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Abstract

The past decade has brought on tremendous progress in the quest to build a
quantum computer, and cloud access to first devices is starting to get available.
Although these devices are still very limited in terms of the number of qubits and
coherence times, their emergence has focused attention on the question of how
these near-term devices can be of value. A specific type of hybrid quantum-classical
algorithms, namely variational quantum algorithms, has stood out as a candidate
for providing value in these early stages of quantum computing. Machine learning
is believed to be a field where variational quantum algorithms can be beneficial,
and they have been studied in the context of various learning tasks. Theoretical
guarantees are hard to obtain for these algorithms due to their heuristic nature,
so progress in this field will heavily rely on empirical discovery and evaluation
of algorithms. However, many fundamental questions about successfully running
these types of algorithms are still open, like how to design individual components
of the quantum circuits that are used, and how to avoid pitfalls in their training.
In this thesis, we study various aspects of variational quantum algorithms for
machine learning, with a focus on reinforcement learning. We study the steps
of the whole pipeline in training a variational quantum machine learning model
on near term devices, starting at the question of how to encode classical data
and read out information from a quantum circuit, and how to design the circuit
itself in a problem-tailored manner. We address the question of how the classical
optimization routine in this model can be tailored to quantum-specific issues in
optimization landscapes, as well as how various noise sources present on quantum
hardware affect the training of these algorithms. With the above, this thesis aims
at contributing to the knowledge of how to train variational quantum machine
learning models, in order to foster further investigation of these types of algorithms
once high-performance quantum hardware will become available.
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