
Quantum machine learning: on the design, trainability and
noise-robustness of near-term algorithms
Skolik, A.

Citation
Skolik, A. (2023, December 7). Quantum machine learning: on the design,
trainability and noise-robustness of near-term algorithms. Retrieved from
https://hdl.handle.net/1887/3666138

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3666138

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3666138

ch
ap

te
r

2
Quantum computing

Quantum computing is a rapidly evolving field that has the potential to change
the way we solve a number of complex computational problems. In recent years,
there has been significant progress in the development of quantum computers,
with researchers and companies around the world working to build these types
of machines. In terms of current hardware implementations, there are two main
approaches to quantum computing: quantum annealing and gate-based quantum
computing. A quantum annealer is a special-purpose device tailored to solve
combinatorial optimization problems, based on the idea to slowly evolve a system
until it reaches its lowest-energy state, which represents the optimal solution to a
given problem. Gate-based quantum computing, on the other hand, involves the
use of quantum gates to manipulate qubits, the basic units of quantum information.
This approach is more flexible and has the potential to perform a wider range of
calculations than quantum annealing, but it is also more difficult to implement in
practice due to the need to maintain the delicate quantum states of the qubits.
In this thesis, we focus on the latter paradigm of quantum computing, and this
chapter provides an introduction to the most important concepts in the gate-based
formalism, and the specific type of algorithms we study in later chapters.

2.1 Gate model quantum computing

Quantum computers are devices that harness quantum mechanical effects to process
information. In order to utilize these types of effects, one has to define a quantum
system to perform operations on. A simple and broadly used approach to this are
two-level systems called qubits, which form the building blocks of most quantum
algorithms. Mathematically, a qubit can be represented as the quantum state

5

2.1 Gate model quantum computing

|ψ⟩ ∈ C2 with amplitudes α and β,

|ψ⟩ = α |0⟩+ β |1⟩ = α

(
1
0

)
+ β

(
0
1

)
=
(
α
β

)
, (2.1)

where |α|2 + |β|2 = 1. The squared modulus of α and β give us the probability of
measuring zero and one, respectively. We henceforth adopt bra-ket notation, where
the bra ⟨ψ| = (α∗, β∗) denotes the complex conjugate of the state |ψ⟩ (ket), ⟨ψ|ψ⟩
denotes an inner product, and |ψ⟩⟨ψ| denotes an outer product. The vectors |0⟩ and
|1⟩ form an orthonormal basis of the Hilbert space C2, and are therefore referred
to as basis states. Technically, any two orthonormal states can be used as basis
states for the vector space of the qubit, however, the two states above are the most
common and are called the computational basis. These basis states are the states
that we can observe in the classical world, while the linear combination of basis
states in Equation (2.1) is called a superposition, where the coefficients α and β

define the probabilities with which each of the basis states can be observed. Unlike
classical probabilities, those coefficients are complex-valued and can therefore also
be negative. This means that they can either add up or cancel each other out, and
this constructive and destructive interference of amplitudes plays an important
role in many quantum algorithms.

In order to manipulate the state of a qubit, one uses unitary operators which are
referred to as quantum gates. A commonly used set of gates that can be used to
implement arbitrary unitary transformations on a single qubit are the so-called
Pauli operators,

σx =
(

0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
. (2.2)

If one, for example, wants to implement a bitflip operation on a qubit, one can do
this by applying the σx operator as follows,

σx |0⟩ =
(

0 1
1 0

)(
1
0

)
= |1⟩ . (2.3)

Now, if we consider not just one but multiple qubits, the above can easily be
extended by forming tensor products of the kets of a number of qubits. Let us
take for example the state over the qubits |ψA⟩, |ψB⟩ and |ψC⟩, then the complete
state of this qubit register is

|ψABC⟩ = |ψA⟩ ⊗ |ψB⟩ ⊗ |ψC⟩ , (2.4)

6

2.1 Gate model quantum computing

and |ψABC⟩ is now an element of the Hilbert space C2n for n = 3 qubits. When
we consider a register of multiple qubits, another important aspect of quantum
algorithms can arise: entanglement between these qubits. Intuitively, entangle-
ment means that the state of a quantum system can not simply be described by
considering its individual parts. Formally, we call a state entangled if it is not a
separable state. To understand the notion of a separable state, consider a bipartite
quantum system on the Hilbert spaces HA with basis {|ai⟩}k

i=1 and HB with basis
{|bj⟩}l

j=1, and a basis {|ai⟩⊗ |bj⟩} for HA⊗HB . Any pure state in this composite
system can be written as

|ψ⟩AB =
∑
i,j

ci,j(|ai⟩ ⊗ |bj⟩). (2.5)

If the state can be written as a simple tensor product of the two subsystems,

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B , (2.6)

it is considered a separable state. Intuitively, this can be understood as a joint
probability mass function that is the product of two independent marginals, i.e.,
p(x, y) = p(x)p(y). However, the type of correlation that is present in non-separable
states has no analog in the classical world and is therefore hard to understand
intuitively. Entanglement is a crucial ingredient for many quantum algorithms,
like the famous prime factorization algorithm by Shor [1].

So far we have discussed how to prepare and manipulate quantum states in the gate-
model formalism. The final ingredient required to perform quantum computation is
getting classical information out of the device, that is, performing a measurement
of a given observable. Going back to the one-qubit example above, we have
already discussed that the superposition state shown in Equation (2.1) can not
be measured. Instead, we can only measure the basis state |0⟩, which occurs with
probability |α|2, and the basis state |1⟩, with probability |β|2. More formally,
we define measurement observables in terms of a set of operators {Mm} on the
state space of the quantum system. In this thesis, we consider the special case
where all Mm are orthogonal and Hermitian, called a projective measurement. The
observable M has the spectral decomposition

M =
∑
m

mPm, (2.7)

7

2.1 Gate model quantum computing

with Pm the projector onto the eigenspace of M with eigenvalue m. For the
example of a computational basis measurement on one qubit |ψ⟩ we have the
measurement operators

P0 = |0⟩⟨0| , P1 = |1⟩⟨1| , (2.8)

both with eigenvalue 1, and we get∑
m

P †
mPm = P †

0P0 + P †
1P1 = I, (2.9)

where Equation (2.9) shows that this set of projectors satisfies the completeness
relation, i.e., the set of projectors has to satisfy the condition that the probabilities
of all measurement outcomes sum to one. After measuring outcome m, the state
is then

|ψm⟩ = Pm |ψ⟩√
p(m)

, (2.10)

where the probability p(m) to measure outcome m is

p(m) = ⟨ψ|Pm |ψ⟩ . (2.11)

The above statement that the measurement outcome will be one of the eigenvalues
of M and that the probability of measuring eigenvalue m is given by Equation (2.11)
is also known as the Born rule. Once the observable is measured, the quantum
state collapses and all information about its previous state is lost. Subsequent
measurements of the resulting state will then always yield the same output.

Another common observable, which we will also use in this thesis, is the observable
Z, also referred to as a measurement in the Z basis, with basis states |0⟩ and |1⟩,
and eigenvalues 1 and -1, respectively,

Z = 1 |0⟩⟨0| − 1 |1⟩⟨1| =
(

1 0
0 −1

)
. (2.12)

After defining the main ingredients of quantum algorithms above, like qubits,
quantum gates, superposition, interference and entanglement, we can start writing
down our own algorithms. The formalism most commonly used for this, and the
one we also use in this work, are quantum circuits. In a quantum circuit, qubits
are represented as wires, horizontal lines read from left to right. Quantum gates
are then placed on these wires to indicate the operations performed on each of
the qubits in the register. This formalism can be used to write down arbitrary

8

2.2 Noisy intermediate-scale quantum computing

|0⟩ H

|000⟩+|111⟩√
2

|0⟩ H H

|0⟩ H H

Figure 2.1: Example of a quantum circuit diagram depicting a circuit to create
a Greenberger-Horne-Zeilinger (GHZ) state, an important type of entangled state.
In this 3-qubit circuit, the GHZ state is prepared by applying Hadamard gates (H)
and controlled phase gates (vertical lines).

quantum algorithms, and a simple example of a circuit diagram can be seen in
Figure 2.1.

With the above, we are equipped to study arbitrary quantum algorithms, like the
well-known prime factorization algorithm [1], or the quantum algorithm for solving
linear systems of equations [5] mentioned above. In this thesis, however, we are
interested in a special type of quantum algorithm tailored for near-term devices,
which we will introduce in the following section.

2.2 Noisy intermediate-scale quantum comput-
ing

In Chapter 1, we already outlined the distinction between fault-tolerant algorithms,
that are designed with perfect, large-scale quantum computers in mind, and
so called noisy intermediate-scale quantum (NISQ) algorithms, which are more
suitable for the error-prone and small quantum computers that we expect to have
access to in the coming few decades. The term NISQ was coined by John Preskill
in a keynote talk and accompanying article [12], and he defines these types of
devices as quantum computers with around fifty to at most a few hundred qubits,
which are subject to noise and which we have only imperfect control over. Apart
from the number of qubits, he also emphasizes that the quality of qubits and how
precisely operations can be performed on them plays a crucial role. This means
that NISQ algorithms are not only restricted in the number of qubits they can use,
but also in the depth and the total number of gates of the quantum circuits that
are used. Additionally, as error correction techniques that are developed to aid

9

2.2 Noisy intermediate-scale quantum computing

fault-tolerant quantum computation require a high overhead of additional qubits,
NISQ devices are assumed to operate without error correction in order to fully
utilize the small number of qubits that are available. Alongside all of the above,
device-specific limitations like qubit connectivity and native gate sets have to be
taken into account as well.

With these constraints, the algorithms that can successfully be run in the NISQ era
are severely limited. In particular, algorithms of the type as the prime factorization
and linear equation solving algorithms discussed in previous chapters [1, 5], that
require the execution of a pre-defined and rigid gate sequence, are out of reach
for these types of devices. However, an interesting class of algorithms specifically
tailored to the limitations of these devices has emerged in the past few years:
variational quantum algorithms (VQAs) [14]. VQAs are hybrid quantum-classical
algorithms that outsource a large part of the heavy lifting to a classical computer.
The basis for a VQA is a parametrized quantum circuit (PQC) that is run on
the quantum device. Based on measurements of this quantum circuit and a given
objective function, a classical optimizer computes updates of the circuit parameters.
This procedure is repeated in an iterative fashion, until the circuit output matches
the desired output for a given task. This approach is quite different from the one
taken for designing the fault-tolerant algorithms we have discussed before. Instead
of specifying a fixed algorithm in form of a quantum circuit that relies on the
execution of a precise sequence of gates, in a VQA, designing this circuit is left
more or less to the classical optimization routine. In general, only the structure of
the parametrized gates is given in advance, and this can be tailored to the specific
constraints of a certain device, like the available gate set or connections between
qubits. In the following sections, we will address how the parameter optimization
scheme in these types of models works, and in which areas they have shown to be
promising to apply.

2.2.1 Variational quantum algorithms

A VQA consists of two components: the parametrized quantum circuit, also called
ansatz, and the classical optimization routine that performs the parameter updates,
as can be seen in Figure 2.2. In general, the structure of the ansatz can be chosen
quite flexibly, and we denote a unitary parametrized by θ as U(θ). Usually, the
ansatz is structured in layers, and we write the unitary that represents a PQC of

10

2.2 Noisy intermediate-scale quantum computing

Figure 2.2: Depiction of a variational quantum-classical algorithm. The quantum
computer on the left implements a quantum circuit parametrized by θ, and outputs
expectation values of this circuit given an observable M . Based on this, the classical
computer on the right computes a loss function L(θ), and the updated parameters
θt+1, which are fed into the quantum circuit for the next iteration. This process is
repeated until the loss function reaches a desired value.

depth L as

UL(θ) =
L∏

i=1
Ui(θi). (2.13)

In the case where a PQC is used in a machine learning setting, there may also
be additional parameters that serve to encode the training data into the circuit,
and we will discuss these types of circuits in more detail in later chapters. For
simplicity, we will omit these parameters in this chapter, as they do not influence
the optimization procedure directly.

In order to optimize the parameters of the PQC given a certain task, a classical
optimization routine is used. There is a wealth of options to choose from in the
classical optimization literature, and indeed numerous different techniques have
been explored for the optimization of PQCs [33, 34, 35, 36, 37]. One of the most
popular approaches are gradient-based methods, which are the state-of-the-art
optimizers used for classical neural networks. In their most basic form, called
stochastic gradient descent, the parameters θ of a function f(θ) are updated
according to the following rule,

θi ← θi − η∇f(θi), (2.14)

11

2.2 Noisy intermediate-scale quantum computing

where η is a step size that determines the magnitude of each update step, also
called learning rate in the machine learning literature. There are many different
versions of these types of algorithms, often with elaborate schedules to fine-tune
the step size for various phases of the optimization. The Adam optimizer, for
example, has additional momentum terms that tune the step size according to
the steepness of the optimization landscape [38]. It depends on the given task
which flavor of gradient descent is best suited, however, what they all have in
common is that they require computation of partial derivatives of the function to
be optimized.

2.2.1.1 Computing gradients

A simple possibility to compute gradients in PQCs is to use the finite difference
method. With this, the gradient of an arbitrary function f(θ) can be approximated
to precision O(ϵ) by

df

dθ
≈ f(θ + ϵ)− f(θ)

ϵ
. (2.15)

With this method, the number of circuit evaluations required to compute the
gradient of a PQC scales linearly with the number of parameters used in the circuit.
However, this comes at the cost of only obtaining an approximation of the gradient,
as well as introducing another hyperparameter, namely ϵ, to the optimization
routine. Furthermore, in the case of noisy quantum hardware with imprecise
control, and circuit evaluations based on a limited number of measurements, there
are additional limitations on how small ϵ can be chosen in this setting.

This lack of precision in computing gradients will increase their variance during
training and can therefore negatively impact the optimization routine. To alleviate
the issue of only computing an ϵ-approximation of the gradients, one can also
compute exact gradients for PQCs by using the so-called parameter-shift rule
[39, 33, 40]. Consider a parametrized gate UG(θi) = e−iaθiG with generator G that
is a Hermitian linear operator, trainable parameter θi and a real constant a, that
acts within an arbitrary unitary U(θ). If G has at most two distinct eigenvalues
e0 and e1, the partial derivative of ⟨U(θ)⟩ w.r.t. θi can be written as

d

dθi
⟨U(θ)⟩ = r (⟨U(θ + ∆θi)⟩ − ⟨U(θ −∆θi)⟩) , (2.16)

where ⟨U⟩ denotes the expectation value of U acting on some initial state and
under measuring a given observable, and ∆θi is a vector of the same length as

12

2.2 Noisy intermediate-scale quantum computing

θ that is π
4r at the i-th position, and zero everywhere else. In other words, the

partial derivative of a PQC can be computed by the difference of two evaluations
of the same PQC, with the parameter that is considered for the derivative shifted
by π

4r and − π
4r , respectively. The factor r depends on the eigenvalues of the

generator as r = a
2 (e1 − e0) [40], and r = 1

2 for the Pauli gates we commonly use
in this thesis [39]. In the case that one parameter is shared between a number of
gates, the parameter-shift rule has to be applied for each of the gates individually,
and the derivative is then computed according to the product rule. The authors
of [33] also show how the above can be extended for generators with arbitrary
eigenvalues, at the cost of introducing one ancilla qubit, and for Gaussian gates in
continuous-variable quantum computing. The above parameter-shift rule enables
computation of exact derivatives of arbitrary quantum circuits, at the cost of two
circuit evaluations per parameterized gate in each update step. These gradients
can then be used to perform any gradient-based update routine, like the stochastic
gradient descent method described above. The downside of the parameter-shift
rule is that the number of circuit evaluations required to compute gradients scales
linearly with the number of parametrized gates, instead of the number of parameters
itself as in the finite difference method above.

As we have seen above, computing gradients for PQCs is relatively straightforward.
However, there are a number of challenges in the optimization of PQC parameters,
as we will describe in the next section.

2.2.1.2 Challenges in the optimization of PQCs

In Section 2.2.1.1, we described how the parameters in a quantum circuit can be
optimized by using tools from the classical optimization literature. However, it
turns out that there are a number of difficulties when optimization is done in a
quantum landscape. A first fundamental issue in the optimization of PQCs was
described in [41], where the authors introduce the notion of barren plateaus, vast
saddle points in quantum circuit training landscapes where first and higher order
derivatives vanish. These plateaus result from basic features of the geometry of
high-dimensional spaces.

The authors of [41] examine the gradients for quantum circuit training in a
model known as random PQCs. For this model, parameter updates for gradient-
based optimization are calculated based on the expectation value of an observable
measured on a state produced by a parametrized circuit, and the circuits are drawn

13

2.2 Noisy intermediate-scale quantum computing

from a random distribution. The distribution of circuits amounts to choosing
a set of gates uniformly at random, where some of the gates have continuous
parameters amenable to differentiation. The authors of [41] show that a sufficient,
but not necessary, condition for the vanishing of gradients with high probability
is that for any arbitrary division of the circuit into two pieces, the two pieces
are statistically independent, and that one of them approximately matches the
fully random distribution up to the second moment, or in other words forms an
approximate 2-design. Formally, a unitary t-design X is defined as,

1
|X|

∑
U∈X

U⊗t ⊗ (U∗)⊗t =
∫

U(d)
U⊗t ⊗ (U∗)⊗tdU, (2.17)

where the unitary t-design is an ensemble of unitaries that matches the fully random
distribution of unitaries up to the t-th moment. The fully random distribution
of unitaries is given by the Haar measure, which assigns a translation invariant
volume on the sphere. To understand the above, it is important to note that
in order to sample unitaries of a given size uniformly at random from the full
Hilbert space, it is not enough to choose an appropriate parametrization, e.g.,
parametrized unitaries that represent arbitrary rotations, and then sample the
parameters uniformly at random. This is because those unitaries act on a high-
dimensional sphere, where differences between parameters are not proportional
to the differences between the resulting points on the sphere, as these differences
depend on their position on the sphere. The Haar measure assigns a volume on
the sphere that is invariant to the position, and therefore sampling uniformly
at random according to the Haar measure allows to sample unitaries uniformly
at random from the full Hilbert space. Additionally, a t-design over unitaries
generates a t-design of states in the given Hilbert space. While executing a circuit
that implements such a Haar-random unitary takes time exponential in the number
of qubits, there are efficient techniques to produce circuits that approximate the
first and second moment of the Haar distribution, which is formalized by the notion
of 2-designs. It has been shown in [42] that random PQCs form approximate
2-designs once they reach a certain depth, and the authors of [41] show how even a
modest number of qubits and layers of random gates is enough for this. The depth
of a quantum circuit required to reach this regime of barren plateaus depends
on the number of qubits and allowed connectivity. It is thought that the depth
required to reach a 2-design scales roughly as Õ(n1/D), converging to a logarithmic
required depth in the all-to-all connectivity limit [43], where D is the dimension of

14

2.2 Noisy intermediate-scale quantum computing

1 2 3 4 5 10 15 20 50 100 200
Layers

10 5

10 4

10 3

10 2

10 1

Va
ria

nc
e

of
 g

ra
di

en
ts

2 qubits
4 qubits
6 qubits
8 qubits
10 qubits
12 qubits
14 qubits
16 qubits
18 qubits

Figure 2.3: Concentration of variance of gradients of the expectation value of the
readout qubit. For random parametric quantum circuits, as circuits of different
sizes converge to a 2-design, gradient values necessary for training vanish with
increasing number of qubits and layers.

the connectivity of the device, e.g., D = 2 for a square lattice, and n is the number
of qubits.

As an approximation of a 2-design, a particular class of random circuits that
were studied numerically in [41] were those with some discrete structure of gates
determined by an underlying geometry (e.g., 1D line, 2D array, or all-to-all),
and single qubit gates with a continuous parameter rotating around a randomly
chosen axis. This assigns a parameter θi to each of these gates. To sample from
the distribution of random circuits, each angle θi was drawn from the uniform
distribution θi ∈ U(0, 2π). Due to concentration of measure effects as described
in [41], random PQCs with different sets of parameters will produce very similar
outputs and their variance vanishes for sufficiently large circuits, i.e., those that
reach approximate 2-designs, as shown in Figure 2.3. Each data point in the figure
is calculated over 1000 randomly generated circuits with all-to-all connectivity in
each layer, and an initial layer of Hadamard gates on each qubit, to avoid a bias of
gradients with respect to the circuit structure caused by initializing in an all-zero
state. Note that the average value of the gradient here is zero in all cases.

This represents a generic statement about the volume of quantum space for such

15

2.2 Noisy intermediate-scale quantum computing

a circuit where one expects to find trivial values for observables. In other words,
sufficiently deep, arbitrary random PQCs will produce very similar expectation
values regardless of the set of individual parameters. Consequently, the partial
derivatives of an objective function based on expectation values of a random
PQC will have extremely small mean and variance. These properties make them
essentially untrainable for gradient-based or related local optimization methods on
quantum devices, as the training landscapes in these scenarios are characterized
by large regions where the gradient is almost zero, but which do not correspond to
a local or global minimum of the objective function. This decay of the variance of
gradients is not only detrimental to parameter optimization, but more generally
hinders extraction of meaningful values from quantum hardware, especially on
near-term processors that are subject to noise.

Based on the above results by [41], trainability issues in PQCs have been studied
extensively in the past few years. While the above results illustrate how with
increasing depth, a PQC gets closer to the 2-design regime and is therefore more
susceptible to barren plateaus, it was shown in [44, 45] that barren plateaus can
also be present in shallow circuits when the cost function is global, in the sense
that it is computed based on states in exponentially large Hilbert spaces, instead
of local, where the cost function depends only on smaller subsets of the qubits in a
circuit. It has also been shown that there is a relationship between the amount
of entanglement in a given circuit and its susceptibility to barren plateaus, where
high amounts of entanglement tend to lead to untrainability [46, 47]. Moving away
from only considering circuits that are approximate 2-designs, the authors of [48]
establish a connection between the expressivity of a PQC and barren plateaus,
where the expressivity of a circuit is measured in terms of its distance to a 2-design.
Finally, it was shown in [49, 50] that regardless of the specific structure of the
ansatz, the noise present on quantum hardware can lead to untrainability issues
for circuits where the depth grows at least linearly with the system size. While
the above results focus on gradients and their variance, it has also been shown
that the barren plateau phenomenon persists for higher-order derivatives [51],
as well as gradient-free optimization [52]. The amount of negative results above
seems discouraging. However, there has also been a tremendous effort to develop
methods to address the above issues. The authors of [53] introduce a non-random
parameter initialization strategy, where some parts of the circuit are initialized
randomly, and the rest is then chosen so that the whole circuit will act as the
identity. This will prevent initialization on a barren plateau. Another approach

16

2.2 Noisy intermediate-scale quantum computing

that addresses the barren plateau issue by choosing a specific parametrization is
that by [54], where a number of gates in a circuit share the same parameter and
are therefore correlated. Other approaches focus on the circuit structure itself,
instead of the parametrization of gates. The authors of [55] introduce an ansatz
that is tailored to a specific type of learning problem, and a subsequent work shows
that this problem-related structure prohibits the onset of barren plateaus in this
ansatz [56]. In a similar vein, the authors of [57] show that circuits that preserve a
certain symmetry are immune to barren plateaus. Another recent approach uses
techniques related to shadow tomography to detect and avoid barren plateaus
[58]. In Chapter 4 of this thesis, we will introduce another method to address the
barren plateau problem, where the circuit is initialized and trained in a way that
avoids utilizing the full Hilbert space, and thereby sidesteps going into the 2-design
regime.

To summarize, there are a number of fundamental challenges in the training of
PQCs which present large hurdles that have to be overcome to train VQAs on
a large scale. At the same time, addressing and mitigating these challenges is
a prosperous field of research, and recent results provide hope that especially
problem-tailored ansatzes will enable successful training of large scale quantum
models in the future.

2.2.2 Application areas and outlook

The VQA framework is extremely flexible and can be applied to a wide variety of
problems. However, three main application areas of VQAs have gained traction in
the past years: combinatorial optimization, quantum chemistry and simulation,
and machine learning. For combinatorial optimization, the most commonly used
technique is the quantum approximate optimization algorithm (QAOA) [59], where
the solutions of an optimization problem are encoded as the eigenstates of a
Hamiltonian, and the ground state represents the optimal solution. The parameters
of the PQC are then optimized such that the circuit outputs the ground state with
highest probability. In the limit of an infinitely deep circuit, this algorithm also
has theoretical guarantees to find the ground state. Next to being studied in-depth
in the context of the canonical Max-Cut problem [60, 61, 16, 62, 63], the QAOA
has also been applied to a number of industrially relevant problems [64, 65, 66, 67],
as well as being studied experimentally on a superconducting quantum device [68]
and with Rydberg atoms [69].

17

2.2 Noisy intermediate-scale quantum computing

A similar approach to find ground states of Hamiltonians in a quantum chemistry
setting is called the variational quantum eigensolver (VQE) [18, 20]. Here, the
goal is still to find the ground state of a given Hamiltonian, but the structure of
the ansatz to do this is not given in advance as in the case of the QAOA, but
can be chosen depending on the given problem. This approach has also been
studied extensively in the past few years, both theoretically [70, 71, 72], as well
as experimentally on real hardware [73]. The third application area where VQAs
have gained much interest in recent years, and the one we focus on in this thesis,
is machine learning. Similarly to the above two examples, there has been a wealth
of results in this area in the past years, and we will discuss VQAs in this context
in more detail in Section 3.3.

Overall, VQAs seem to be a promising road to demonstrate the usefulness of
quantum computers on a task of practical interest. However, this road is not
without obstacles. In addition to the challenges we described in Section 2.2.1.2,
and even when VQAs turn out to be applicable to large-scale quantum systems,
the question remains whether these algorithms are better than their classical
counterparts. Due to their variational nature, it is hard to make rigorous statements
about any type of quantum advantage for VQAs. Second, even if a task with a
potential empirical gain in performance is found, it is hard to directly compare
these types of algorithms to their classical analogs. In particular, there is the
question which classical algorithm one compares to, and under which criteria.
To give an example, it has been empirically observed in a number of studies
that PQCs seem to be able to solve certain tasks with fewer parameters than
classical neural networks [74, 75, 76, 77]. However, one can not directly proclaim
quantum advantage from this fact, as it also has to be taken into account that
the computation of gradients is more efficient in the classical setting and can be
heavily parallelized, which is not the case in a VQA. And last but not least, while
VQAs have been conceived with NISQ devices in mind, they too do suffer from the
noise present on these devices. An open question is how one can efficiently combat
these types of errors. While a number of error mitigation techniques have been
proposed in the past years [78, 79, 80], recent results also show that they come
with an exponential sampling overhead [81, 82]. So even if VQAs eventually turn
out to be useful for practical tasks in the future, a number of roadblocks still have
to be overcome until we get there.

18

