
Quantum machine learning: on the design, trainability and
noise-robustness of near-term algorithms
Skolik, A.

Citation
Skolik, A. (2023, December 7). Quantum machine learning: on the design,
trainability and noise-robustness of near-term algorithms. Retrieved from
https://hdl.handle.net/1887/3666138

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3666138

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3666138

ch
ap

te
r

4
Layerwise learning for quantum neural net-
works

A key aspect of successfully training the variational quantum machine learning
models introduced in Section 3.3 is the classical outer loop that optimizes the circuit
parameters. One of the most popular choices for parameter optimization in this
context are gradient-based methods such as stochastic gradient descent, inspired by
their extensive use in the optimization of classical NNs. While the gradient-based
backpropagation algorithm [87] is one of the most successful methods used to train
NNs today, its direct translation to quantum neural network (QNN)s has been
challenging. For QNNs, parameter updates for minimizing an objective function are
calculated by stochastic gradient descent, based on direct evaluation of derivatives
of the objective with respect to parameters in a PQC, as described in Section 2.2.1.
The PQC is executed on a quantum device, while the parameter optimization
routine is handled by a classical outer loop. The outer loop’s success depends on
the quality of the quantum device’s output, which in the case of gradient-based
optimizers are the partial derivatives of the loss function with respect to the
PQC.

As the authors of [41] have shown, gradients of random PQCs vanish exponentially
in the number of qubits, as a function of the number of layers. Furthermore, the
authors of [44] show that this effect also depends heavily on the choice of cost
function, where the barren plateau effect is worst for global cost functions like the
fidelity between two quantum states. Furthermore, it was shown that the partial
derivatives vanish exponentially in the number of qubits under local Pauli noise,
if the depth of the circuit grows linearly with the number of qubits [49]. When
executed on a NISQ device, the issue is further amplified because small gradient

44

values can not be distinguished from hardware noise, or will need exponentially
many measurements to do so. These challenges motivate the study of training
strategies that avoid initialization on a barren plateau, as well as avoid creeping
onto a plateau during the optimization process.

Indeed, a number of different optimization strategies for PQCs have been explored,
including deterministic and stochastic optimizers [182, 23, 183, 184, 185, 186].
Regardless of the specific form of parameter update, the magnitudes of partial
derivatives play a crucial role in descending towards the minimum of the objective
function. Excessively small values will slow down the learning progress significantly,
prevent progress, or even lead to false convergence of the algorithm to a sub-
optimal objective function value. Crucially to this work, small values ultimately
lead to a poor signal-to-noise ratio in PQC training algorithms due to the cost of
information readout on a quantum device. Even if only sub-circuits of the overall
circuit become sufficiently random during the training process, gradient values in
a PQC will become exponentially small in the number of qubits [41]. Moreover,
in quantum-classical algorithms there is a fundamental readout complexity cost
of O(1/ϵ) [187] as compared to a similar cost of O(log(1/ϵ)) classically. This is
because classical arithmetic with floating point numbers for calculating analytic
gradients may be done one digit at a time, incurring a cost O(log(1/ϵ)). In contrast,
quantum methods that require estimation of expectation values by measurements,
such as those utilized in NISQ algorithms, converge similarly to classical Monte
Carlo sampling. This means that small gradient magnitudes can result in an
exponential signal-to-noise problem when training quantum circuits, as the number
of measurements required to precisely estimate a value is related to the magnitude
of that value. As a consequence, gradients can become too small to be useful even
for modest numbers of qubits and circuit depths, and a randomly initialized PQC
will start the training procedure on a saddle point in the training landscape with
no interesting directions in sight.

To utilize the capabilities of PQCs, methods that overcome this challenge have
to be studied. Due to the vast success of gradient-based methods in the classical
regime, this work is concerned with understanding how these methods can be
adapted effectively for quantum circuits. We propose layerwise learning, where
individual components of a circuit are added to the training routine successively.
By starting the training routine in a shallow circuit configuration, we avoid the
unfavorable type of random initialization described in [41] and Section 2.2.1.2,

45

which is inherent to randomly initialized circuits of even modest depth. In our
approach, the circuit structure and number of parameters is successively grown
while the circuit is trained, and randomization effects are contained to subsets of
the parameters at all training steps. This does not only avoid initializing on a
plateau, but also reduces the probability of creeping onto a plateau during training,
e.g., when gradient values become smaller on approaching a local minimum.

We compare our approach to a simple strategy to avoid initialization on a barren
plateau, namely setting all parameters to zero, and show how the use of a layerwise
learning strategy increases the probability of successfully training a PQC with
restricted precision induced by shot noise by up to 40% for classifying images
of handwritten digits. Intuitively, this happens for reasons that are closely tied
to the sampling complexity of gradients on quantum computers. By restricting
the training and randomization to a smaller number of circuit components, we
focus the magnitude of the gradient into a small parameter manifold. This avoids
the randomization issue associated with barren plateaus, but importantly is also
beneficial for a NISQ quantum cost model, which must stochastically sample from
the training data as well as the components of the gradient. Simply put, with more
magnitude in fewer components at each iteration, we receive meaningful training
signal with fewer quantum circuit repetitions.

Another strategy to avoid barren plateaus was recently proposed by Grant et
al. [53], where only a small part of the circuit is initialized randomly, and the
remaining parameters are chosen such that the circuit represents the identity
operation. This prevents initialization on a plateau, but only does so for the
first training step, and also trains a large number of parameters during the whole
training routine. Another way to avoid plateaus was introduced in [54], where
multiple parameters of the circuit are enforced to take the same value. This reduces
the overall number of trained parameters and restricts optimization to a specific
manifold, at the cost of requiring a deeper circuit for convergence [188]. Aside from
the context of barren plateaus, [189] investigates a layer-by-layer training scheme
to speed up the learning process of a variational quantum eigensolver.

In the classical setting, layerwise learning strategies have been shown to produce
results comparable to training a full network with respect to error rate and time
to convergence for classical NNs [190, 191]. It has also been introduced as an
efficient method to train deep belief networks, which are generative models that
consist of restricted Boltzmann machines (RBMs) [192]. Here, multiple layers of

46

4.1 Layerwise learning

RBMs are stacked and trained greedily layer-by-layer, where each layer is trained
individually by taking the output of its preceding layer as the training data. In
classical NNs, [193] shows that this strategy can be successfully used as a form
of pre-training of the full network to avoid the problem of vanishing gradients
caused by random initialization. In contrast to greedy layerwise pre-training, our
approach does not necessarily train each layer individually, but successively grows
the circuit to increase the number of parameters and therefore its representational
capacity.

4.1 Layerwise learning

In Section 2.2.1.2, we described why training random PQCs with growing system
size becomes increasingly harder, as the variance of gradients vanishes exponentially
in the number of qubits and layers for these types of circuits. This necessitates
the search for i) non-random circuit structures that are immune to this issue, or ii)
optimization techniques that can combat the problem of vanishing gradients. We
will later focus our attention on i) in Chapter 6, while in this section, we introduce
a training method for PQCs in the line of ii). We call this optimization technique
layerwise learning (LL) for parametrized quantum circuits, a training strategy
that creates an ansatz during optimization, and only trains subsets of parameters
simultaneously to ensure a favorable signal-to-noise ratio. The algorithm consists
of two phases.

Phase one: The first phase of the algorithm constructs the ansatz by successively
adding layers. The training starts by optimizing a circuit that consists of a small
number s of start layers, e.g. s = 2, where all parameters are initialized as zero.
We call these the initial layers l1(θ1):

l1(θ1) =
s∏

j=1
U1j (θ1j)W , (4.1)

where θ1 is the set of angles parametrizing unitary U1j
, and contains one angle for

each local rotation gate per qubit, and W represents operators connecting qubits.
The number of start layers is a hyperparamter, and should be chosen so that the
initial circuit is shallow, but still sufficiently deep in order to advance training.
How many start layers are required to fulfill this depends strongly on the learning
task.

47

4.1 Layerwise learning

After a fixed number of epochs, another set of layers is added, and the previous
layers’ parameters are frozen. We define one epoch as the set of iterations it takes
the algorithm to see each training sample once, and one iteration as one update
over all trainable parameters. E.g., an algorithm trained on 100 samples with
a batch size of 20 will need 5 iterations to complete one epoch. The number of
epochs per layer, el, is a tunable hyperparameter. Each consecutive layer li(θi)
takes the form

li(θi) =
p∏

j=1
Uij

(θij
)W , (4.2)

with a fixed W , as the connectivity of qubits stays the same during the whole
training procedure, and p denoting the number of layers added at once. All angles
in θi are set to zero when they are added, which provides additional degrees of
freedom for the optimization routine without perturbing the current solution. The
parameters added with each layer are optimized together with the existing set of
parameters of previous layers in a configuration dependent on two hyperparameters
p and q. The hyperparameter p determines how many layers are added in each
step, and q specifies after how many layers the previous layers’ parameters are
frozen. E.g., with p = 2 and q = 4, we add two layers in each step, and layers more
than four steps back from the last layer are frozen. This process is repeated either
until additional layers do not yield an improvement in objective function value,
or until a desired depth is reached. The final circuit that consists of L layers can
then be represented by

U(θ) =
L∏

i=1
li(θi) . (4.3)

Phase two: In the second phase of the algorithm, we take the pre-trained circuit
acquired in phase one, and train larger contiguous partitions of layers at a time.
The hyperparameter r specifies the percentage of parameters that is trained in
one step, e.g., a quarter or a half of the circuit’s layers. The number of epochs for
which these partitions are trained is also controlled by el, which we keep at the
same value as in phase one for the sake of simplicity, but which could in principle
be treated as a separate hyperparameter. In this setting, we perform additional
optimization sweeps where we alternate over training the specified subsets of
parameters simultaneously, until the algorithm converges. This allows us to train
larger partitions of the circuit at once, as the parameters from phase one provide a
sufficiently non-random initialization. As the randomness is contained to shallower
sub-circuits during the whole training routine, we also minimize the probability to

48

4.1 Layerwise learning

creep onto a plateau during training as a consequence of stochastic or hardware
noise present in the sampling procedure.

In general, the specific structure of layers li(θi) can be arbitrary, as long as
they allow successively increasing the number of layers, like in the hardware-
efficient ansatz introduced in [170]. In this work, we indirectly compare the
quality of gradients produced by our optimization strategy with respect to the
results described in section 2.2.1.2 through overall optimization performance, so
we consider circuits that consist of layers of randomly chosen gates as used in [41].
They can be represented in the following form:

U(θ) =
L∏

l=1
Ul(θl)W , (4.4)

where Ul(θl) =
∏n

i=1 exp(−iθl,iVi) with a Hermitian operator Vi, n is the number
of qubits, and W is a generic fixed unitary operator. For ease of exposition, we
drop the subscripts of the individual gates in the remainder of this work. We
consider single qubit generators V which are the Pauli operators X, Y and Z for
each qubit, parametrized by θl, while W are CZ gates coupling arbitrary pairs of
qubits. An example layer is depicted in Figure 4.1.

The structure and parameters of a quantum circuit define which regions of an
optimization landscape given by a certain objective function can be captured.
As the number of parametrized non-commuting gates grows, this allows a more
fine-grained representation of the optimization landscape [188]. In a setting where
arbitrarily small gradients do not pose a problem, e.g. noiseless simulation of PQC
training, it is often preferable to simultaneously train all parameters in a circuit to
make use of the full range of degree of freedom in the parameter landscape. We
will refer to this training scheme as complete-depth learning (CDL) from now on.
In a noiseless setting, LL and CDL will perform similarly w.r.t. the number of
calls to a quantum processing unit (QPU) until convergence and final accuracy
of results, as we show in the appendix. This is due to a trade off between the
number of parameters in a circuit and the number of sampling steps to convergence
[188]. A circuit with more parameters will converge faster in number of training
epochs, but will need more QPU calls to train the full set of parameters in each
epoch. On the other hand, a circuit with fewer parameters will show a less steep
learning curve, but will also need fewer calls to the QPU in each update step
due to the reduced number of parameters. When we consider actual number of

49

4.1 Layerwise learning

Figure 4.1: Sample circuit layout of the first layer in an LL circuit. D represents
the data input which is only present once at the beginning of the circuit. The full
circuit is built by successively stacking single rotation gates and two qubit gates to
form all-to-all connected layers. For the classification example we show in 4.2, a
measurement gate is added on the last qubit after the last layer.

calls to a quantum device until convergence as a figure of merit, training the full
circuit and performing LL will perform similarly in a noise-free setting for this
reason. However, this is not true when we enter a more realistic regime, where
measurement of gradient values will be affected by stochastic as well as hardware
noise, as we will show on the example of shot noise in Section 4.2. In such more
realistic settings, the layerwise strategy offers considerable advantage in time to
solution and quality of solution.

As noted in the appendix of [41], the convergence of a circuit to a 2-design does not
only depend on the number of qubits, their connectivity and the circuit depth, but
also on the characteristics of the cost function used. This was further investigated
in [44], where cost functions are divided into those that are local and global, in the
sense that a global cost function uses the combined output of all qubits (e.g., the
fidelity of two states), whereas a local cost function compares values of individual
qubits or subsets thereof (e.g., a majority vote). Both works show that for global
cost functions, the variance of gradients decays more rapidly, and that barren
plateaus will present themselves even in shallow circuits. As our training strategy
relies on using larger gradient values in shallow circuit configurations, especially
during the beginning of the training routine, we expect that LL will mostly yield
an advantage in combination with local cost functions.

50

4.2 Results

4.2 Results

4.2.1 Setup

To examine the effectiveness of LL, we use it to train a circuit with fully-connected
layers as described in Section 4.1. While fully-connected layers are not realistic
on NISQ hardware, we choose this configuration for our numerical investigations
because it leads circuits to converge to a 2-design with the smallest number of
qubits and layers [41], which allows us to reduce the computational cost of our
simulations while examining some of the most challenging situations. To compare
the performance of LL and CDL we perform binary classification on the MNIST
data set of handwritten digits, where the circuit learns to distinguish between the
numbers six and nine. We use the binary cross-entropy as the training objective
function, given by

−L(θ) = −
(
y log (E(θ)) + (1− y) log (1− E(θ))

)
, (4.5)

where log is the natural logarithm, E(θ) is given by a measurement in the Z-
direction M = Zo on qubit o which we rescale to lie between 0 and 1 instead of −1
and 1, y is the correct label value for a given sample, and θ are the parameters
of the PQC. The loss is computed as the average binary cross entropy over the
batch of samples. In this case, the partial derivative of the loss function is given
by

∂L(θ)
∂θi

= y
1

E(θ)
∂E(θ)
∂θi

− (1− y) 1
1− E(θ)

∂E(θ)
∂θi

. (4.6)

To calculate the objective function value, we take the expectation value of the
circuit of observable M ,

E(θ) = ⟨ψ|U†(θ)MU(θ) |ψ⟩ , (4.7)

where |ψ⟩ is the initial state of the circuit given by the training data set. The
objective function now takes the form L(E(θ)) and the partial derivative for
parameter θi is defined using the chain rule as

∂L
∂θi

= ∂L
∂E(θi)

· ∂E(θi)
∂θi

. (4.8)

To compute gradients of E(θ), we use the parameter-shift rule [39, 33] as described
in Section 2.2.1.1. We note that in the numerical implementation, care must be

51

4.2 Results

taken to avoid singularities in the training processes related to E(θ) = {0, 1}
treated similarly for both the loss and its derivative (we clip values to lie in
[10−15, 1 − 10−15]). We choose the last qubit in the circuit as the readout o,
as shown in Figure 4.1. An expectation value of 0 (1) denotes a classification
result for class sixes (nines). As we perform binary classification, we encode the
classification result into one measurement qubit for ease of implementation. This
can be generalized to multi-label classification by encoding classification results
into multiple qubits, by assigning the measurement of one observable to one data
label. We use the Adam optimizer [38] with varying learning rates to calculate
parameter updates and leave the rest of the Adam hyperparameters at their typical
publication values.

To feed training data into the PQC, we use qubit encoding in combination with
principal component analysis (PCA), following [24]. Due to the small circuits
used in this work, we have to heavily downsample the MNIST images. For this, a
PCA is run on the data set, and the number of principal components with highest
variance corresponding to the number of qubits is used to encode the data into the
PQC. This is done by scaling the component values to lie within [0, 2π), and using
the scaled values to parametrize a data layer consisting of local X-gates. In case
of 10 qubits, this means that each image is represented by a vector d with the 10
components, and the data layer can be written as

∏10
i=1 exp(−idiXi).

Different circuits of the same size behave more and more similarly during training
as they grow more random as a direct consequence of the results in [41]. This
means that we can pick a random circuit instance that, as a function of its number
of qubits and layers, lies in the 2-design regime as shown in Figure 2.3, and gather
representative training statistics on this instance. As noted in Section 4.1, an LL
scheme is more advantageous in a setting where training the full circuit is infeasible,
therefore we pick a circuit with 8 qubits and 21 layers for our experiments, at which
size the circuit is in this regime. When using only a subset of qubits in a circuit as
readout, a randomly generated layer might not be able to significantly change its
output. For example, if in our simple circuit in Figure 4.1, U5(θ1,5) is a rotation
around the Z axis followed only by CZ gates, no change in θ1,5 will affect the
measurement outcome on the bottom qubit. When choosing generators randomly
from {X,Y, Z} in this setting, there is a chance of 1/3 to pick an unsuitable
generator. To avoid this effect, we enforce at least one X gate in each set of layers

52

4.2 Results

that is trained. For our experiments, we take one random circuit instance and
perform LL and CDL with varying hyperparameters.

4.2.2 Sampling requirements

To give insight into the sampling requirements of our algorithm, we have to
determine the components that we need to sample. Our training algorithm makes
use of gradients of the objective function that are sampled from the circuit on
the quantum computer via the parameter shift rule as described in Section 4.2.1.
The precision of our gradients now depends on the precision of the expectation
values for the two parts of the r.h.s. in Equation 2.16. The estimation of an
expectation value scales in the number of measurements N as O(1

ϵα), with error ϵ
and α > 1 [187]. For most near-term implementations using operator averaging,
α = 2, resembling classical central limit theorem statistics of sampling. This means
that the magnitude of partial derivatives ∂E

∂θi
of the objective function directly

influences the number of samples needed by setting a lower bound on ϵ, and
hence the signal-to-noise ratio achievable for a fixed sampling cost. If all of the
magnitudes of ∂E

∂θi
are much smaller than ϵ, a gradient based algorithm will exhibit

dynamics more resembling a random walk than optimization.

4.2.3 Comparison to CDL strategies

We compare LL to a simple approach to avoid initialization on a barren plateau,
which is to set all circuit parameters in a circuit to zero followed by a CDL
training strategy. We argue that considering the sampling requirements of training
PQCs as described in Section 4.2.2, an LL strategy will be more frugal in the
number of samples it needs from the QPU. Shallow circuits produce gradients
with larger magnitude as can be seen in Figure 2.3, so the number of samples 1/ϵ2

we need to achieve precision ϵ directly depends on the largest component in the
gradient. This difference is exhibited naturally when considering the number of
samples as a hyperparameter in improving time to solution for training. In this low
sample regime, the training progress depends largely on the learning rate. A small
batch size and low number of measurements will increase the variance of objective
function values. This can be balanced by choosing a lower learning rate, at the cost
of taking more optimization steps to reach the same objective function value. We
argue that the CDL approach will need much smaller learning rates to compensate
for smaller gradient values and the simultaneous update of all parameters in each

53

4.2 Results

training step, and therefore more samples from the QPU to reach similar objective
function values as LL. We compare both approaches w.r.t. their probability to
reach a given accuracy on the test set, and infer the number of repeated re-starts
one would expect in a real-world experiment based on that.

In order to easily translate the simulated results here to experimental impact, we
also compute an average runtime by assuming a sampling rate of 10kHz. This value
is assumed to be realistic in the near term future, based on current superconducting
qubit experiments shown in [2] which were done with a sampling rate of 5kHz, not
including cloud latency effects. The cumulative number of individual measurements
taken from a quantum device during training is defined as

ri = ri−1 + 2npmb , (4.9)

where np is the number of parameters (taken times two to account for the parameter
shift rule shown in Section 4.2.1), m the number of measurements taken from
the quantum device for each expectation value estimation, and b the batch size.
This gives us a realistic estimate of the resources used by both approaches in an
experimental setting on a quantum device.

4.2.4 Numerical results

For the following experiments, we use a circuit with 8 qubits, 1 initial layer and 20
added layers, which makes 21 layers in total. As can be seen in Figure 2.3, this is
a depth where a fully random circuit is expected to converge to a 2-design for the
all-to-all connectivity that we chose. After doing a hyperparameter search over
p, q and el, we set the LL hyperparameters to p = q = 2 and el = 10, with one
initial layer that is always active during training. This means that three layers are
trained at once in phase one of the algorithm, and 10 and 11 layers are trained as
one contiguous partition in phase two, respectively. For CDL, the same circuit is
trained with all-zero initialization.

We argue that LL not only avoids initialization on a plateau, but is also less
susceptible to randomization during training. In NISQ devices, this type of
randomization is expected to come from two sources: (i) hardware noise, (ii) shot
noise, or measurement uncertainty. The smaller the values we want to estimate
and the less exact the measurements we can take from a QPU are, the more
often we have to repeat them to get an accurate result. Here, we investigate the
robustness of both methods to shot noise. The hyperparameters we can tune are the

54

4.2 Results

number of measurements m, batch size b and learning rate η. The randomization
of circuits during training can be reduced by choosing smaller learning rates to
reduce the effect of each individual parameter update, at the cost of more epochs
to convergence. Therefore we focus our hyperparameter search on the learning rate
η, after fixing the batch size to b = 20 and the number of measurements to m = 10.
This combination of m and b was chosen for a fixed, small m after conducting a
search over b ∈ {20, 50, 100} for which both LL and CDL could perform successful
runs that do not diverge during training. As we lower the batch size, we also
increase the variance in objective function values similar to when the number of
measurements is reduced, so these two values have to be tuned to match each
other. In the remainder of this section we show results for these hyperparameters,
and different learning rates for both methods. All of the results are based on 100
runs of the same hyperparameter configurations. We use 50 samples of each class
to calculate the cross entropy during training, and another 50 samples per class to
calculate the test error. To compute the test error, we let the model predict binary
class labels for each presented sample, where a prediction ≤ 0.5 is interpreted as
class 0 (sixes) and > 0.5 as class 1 (nines). The test error is then the average error
over all classified samples.

Figure 4.2 shows average runtimes of LL and CDL runs that have a final average
error on the test set that is less than 0.5, which corresponds to random guessing.
We compute the runtime by computing the number of samples taken as shown
in Section 4.2.3 and assume a sampling rate of 10kHz. Here, LL reaches a lower
error on the test set on average, and also requires a lower runtime to get there.
Compared to the CDL configuration with the highest success probability shown in
Figure 4.3 (b) (red line), the best LL configuration (blue line) takes approximately
half as much time to converge. This illustrates that LL does not only increase the
probability of successful runs, but can also drastically reduce the runtime to train
PQCs by only training a subset of all parameters at a given training step. Note
also that the test error of CDL with η = 0.05 and η = 0.01 slowly increases at later
training steps, which might look like overfitting at first. Here it is important to
emphasize that these are averaged results, and what is slowly increasing is rather
the percentage of circuits that have randomized or diverged at later training steps.
The actual randomization in an individual run usually happens with a sudden
jump in test error, after which the circuit can not return to a regular training
routine anymore.

55

4.2 Results

0 100 200 300 400 500
minutes (sampling rate 10kHz)

0.30

0.35

0.40

0.45

0.50

Te
st

 e
rro

r

LL, = 0.01, 71/100
LL, = 0.005, 72/100
CDL, = 0.001, 56/100
CDL, = 0.005, 64/100
CDL, = 0.05, 55/100
CDL, = 0.01, 58/100

Figure 4.2: Average test error as a function of runtimes for runs that have a final
average test error less than 0.5 (random guessing) over the last ten training epochs,
assuming a sampling rate of 10kHz and number of samples taken as described in
Section 4.2.3. Numbers in labels indicate how many out of 100 runs were included
in the average, i.e. fraction of runs that did not diverge in training, exhibiting less
than 50% error on the test set. Increasing test error for CDL runs with η = 0.01
and η = 0.05 is not due to overfitting, but due to a larger number of runs in the
average that start creeping onto a plateau due to the increased learning rate.

56

4.2 Results

0.50 0.55 0.60 0.65 0.70
Accuracy

101

102

Ex
pe

ct
ed

 re
pe

tit
io

ns

LL, = 0.01
LL, = 0.005
CDL, = 0.001
CDL, = 0.005
CDL, = 0.01
CDL, = 0.05

(a) expected number of repetitions

0.50 0.55 0.60 0.65 0.70 0.75
Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s p

ro
ba

bi
lit

y LL, = 0.01
LL, = 0.005
CDL, = 0.001
CDL, = 0.005
CDL, = 0.01
CDL, = 0.05

(b) success probability

Figure 4.3: LL decreases expected run time and increases probability of success on
random restarts. (a) Expected number of experiment repetitions needed until a
given configuration reaches a certain accuracy defined as (1 − errortest), where
errortest is the average error on the test set, for LL and CDL with different learning
rates. One experiment repetition constitutes in one complete training run of a
circuit to a fixed number of epochs. Results are based on 100 runs for each
configuration with m = 10, b = 20, and in case of LL, el = 10. LL circuits better
avoid randomization during training, and therefore need less than two repetitions
on average for learning rates with varying magnitudes. CDL is more susceptible to
entering a plateau during training in a noisy environment, as all parameters are
affected on a perturbative update. This effect becomes more pronounced as learning
rates are increased. (b) Probability of reaching a certain accuracy on the test set for
the same configurations shown in (a). Success probability of LL stays constant up
to an accuracy of 0.65 and starts decaying from there, as fewer runs reach higher
accuracies on average. All CDL configurations have a lower success probability than
the LL configurations overall, which decays almost linearly as we demand a higher
average accuracy. Notably, the CDL configurations with highest success probability
are also the ones with the highest runtime, as shown in Figure 4.2.

57

4.3 Conclusion and outlook

Figure 4.3 (a) shows the number of expected training repetitions one has to perform
to get a training run that reaches a given accuracy on the test set, where we define
accuracy as (1− errortest). One training run constitutes training the circuit to a
fixed number of epochs, where the average training time for one run is shown in
Figure 4.2. An accuracy of 0.5 corresponds to random guessing, while an accuracy
of around 0.73 is the highest accuracy any of the performed runs reached, and
corresponds to the model classifying 73% of samples correctly. We note that in
a noiseless setting as shown in Chapter 8, both LL and CDL manage to reach
accuracies around 0.9, and the strong reduction in number of measurements leads
to a decrease in the final accuracy reached by all models. We find that LL performs
well for different magnitudes of learning rates as η = 0.01 and η = 0.005, and
that these configurations have a number of expected repetitions that stays almost
constant as we increase the desired accuracy. On average, one needs less than two
restarts to get a successful training run when using LL. For CDL, the number of
repetitions increases as we require the test error to reach lower values. The best
configurations were those with η = 0.001 and η = 0.005, which reach similarly
low test errors as LL, but need between 3 and 7 restarts to succeed in doing so.
This is due to the effect of randomization during training, which is caused by
the high variance in objective function values, and the simultaneous update of all
parameters in each training step. In Figure 4.3 (b), we show the probability of
each configuration shown in (a) to reach a given accuracy on the test set. All CDL
configurations have a probability lower than 0.3 to reach an accuracy above 0.65,
while LL reaches this accuracy with a probability of over 0.7 in both cases. This
translates to the almost constant number of repetitions for LL runs in Figure 4.3
(a). Due to the small number of measurements and the low batch size, some of
the runs performed for both methods fail to learn at all, which is why none of the
configurations have a success probability of 1 for all runs to be better than random
guessing.

4.3 Conclusion and outlook

We have shown that the effects of barren plateaus in QNN training landscapes
can be dampened by avoiding Haar random initialization and randomization
during training through layerwise learning. While performance of LL and CDL
strategies is similar when considering noiseless simulation and exact analytical
gradients, LL strategies outperform CDL training on average when experimentally

58

4.3 Conclusion and outlook

realistic measurement strategies are considered. Intuitively, the advantage of this
approach is drawn from both preventing excess randomization and concentrating
the contributions of the training gradient into fewer, known components. Doing
so directly decreases the sample requirements for a favorable signal-to-noise ratio
in training with stochastic quantum samples. To quantify this in a cost effective
manner for simulation, we reduce the number of measurements taken for estimating
each expectation value. We show that LL can reach lower objective function values
with this small number of measurements, while reducing the number of overall
experiment repetitions until convergence to roughly half of the repetitions needed
by CDL when comparing the configurations with highest success probability. This
makes LL a more suitable approach for implementation on NISQ devices, where
taking a large number of measurements is still costly and where results are further
diluted by decoherence effects and other machine errors. While our approach relies
on manipulating the circuit structure itself to avoid initializing a circuit that forms
a 2-design, it can be combined with approaches that seek to find a favorable initial
set of parameters as shown in [53]. The combination of these two approaches by
choosing good initial parameters for new layers is especially interesting as the
circuits grow in size. This work has also only explored the most basic training
scheme of adding a new layer after a fixed number of epochs, which can still be
improved by picking smarter criteria like only adding a new layer after the previous
circuit configuration converged, or replacing gates in layers which provide little
effect on changes of the objective function value. Moreover, one could consider
training strategies which group sets of coordinates rather than circuit layers. These
possibilities provide interesting directions for additional research, and we leave
their investigation for future works.

59

