in the QML community
[44, 49, 214, 47, 215, 216, 217], the authors of [169] have shown that the technique
used to encode data into the model plays an equally important role, and that
even highly expressive structures fail to fit simple functions with an insufficient
data-encoding strategy.

A less explored architectural choice in the context of QML is that of the observables
used to read out information from the quantum model. Considering that the readout
operator of a quantum model fixes the range of values it can produce, this choice
is especially important for tasks where the goal is to fit a real-valued function with
a given range, as is the case in many RL algorithms. This is in contrast to NNs,
which have no restriction on the range of output values and can even change this
range dynamically during training. In Q-learning, the goal is to approximate the
real-valued optimal Q-function, which can have an arbitrary range based on the
environment. Crucially, this range can change depending on the performance of
the agent in the environment, which is an impediment for quantum models with a
fixed range of output values.

A first step to study the influence of architectural choices on PQCs for policy-based
RL algorithms has been made in [150], who point out that data-encoding and
readout strategies play a crucial role in these types of RL tasks, though they leave
the open question if similar architectural choices are also required in a value-based
setting. Previous work on Q-learning with PQCs has addressed certain other
fundamental questions about the applicability of VQAs in a value-based context.
A VQA for Q-learning in discrete state spaces was introduced in [153], where the
quantum model’s output is followed by a layer of additive weights, and it has
been shown that the model successfully solves two discrete-state environments. A
VQA for Q-learning in environments with continuous and discrete state spaces
has been proposed in [154], who simplify the continuous environments’ potentially
infinite range of input values to a restricted encoding into angles of one initial
layer of rotation gates, and use measurements in the Z-basis to represent Q-values.
Notably, none of the models in [154] that were run for the continuous state-space
environment Cart Pole reach a performance that is considered to be solving the
environment according to its original specification [218], so it remains an open
question whether a value-based algorithm that utilizes a PQC as the function
approximator can solve this type of learning task.

62

These initial works prompt a number of vital follow-up questions related to the
architectural choices that are required to succeed in arbitrary RL environments
with a quantum Q-learning agent. We address these questions in form of our
main contributions as follows: first, we propose a VQA which can encode states of
discrete and continuous RL environments and explain the intricate relationship
between the environment’s specification and the requirements on the readout
operators of the quantum model. We show how a quantum Q-learning agent only
succeeds if these requirements are met. Second, to enable the model to match the
environment’s requirements on the range of output values, we make this range itself
trainable by introducing additional weights on the model outputs. We show how the
necessity of these weights can be inferred from the range that the optimal Q-values
take in an environment. Third, we study the performance of our model on two
benchmark environments from the OpenAI Gym [219], Frozen Lake and Cart Pole.
For the continuous-state Cart Pole environment, we also study a number of data
encoding methods and illustrate the benefit of previously introduced techniques
to increase quantum model expressivity, like data re-uploading [168] or trainable
weights on the input data [168, 150]. Additionally, the state space dimension of
both environments is small enough so that inputs can be directly encoded into
the quantum model without the use of a dimensionality reduction technique. This
makes it possible to directly compare our model to a NN performing the same type
of Q-learning algorithm to evaluate its performance. Specifically, we perform an
in-depth comparison of the performance of PQCs and NNs with varying numbers
of parameters on the Cart Pole environment. We show that recent results in
classical deep Q-learning also apply to the case when a PQC is used as the function
approximator, namely that increasing the number of parameters is only beneficial
up to some point [220]. After this, learning becomes increasingly unstable for both
PQCs and NNs. As an empirical comparison between PQCs and NNs can only
give us insight into model performance on the specific environments we study, we
also explain when recent separation results for policy gradient RL between classical
and quantum agents [150] also hold in the Q-learning setting for restricted families
of environments.

The remainder of this chapter is structured as follows: we give a description of
our quantum Q-learning model in Section 5.1 and show when recent results for a
separation between classical and quantum algorithms for policy-based learning also
apply in the case of Q-learning in Section 5.2. In Section 5.3 we numerically evaluate
the performance of our algorithm and compare it to a classical approach, and

63

5.1 Quantum Q-learning

finally discuss our findings in Section 5.4. The full code that was used to perform
the numerical experiments in this work can be found on Github [221].

5.1 Quantum Q-learning

In this work, we adapt the DQN algorithm to use a PQC as its Q-function
approximator instead of a NN. For this, we use a hardware-efficient ansatz [170]
as shown in Figure 5.1. This ansatz is known to be highly expressive, and is
susceptible to the barren plateau phenomenon for a large number of qubits and
layers, although this is not an issue for the small state and action spaces we consider
here. All other aspects of the Q-learning algorithm described in Section 3.2.2 stay
the same: we use a target network, an ϵ-greedy policy to determine the agent’s
next action, and experience replay to draw samples for training the Q-network
PQC. Our Q-network PQC is then Uθ(s) parametrized by θ and the target network
PQC is Ûθδ

(s), where θδ is a snapshot of the parameters θ which is taken after
fixed intervals of episodes δ and the circuit is otherwise identical to that of Uθ(s).
We now explain how environment states are encoded into our quantum model, and
how measurements are performed to obtain Q-values.

5.1.1 Encoding environment states

ℰ1

ℰ2

ℰ3

ℰ4

Ry

Ry

Ry

Ry

Rz

Rz

Rz

Rz

Figure 5.1: PQC architecture used in this work. Each layer consists of a
parametrized rotation along the Y and Z axes on each qubit, and a daisy chain of
CZ gates. The green boxes correspond to data encoding gates that encode data
as parameters of X rotations. When data re-uploading is used, the whole circuit
pictured is repeated in each layer, without data re-uploading only the variational
part without the initial X rotations is repeated.

Depending on the state space of the environment, we distinguish between two
different types of encoding in this work:

64

5.1 Quantum Q-learning

Discrete state space: Discrete states are mapped to bitstrings and then input into
the model, where on an all-zero state the bits corresponding to ones in the input
state are flipped.

Continuous state space: For continuous input states, we scale each component x
of an input state vector x to x′ = arctan(x) ∈ [−π/2, π/2] and then perform a
variational encoding, which consists of X-rotations by the angles x′.

As shown in [169], when data is encoded into a PQC by local rotation gates along
the X-axis, the PQC can only model simple sine functions of its input. To further
increase the expressivity of the circuit, the data encoding can be repeated in
two ways: either in parallel by increasing the number of qubits and duplicating
the data encoding on them, or in sequence in an alternating fashion with the
variational layers of the circuit. The latter is also referred to as data re-uploading
in [168]. Where needed, we will introduce data re-uploading to our model in
Section 5.3.

The formalism introduced in [169] establishes a connection between PQCs and
partial Fourier series by showing that the functions a given PQC can model can be
represented as a Fourier series, where the accessible frequency spectrum depends
on the eigenvalues of the data encoding gates, and the coefficients depend on the
architecture of the variational part of the PQC and the observable that defines the
readout operation. They show that in models as ours, where data is encoded in
form of Pauli rotations, only Fourier series up to a certain degree can be learned,
where the degree depends on the number of times the encoding gate is repeated.
Additionally, the scale of the input data must match the scale of the frequencies
of the modeled function for the model to fit the target function exactly. Making
the scaling of input data itself trainable to increase a PQC’s expressivity has been
suggested in [168, 150], which we will also use by introducing a weight wd on the
input data. The input value x′

i then becomes:

x′
i = arctan(xi · wdi

) , (5.1)

where wdi
is the weight for input xi. We will illustrate the advantage of these

enhanced data-encoding strategies numerically in Section 5.3.

65

5.1 Quantum Q-learning

5.1.2 Computing Q-values

The Q-values of our quantum agent are computed as the expectation values of a
PQC that is fed a state s as

Q(s, a) =
〈
0⊗n

∣∣U†
θ(s)OaUθ(s)

∣∣0⊗n
〉
, (5.2)

where Oa is an observable and n the number of qubits, and our model outputs a
vector including Q-values for each possible Oa as described in Section 3.2.2. Note
that in practice, we can only compute an approximation of Equation (5.2) on a
quantum device. The type of measurements we perform to estimate Q-values will
be described in more detail in Section 5.3 for each environment. Before that, we
want to highlight why the way Q-values are read out from the PQC is an important
factor that determines the success at solving the environment at hand. A key
difference between PQCs and NNs is that a PQC has a fixed range of output
defined by its measurements, while a NN’s range of output values can change
arbitrarily during training depending on its weights and activation function. To
understand why this is an important difference in a RL setting, we need to recall
that Q-values are an estimate of the expected return

Qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ

[
H−1∑
k=0

γkrt+k+1|st = s, at = a

]
.

This quantity is directly linked to the performance of the agent in a given environ-
ment, so the model needs to have the ability to match the range of optimal Q-values
in order to approximate the optimal Q-function. This means that the observables
in a PQC-based Q-learning agent need to be chosen with care, and highly depend
on the specific environment. To provide a simple example where an insufficient
range prevents an agent from solving an environment, consider tabular learning in
an environment that consists of a single state s and two actions a1 and a2, where
the agent should learn to always pick a1. One episode has a maximum length
of H = 10 when the agent picks a1 in each time step, and otherwise terminates
when the agents picks action a2. We consider a modification where the values in
the Q-table are capped at 1, i.e., Q-values can not become larger than one, and
both Q-values are initialized at zero. The environment is such that the reward for
each action is 1 and the Q-value corresponding to the optimal action is > 1. For
simplicity we set α = 1 and γ = 1, which gives us an optimal value Q∗(s, a1) = 10.

66

5.1 Quantum Q-learning

We now perform an update on both Q-values according to the update rule in
Equation (3.19),

Q(st, at)← rt+1 + argmaxaQ(st+1, a).

For action a2, the transition from s leads to episode termination, so the update
rule yields Q(s, a2) = rt+1 = 1. For action a1, we get Q(s, a1) = 2, however,
due to the capped Q-table, we also get Q(s, a1) = 1 for this state-action pair.
We see that after a single update according to this update rule, both Q-values
will be one and due to the capped range of the Q-table the Q-values are already
saturated. No further update can change the Q-values, which means that the agent
can do no better than random guessing hereafter. This simple example illustrates
why it is essential in a tabular Q-learning setting that the range of values in the
Q-table accommodates the magnitude of optimal Q-values. Updates in the function
approximation case like in the gradient-based DQN algorithm are more complex
due to the regression task that the agent solves to perform parameter updates,
however, a similar saturation can still occur as the update rule for Q-values is the
same (see Equation (3.20)).

We have seen that it is crucial for a PQC-based Q-learning agent to have an output
range that matches that of the optimal Q-values that it seeks to approximate.
There are two ways to approach this issue: (i) multiply PQC outputs by a fixed
factor to increase their range in a way that accommodates the theoretical maximum
Q-value, (ii) make the output range itself a trainable model parameter. Multiplying
the outputs of the PQC by a fixed factor increases the range of output values, but at
the cost of potentially being close to the estimated maximum from the beginning,
which makes this approach more sensitive to randomness in model parameter
initialization. In particular, as Q-values are initialized randomly depending on the
initial parameters of the PQC, the Q-values for actions of a specific state might
have large differences. Considering that the reward which controls the magnitude
of change given by the Q-value updates in Equation (3.20) is comparatively small
and actions are picked based on the argmax policy argmaxaQ(s, a), it may take
a long time before subsequent updates of Q-values will lead to the agent picking
the right actions. Even if we consider models that are initialized such that all
Q-values are close to zero in the beginning, the actual changes in the rotation
angles that the PQC needs to perform for Q-values of large ranges can become very
small. Especially on NISQ devices, these changes might be impractically small to
be reliably performed and measured on hardware. For these reasons, we focus on

67

5.2 Separation between quantum and classical Q-learning in restricted
environments

option (ii). We add a trainable weight wo ∈ R to each readout operation, so that
the output Q-value Q(s, a) becomes

Q(s, a) =
〈
0⊗n

∣∣Uθ(s)†OaUθ(s)
∣∣0⊗n

〉
· woa , (5.3)

and each action has a separate weight woa
. We make the weights multiplicative

in analogy to weights in a NN. This gives the model the possibility to flexibly
increase the magnitude of Q-values to match the given environment. Notably, the
number of actions in an environment is usually small compared to the number
of parameters in the model, so adding one extra weight corresponding to each
action does not designate a large overhead. In Section 5.3.2.1, we numerically show
that the approach of using a trainable weight on the output value outperforms
multiplying the model output by a fixed factor that is motivated by the range of
optimal Q-values.

5.2 Separation between quantum and classical Q-
learning in restricted environments

In this section, we make formal statements about a separation between quantum
and classical models for Q-learning in a restricted family of environments. These
statements are based on recent results in supervised [128] and policy gradient based
reinforcement learning [150]. The latter work constructs families of environments
that are proven to be hard for any classical learner, but can be solved in polynomial
time by a quantum learner in a policy learning setting. Learning policies is closely
related to learning Q-values, however, Q-values contain more information about the
environment per definition as they cover the whole state-action space. This means
that it is not straightforward to generalize the results from [150] to a Q-learning
setting. In this section, we will show under which conditions optimal Q-values can
be inferred from optimal policies, so that the separation results in [150] also apply
to the Q-learning case. The environments constructed in [150] are based on the
supervised learning task introduced in [128], which are proven to be classically
hard assuming the widely-believed hardness of the discrete logarithm problem, but
can be solved by a quantum learner in polynomial time. To understand how a
separation in supervised learning can be generalized to a RL setting, it is important
to state that any classification task can be turned into an environment for RL.
To do this, rewards in the environment are assigned according to the prediction

68

5.2 Separation between quantum and classical Q-learning in restricted
environments

the agent makes. First examples of this were introduced in [222] for cases where
the environment allows quantum access to its states. A classification task like
the one proposed in [128] can be turned into a RL task by simply assigning a
reward of 1 (-1) for a correct (incorrect) classification, and defining an episode
as being presented with a set of training samples. In this section, we will briefly
revise the separation results for supervised learning given in [128] and those for
policy gradient RL given in [150], before we move on to characterize the types of
environments that allow a generalization of the results in [150] to a Q-learning
setting.

5.2.1 A classification task based on the discrete logarithm
problem

The authors of [128] construct a classification task that is intractable for any
classical learner, but can be solved by a quantum learner in polynomial time. The
classification task is based on the discrete logarithm problem (DLP), and the
separation relies on the the quantum learner’s ability to perform the algorithm
provided by Shor in [1] to solve the DLP efficiently.

Definition 5.1 (Discrete logarithm problem). Let Z∗
p = {1, 2, . . . , p− 1} be the

cyclic multiplicative group of integers modulo p for a large prime p, and g a
generator of this group. The DLP is defined as computing logg x for an input
x ∈ Z∗

p.

It is widely believed that no classical algorithm can solve the DLP efficiently,
however, it is proven that the algorithm provided by Shor can solve DLP in poly(n)
time for n = ⌈log2 p⌉ [1]. Based on this, [128] construct a classification task
with a concept class C = {fs}s∈Z∗

p
and data points defined over the data space

X = Z∗
p ⊆ {0, 1}n as

fs(x) =
{

+1, if logg x ∈ [s, s+ p−3
2]

−1, otherwise,
(5.4)

where each concept fs : Z∗
p → {−1, 1} maps one half of the elements in Z∗

p to 1 and
the other half to −1, which yields a linearly separable set of data points in log-space.
A quantum learner can make use of the algorithm from [1] to compute the discrete
logarithm and solve the resulting trivial learning task. However, if a classical
learner could solve the above learning task this would imply that there exists an

69

5.2 Separation between quantum and classical Q-learning in restricted
environments

efficient classical algorithm that solves the DLP. This is contrary to the widely
believed conjecture that no efficient classical algorithm can solve the DLP, and
[128] proves that no classical learner can do better than random guessing.

To connect these results to the RL setting, it is useful to be a bit more precise and
define some terminology. The learning task is defined as finding a decision rule
f∗, which assigns a label y ∈ {−1, 1} to data point x ∈ X 1. f∗ is learned on a set
of labeled examples S = {xi, yi}i=1,...,m generated by the unknown decision rule,
or concept, f . An efficient learner needs to compute f∗ in time polynomial in n

that agrees with the labeling given by f with high probability, or in other words
reaches a high test accuracy on unseen samples,

accf (f∗) = Pr
x∈X

[f(x) = f∗(x)]. (5.5)

The authors of [128] prove that no efficient classical learner can achieve

accf (f∗) = 1
2 + 1

poly(n)

unless an efficient classical algorithm that solves the DLP exists, while there exists
a quantum learner that achieves close to perfect accuracy with high probability in
polynomial time.

5.2.2 Learning optimal policies in environments based on
the DLP classification task

After stating the classification task based on the DLP in the previous section, we
now briefly review how the authors of [150] construct families of environments
based on the DLP classification task to transfer the separation results to RL. They
show that (i) solving these environments is classically hard for any learner unless
there exists an efficient classical algorithm that solves the DLP, (ii) there exists
a quantum learner that can solve these environments in polynomial time. To
understand how the DLP classification task can be used to construct a classically
hard to solve RL environment, it is important to note again that any classification

1Note that we are adhering to the notation given in [128], where the asterisk stands for the
learned decision rule and the function without an asterisk stands for the decision rule we seek to
learn. This is the opposite of the notation used in Q-learning literature where Q∗ stands for the
optimal Q-values, which we have followed in previous sections. The authors of [150] have also
adopted the latter notation in their paper to describe the DLP classification task. We will stick
to denoting the learned decision rule with an asterisk in this section.

70

5.2 Separation between quantum and classical Q-learning in restricted
environments

task can be trivially turned into a RL task by letting each data point x ∈ X denote
a state in the environment, and giving rewards to the agent depending on whether
it correctly assigns a state to its predefined label y. The rewards for the DLP
classification task are 1 (−1) for a correct (false) classification. While [128] are
interested in achieving a high test accuracy, in a RL setting we want to find an
agent with close-to-optimal performance in the given environment. The authors of
[150] measure this performance in terms of a value function Vπ(s) for policy π and
state s,

Vπ(s) = Eπ

[
H−1∑
t=0

γtrt|st = s

]
(5.6)

which is the expected reward for following policy π for an episode of length H

in state s. Based on the DLP classification task from [128], the authors of [150]
define three different environments that are classically hard to learn, where the
value function of each of these environments is closely related to the accuracy in
Equation (5.5) of the policy on the classification task. This allows them to get
bounds on the value function as a function of bounds on the accuracy. Roughly
speaking, by Theorem 1 of [128] no classical learner can achieve performance better
than that of random guessing in poly(n) time on those environments, unless an
efficient classical algorithm to solve the DLP exists. We will briefly explain the
set-up of the quantum learner in [150], before going into more detail on one of the
families of environments they construct to show a separation between classical and
quantum learners for policy learning.

A RL agent can be trivially constructed from the classifier in [128], which is based
on a classical support vector machine (SVM) that takes the samples that have
been “decrypted" by a quantum feature map as an input. (This type of classifier is
also referred to as an implicit SVM). However, to get a learner that more closely
matches the parametrized training of a quantum learner done in [150], they use a
model where the feature embedding and classification task are both solved by a
PQC. This method is referred to as an explicit SVM. The explicit SVM comprises a
feature-encoding unitary U(x) applied on the all zero state, which they refer to as
|ϕ(x)⟩ = U(x) |0⊗n⟩, a variational part V (θ) with parameters θ, and an observable
O. The feature-encoding unitary for the DLP task is the same as used in [128]
so that feature states take the following form for k = n− t logn for a constant t
related to noisy classification (we refer the reader to [150] for a detailed description

71

5.2 Separation between quantum and classical Q-learning in restricted
environments

of classification under noise),

|ϕ(x)⟩ = 1√
2k

2k−1∑
i=0

∣∣x · gi
〉
. (5.7)

These states can be efficiently prepared on a fault-tolerant quantum computer
by a circuit that uses the algorithm proposed by Shor in [1] as a subroutine. It
was proven in [128] that for all concepts fs the data points with labels 1 and −1,
respectively, can be separated by a hyperplane with a large margin, and that this
hyperplane always exists. The learning task of the PQC V (θ) is then to find this
hyperplane. The hyperplanes are normal to states of the form

|ϕs′⟩ = 1√
(p− 1)/2

(p−3)/2∑
i=0

∣∣∣gs′+i
〉
, (5.8)

for s′ ∈ Z∗
p. A classifier hs′(x) for these data points can then be defined as

hs′(x) =
{

1, if | ⟨ϕ(x)|ϕs′ |ϕ(x)|ϕs′⟩ |2/∆ ≥ 1/2
−1, otherwise,

(5.9)

where ∆ = 2k+1
p−1 is the largest value the inner product | ⟨ϕ(x)|ϕs′ |ϕ(x)|ϕs′⟩ |2

takes and is used to renormalize it to [0, 1]. The variational circuit is defined
as V (θ) = V̂ (s′) which is similar in implementation to U(xi) with xi = gs′ and
k ≈ n/2, and a measurement operator O = |0⊗n⟩ ⟨0⊗n|.

The simplest way of turning the DLP classification task into an environment is to
define one episode as the agent being in a randomly chosen state corresponding
to a training sample, performing an action which assigns the predicted label, and
giving a reward of 1 (-1) for a correct (incorrect) classification. This family of
environments is referred to as SL-DLP in [150]. While the family of SL-DLP
environments is a straightforward way to generalize the results from [128] to
policy learning, it lacks the characteristics typically associated with RL, namely a
temporal structure in the state transitions, such that these depend on the actions
taken by the agent. To construct a family of environments based on the DLP
which includes this kind of structure, [150] introduce the family of Cliffwalk-DLP
environments, inspired by the textbook Cliffwalk environment from [109]. Here,
the goal is still to assign correct labels to given states, but now these states follow
a randomly assigned but fixed order. The agent has to “walk along the edge
of a cliff", where this edge is represented by the sequence of ordered states the

72

5.2 Separation between quantum and classical Q-learning in restricted
environments

environment takes. A correct classification leads to the next state in the sequence,
while an incorrect classification leads to “falling off the cliff" and immediate episode
termination. The authors of [150] show that the quantum learnability results of
the SL-DLP environment also hold for the family of Cliffwalk-DLP environments.
In the following section we will generalize these results to Q-values by giving a
definition of the types of environments where knowledge of an optimal policy lets
us infer optimal Q-values.

5.2.3 Estimating optimal Q-values from optimal policies

In Section 5.2.2, we revised how [150] construct an efficient quantum agent that
can achieve close-to-optimal policies in families of environments based on the
DLP. Now, we turn to generalizing their results to the Q-learning setting. The
classical hardness of the environment still holds irrespective of the learner that is
used. The remaining question is now whether there exists an efficient algorithm to
obtain optimal Q-values, given we have access to an optimal policy. Concretely,
our goal is to compute optimal Q-values Q∗(s, a) for state-action pairs from an
environment, where s is given by the environment and a is determined by the
optimal policy.

One could imagine thatQ∗(s, a) can be easily estimated using Monte Carlo sampling
since the definition involves only the use of the optimal policy after the move (s, a)
(cf. Equation (3.16)). However, in general it is not possible for an agent to get to
arbitrary states s in poly time. We circumvent this problem by considering special
cases of environments that are classically hard, where there are only two actions
{a, a′}, and where the analytic values of Q∗(s, a) and Q∗(s, a′) are known. The
only unknown is which action a or a′ is the optimal one. In this case it is clear
that access to the optimal policy resolves the question.

As an example of such an environment, consider the SL-DLP family of environments
from [150]. In each episode, the agent needs to classify one random sample from
a set of samples corresponding to the DLP classification task from Section 5.2.1,
where a correct (incorrect) classification yields a reward of 1 (-1). If we set γ = 0,
the two possible Q-values for a given state and the two possible actions are simply
the rewards corresponding to the result of the classification. To get the Q-value
Q∗(s, a), we query the policy π∗(a|s) for the optimal action and assign the reward
for a correct classification to the corresponding Q-value. (Note that we can also
directly infer Q∗(s, a′) for the wrong action a′ from this, as there are only two

73

5.3 Numerical results

distinct Q-values.) This can also be trivially extended to episodes with a horizon
greater than one and γ > 0. After querying the policy for the optimal action
given the initial state of the episode, the expected return is computed directly
assuming optimal actions until the end of the episode is reached. I.e., we simply
compute

Q∗(st, at) = Eπ∗

[
H−1∑
k=0

γkrt+k+1|st = s, at = a

]
for at given by the optimal policy, where all rewards are one from time step t

onward. (For more details on settings with longer horizon and a discount factor
larger than zero, and an analytic expression of the Q-values in these cases, see
[150]).

In more general cases, the issue of approximation reduces to the problem of
reaching the desired state s efficiently. When this is possible (i.e., it is possible to
construct environments which allow this without becoming easy to learn), then
so is estimating Q-values given an optimal policy. Note that for all of the above,
the same caveat as in [150] applies, namely that this method of obtaining optimal
Q-values does not resemble Q-learning in the sense that we use a tabular or DQN-
type approach as shown in Section 3.2.2, and it is still an open question whether a
rigorous quantum advantage can be shown in these settings for either policy-based
RL or Q-learning.

5.3 Numerical results

In this section, we present results for our PQC model on two benchmark RL tasks
from the OpenAI Gym [219], Frozen Lake v0 [223] and Cart Pole v0 [218] (see
Figure 5.2). We ran an extensive hyperparameter search for both environments,
and present our results for the best sets of hyperparameters. A detailed description
of the hyperparameters we tuned and their best values can be found in Chapter 8.
Our experiments were run with TensorFlow Quantum [224] and Cirq [225], the
full code can be found on Github [221].

5.3.1 Frozen Lake

The Frozen Lake (FL) environment serves as an example for environments with a
simple, discrete state space and with a reward structure that allows us to use an
agent which performs measurements in the Z-basis to compute Q-values without

74

5.3 Numerical results

a) b)

cart position

pole angle

0

14 15

11

1312

1 2 3

4 5 6 7

8 9 10

Figure 5.2: Gym environments solved by the quantum model. a) Frozen Lake
environment, where an agent needs to learn to navigate from the top left of a grid to
retrieve the Frisbee at the bottom right without falling into any of the holes (dark
squares), b) Cart Pole environment, which consists of learning to balance a pole on
a cart which moves left and right on a frictionless track.

the need for trainable weights to scale the output range. It consists of a 4x4 grid
representing a frozen surface, where the agent can choose to move one step up,
down, left or right. The goal is to cross the lake from the top left corner to the
bottom right corner where the goal is located. However, some of the grid positions
correspond to holes in the ice, and when the agent steps on them the episode
terminates and it has to start again from the initial state. In each episode, the
agent is allowed to take a maximum number of steps mmax. The episode terminates
if one of the following conditions is met: the agent performs mmax = 200 steps,
reaches the goal, or falls into a hole. For each episode in which the goal is reached
the agent receives a reward of 1, and a reward of 0 otherwise. The environment
is considered solved when the agent reaches the goal for 100 contiguous episodes.
(See [223] for full environment specification.)

As the FL environment is discrete and the dimensions of the state and action
spaces are small, there is no true notion of generalization in this environment, as all
distinct state-action pairs are likely observed during training. On the other hand,
generalization to unseen state-action pairs is one of the key reasons why function
approximation was introduced to Q-learning. For this reason, environments like
Frozen Lake are not a natural fit for these types of algorithms and we refrain
from comparing to a classical function approximator. Note that we also refrain

75

5.3 Numerical results

0 500 1000 1500 2000 2500 3000 3500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

5 layers
10 layers
15 layers

(a) average scores

0 2000 4000 6000 8000 10000
Time step

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
AE

(Q
, Q

*)

5 layers
10 layers
15 layers

(b) mean absolute error with optimal Q-values

Figure 5.3: Agents with varying depth playing the Frozen Lake environment, and
their closeness to the optimal Q-values. The environment is solved when the agent
reaches the goal (receives a score of 1) for 100 contiguous episodes. a) Average score
over 10 agents for circuits of depth 5, 10, and 15, respectively. All agents manage
to solve the environment, higher circuit depth leads to lower time to convergence.
Shaded area shows standard deviation from the mean. b) Mean absolute error
between agents’ Q-values and the optimal Q-values Q∗ for all (s, a) pairs over
time steps in episodes, where one time step corresponds to one transition in the
environment. Shaded region shows standard error of the mean.

76

5.3 Numerical results

from comparing to the tabular approach, as this is (i) guaranteed to converge
and (ii) not interesting beyond environments with very limited state and action
spaces. However, this environment is interesting from another perspective: there
are only 64 Q-values which we can compute exactly, and therefore we can directly
compare the Q-values learned by our model to the optimal Q-values Q∗, which
is not possible for the continuous-state Cart Pole environment that we study in
Section 5.3.2.1. We show the difference between our agents’ Q-values and the
optimal Q-values during the course of training in Figure 5.3 b). Additionally, the
FL environment serves as a nice example for environments where a PQC with
simple measurements in the Z-basis can be used to solve a RL task, without
requiring additional post-processing, as we describe below.

The FL environment has 16 states (one for each square on the grid) of which four
are holes (marked as darker squares in Figure 5.2 a), and 4 actions (top, down,
left, right). We encode each position on the grid as one of the computational basis
states of a 4-qubit system, without use of trainable input data weights or data
re-uploading. The optimal Q-values for each state-action pair can be computed as
Q∗(s, a) = γβ (cf. Equation (3.16)), where β is the number of steps following the
shortest path to the goal from the state s′ that the agent is in after the transition
(s, a). We will now motivate our choice of observables for the FL agent by studying
the range the optimal Q-values can take. Note that these optimal Q-values are
defined for the tabular case only, and serve as a reference for the Q-values we want
our Q-function approximator to model. We know that only one transition, that
from state 14 to the goal state 15, is rewarded. This corresponds to a Q-value
Q∗(14, R) = γ. As the only other state adjacent to the goal (state 11) is a hole, no
other transition in this environment is rewarded. Through the recursive Q-value
update rule (see Equation (3.19)), all other Q-values depend on Q∗(14, R), and are
smaller due to the discount factor and the zero reward of all other transitions. In
case of a function approximator, the Q-values may not be the same as the optimal
values, but the relationship between Q(14, R) and all other Q-values still applies
as the update rule in Equation (3.19) changes values according to the observed
reward and discounted expected reward. That is, if the function approximator
outputs values that match the range of optimal Q-values and is not fundamentally
limited in the updates that can be performed to it, the relationship above can be
replicated. This means that we have an upper bound on the range of Q-values
that we want to model which only depends on γ ≤ 1 and stays constant over all
episodes. Therefore we do not expect that Q-values need to become larger than γ

77

5.3 Numerical results

for our agent to solve the environment, and only become larger in practice if the
initialization of our model happens to yield higher values for some state-action
pairs. Motivated by this, we represent the Q-values for the four actions as the
expectation values of a measurement with the operator Zi for each of the four
qubits i ∈ {1, . . . , 4}, which we scale to lie between [0, 1] instead of [−1, 1]. Note
that even when parameter initialization yields Q-values higher than the largest
optimal Q-value, they will still be close to this value as both optimal Q-values
and those of our model are upper-bounded by 1. Figure 5.3 a) shows the average
scores of ten agents, each configuration trained with a circuit depth of 5, 10, and
15 layers, respectively. All agents manage to solve the environment, and the time
to convergence decreases as the number of layers increases. Figure 5.3 b) shows
the averaged mean absolute error (MAE) between the optimal Q-values and the
Q-values produced by the agents at each time step during training. The agents
trained on circuits of depth 15 reach the lowest values and converge earlier to an
average MAE that is roughly 0.05 lower than that of the agents trained on a circuit
of depth 5. This illustrates that as we increase the complexity of the function
approximator, the optimal Q-values can be more accurately modelled. However,
the improvement between 10 and 15 layers is relatively small compared to that
between 5 and 10 layers, similar to a saturation in performance w.r.t. number of
parameters found in classical deep RL [220]. We will study this type of scaling
behaviour more in-depth and compare it to that of NNs in Section 5.3.2.1. At the
same time, we see that producing optimal Q-values is not necessary to solve an
environment, as we argue in Section 3.2.2. In the following section, we study an
environment where we are not able to compute the optimal Q-values analytically
due to the continuous state space, but where we compare to a classical approach
to assess the quality of our solution instead.

5.3.2 Cart Pole

In the previous section, we have seen that for an environment with discrete state
space and a reward function that results in an upper bound of Q-values of one,
a simple PQC without enhanced data encoding our readout strategies suffices
to solve the environment. Now we turn to an environment that is slightly more
complex: the continuous state space necessitates a more evolved data encoding
strategy, while the reward function results in Q-values that far exceed the range of
a Z-basis measurement. In the Cart Pole v0 environment, an agent needs to learn
to balance a pole upright on a cart that moves on a frictionless track. The action

78

5.3 Numerical results

space consists of two actions: moving the cart left and right. Its state space is
continuous and consists of the following variables: cart position, cart velocity, pole
angle, and pole velocity at the tip. The cart position is bounded between ±2.4,
where values outside of this range mean leaving the space that the environment
is defined in and terminating the episode. The pole angle is bounded between
±41.8 degrees. The other two variables can take infinite values, but are bounded in
practice by how episode termination is defined. An episode terminates if the pole
angle is outside of ±12 degrees, the cart position is outside of ±2.4, or the agent
reaches the maximum steps per episode mmax = 200. For each step of the episode
(including the terminal step) the agent receives a reward of one. At the beginning
of each episode, the four variables of the environment state are randomly initialized
in a stable state within the range [-0.05, 0.05]. The episode score is computed as
the cumulative reward of all steps taken in the episode. The environment is solved
when the average score of the last 100 episodes is ≥ 195. (See [218, 109] for full
environment specification.)

As in Section 5.3.1, we now motive our choice of observables depending on how
rewards are received in this environment. For this, we recall that a Q-value gives
us the expected return for a given state-action pair,

Qπ(s, a) =
∞∑

k=0
γkrt+k+1.

Cart Pole is an episodic environment with a maximum number of time steps
H = 200 in the version of the environment we study here, so the Q-value following
optimal policy π∗ from a stable state s is

Q∗(s, a) =
H−1∑
k=0

γk.

When following an arbitrary policy π and starting in a random stable state of the
environment, the Q-value is

Qπ(s, a) =
h−1∑
k=0

γk,

where h ≤ H is the length of the episode which is determined by the policy. The
longer the agent balances the pole, the higher h, with h = H the maximum number
of steps allowed in an episode. When not considering random actions taken by the
ϵ-greedy policy, h depends solely on the performance of the agent, which changes

79

5.3 Numerical results

as the agent gets better at balancing the pole. Consequently, the Q-values we want
to approximate are lower bounded by the minimum number of steps it takes to
make the episode terminate when always picking the wrong action (i.e., the pole
doesn’t immediately fall by taking one false action alone), and upper bounded
by the Q-values assuming the optimal policy, where h = H. We stress that this
upper bound applies to the optimal policy in one episode only, and that in practice
the upper bound of the magnitude of Q-values during training depends on the
performance of the agent as well as the number of episodes played. Compared to
the range of expectation values of computational basis measurements these values
can become very high, e.g. for γ = 0.99 we get max Q∗(s, a) ≈ 86. Even when
considering that Q-values need not necessarily be close to the optimal values to
solve an environment, the range given by computational basis measurements is
clearly too small compared to the frequency with which rewards are given and the
number of episodes needed until convergence.

To give the agent the possibility to flexibly adjust it’s output range, we add
trainable weights on the output values as described in Section 5.1.2. The Q-values
now take the form

Q(s, a) =
〈
0⊗4
∣∣Uθ(s)†OaUθ(s)

∣∣0⊗4〉+ 1
2 · woa , (5.10)

where Oa=L = Z1Z2 and Oa=R = Z3Z4 are Pauli-ZZ operators on qubits (1, 2)
and (3, 4) respectively, corresponding to actions left and right. To further improve
performance, we also use data re-uploading and add trainable weights on the input
values as described in Section 5.1.1.

5.3.2.1 Comparison of data encoding and readout strategies

To illustrate the effect of data re-uploading and trainable weights on the input
and output values, we perform an ablation study and assess the impact of each
of these enhancements on learning performance. To illustrate that our proposed
architecture (i) performs better overall, and (ii) is less sensitive to changes in
hyperparameters, we show results for the best set of hyperparameters that were
found for a circuit of depth five, as well as a sub-optimal set of hyperparameters
with which it is less easy for the agents to solve the Cart Pole environment.
The hyperparameters we optimize over are: batch size, learning rates and update
frequencies of the Q-value-generating model and the target model (cf. Section 3.2.2)

80

5.3 Numerical results

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200

Sc
or

e

0 200 400 600
0

50

100

150

200

w/o data re-uploading
w/o trainable scaling
data re-uploading and
trainable scaling

(a) average scores with varying data encoding strategies
for best set of hyperparameters

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200

Sc
or

e

w/o data re-uploading
w/o trainable scaling
data re-uploading and
trainable scaling

(b) average scores with varying data encoding strategies
for sub-optimal set of hyperparameters

Figure 5.4: Comparison of data-encoding strategies for the optimal and one sub-
optimal set of hyperparameters for agents training in the Cart Pole environment.
The environment is solved when an agent has an average reward ≥ 195 for the past
100 episodes, after which training is stopped. Results are averaged over 10 agents
each, where each agent consists of 5 layers of the circuit architecture depicted in
Figure 5.1.

81

5.3 Numerical results

(see Chapter 8 for a detailed list of hyperparameter settings). Otherwise, we only
vary the hyperparameters of the enhancements we want to study. The average
performance of ten randomly initialized agents for each configuration is presented
in Figure 5.4 and Figure 5.5. Once an agent solves the environment, we stop
training and in the figures show the last encountered score for each agent in the
averages (i.e., to form averages over equal lengths of episodes, we assume that each
agent continues scoring the same value as it did in its last interaction with the
environment).

Figure 5.4 a) and b) show the effects of varying data encoding strategies. While both
data re-uploading and trainable weights on the input values alone do not produce
agents that solve the environment in up to 5000 episodes for both the best and
sub-optimal set of hyperparameters, combining both of these enhancements yields
agents that solve Cart Pole in 3000 and 600 episodes at most on average, respectively.
The fact that agents with trainable input weights and data re-uploading perform
much better than those without, emphasizes the importance of matching the PQC’s
expressivity to the learning task at hand, as described in [169]. In Figure 5.5 a)
and b), we compare agents with varying output ranges. Again, the green curves
represent agents that are enhanced with a trainable weight corresponding to each
Q-value that lets them flexibly adjust their output range during training, and
these agents succeed with both sets of the remaining hyperparameters. The purple
curves show agents with a fixed range of outputs of [0, 1], all of which stay at an
extremely low score during all 5000 episodes, as they fail to fit a good Q-function
approximation regardless of hyperparameters. The yellow curves show agents with
a fixed output range of maximally 90, which is motivated by the range of optimal
Q-values. These agents also solve the environment on average, however, they are
much more sensitive to parameter initialization and the remaining hyperparameters
than agents with a trainable output range. The low final value of the yellow agents
in Figure 5.5 a) is due to their last interaction with the environment achieving a
relatively low score on average.

As described above, the magnitude of Q-values crucially depends on the agent’s
ability to balance the pole in each episode, and as a general trend it will increase
over the course of training for agents that perform well. How large the final Q-values
of a solving agent are therefore also depends on the number of episodes it requires
until convergence, so a range which is upper bounded by 90 presumes agents that
converge relatively quickly. Considering the range of final Q-values of agents in

82

5.3 Numerical results

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200
Sc

or
e

0 200 400 600
0

50

100

150

200

trainable output weights
fixed range [0, 180]
fixed range [0, 90]
fixed range [0, 1]

(a) average scores with varying output ranges for best set
of hyperparameters

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200

Sc
or

e

trainable output weights
fixed range [0, 1]
fixed range [0, 90]
fixed range [0, 180]

(b) average scores with varying output ranges for sub-
optimal set of hyperparameters

Figure 5.5: Comparison of different readout strategies of the same agents as in
Figure 5.4 with the optimal and one sub-optimal set of hyperparameters.

83

5.3 Numerical results

the green curves, they can become as high as approximately 176 for agents that
converge late. However, as we see for agents with a fixed output range of [0, 180]
(magenta curves), increasing the range to accommodate agents that converge later
can lead to complete failure depending on the remaining hyperparameters.

5.3.2.2 Comparison to the classical DQN algorithm

In addition to investigating the effects of varying data encoding and readout
strategies, we compare the performance of our PQC model to that of the standard
DQN algorithm that uses a NN as a function approximator. We do this for varying
numbers of parameters for both the PQC and NN, and study how performance
changes as the number of parameters increases. Note that because environments are
strictly defined with a fixed number of input state variables, we cannot change the
number of qubits arbitrarily for a certain environment. Studying varying system
sizes in terms of qubits requires either artificially adjusting the data encoding
to fit a certain number of qubits, or studying completely different environments
all together. Therefore we focus on studying different model sizes in terms of
number of parameters here. Additionally, the standard approach to increase model
performance in supervised and unsupervised learning in the classical and quantum
literature alike is often to add more parameters. However, it has been shown
that this strategy does often not lead to success in classical deep RL due to the
instability of training larger networks [220]. Instead, it is much more important
to find good settings of hyperparameters (including the random initialization of
model parameters), and it is preferable to use models which are less sensitive to
changes in these settings.

To study whether this effect is also present when the function approximator is
a PQC, we compare agents with up to 30 layers of the hardware efficient ansatz
depicted in Figure 5.1. All agents use the enhancements which have shown to yield
good performance in Figure 5.4 and Figure 5.5, namely data re-uploading and
trainable input and output weights. The other hyperparameters that yield to the
best performance for each depth are found through an extensive hyperparameter
search and include the three different learning rates (Q-network, input and output
weights), batch size, and update frequency of the Q-network and target network
(see Chapter 8 for detailed settings). Figure 5.6 a) shows the average performance
over 10 quantum agents of each configuration. We indeed observe that increasing
the number of parameters is only efficient up to a certain point, after which

84

5.3 Numerical results

0 250 500 750 1000
0

100

200

5 (62)

0 250 500 750 1000
0

100

200
10 (122)

0 250 500 750 1000
0

100

200

15 (182)

0 250 500 750 1000
0

100

200

20 (242)

0 250 500 750 1000
0

100

200
25 (302)

0 250 500 750 1000
0

100

200

30 (362)

Episode

Sc
or

e

(a) PQCs, labels show: #layers (#parameters)

0 250 500 750 1000
0

100

200

(10, 10), 182

0 250 500 750 1000
0

100

200

(15, 15), 347

0 250 500 750 1000
0

100

200
(20, 20), 562

0 250 500 750 1000
0

100

200

(24, 24), 770

0 250 500 750 1000
0

100

200

(30, 30), 1142

0 250 500 750 1000
0

100

200

(64, 64), 4610

Episode

Sc
or

e

(b) NNs, labels show: (#units in hidden layer 1, 2),
#parameters

Figure 5.6: Comparison of classical and quantum agents with varying numbers of
parameters in the Cart Pole environment. Each sub-figure contains results averaged
over ten agents, and the vertical dashed line marks the average number of episodes
until solving the environment. We performed a hyperparameter optimization for
each parameter configuration separately, and show the best setting for each. (See
Chapter 8 for all settings and a list of hyperparameters that were searched over.)

85

5.3 Numerical results

additional layers lead to slower convergence. The best-performing configuration on
average is a PQC with 25 layers and 302 parameters, which takes 500 episodes on
average to solve the Cart Pole environment.

To investigate the performance of the classical DQN algorithm which uses a NN as
the function approximator, we compare NNs with two hidden layers with varying
numbers of units. As simply increasing the depth of the NNs has not been beneficial
in a RL setting, it has been proposed to use shallow networks with increased width
instead [220]. Therefore we keep the depth of our NNs fixed at two, and vary the
width by changing the number of units in each hidden layer. This configuration is
also inspired by well-performing agents on the official OpenAi Gym leaderboard
[226].1 We make the same observation for the NNs in Figure 5.6 b) as we did for
the PQCs – increasing the number of parameters does not necessarily improve
performance. The best-performing NN is one with 20 units in each of its hidden
layers, which yields a network with 562 parameters overall that solves the Cart Pole
environment in 250 episodes on average. Comparing the configurations of PQC
and NN that perform best on average, the best NN configuration takes roughly
half as many episodes on average to solve Cart Pole than the best PQC, and does
this with roughly twice as many parameters. Notably, the PQCs seem to suffer
more from an instability during training as the number of parameters is increased
than the NNs do. We also show a comparison of the best individual (not averaged)
PQC and NN agents in Figure 5.7. Here, the gap is relatively small: the best PQC
(5 layers, 62 parameters) takes 206 episodes to solve Cart Pole, while the best NN
(2 hidden layers with 30 units each, 1142 parameters) takes 186 episodes.

Finally, we note that unlike for the Frozen Lake environment, it is not straightfor-
ward to compute optimal Q-values for Cart Pole as its state space is continuous. A
trained model that is known to implement the optimal policy (i.e., correct ordering
of Q-values for all (s, a)-pairs) could be used as a baseline to compare other models
to, but the magnitudes of Q-values can highly vary even among agents that solve
the environment so this comparison will not provide much insight, which is why
we refrain from including it here. Nonetheless, we provide a visualization of the
Q-values learned by one of our best-performing quantum models in Chapter 8. We
observe that these Q-values have a maximum value close to what we expected
from an optimal agent (i.e., 86).

1However, we note that it is hard to find reliable benchmarks on the Cart Pole environment in
classical literature, as it was already too small to be considered in state-of-the-art deep learning
when the DQN algorithm was introduced in [119].

86

5.4 Conclusion

0 50 100 150 200
Episode

0

25

50

75

100

125

150

175

200

Sc
or

e

NN, (30, 30), 1142
PQC, 5 (62)

Figure 5.7: Best PQC and NN from the configurations we study in Figure 5.6. The
best PQC (orange, 5 layers, 62 parameters) takes 20 episodes longer to solve Cart
Pole than the best NN (blue, two hidden layers with 30 units each, 1142 parameters).

5.4 Conclusion

In this chapter, we have proposed a quantum model for deep Q-learning which
can encode states of environments with discrete and continuous state spaces. We
have illustrated the importance of picking the observables of a quantum model
such that it can represent the range of optimal Q-values that this algorithm
should learn to approximate. One crucial difference between PQCs and classical
methods based on NNs, namely the former’s restricted range of output values
defined by its measurement operators, was identified as a major impediment to
successfully perform Q-learning in certain types of environments. Based on the
range of optimal Q-values, we illustrate how an informed choice can be made for
the quantum model’s observables. We also introduce trainable weights on the
observables of our model to achieve a flexible range of output values as given
by a NN and empirically show the benefit of this strategy on the Cart Pole
environment by performing ablation studies. Our results show that a trainable
output range can lead to better performance as well as lower sensitivity to the
choice of hyperparameters and random initialization of parameters of the model.
We also perform ablation studies on a number of data encoding techniques which
enhance the expressivity of PQCs, namely data re-uploading [168] and trainable

87

5.4 Conclusion

weights on the input [168, 150]. We show the benefit of combining both approaches
in the Cart Pole environment, where any of the two encoding strategies on its
own does not suffice to reliably solve the environment. Our results illustrate the
importance of architectural choices for QML models, especially for a RL algorithm
as Q-learning that has very specific demands on the range of output values the
model can produce.

Additionally, we investigated whether recent results in classical deep Q-learning also
hold for PQC-based Q-learning, namely that increasing the number of parameters
in a model might lead to lower performance due to instability in training. To
evaluate the performance of our model compared to the classical approach where
the same DQN algorithm is used with a NN as the Q-function approximator,
we study the performance of a number of classical and quantum models with
increasing numbers of parameters. Our results confirm that PQC-based agents
behave similarly to their NN counterparts as the number of parameters increases.
Performance only increases up to a certain point and then declines afterward. We
find that in both cases, the hyperparameter settings (and in case of the PQC
data encoding and readout strategies) are the determining factors for a model’s
success much more than the number of parameters. This is in contrast to previous
results for training PQCs on supervised and unsupervised learning tasks, where
additional layers are likely to increase performance [213, 212, 139]. The effect that
an increased number of parameters hampers performance in Q-learning also seems
to be more prominent in PQCs than in NNs, which raises the question whether we
need additional mechanisms to increase learning stability in this setting than the
ones from classical literature.

In addition to our numerical studies, we also investigated whether a recent proof
of quantum advantage for policy gradient RL agents [150] implies a separation
of classical and quantum Q-learning agents as well. We show how optimal Q-
values for state-action pairs can be efficiently computed given access to an optimal
policy in the SL-DLP family of environments from [150]. We explain additional
requirements on the structure of states in a given environment that need to be
fulfilled to allow efficiently inferring optimal Q-values from optimal policies in more
general environments. However, the separation results in [150] only guarantee
that quantum learners can be constructed in general, and not that the optimal
policy can be learned by policy gradient methods directly. It is an interesting open
question if a separation between classical and quantum agents can also be proven

88

5.4 Conclusion

for learning algorithms that use policy gradient or Q-value updates as shown
in Equation (3.19). This opens up the path to future investigations of possible
quantum advantages of these types of quantum agents in relevant settings.

89

