
Quantum machine learning: on the design, trainability and
noise-robustness of near-term algorithms
Skolik, A.

Citation
Skolik, A. (2023, December 7). Quantum machine learning: on the design,
trainability and noise-robustness of near-term algorithms. Retrieved from
https://hdl.handle.net/1887/3666138

Version: Publisher's Version

License:
Licence agreement concerning inclusion of doctoral
thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3666138

Note: To cite this publication please use the final published version (if
applicable).

https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3666138

Quantum machine learning:
On the design, trainability

and noise-robustness of
near-term algorithms

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,

op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op donderdag 7 december 2023

klokke 10.00 uur

door

Andrea Skolik

geboren te Karlsruhe, Duitsland
in 1988

Promotores: Prof. Dr. V. Dunjko
Prof. Dr. T. H. W. Bäck

Promotiecommissie: Prof. Dr. K. J. Batenburg
Prof. Dr. A. Plaat
Prof. Dr. C. Macchiavello (University of Pavia)
Prof. Dr. M. J. Hartmann (FAU Erlangen)
Dr. S. Feld (TU Delft)

Copyright © 2023 Andrea Skolik.

This research is financially supported by the European Union’s Horizon 2020
research and innovation programme under the Grant Agreement No. 828826, the
German Ministry for Education and Research (BMB+F) in the project QAI2-Q-
KIS under grant 13N15587, and Volkswagen AG. The cover has been designed
using assets from Freepik.com.

mailto:andrea.skolik@gmail.com

Abstract

The past decade has brought on tremendous progress in the quest to build a
quantum computer, and cloud access to first devices is starting to get available.
Although these devices are still very limited in terms of the number of qubits and
coherence times, their emergence has focused attention on the question of how
these near-term devices can be of value. A specific type of hybrid quantum-classical
algorithms, namely variational quantum algorithms, has stood out as a candidate
for providing value in these early stages of quantum computing. Machine learning
is believed to be a field where variational quantum algorithms can be beneficial,
and they have been studied in the context of various learning tasks. Theoretical
guarantees are hard to obtain for these algorithms due to their heuristic nature,
so progress in this field will heavily rely on empirical discovery and evaluation
of algorithms. However, many fundamental questions about successfully running
these types of algorithms are still open, like how to design individual components
of the quantum circuits that are used, and how to avoid pitfalls in their training.
In this thesis, we study various aspects of variational quantum algorithms for
machine learning, with a focus on reinforcement learning. We study the steps
of the whole pipeline in training a variational quantum machine learning model
on near term devices, starting at the question of how to encode classical data
and read out information from a quantum circuit, and how to design the circuit
itself in a problem-tailored manner. We address the question of how the classical
optimization routine in this model can be tailored to quantum-specific issues in
optimization landscapes, as well as how various noise sources present on quantum
hardware affect the training of these algorithms. With the above, this thesis aims
at contributing to the knowledge of how to train variational quantum machine
learning models, in order to foster further investigation of these types of algorithms
once high-performance quantum hardware will become available.

i

Publications

This thesis is partially based on content that was previously published by the
author and collaborators in the following manuscripts, with author contributions
as listed below.

1. Layerwise learning for quantum neural networks
Andrea Skolik, Jarrod R. McClean, Masoud Mohseni, Patrick van der Smagt,
Martin Leib
Quantum Machine Intelligence 3.1 (2021): 1-11

AS conceived the idea for this work and the layerwise learning algorithm.
AS and JRM performed the numerical simulations. JRM defined the cost
model for measuring the performance of the studied models. AS and JRM
wrote the first draft of the manuscript, all authors were involved in the final
editing. MM, PS, and ML supervised the work.

2. Quantum agents in the Gym: a variational quantum algorithm for
deep Q-learning
Andrea Skolik, Sofiene Jerbi, Vedran Dunjko
Quantum 6 (2022): 720

AS and VD conceived the idea for this work. AS performed the numer-
ical simulations, with the help of SJ. AS, SJ, and VD worked out theoretical
separation between quantum and classical learners. AS wrote the manuscript,
all authors were involved in the final editing. VD supervised the work.

ii

3. Equivariant quantum circuits for learning on weighted graphs
Andrea Skolik, Michele Cattelan, Sheir Yarkoni, Thomas Bäck,
Vedran Dunjko
npj Quantum Information 9 (1), 1-15

AS conceived the idea for this work. AS and VD conducted theoretical
analysis of the proposed ansatz. AS and MC performed numerical simula-
tions and the analysis of their results. SY created the data set used in this
work. AS, MC and SY wrote the first draft of the manuscript; all authors
contributed to editing the final manuscript. VD and TB supervised the
project.

4. Robustness of variational quantum reinforcement learning under
hardware errors
Andrea Skolik, Stefano Mangini, Thomas Bäck, Chiara Macchiavello,
Vedran Dunjko
EPJ Quantum Technology 10 (1), 1-43

AS conceived the idea for this work and conducted the numerical experiments.
SM performed analytical study on the effect of Gaussian noise and provided
decoherence noise model. AS and VD proposed shot allocation algorithm.
AS and SM wrote the first version of the manuscript, all authors contributed
to the final editing.

The following publications were co-authored during the course of the PhD and are
not included in this thesis.

5. TensorFlow Quantum: A Software Framework for Quantum Ma-
chine Learning
Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J. Mar-
tinez, . . . , Andrea Skolik, . . . , Alan Ho, Hartmut Neven, Masoud Mohseni
arXiv preprint arXiv:2003.02989

iii

6. Quantum approximate optimization of non-planar graph problems
on a planar superconducting processor
Matthew P. Harrigan, Kevin J. Sung, Matthew Neeley, Kevin J. Satzinger,
. . . , Andrea Skolik, . . . , Erik Lucero, Edward Farhi, Ryan Babbush
Nature Physics 17.3 (2021): 332-336

7. Beating classical heuristics for the binary paint shop problem with
the quantum approximate optimization algorithm
Michael Streif, Sheir Yarkoni, Andrea Skolik, Florian Neukart, Martin Leib
Physical Review A 104.1 (2021): 012403

8. Hyperparameter optimization of hybrid quantum neural networks
for car classification
Asel Sagingalieva, Andrii Kurkin, Artem Melnikov, Daniil Kuhmistrov,
Michael Perelshtein, Alexey Melnikov, Andrea Skolik, David von Dollen
arXiv preprint arXiv:2205.04878

iv

Acknowledgements

Getting a PhD can be a long and hard journey, which is made tremendously more
enjoyable by good company. I was blessed with this company over the past years,
and would like to especially thank the following people.

First and foremost, I thank my supervisor Vedran Dunjko for being an endless source
of support, advice, knowledge, and humor. I am impressed with his dedication
to research and teaching, and very grateful for the many things I learned from
him about quantum computing and research in general. I am also grateful for the
welcoming and inclusive environment in the aQa group, that Vedran helped me
to become a part of despite being an external student living in another country
during a global pandemic. Even though the pandemic prevented me from spending
as much time in Leiden as I would have liked, the time I did spend there I will
always keep in good memory thanks to the amazing people at LIACS. I especially
want to thank Yash Patel, Simon Marshall and Casper Gyurik for interesting
discussions and sharing their insights about various topics, and Marie Kempkes,
Adrián Pérez-Salinas, Charles Moussa and Stefano Polla for making the time I got
to spend physically in Leiden so pleasant. I also thank Thomas Bäck for being my
promotor.

One upside of being an external student is that one gets to be a part of two groups,
and I thank the members of the Volkwagen quantum computing team – former and
present – for the many fun discussions in- and outside of work, and for the trust
and support that I received over the years. In particular I thank Sheir Yarkoni,
Gabriele Compostella, Michael Streif, Martin Leib, and Florian Neukart. I am
also very grateful for the support I received from Patrick van der Smagt at the
beginning of my time at Volkswagen.

The work presented in this thesis is the outcome of collaborations with a number
of people beyond the above two groups, whom I want to thank for the great

v

discussions and everything I learned from them. I thank Jarrod McClean and
Masoud Mohseni for the joint work on layerwise learning, and their hospitality
during my two visits to the Google Quantum AI team. I also thank Alan Ho for
giving me the opportunity to contribute to the early stages of TensorFlow Quantum,
and the whole TFQ team for making my life so much easier by implementing
this framework. I thank Sofiene Jerbi for providing his insights about quantum
reinforcement learning, and for sharing the woes of getting these algorithms to
work. I also thank Stefano Mangini for randomly reaching out to me and starting
a conversation about reinforcement learning, which eventually lead to a great
collaboration, and his positive attitude that made this such a fun project.

Finally, I want to thank Marcus Voigt for embarking on this journey called “life”
with me, and for his endless patience, support and love throughout the past decade.
Let’s start the next adventure!

vi

Contents

Abstract i

Publications ii

Acknowledgements v

1 Introduction 1

2 Quantum computing 5
2.1 Gate model quantum computing 5
2.2 Noisy intermediate-scale quantum computing 9

2.2.1 Variational quantum algorithms 10
2.2.1.1 Computing gradients 12
2.2.1.2 Challenges in the optimization of PQCs 13

2.2.2 Application areas and outlook 17

3 Machine learning 19
3.1 Neural networks . 20

3.1.1 Neurons, layers, and backpropagation 20
3.1.2 Generalization and overfitting 23
3.1.3 Geometric deep learning . 26

3.2 Reinforcement learning . 27
3.2.1 Value-based and policy-based learning 29
3.2.2 Q-learning . 31
3.2.3 Policy gradients . 34

3.3 Quantum machine learning . 35
3.3.1 Near-term quantum machine learning 36
3.3.2 Data encoding and the choice of ansatz 39

i

CONTENTS

3.3.3 Is there potential for quantum advantage? 41

4 Layerwise learning for quantum neural networks 44
4.1 Layerwise learning . 47
4.2 Results . 51

4.2.1 Setup . 51
4.2.2 Sampling requirements . 53
4.2.3 Comparison to CDL strategies 53
4.2.4 Numerical results . 54

4.3 Conclusion and outlook . 58

5 Quantum agents in the Gym: A variational quantum algorithm
for deep Q-learning 60
5.1 Quantum Q-learning . 64

5.1.1 Encoding environment states 64
5.1.2 Computing Q-values . 66

5.2 Separation between quantum and classical Q-learning in restricted
environments . 68
5.2.1 A classification task based on the discrete logarithm problem 69
5.2.2 Learning optimal policies in environments based on the DLP

classification task . 70
5.2.3 Estimating optimal Q-values from optimal policies 73

5.3 Numerical results . 74
5.3.1 Frozen Lake . 74
5.3.2 Cart Pole . 78

5.3.2.1 Comparison of data encoding and readout strategies 80
5.3.2.2 Comparison to the classical DQN algorithm 84

5.4 Conclusion . 87

6 Equivariant quantum circuits for learning on weighted graphs 90
6.1 Geometric learning - quantum and classical 93
6.2 Neural combinatorial optimization with reinforcement learning . . 95

6.2.1 Solving the Traveling Salesperson Problem with reinforce-
ment learning . 96

6.2.2 Solving the TSP with the QAOA 96
6.3 Equivariant quantum circuit . 98

6.3.1 Ansatz structure and equivariance 98

ii

CONTENTS

6.3.2 Trainability of ansatz . 103
6.4 Quantum neural combinatorial optimization with the EQC 105

6.4.1 Formal definition of learning task and figures of merit . . . 106
6.4.2 Equivariance of algorithm components 109
6.4.3 Analysis of expressivity . 111

6.5 Numerical results . 115
6.6 Discussion . 124

7 Robustness of quantum reinforcement learning under hardware
errors 127
7.1 Environments and implementation 130

7.1.1 CartPole . 130
7.1.2 Traveling Salesperson Problem 132

7.2 Shot noise . 132
7.2.1 Reducing the number of shots in a Q-learning algorithm . . 133
7.2.2 Numerical results . 136

7.3 Coherent noise . 140
7.3.1 Effect of Gaussian coherent noise on circuit output 140
7.3.2 Resilience of Hardware-Efficient ansatzes to Gaussian coher-

ent noise . 144
7.3.3 Numerical results . 150

7.3.3.1 CartPole . 150
7.3.3.2 Traveling Salesperson Problem 153

7.4 Incoherent noise . 156
7.4.1 Depolarizing noise . 157
7.4.2 Noise model based on current hardware 161

7.5 Conclusions . 164

8 Conclusion 167

Appendix 171

Bibliography 194

Summary 224

Samenvatting 226

About the author 228

iii

ch
ap

te
r

1
Introduction

“The history of classical computing teaches us that when hardware be-
comes available that stimulates and accelerates the development of new
algorithms. There are many examples of heuristics that were discov-
ered experimentally, which worked better than theorists could initially
explain. We can anticipate that the same thing will happen with quantum
computers.”

– John Preskill

Since the first ideas for a quantum computer, a device that uses quantum mechanical
effects to process information, were proposed in the 1980s, remarkable progress has
been made in the quest to build these types of machines and to find tasks where they
outperform their classical counterparts. While the first algorithm with a proven
speed-up in a practically relevant task, namely Shor’s factoring algorithm that can
break a widely used encryption method [1], was already proposed in 1994, the first
experimental demonstration of a quantum computer outperforming its classical
counterpart was only due in late 2019. In this experiment, a team of researchers
at Google and NASA showed that their superconducting quantum hardware could
perform a sampling task much faster than any classical supercomputer existing
to that date [2]. Just one year later, a similar result on another sampling task
was shown on the Chinese photonic quantum device Jiuzhang [3]. In parallel to
these experimental advances, theoretical investigation has lead to a multitude
of quantum algorithms with guaranteed speed-ups. These algorithms operate
under the assumption that one can execute them on a perfect quantum computer,
also known as fault-tolerant quantum computing. Among these algorithms are
for example Grover’s search algorithm, which yields a quadratic speed-up for

1

unstructured search [4], and an algorithm for solving linear systems of equations
that provides an exponential speed-up under certain conditions and in certain
cases [5].

The latter has inspired investigation of using quantum computers in the context of
machine learning, as the algorithm from [5] can be used to exponentially speed
up some of the matrix operations underlying many classical machine learning
algorithms [6, 7]. However, these speed-ups come with a set of caveats: there are
specific constraints on the structure of the matrices, as well as the assumption that
the classical data is stored in a so-called quantum random access memory (qRAM)
[8], a memory that gives the algorithm access to data in quantum superposition. As
there are numerous technical challenges in building a qRAM, as well as subtleties
in when exactly these types of speed-ups exist [9, 10, 11], it is not believed that
algorithms based on speeding up solving linear systems of equations will lead to a
practical advantage over classical computers in the near future.

In recent years, an alternative to fault-tolerant algorithms has emerged in the
so-called noisy intermediate-scale quantum (NISQ) setting, where algorithms for
near-term quantum computers are studied [12, 13]. These algorithms are designed
with the expectation that they are run on noisy quantum computers with a limited
number of qubits and no error correction. One of the most popular approaches
in this regime are variational quantum algorithms [14]. In a variational quantum
algorithm (VQA), a classical and quantum part work in tandem, where the quantum
part of the algorithms is defined in terms of a parametrized quantum circuit (PQC).
The parameters of this circuit are then optimized by a classical subroutine in order
to solve a certain task. These types of algorithms have been applied to various
tasks such as optimization [15, 16, 17], chemistry and simulation [18, 19, 20, 21, 22],
and machine learning [23, 24, 25, 26, 27, 28].

While variational algorithms are widely applicable in principle, theoretical state-
ments about their performance and potential speed-ups are difficult to obtain.
Especially in a machine learning context, giving rigorous statements in a variational
setting is hard, as the performance of the algorithm strongly depends on several
factors, like the classical optimizer and the learning task at hand. This resembles
the situation in classical machine learning, where first theories of neural networks
were developed in the 1940ies, however, the true capabilities of these models
only became clear around seventy years later when the increase in computational
resources enabled training of large-scale neural networks to perform practically

2

relevant tasks. While recent breakthroughs in classical machine learning, like
beating a grandmaster in the game of Go [29], predicting the structure of proteins
[30, 31], or turning natural language prompts into stunning artwork [32], were only
possible because current hardware makes it feasible to train models with billions
of parameters, these works were built on the basis of a firm understanding on how
to design trainable and performant neural networks.

Variational quantum machine learning models are often described as the quantum
analog of classical neural networks due to the similarity in their training procedure,
and are therefore also referred to as quantum neural networks. Unlike for their
classical counterparts however, there are still numerous open questions about
how to design trainable and performant quantum neural networks. Examples of
this include the questions of how to encode classical data into a quantum model,
how to structure the operations that are used to implement models, and how to
avoid pitfalls in the trainability of these models that are unique to the quantum
setting. Assuming that similarly to the history of classical machine learning,
the development of more performant quantum hardware will facilitate large-scale
empirical studies on the usefulness of variational quantum machine learning, it is
of key importance to build an understanding of how these models can be trained
successfully. This thesis aims to contribute to this understanding by studying
various aspects of training variational quantum machine learning models.

We start by giving a basic introduction to the topics of quantum computing,
machine learning, and their intersection in Chapters 2 and 3, respectively. In
Chapter 4, we study how a fundamental issue in the training of variational quantum
circuits, namely barren plateaus in the training landscapes, can be addressed by
the classical training algorithm to aid scaling up the size of quantum models.
To this end, we provide a training scheme that alleviates the problem of barren
plateaus for specific cases and compare it to standard training procedures in the
existing literature. While this type of training procedure can in principle be
used for arbitrary types of machine learning, we focus our attention on a specific
type of learning in subsequent chapters, namely on reinforcement learning (RL).
First, we study in Chapter 5 how the architectural choices made for a PQC-based
quantum agent influence its performance on two classical benchmark tasks from
RL literature, where we specifically consider the question of encoding data into,
and reading information out of the quantum model. In addition, we establish a
theoretical separation between classical and quantum models for the specific type

3

of RL algorithm that we use, and also perform an in-depth empirical comparison
of the quantum model developed in our work to a classical neural network that
performs the same task. In addition to the questions of how to encode data and
read out information from a PQC, the third key question in the performance of a
variational quantum machine learning model is how to design the structure of the
circuit itself, also referred to as the ansatz. For this reason, we move on to study
this question in Chapter 6 and introduce an ansatz that is tailored to a specific
type of input data, namely to weighted graphs. To do this, we take inspiration
from the classical field of geometric deep learning, and design a PQC that preserves
an important symmetry in graph-based input data. We analytically study the
expressivity of this type of circuit, and then go on to numerically compare it to
ansatzes that are not tailored to the specific training data at hand. Finally, another
important consideration in the study of algorithms for the NISQ era is how the
given learning algorithms and models are influenced by quantum hardware-induced
noise. In Chapter 7, we study this for two of the variational RL paradigms from
recent literature. We investigate analytically and numerically how various types
of errors, namely coherent, incoherent, and measurement-based errors, affect the
training performance of variational RL algorithms and the robustness of the learned
policies. In particular, this study includes an evaluation of the performance of the
models we introduced in Chapter 5 and Chapter 6 under various types of noise
that are expected to be present on near-term hardware.

With the above, this thesis aims to contribute to building a foundation of knowledge
about how to successfully train variational quantum machine learning models,
in the hope that similarly to classical machine learning, this knowledge will one
day, when quantum hardware has sufficiently matured, aid demonstrations of the
practical usefulness of these types of algorithms.

4

ch
ap

te
r

2
Quantum computing

Quantum computing is a rapidly evolving field that has the potential to change
the way we solve a number of complex computational problems. In recent years,
there has been significant progress in the development of quantum computers,
with researchers and companies around the world working to build these types
of machines. In terms of current hardware implementations, there are two main
approaches to quantum computing: quantum annealing and gate-based quantum
computing. A quantum annealer is a special-purpose device tailored to solve
combinatorial optimization problems, based on the idea to slowly evolve a system
until it reaches its lowest-energy state, which represents the optimal solution to a
given problem. Gate-based quantum computing, on the other hand, involves the
use of quantum gates to manipulate qubits, the basic units of quantum information.
This approach is more flexible and has the potential to perform a wider range of
calculations than quantum annealing, but it is also more difficult to implement in
practice due to the need to maintain the delicate quantum states of the qubits.
In this thesis, we focus on the latter paradigm of quantum computing, and this
chapter provides an introduction to the most important concepts in the gate-based
formalism, and the specific type of algorithms we study in later chapters.

2.1 Gate model quantum computing

Quantum computers are devices that harness quantum mechanical effects to process
information. In order to utilize these types of effects, one has to define a quantum
system to perform operations on. A simple and broadly used approach to this are
two-level systems called qubits, which form the building blocks of most quantum
algorithms. Mathematically, a qubit can be represented as the quantum state

5

2.1 Gate model quantum computing

|ψ⟩ ∈ C2 with amplitudes α and β,

|ψ⟩ = α |0⟩+ β |1⟩ = α

(
1
0

)
+ β

(
0
1

)
=
(
α
β

)
, (2.1)

where |α|2 + |β|2 = 1. The squared modulus of α and β give us the probability of
measuring zero and one, respectively. We henceforth adopt bra-ket notation, where
the bra ⟨ψ| = (α∗, β∗) denotes the complex conjugate of the state |ψ⟩ (ket), ⟨ψ|ψ⟩
denotes an inner product, and |ψ⟩⟨ψ| denotes an outer product. The vectors |0⟩ and
|1⟩ form an orthonormal basis of the Hilbert space C2, and are therefore referred
to as basis states. Technically, any two orthonormal states can be used as basis
states for the vector space of the qubit, however, the two states above are the most
common and are called the computational basis. These basis states are the states
that we can observe in the classical world, while the linear combination of basis
states in Equation (2.1) is called a superposition, where the coefficients α and β

define the probabilities with which each of the basis states can be observed. Unlike
classical probabilities, those coefficients are complex-valued and can therefore also
be negative. This means that they can either add up or cancel each other out, and
this constructive and destructive interference of amplitudes plays an important
role in many quantum algorithms.

In order to manipulate the state of a qubit, one uses unitary operators which are
referred to as quantum gates. A commonly used set of gates that can be used to
implement arbitrary unitary transformations on a single qubit are the so-called
Pauli operators,

σx =
(

0 1
1 0

)
, σy =

(
0 i
−i 0

)
, σz =

(
1 0
0 −1

)
. (2.2)

If one, for example, wants to implement a bitflip operation on a qubit, one can do
this by applying the σx operator as follows,

σx |0⟩ =
(

0 1
1 0

)(
1
0

)
= |1⟩ . (2.3)

Now, if we consider not just one but multiple qubits, the above can easily be
extended by forming tensor products of the kets of a number of qubits. Let us
take for example the state over the qubits |ψA⟩, |ψB⟩ and |ψC⟩, then the complete
state of this qubit register is

|ψABC⟩ = |ψA⟩ ⊗ |ψB⟩ ⊗ |ψC⟩ , (2.4)

6

2.1 Gate model quantum computing

and |ψABC⟩ is now an element of the Hilbert space C2n for n = 3 qubits. When
we consider a register of multiple qubits, another important aspect of quantum
algorithms can arise: entanglement between these qubits. Intuitively, entangle-
ment means that the state of a quantum system can not simply be described by
considering its individual parts. Formally, we call a state entangled if it is not a
separable state. To understand the notion of a separable state, consider a bipartite
quantum system on the Hilbert spaces HA with basis {|ai⟩}k

i=1 and HB with basis
{|bj⟩}l

j=1, and a basis {|ai⟩⊗ |bj⟩} for HA⊗HB . Any pure state in this composite
system can be written as

|ψ⟩AB =
∑
i,j

ci,j(|ai⟩ ⊗ |bj⟩). (2.5)

If the state can be written as a simple tensor product of the two subsystems,

|ψ⟩AB = |ψ⟩A ⊗ |ψ⟩B , (2.6)

it is considered a separable state. Intuitively, this can be understood as a joint
probability mass function that is the product of two independent marginals, i.e.,
p(x, y) = p(x)p(y). However, the type of correlation that is present in non-separable
states has no analog in the classical world and is therefore hard to understand
intuitively. Entanglement is a crucial ingredient for many quantum algorithms,
like the famous prime factorization algorithm by Shor [1].

So far we have discussed how to prepare and manipulate quantum states in the gate-
model formalism. The final ingredient required to perform quantum computation is
getting classical information out of the device, that is, performing a measurement
of a given observable. Going back to the one-qubit example above, we have
already discussed that the superposition state shown in Equation (2.1) can not
be measured. Instead, we can only measure the basis state |0⟩, which occurs with
probability |α|2, and the basis state |1⟩, with probability |β|2. More formally,
we define measurement observables in terms of a set of operators {Mm} on the
state space of the quantum system. In this thesis, we consider the special case
where all Mm are orthogonal and Hermitian, called a projective measurement. The
observable M has the spectral decomposition

M =
∑
m

mPm, (2.7)

7

2.1 Gate model quantum computing

with Pm the projector onto the eigenspace of M with eigenvalue m. For the
example of a computational basis measurement on one qubit |ψ⟩ we have the
measurement operators

P0 = |0⟩⟨0| , P1 = |1⟩⟨1| , (2.8)

both with eigenvalue 1, and we get∑
m

P †
mPm = P †

0P0 + P †
1P1 = I, (2.9)

where Equation (2.9) shows that this set of projectors satisfies the completeness
relation, i.e., the set of projectors has to satisfy the condition that the probabilities
of all measurement outcomes sum to one. After measuring outcome m, the state
is then

|ψm⟩ = Pm |ψ⟩√
p(m)

, (2.10)

where the probability p(m) to measure outcome m is

p(m) = ⟨ψ|Pm |ψ⟩ . (2.11)

The above statement that the measurement outcome will be one of the eigenvalues
of M and that the probability of measuring eigenvalue m is given by Equation (2.11)
is also known as the Born rule. Once the observable is measured, the quantum
state collapses and all information about its previous state is lost. Subsequent
measurements of the resulting state will then always yield the same output.

Another common observable, which we will also use in this thesis, is the observable
Z, also referred to as a measurement in the Z basis, with basis states |0⟩ and |1⟩,
and eigenvalues 1 and -1, respectively,

Z = 1 |0⟩⟨0| − 1 |1⟩⟨1| =
(

1 0
0 −1

)
. (2.12)

After defining the main ingredients of quantum algorithms above, like qubits,
quantum gates, superposition, interference and entanglement, we can start writing
down our own algorithms. The formalism most commonly used for this, and the
one we also use in this work, are quantum circuits. In a quantum circuit, qubits
are represented as wires, horizontal lines read from left to right. Quantum gates
are then placed on these wires to indicate the operations performed on each of
the qubits in the register. This formalism can be used to write down arbitrary

8

2.2 Noisy intermediate-scale quantum computing

|0⟩ H

|000⟩+|111⟩√
2

|0⟩ H H

|0⟩ H H

Figure 2.1: Example of a quantum circuit diagram depicting a circuit to create
a Greenberger-Horne-Zeilinger (GHZ) state, an important type of entangled state.
In this 3-qubit circuit, the GHZ state is prepared by applying Hadamard gates (H)
and controlled phase gates (vertical lines).

quantum algorithms, and a simple example of a circuit diagram can be seen in
Figure 2.1.

With the above, we are equipped to study arbitrary quantum algorithms, like the
well-known prime factorization algorithm [1], or the quantum algorithm for solving
linear systems of equations [5] mentioned above. In this thesis, however, we are
interested in a special type of quantum algorithm tailored for near-term devices,
which we will introduce in the following section.

2.2 Noisy intermediate-scale quantum comput-
ing

In Chapter 1, we already outlined the distinction between fault-tolerant algorithms,
that are designed with perfect, large-scale quantum computers in mind, and
so called noisy intermediate-scale quantum (NISQ) algorithms, which are more
suitable for the error-prone and small quantum computers that we expect to have
access to in the coming few decades. The term NISQ was coined by John Preskill
in a keynote talk and accompanying article [12], and he defines these types of
devices as quantum computers with around fifty to at most a few hundred qubits,
which are subject to noise and which we have only imperfect control over. Apart
from the number of qubits, he also emphasizes that the quality of qubits and how
precisely operations can be performed on them plays a crucial role. This means
that NISQ algorithms are not only restricted in the number of qubits they can use,
but also in the depth and the total number of gates of the quantum circuits that
are used. Additionally, as error correction techniques that are developed to aid

9

2.2 Noisy intermediate-scale quantum computing

fault-tolerant quantum computation require a high overhead of additional qubits,
NISQ devices are assumed to operate without error correction in order to fully
utilize the small number of qubits that are available. Alongside all of the above,
device-specific limitations like qubit connectivity and native gate sets have to be
taken into account as well.

With these constraints, the algorithms that can successfully be run in the NISQ era
are severely limited. In particular, algorithms of the type as the prime factorization
and linear equation solving algorithms discussed in previous chapters [1, 5], that
require the execution of a pre-defined and rigid gate sequence, are out of reach
for these types of devices. However, an interesting class of algorithms specifically
tailored to the limitations of these devices has emerged in the past few years:
variational quantum algorithms (VQAs) [14]. VQAs are hybrid quantum-classical
algorithms that outsource a large part of the heavy lifting to a classical computer.
The basis for a VQA is a parametrized quantum circuit (PQC) that is run on
the quantum device. Based on measurements of this quantum circuit and a given
objective function, a classical optimizer computes updates of the circuit parameters.
This procedure is repeated in an iterative fashion, until the circuit output matches
the desired output for a given task. This approach is quite different from the one
taken for designing the fault-tolerant algorithms we have discussed before. Instead
of specifying a fixed algorithm in form of a quantum circuit that relies on the
execution of a precise sequence of gates, in a VQA, designing this circuit is left
more or less to the classical optimization routine. In general, only the structure of
the parametrized gates is given in advance, and this can be tailored to the specific
constraints of a certain device, like the available gate set or connections between
qubits. In the following sections, we will address how the parameter optimization
scheme in these types of models works, and in which areas they have shown to be
promising to apply.

2.2.1 Variational quantum algorithms

A VQA consists of two components: the parametrized quantum circuit, also called
ansatz, and the classical optimization routine that performs the parameter updates,
as can be seen in Figure 2.2. In general, the structure of the ansatz can be chosen
quite flexibly, and we denote a unitary parametrized by θ as U(θ). Usually, the
ansatz is structured in layers, and we write the unitary that represents a PQC of

10

2.2 Noisy intermediate-scale quantum computing

Figure 2.2: Depiction of a variational quantum-classical algorithm. The quantum
computer on the left implements a quantum circuit parametrized by θ, and outputs
expectation values of this circuit given an observable M . Based on this, the classical
computer on the right computes a loss function L(θ), and the updated parameters
θt+1, which are fed into the quantum circuit for the next iteration. This process is
repeated until the loss function reaches a desired value.

depth L as

UL(θ) =
L∏

i=1
Ui(θi). (2.13)

In the case where a PQC is used in a machine learning setting, there may also
be additional parameters that serve to encode the training data into the circuit,
and we will discuss these types of circuits in more detail in later chapters. For
simplicity, we will omit these parameters in this chapter, as they do not influence
the optimization procedure directly.

In order to optimize the parameters of the PQC given a certain task, a classical
optimization routine is used. There is a wealth of options to choose from in the
classical optimization literature, and indeed numerous different techniques have
been explored for the optimization of PQCs [33, 34, 35, 36, 37]. One of the most
popular approaches are gradient-based methods, which are the state-of-the-art
optimizers used for classical neural networks. In their most basic form, called
stochastic gradient descent, the parameters θ of a function f(θ) are updated
according to the following rule,

θi ← θi − η∇f(θi), (2.14)

11

2.2 Noisy intermediate-scale quantum computing

where η is a step size that determines the magnitude of each update step, also
called learning rate in the machine learning literature. There are many different
versions of these types of algorithms, often with elaborate schedules to fine-tune
the step size for various phases of the optimization. The Adam optimizer, for
example, has additional momentum terms that tune the step size according to
the steepness of the optimization landscape [38]. It depends on the given task
which flavor of gradient descent is best suited, however, what they all have in
common is that they require computation of partial derivatives of the function to
be optimized.

2.2.1.1 Computing gradients

A simple possibility to compute gradients in PQCs is to use the finite difference
method. With this, the gradient of an arbitrary function f(θ) can be approximated
to precision O(ϵ) by

df

dθ
≈ f(θ + ϵ)− f(θ)

ϵ
. (2.15)

With this method, the number of circuit evaluations required to compute the
gradient of a PQC scales linearly with the number of parameters used in the circuit.
However, this comes at the cost of only obtaining an approximation of the gradient,
as well as introducing another hyperparameter, namely ϵ, to the optimization
routine. Furthermore, in the case of noisy quantum hardware with imprecise
control, and circuit evaluations based on a limited number of measurements, there
are additional limitations on how small ϵ can be chosen in this setting.

This lack of precision in computing gradients will increase their variance during
training and can therefore negatively impact the optimization routine. To alleviate
the issue of only computing an ϵ-approximation of the gradients, one can also
compute exact gradients for PQCs by using the so-called parameter-shift rule
[39, 33, 40]. Consider a parametrized gate UG(θi) = e−iaθiG with generator G that
is a Hermitian linear operator, trainable parameter θi and a real constant a, that
acts within an arbitrary unitary U(θ). If G has at most two distinct eigenvalues
e0 and e1, the partial derivative of ⟨U(θ)⟩ w.r.t. θi can be written as

d

dθi
⟨U(θ)⟩ = r (⟨U(θ + ∆θi)⟩ − ⟨U(θ −∆θi)⟩) , (2.16)

where ⟨U⟩ denotes the expectation value of U acting on some initial state and
under measuring a given observable, and ∆θi is a vector of the same length as

12

2.2 Noisy intermediate-scale quantum computing

θ that is π
4r at the i-th position, and zero everywhere else. In other words, the

partial derivative of a PQC can be computed by the difference of two evaluations
of the same PQC, with the parameter that is considered for the derivative shifted
by π

4r and − π
4r , respectively. The factor r depends on the eigenvalues of the

generator as r = a
2 (e1 − e0) [40], and r = 1

2 for the Pauli gates we commonly use
in this thesis [39]. In the case that one parameter is shared between a number of
gates, the parameter-shift rule has to be applied for each of the gates individually,
and the derivative is then computed according to the product rule. The authors
of [33] also show how the above can be extended for generators with arbitrary
eigenvalues, at the cost of introducing one ancilla qubit, and for Gaussian gates in
continuous-variable quantum computing. The above parameter-shift rule enables
computation of exact derivatives of arbitrary quantum circuits, at the cost of two
circuit evaluations per parameterized gate in each update step. These gradients
can then be used to perform any gradient-based update routine, like the stochastic
gradient descent method described above. The downside of the parameter-shift
rule is that the number of circuit evaluations required to compute gradients scales
linearly with the number of parametrized gates, instead of the number of parameters
itself as in the finite difference method above.

As we have seen above, computing gradients for PQCs is relatively straightforward.
However, there are a number of challenges in the optimization of PQC parameters,
as we will describe in the next section.

2.2.1.2 Challenges in the optimization of PQCs

In Section 2.2.1.1, we described how the parameters in a quantum circuit can be
optimized by using tools from the classical optimization literature. However, it
turns out that there are a number of difficulties when optimization is done in a
quantum landscape. A first fundamental issue in the optimization of PQCs was
described in [41], where the authors introduce the notion of barren plateaus, vast
saddle points in quantum circuit training landscapes where first and higher order
derivatives vanish. These plateaus result from basic features of the geometry of
high-dimensional spaces.

The authors of [41] examine the gradients for quantum circuit training in a
model known as random PQCs. For this model, parameter updates for gradient-
based optimization are calculated based on the expectation value of an observable
measured on a state produced by a parametrized circuit, and the circuits are drawn

13

2.2 Noisy intermediate-scale quantum computing

from a random distribution. The distribution of circuits amounts to choosing
a set of gates uniformly at random, where some of the gates have continuous
parameters amenable to differentiation. The authors of [41] show that a sufficient,
but not necessary, condition for the vanishing of gradients with high probability
is that for any arbitrary division of the circuit into two pieces, the two pieces
are statistically independent, and that one of them approximately matches the
fully random distribution up to the second moment, or in other words forms an
approximate 2-design. Formally, a unitary t-design X is defined as,

1
|X|

∑
U∈X

U⊗t ⊗ (U∗)⊗t =
∫

U(d)
U⊗t ⊗ (U∗)⊗tdU, (2.17)

where the unitary t-design is an ensemble of unitaries that matches the fully random
distribution of unitaries up to the t-th moment. The fully random distribution
of unitaries is given by the Haar measure, which assigns a translation invariant
volume on the sphere. To understand the above, it is important to note that
in order to sample unitaries of a given size uniformly at random from the full
Hilbert space, it is not enough to choose an appropriate parametrization, e.g.,
parametrized unitaries that represent arbitrary rotations, and then sample the
parameters uniformly at random. This is because those unitaries act on a high-
dimensional sphere, where differences between parameters are not proportional
to the differences between the resulting points on the sphere, as these differences
depend on their position on the sphere. The Haar measure assigns a volume on
the sphere that is invariant to the position, and therefore sampling uniformly
at random according to the Haar measure allows to sample unitaries uniformly
at random from the full Hilbert space. Additionally, a t-design over unitaries
generates a t-design of states in the given Hilbert space. While executing a circuit
that implements such a Haar-random unitary takes time exponential in the number
of qubits, there are efficient techniques to produce circuits that approximate the
first and second moment of the Haar distribution, which is formalized by the notion
of 2-designs. It has been shown in [42] that random PQCs form approximate
2-designs once they reach a certain depth, and the authors of [41] show how even a
modest number of qubits and layers of random gates is enough for this. The depth
of a quantum circuit required to reach this regime of barren plateaus depends
on the number of qubits and allowed connectivity. It is thought that the depth
required to reach a 2-design scales roughly as Õ(n1/D), converging to a logarithmic
required depth in the all-to-all connectivity limit [43], where D is the dimension of

14

2.2 Noisy intermediate-scale quantum computing

1 2 3 4 5 10 15 20 50 100 200
Layers

10 5

10 4

10 3

10 2

10 1

Va
ria

nc
e

of
 g

ra
di

en
ts

2 qubits
4 qubits
6 qubits
8 qubits
10 qubits
12 qubits
14 qubits
16 qubits
18 qubits

Figure 2.3: Concentration of variance of gradients of the expectation value of the
readout qubit. For random parametric quantum circuits, as circuits of different
sizes converge to a 2-design, gradient values necessary for training vanish with
increasing number of qubits and layers.

the connectivity of the device, e.g., D = 2 for a square lattice, and n is the number
of qubits.

As an approximation of a 2-design, a particular class of random circuits that
were studied numerically in [41] were those with some discrete structure of gates
determined by an underlying geometry (e.g., 1D line, 2D array, or all-to-all),
and single qubit gates with a continuous parameter rotating around a randomly
chosen axis. This assigns a parameter θi to each of these gates. To sample from
the distribution of random circuits, each angle θi was drawn from the uniform
distribution θi ∈ U(0, 2π). Due to concentration of measure effects as described
in [41], random PQCs with different sets of parameters will produce very similar
outputs and their variance vanishes for sufficiently large circuits, i.e., those that
reach approximate 2-designs, as shown in Figure 2.3. Each data point in the figure
is calculated over 1000 randomly generated circuits with all-to-all connectivity in
each layer, and an initial layer of Hadamard gates on each qubit, to avoid a bias of
gradients with respect to the circuit structure caused by initializing in an all-zero
state. Note that the average value of the gradient here is zero in all cases.

This represents a generic statement about the volume of quantum space for such

15

2.2 Noisy intermediate-scale quantum computing

a circuit where one expects to find trivial values for observables. In other words,
sufficiently deep, arbitrary random PQCs will produce very similar expectation
values regardless of the set of individual parameters. Consequently, the partial
derivatives of an objective function based on expectation values of a random
PQC will have extremely small mean and variance. These properties make them
essentially untrainable for gradient-based or related local optimization methods on
quantum devices, as the training landscapes in these scenarios are characterized
by large regions where the gradient is almost zero, but which do not correspond to
a local or global minimum of the objective function. This decay of the variance of
gradients is not only detrimental to parameter optimization, but more generally
hinders extraction of meaningful values from quantum hardware, especially on
near-term processors that are subject to noise.

Based on the above results by [41], trainability issues in PQCs have been studied
extensively in the past few years. While the above results illustrate how with
increasing depth, a PQC gets closer to the 2-design regime and is therefore more
susceptible to barren plateaus, it was shown in [44, 45] that barren plateaus can
also be present in shallow circuits when the cost function is global, in the sense
that it is computed based on states in exponentially large Hilbert spaces, instead
of local, where the cost function depends only on smaller subsets of the qubits in a
circuit. It has also been shown that there is a relationship between the amount
of entanglement in a given circuit and its susceptibility to barren plateaus, where
high amounts of entanglement tend to lead to untrainability [46, 47]. Moving away
from only considering circuits that are approximate 2-designs, the authors of [48]
establish a connection between the expressivity of a PQC and barren plateaus,
where the expressivity of a circuit is measured in terms of its distance to a 2-design.
Finally, it was shown in [49, 50] that regardless of the specific structure of the
ansatz, the noise present on quantum hardware can lead to untrainability issues
for circuits where the depth grows at least linearly with the system size. While
the above results focus on gradients and their variance, it has also been shown
that the barren plateau phenomenon persists for higher-order derivatives [51],
as well as gradient-free optimization [52]. The amount of negative results above
seems discouraging. However, there has also been a tremendous effort to develop
methods to address the above issues. The authors of [53] introduce a non-random
parameter initialization strategy, where some parts of the circuit are initialized
randomly, and the rest is then chosen so that the whole circuit will act as the
identity. This will prevent initialization on a barren plateau. Another approach

16

2.2 Noisy intermediate-scale quantum computing

that addresses the barren plateau issue by choosing a specific parametrization is
that by [54], where a number of gates in a circuit share the same parameter and
are therefore correlated. Other approaches focus on the circuit structure itself,
instead of the parametrization of gates. The authors of [55] introduce an ansatz
that is tailored to a specific type of learning problem, and a subsequent work shows
that this problem-related structure prohibits the onset of barren plateaus in this
ansatz [56]. In a similar vein, the authors of [57] show that circuits that preserve a
certain symmetry are immune to barren plateaus. Another recent approach uses
techniques related to shadow tomography to detect and avoid barren plateaus
[58]. In Chapter 4 of this thesis, we will introduce another method to address the
barren plateau problem, where the circuit is initialized and trained in a way that
avoids utilizing the full Hilbert space, and thereby sidesteps going into the 2-design
regime.

To summarize, there are a number of fundamental challenges in the training of
PQCs which present large hurdles that have to be overcome to train VQAs on
a large scale. At the same time, addressing and mitigating these challenges is
a prosperous field of research, and recent results provide hope that especially
problem-tailored ansatzes will enable successful training of large scale quantum
models in the future.

2.2.2 Application areas and outlook

The VQA framework is extremely flexible and can be applied to a wide variety of
problems. However, three main application areas of VQAs have gained traction in
the past years: combinatorial optimization, quantum chemistry and simulation,
and machine learning. For combinatorial optimization, the most commonly used
technique is the quantum approximate optimization algorithm (QAOA) [59], where
the solutions of an optimization problem are encoded as the eigenstates of a
Hamiltonian, and the ground state represents the optimal solution. The parameters
of the PQC are then optimized such that the circuit outputs the ground state with
highest probability. In the limit of an infinitely deep circuit, this algorithm also
has theoretical guarantees to find the ground state. Next to being studied in-depth
in the context of the canonical Max-Cut problem [60, 61, 16, 62, 63], the QAOA
has also been applied to a number of industrially relevant problems [64, 65, 66, 67],
as well as being studied experimentally on a superconducting quantum device [68]
and with Rydberg atoms [69].

17

2.2 Noisy intermediate-scale quantum computing

A similar approach to find ground states of Hamiltonians in a quantum chemistry
setting is called the variational quantum eigensolver (VQE) [18, 20]. Here, the
goal is still to find the ground state of a given Hamiltonian, but the structure of
the ansatz to do this is not given in advance as in the case of the QAOA, but
can be chosen depending on the given problem. This approach has also been
studied extensively in the past few years, both theoretically [70, 71, 72], as well
as experimentally on real hardware [73]. The third application area where VQAs
have gained much interest in recent years, and the one we focus on in this thesis,
is machine learning. Similarly to the above two examples, there has been a wealth
of results in this area in the past years, and we will discuss VQAs in this context
in more detail in Section 3.3.

Overall, VQAs seem to be a promising road to demonstrate the usefulness of
quantum computers on a task of practical interest. However, this road is not
without obstacles. In addition to the challenges we described in Section 2.2.1.2,
and even when VQAs turn out to be applicable to large-scale quantum systems,
the question remains whether these algorithms are better than their classical
counterparts. Due to their variational nature, it is hard to make rigorous statements
about any type of quantum advantage for VQAs. Second, even if a task with a
potential empirical gain in performance is found, it is hard to directly compare
these types of algorithms to their classical analogs. In particular, there is the
question which classical algorithm one compares to, and under which criteria.
To give an example, it has been empirically observed in a number of studies
that PQCs seem to be able to solve certain tasks with fewer parameters than
classical neural networks [74, 75, 76, 77]. However, one can not directly proclaim
quantum advantage from this fact, as it also has to be taken into account that
the computation of gradients is more efficient in the classical setting and can be
heavily parallelized, which is not the case in a VQA. And last but not least, while
VQAs have been conceived with NISQ devices in mind, they too do suffer from the
noise present on these devices. An open question is how one can efficiently combat
these types of errors. While a number of error mitigation techniques have been
proposed in the past years [78, 79, 80], recent results also show that they come
with an exponential sampling overhead [81, 82]. So even if VQAs eventually turn
out to be useful for practical tasks in the future, a number of roadblocks still have
to be overcome until we get there.

18

ch
ap

te
r

3
Machine learning

The field of machine learning (ML) is concerned with developing systems that
learn to perform certain tasks without being explicitly programmed to do so. The
methods used in this field encompass a wide range of techniques, ranging from
simple linear regression to more complex approaches like neural networks [83, 84].
How the problem of learning a certain task is addressed can be broadly separated
into three branches: supervised learning, unsupervised learning, and reinforcement
learning. What all three of these methods have in common is that they are based
on a model, the trainable part of the algorithm that will later execute the learned
task. In the supervised setting, a model is trained based on a set of labeled data
samples, to then label samples not seen during training. In unsupervised learning,
there are no labels assigned to the training data, but the goal of the algorithm is to
infer the underlying structure of the data, e.g., by sorting it into separate clusters.
In reinforcement learning, there is no training data per se, but the algorithm learns
in a trial-and-error fashion by interacting with an environment.

Depending on which type of learning is performed, one can also choose between
a number of different models. In this thesis, we will study ML from the neural
network perspective [85], as these types of models are most closely related to the
VQAs described in Section 2.2.1. We will first describe neural networks and their
training in Section 3.1, and then move on to introduce reinforcement learning in
more depth in Section 3.2, which is the learning algorithm we mainly focus on in
this thesis. Finally, we outline the intersection of machine learning and quantum
computing, referred to as quantum machine learning, in Section 3.3.

19

3.1 Neural networks

3.1 Neural networks

3.1.1 Neurons, layers, and backpropagation

In its simplest form, a neural network (NN) consists of layers of artificial neurons
that are loosely based on biological neurons, where the output of the k-th neuron,
given an input vector x of length m, is of the form

fk(x) = σ

 m∑
j=0

wkjxj

 , (3.1)

where σ denotes an activation function that serves the purpose of introducing
nonlinearities to the NN. The wkj represent trainable weights, which are optimized
such that the whole network gives the desired output on a given input, similarly
to the parameters θ in the VQAs we introduced in Section 2.2.1. When NNs are
trained with gradient descent, the activation function needs to be differentiable or
at least allow the computation of subderivatives in order to compute gradients for
the weight updates. We denote the weights between layers l and l− 1 as w(l), and
the function that represents the action of the full layer as σ(l). Each layer in a NN
can theoretically contain arbitrarily many neurons, where the input of the neurons
in each layer is given by the output of the neurons in the previous layer. When a
higher number of layers is involved, this is commonly referred to as deep learning.
The full network with input x can then be written as the following composition of
functions starting from the last layer L,

f(x) = σ(L)(w(L)σL−1(w(L−1)σL−2(. . . w1σ0(w0x) . . .))). (3.2)

A visualization of this type of NN can be seen in Figure 3.1. The above equation
represents the simplest form of a NN, where the neurons in each layer are only
connected to the neurons in neighboring layers, called a feedforward NN. The
training data set consists of pairs of examples X = {(xi, yi)}, and the goal is to
adjust the weights of the network such that for each xi, the network produces the
desired output yi. How close the model output ŷi is to the target output, also
called the loss, is quantified in terms of a cost function,

C(yi, ŷi). (3.3)

To optimize the weights w, typically gradient descent with the backpropagation
algorithm is used [86, 87]. This algorithm provides an efficient method to compute

20

3.1 Neural networks

.

.

.

Brachiosaurus

Figure 3.1: Depiction of a neural network that takes images of dinosaurs as input,
and classifies them into two categories. The w(l) are trainable weights, the σ(l) are
layers of neurons with activation functions, and x is an input vector. Black lines
show weights w

(l)
kj between two neurons in adjacent layers.

gradients in NNs, utilizing their layered structure. Naively, one can compute the
gradient of the cost function w.r.t. a given weight w(l)

kj via the chain rule. However,
doing this will require redundant computations of partial derivatives as we work
through the layers. Due to the fact that each layer only depends on its successors by
how they affect the cost function, and does so in a linear manner, the computation
of the gradient can be regarded layer-by-layer and performed without re-computing
redundant derivatives. More formally, the loss of a NN with L layers on a pair of
samples (xi, yi) is

C(yi, σ
(L)(w(L)σ(L−1)(w(L−1)σ(L−2)(. . . w(1)σ(0)(w(0)x) . . .)))). (3.4)

The gradient of the cost function given input x is then the following,

∇xC = w(0)T · (σ(0))′ ◦ · · · ◦w(L−1)T · (σ(L−1))′ ◦w(L)T · (σ(L))′ ◦∇a(L)C, (3.5)

where we denote the output of layer l as a(l), and the derivative of σ(l) as (σ(l))′.
Instead of computing the derivatives from left to right, where each computation
at the i-th layer includes derivatives of the following layers of nested functions,
in the backpropagation algorithm, derivatives are evaluated right to left, and the
a(l) as well as the derivatives of each layer are cached along the way. In addition,
propagating the error of a given training data pair backwards through the network
constitutes multiplication of the vector of partial products of the derivatives with
a matrix of weights for each layer. Performing the computation in the opposite

21

3.1 Neural networks

direction, on the other hand, constitutes of a multiplication of two matrices at
each layer. These two changes in the procedure of computing gradients make
the backpropagation algorithm much more efficient than a naive calculation that
includes all the L− i terms in every step, and is key to enable training large-scale
NNs with billions of parameters. This is different to gradient computation in
the VQAs we described in Section 2.2.1. There, gradients are obtained by the
parameter-shift rule in Equation (2.16), which requires two circuit evaluations
per trainable gate in the circuit. In particular, generic quantum circuits do not
allow for a layer-wise computation of partial derivatives as in the backpropagation
algorithm, where derivatives previously computed for other parameters in the
circuit can be reused.

As mentioned before, the above describes computation of gradients in a feedforward
NN, which is the simplest NN in terms of the connections between neurons. While
gradients in this architecture can be computed efficiently, the all-to-all connectivity
between each of the layers poses other problems for the trainability of the network.
The most infamous of these problems is that of vanishing or exploding gradients
[88]. This is a consequence of the layer-by-layer computation of gradients in the
backpropagation algorithm. The gradient is computed by multiplying partial
derivatives for each layer, so when derivatives are small, and in particular when
they are smaller than one, multiplying several of these values will lead to a gradient
that is vanishing exponentially in the number of terms that are multiplied. A
similar effect is present when partial derivatives are large: multiplying increasingly
large numbers in each layer leads to a blow-up of the derivative terms. In order to
overcome this problem, weight initialization strategies [89], as well as activation
functions [90] and more elaborate NN architectures [91] have been developed, and
research in this area is still ongoing.

Despite these practical hurdles, NNs have become the most popular models used
for large-scale ML due to their flexibility and the broad range of tasks they can
be applied to. Indeed, theory shows that NNs can, in principle, approximate any
function, a result that is known as the universal approximation theorem [92, 93].
There are actually a number of these universal approximation theorems, each
pertaining different types of NN architectures: the arbitrary width case concerns
networks with only one layer that contains many neurons [92, 94, 95], the arbitrary
depth case is about networks that contain a limited number of neurons in each
layer, but use several of those layers [96], and the bounded width and depth case is a

22

3.1 Neural networks

combination of the first two cases [97]. These results show that theoretically, NNs
can represent many functions of interest, given a suitable set of weights. However,
these theorems neither tell us anything about how to obtain these weights, nor
how hard it is to find them. In order to make full use of the power of NNs, several
challenges in high-dimensional optimization as the one mentioned above have to
be overcome. In the following section, we will encounter one of those challenges,
that results from a fundamental tradeoff between model complexity, and a model’s
ability to perform well on previously unseen data.

3.1.2 Generalization and overfitting

As briefly alluded to in the introduction of this chapter, the main goal of a machine
learning algorithm is to learn to perform a given task without being explicitly
programmed to do so. Information is inferred from a set of data samples or
interactions with an environment, in order to use this information to process
previously unseen data. In machine learning literature, the ability to use this
information on unfamiliar data is referred to as generalization, and the failure to
do so as the generalization error. Usually, these terms are formally defined in a
supervised learning setting, where the algorithm is given a set of training data
points X = {(X = xi, Y = yi)} sampled from some joint distribution of X × Y ,
and the goal is to produce the output yi given the input xi, and the error between
model output ŷi and target label yi is given by the cost function C(yi, ŷi), as in
Section 3.1.1. The average difference between the output of a model parametrized
by θ, denoted ŷ

(θ)
i , and the target labels for a training data set of size N is then

given as

L(θ) = 1
N

N∑
i=1

C(yi, ŷ
(θ)
i) (3.6)

and is called the empirical risk. Naively, one could now define the goal of the ML
model as finding the set of parameters θ∗ that minimizes the empirical risk on the
given training data set,

θ∗ = argminθL(θ). (3.7)

However, even under the assumption that there exists a set of parameters that
yields a model with an empirical risk of zero, it is not clear that these parameters
are also optimal for samples that were not included in the training data, i.e.,
whether this set of optimal parameters generalizes to unseen samples. Even worse,
the parameters that are optimal for the training data may lead to higher error on

23

3.1 Neural networks

data not included in the training set, as the model is now overly fine-tuned on the
training data. This effect is commonly referred to as overfitting.

To quantify the generalization performance of a model, it is helpful to specify the
data that it was trained on in the definition of the risk,

L(θ;X) = 1
|X |

|X |∑
i=1

C(yi, ŷ
(θ)
i). (3.8)

Now, assuming that we have access to the probability distribution that generated
the training data, p∗(x, y), we can define the population risk, also called total risk,
as the theoretical expected loss

L(θ; p∗) = Ep∗(x,y)[C(yi, ŷ
(θ)
i)]. (3.9)

In practice, we usually do not have access to p∗, however, it lets us define the
generalization gap as the difference between the population and the empirical risk,
L(θ; p∗)− L(θ;X). A large generalization gap, meaning that the empirical risk is
low while the population risk is high, is a clear sign for overfitting. But how can
we prevent the model from overfitting without knowing the population risk?

An empirical approach to prevent overfitting on the training data is to split the
available data into three partitions: i) the training data that is used to fit the
model, ii) a validation set that is used for hyperparameter tuning, and iii) a test
set that is finally used to evaluate model performance. Further splitting the data
into validation and test set is beneficial, as most ML models’ performance strongly
depends on the hyperparameter setting used. Hyperparameters in a NN are, for
example, the learning rate η used to determine the step size of the gradient-based
updates of weights, or the number of layers and neurons in each layer in the
network. Once a well-performing set of hyperparameters is found based on the
validation data set, the final model performance is evaluated on the test data set,
which was not used in any of the previous steps of the model training and selection.
There are many different techniques to perform this division of the data set that
facilitate making the best use of the limited data that is available to train and
evaluate a model. A commonly used technique is called k-fold cross validation,
where the full data set is split into k parts, and the training and evaluation of
a model is repeated multiple times where different partitions of the data act as
training, validation and test sets, respectively.

24

3.1 Neural networks

Preventing overfitting in ML models is a highly non-trivial task, and a variety
of different approaches have been developed for this. A models’ capacity for
overfitting is closely related to its complexity, where a rule of thumb is that the
more complex a model is, the closer it can and will fit the training data exactly,
unless measures to prevent this are taken. This results in a tradeoff between the
model complexity and its generalization performance, where both, models that
are too complex or not complex enough, will have bad generalization performance
and one is required to find the model that has just the right level of complexity
for a given learning task. This is referred to as the bias-variance tradeoff [98]. To
make this formal, we consider the bias-variance decomposition of the expected
error Ep∗(x,y)[(ŷ − y)2|x], where for ease of notation we drop the explicit reference
to p∗(x, y) and x in the following, assuming that the cost function is the mean
squared error between model prediction ŷ and true label y,

Ep∗(x,y)[(ŷ − y)2|x] = E[ŷ2 − 2yŷ + y2]

= ŷ2 − 2ŷE[y] + E[y2]

= ŷ2 − 2ŷE[y] + E[y]2 + Var[y]

= (ŷ − E[y])2 + Var[y]

≜ (ŷ − y∗) + Var[y],

(3.10)

where y∗ = E[y] is the optimal prediction given x. If we now treat ŷ as a random
variable, where we repeatedly sample a data set from p∗, train the model, and
generate predictions ŷ, we get the expected error

E[(ŷ − y)2] = E[(ŷ − y∗)2] + Var[y]

= E[(y∗)2 − 2y∗ŷ + ŷ2] + Var[y]

= (y∗)2 − 2y∗E[ŷ] + E[ŷ2] + Var[y]

= (y∗)2 − 2y∗E[ŷ] + E[ŷ]2 + Var[ŷ] + Var[y]

= (y∗ − E[ŷ])2︸ ︷︷ ︸
bias

+ Var[ŷ]︸ ︷︷ ︸
variance

+ Var[y]︸ ︷︷ ︸
Bayes error

.

(3.11)

The bias term in Equation (3.11) represents the average error of the model predic-
tions, while the second term informs us about the variance of model predictions
on the training data. The third term is the variance over the true labels that we
have no control over, and can therefore ignore in this discussion. High variance
hints at an increased sensitivity of the model to small fluctuations in the training
data, which can be a result of the model fitting the training data too closely, and

25

3.1 Neural networks

is therefore a sign of overfitting. The bias of the model results from erroneous pre-
dictions when the model misses crucial information in modeling the input-output
relation, and is therefore a sign of underfitting. The above tells us that restricting
the model by introducing a bias can actually be beneficial, as long as it reduces
the variance. As described above, one difficulty at the heart of ML lies in finding
an adequate balance between these two terms for the learning task at hand. In the
following section, we will see how we can deliberately introduce an inductive bias
based on knowledge about the training data into the model, in order to increase
model performance and improve generalization.

3.1.3 Geometric deep learning

In the past years, the dimensionality of the input data of problems that are ad-
dressed with deep learning has kept increasing in size, and state-of-the-art NNs
now contain billions of trainable weights. Finding a good set of weights poses an
extremely high-dimensional optimization problem that comes with its own chal-
lenges. Most notably, we face the curse of dimensionality [99]: the data required
to solve these high-dimensional learning problems often grows exponentially with
the dimensionality. This means that learning about generic, unstructured data
in high-dimensional spaces is generally infeasible (an effect we have already en-
countered for quantum models in Section 2.2.1.2). However, most of the problems
that we are interested in solving with ML do have an underlying structure. If this
knowledge about the structure of the learning task can be imposed on the model
itself before training, this effectively reduces the dimensionality of the optimization
problem. This problem-dependent imposing of structure is also referred to as the
inductive bias of a model.

The field of geometric deep learning [100] is concerned with endowing models with
an inductive bias from the perspective of geometry and symmetries. Most of the
data that we are interested in learning about is generated by a process in our
physical world, and many of these physical processes have underlying symmetries
that make reasoning about them more easy. In fact, the study of symmetries is one
of the cornerstones of modern physics, and underlies important theories like that
of general relativity [101]. Therefore, it is not surprising that learning of functions
in high-dimensional spaces can also be simplified by utilizing the symmetries that
are present in the given training data. A key example of a NN with a problem-
dependent inductive bias is the convolutional NN, that is used to process images

26

3.2 Reinforcement learning

[102, 103, 104]. One symmetry present in images is that of translation invariance,
i.e., shifting an object around in an image does not change the object itself. For
example, a model that is used for object tracking in video data should recognize that
a ball that is thrown and will therefore appear in different locations of successive
frames of the video, is indeed the same ball. The layers of convolutional NNs are
designed precisely so that they are invariant to translations. Another common data
structure that has a corresponding symmetry-preserving NN architecture is that of
graphs [105]. Graph NNs preserve permutation invariance, or the closely related
permutation equivariance, of graph nodes, meaning that they are not affected
by the order in which representations of graph nodes are fed into the network.
Graph NNs can be used for many different types of learning tasks, like predicting
properties of molecules [106], inferring relationships in social networks [107], or
solving instances of combinatorial optimization problems [108]. The above types of
geometric models have played a key role in enabling recent breakthroughs in deep
learning, alongside the backpropagation algorithm we described in Section 3.1.1.
In Chapter 6 of this thesis, we will go into more detail about geometric learning,
and introduce a quantum model that is equivariant under permutation of graph
nodes, similarly to the graph NNs described above.

3.2 Reinforcement learning

In this section, we focus on the branch of machine learning that is considered in most
of the following chapters of this thesis: reinforcement learning (RL). In RL, an agent
does not learn from a fixed data set as in other types of learning, but by making
observations on and interacting with an environment [109]. This distinguishes it
from the other two main branches of ML, supervised and unsupervised learning,
and each of the three comes with its individual challenges. In a supervised setting,
an agent is given a fixed set of training data that is provided with the correct
labels, where difficulties arise mainly in creating models that do not overfit the
training data and keep their performance high on unseen samples. In unsupervised
learning, training data is not labeled and the model needs to discover the underlying
structure of a given data set, and the challenge lies in finding suitable loss functions
and training methods that enable this. RL also comes with a number of challenges:
there is no fixed set of training data, but the agent generates its own samples by
interacting with an environment. These samples are not labeled, but only come
with feedback in form of a reward. Additionally, the training data keeps changing

27

3.2 Reinforcement learning

throughout the learning process, as the agent constantly receives feedback from
interacting with its environment. This often results in a high number of interactions
that is required to successfully learn in a given environment, making RL the most
sample-inefficient method out of the three described approaches.

An environment consists of a set of possible states S that it can take, and a set
of actions A which the agent can perform to alter the environment’s state. Both
state and action spaces can be continuous or discrete. The function that models
the agent’s behavior in the environment is called the policy π(a|s), which gives
the probability of taking action a in a given state s. An agent interacts with an
environment by performing an action at at time step t in state st, upon which
it receives a reward rt+1. A tuple (s, a, r, s′) of these four quantities is called a
transition, and a sequence of transitions is a trajectory. Another ingredient in the
interaction between agent and environment are the transition probabilities from
state s to s′ after performing action a. They are represented by the transition
function P a

ss′ , which for environments that can be described in terms of a Markov
decision process (MDP) is defined as follows,

P a
ss′ = P (s′|s, a). (3.12)

For environments that are not MDPs, the transition probabilities may depend on
the whole trajectory instead of just the previous state and action. The transition
function is a property of the environment, and one can distinguish between model-
free algorithms as the ones we study in this work, where transition probabilities are
not learned, and model-based environments which learn the transition function as
a model of the environment. The quality of the agent’s actions in the environment
is evaluated by a reward function that is tailored to the learning task at hand,
and the agent’s goal is to learn a policy π(a|s) that maximizes its total reward.
The expected reward over a sequence of time steps starting at t is called the
return,

Gt =
∞∑

k=0
γkrt+k+1, (3.13)

where γ ∈ [0, 1) is a discount factor introduced to prevent divergence of the infinite
sum. The return Gt should be viewed as the agent’s expected reward when starting
from time step t and summing the discounted rewards of potentially infinitely many
future time steps, where maximizing the return at step t implies also maximizing
the return of future time steps. Note that the task is to maximize an expected

28

3.2 Reinforcement learning

value, and that the reward rt in Equation (3.13), and therefore Gt are random
variables. Environments often naturally break down into so-called episodes, where
the sum in Equation (3.13) is not infinite, but only runs over a fixed number of
steps called horizon H. An example of this are environments based on games,
where one episode comprises one game played and an agent learns by playing a
number of games in series.

Much of the theoretical work on RL is on so-called tabular algorithms, where the
rewards for possible transitions are stored in a table. While this simplifies certain
theoretical analyses such as proofs of convergence [110], these types of algorithms
quickly become inefficient with growing state and action spaces. Therefore, different
methods based on function approximation have been developed, where rewards
are not stored explicitly anymore but approximately represented by a function.
One example of RL with function approximation is deep reinforcement learning
(DRL), where the function approximator is a NN. Since the advent of NNs in the
past decades, much of RL research has focused on these types of algorithms, and
we also study RL with function approximation in this thesis. For this reason, we
only describe the most important concepts and techniques for RL with function
approximators here, as a general introduction to the broad field of RL is out of the
scope of this thesis. For more information on the history of RL, its connection to
dynamic programming and the Bellman equation [111], and the various theoretical
and practical formalisms developed in this field, the interested reader can refer to
[109].

3.2.1 Value-based and policy-based learning

RL algorithms can be categorized into value-based and policy-based learning meth-
ods. Both approaches aim to maximize the return as explained above, but use
different figures of merit to achieve this. Both approaches also have their disadvan-
tages as we will see below, and which type of algorithm should be used depends on
the environment at hand. The main difference between the two approaches is how
the policy is realized. In general, performance is evaluated based on a state-value
function Vπ(s),

Vπ(s) = Eπ[Gt|st = s], (3.14)

which is the expected return when following policy π starting from state s at initial
time step t, and the goal of a RL algorithm is to learn the optimal policy π∗ which
maximizes the expected return for each state.

29

3.2 Reinforcement learning

A policy-based algorithm seeks to learn an optimal policy directly, that is, learn
a probability distribution of actions given states. In this setting, the policy
is implemented in form of a parametrized conditional probability distribution
π(a|s;θ), and the goal of the algorithm is to find parameters θ such that the
resulting policy is optimal. The figure of merit in this setting is some performance
measure J(θ) that we seek to maximize, that in the fixed-horizon setting is equal
to the value function in Equation (3.14),

J(θ) := Vπθ
(s). (3.15)

This performance measure is used to find a good policy, however, once the policy
has been learned J(θ) is not required for action generation. Typically, these
algorithms perform gradient ascent on an approximation of the gradient of the
performance measure ∇J(θ), which is obtained by Monte Carlo samples of policy
rollouts (i.e., a set of observed interactions with the environment performed under
the given policy), and are hence called policy gradient methods. This approach
produces smooth updates on the policy (as opposed to value-based algorithms,
where a small change in the value function can drastically alter the policy) that
enable proofs of convergence to locally optimal policies [112]. However, it also
suffers from high variance as updates are purely based on Monte Carlo samples
of interactions with the environment [113]. A number of methods to reduce this
variance have been developed, like adding a value-based component as described
below to a policy-based learner in the so-called actor-critic method [114].

In a value-based algorithm, a value function as in Equation (3.14) is learned instead
of the policy. The policy is then implicitly given by the value function: an agent
will pick the action which yields the highest expected return according to Vπ(s).
A concrete example of value-based learning is given in Section 3.2.2, where we
describe the Q-learning algorithm that we use in later chapters of this thesis. While
value-based algorithms do not suffer from high training variance as policy gradient
learning does, they often require more episodes to converge. They also result in
deterministic policies, as the agent always picks the action that corresponds to
the highest expected reward, so this approach will fail when the optimal policy is
stochastic and post-training action selection is performed according to the argmax
policy.1 Additionally, the policy resulting from a parametrized value function can
change substantially after a single parameter update (i.e., a very small change in

1Consider for example a game of poker where bluffing is a valid action to scare other players
into folding, but quickly becomes obvious when greedily done in every round.

30

3.2 Reinforcement learning

the value function can lead to picking a different action after an update). This
results in theoretical difficulties to prove convergence when a function approximator
is used to parametrize the value function, hence there are even fewer theoretical
guarantees for this approach than for policy gradient methods. On the other hand,
it was the advent of Q-learning with function approximation that made it possible
to solve extremely complex problems such as Go with a RL approach [29].

Both approaches have their own (dis-) advantages, and while the popularity of
either method has surpassed the other at some point in the last decades, there
is no clear winner. As mentioned above, an actor-critic approach combines a
policy-based and value-based learner to leverage the advantages of both while
alleviating the disadvantages, and this method is among the stat-of-the-art in
classical RL literature [115]. Additionally, it can be easier to learn either the policy
or the value function depending on a given environment. For this reason, both
approaches are worth being studied independently.

3.2.2 Q-learning

In Q-learning, we are not interested in the state-value function as shown in
Equation (3.14), but in the closely related action-value function Qπ(s, a),

Qπ(s, a) = Eπ[Gt|st = s, at = a], (3.16)

which also gives us the expected return assuming we follow a policy π, but now
additionally conditioned on an action a. We call the optimal Q-function for
all state-action pairs Q∗(s, a) = maxπ Qπ(s, a), and an optimal policy can be
easily derived from the optimal values by taking the highest-valued action in each
step,

π∗(a|s) = argmax
a

Q∗(s, a). (3.17)

The goal in Q-learning is to learn an estimate, Q(s, a), of the optimal Q-function.
In its original form, Q-learning is a tabular learning algorithm, where a so-called
Q-table stores Q-values for each possible state-action pair [116]. When interacting
with an environment, an agent chooses its next action depending on the Q-values
as

at = argmax
a

Q(st, a), (3.18)

where a higher value designates a higher expected reward when action a is taken
in state st as opposed to the other available actions. When we consider learning

31

3.2 Reinforcement learning

by interaction with an environment, it is important that the agent is exposed to a
variety of transitions to sufficiently explore the state and action space. Intuitively,
this provides the agent with enough information to tell apart good and bad actions
given certain states. Theoretically, visiting all state-action transitions infinitely
often is one of the conditions that are required to hold for convergence proofs
of tabular Q-learning to an optimal policy [110]. Clearly, if we always follow an
argmax policy, the agent may only get access to a limited part of the state and
action space. To ensure sufficient exploration in a Q-learning setting, a so-called
ϵ-greedy policy is used. That is, with probability ϵ a random action is performed
and with probability 1− ϵ the agent chooses the action which corresponds to the
highest Q-value for the given state as in Equation (3.18). Note that the ϵ-greedy
policy is only used to introduce randomness to the actions picked by the agent
during training, but once training is finished, a deterministic argmax policy is
followed.

The Q-values are updated with observations made in the environment by the
following update rule,

Q(st, at)← Q(st, at) + α[rt+1 + γ ·max
a

Q(st+1, a)

−Q(st, at)],
(3.19)

where α is a learning rate, rt+1 is the reward at time t + 1, and γ is a discount
factor. Intuitively, this update rule provides direct feedback from the environment
in form of the observed reward, while simultaneously incorporating the agent’s own
expectation of future rewards at the present time step via the maximum achievable
expected return in state st+1. In the limit of visiting all (s, a) pairs infinitely often,
this update rule is proven to converge to the optimal Q-values in the tabular case
[110].

Obviously, the tabular approach is intractable for large state and action spaces.
For this reason, the Q-table was replaced in subsequent work by a Q-function
approximator which does not store all Q-values individually [117, 118]. In the
landmark work [119], the authors use a NN as the Q-function approximator which
they call deep Q-network (DQN) and the resulting algorithm the DQN algorithm,
and demonstrate that this algorithm achieves human-level performance on a number
of arcade games. In this work, the agent chooses actions based on an ϵ-greedy
policy as described above. Typically ϵ is chosen large in the beginning and then

32

3.2 Reinforcement learning

decayed in subsequent iterations, to ensure that the agent can sufficiently explore
the environment at early stages of training by being exposed to a variety of states.
The authors of [119] also utilize two other methods to stabilize training these
models: (i) experience replay: past transitions and their outcomes are stored in a
memory, and the batches of these transitions that are used to compute parameter
updates are sampled at random from this memory to remove temporal correlations
between transitions, (ii) adding a second so-called target network to compute the
expected Q-values for the update rule, where the target network has an identical
structure as the DQN, but is not trained and only sporadically updated with a
copy of the parameters of the DQN. Note that the target network is only used for
computing parameter updates, but is not needed after the training procedure where
only the Q-network is used. We refer to the original paper for further details on
the necessity of these techniques to stabilize training of the DQN algorithm.

The DQN is then trained almost in a supervised fashion, where the training data and
labels are generated by the DQN itself through interaction with the environment.
At each update step, a batch B of previous transitions (st, at, rt+1, st+1) is chosen
from the replay memory. To perform a model update, we need to compute
max

a
Q(st+1, a). When we use a target network, this value is not computed by the

DQN, but by the target network Q̂. To make training more efficient, in practice
the Q-function approximator is redefined as a function of a state parametrized by
θ, Qθ(s) = q, which returns a vector of Q-values for all possible actions instead of
computing each Q(s, a) individually. We now want to perform a supervised update
of Qθ, where the label is obtained by applying the update rule in Equation (3.20)
to the DQN’s output. To compute the label for a state s that we have taken action
a on in the past, we take a copy of Qθ(s) which we call qδ, and only the ith entry
of qδ is altered where i corresponds to the index of the action a, and all other
values remain unchanged. The estimated maximum Q-value for the following state
st+1 is computed by Q̂θδ

, and the update rule for the i-th entry in qδ takes the
following form

qδi
= rt+1 + γ ·max

a
Q̂θδ

(st+1, a), (3.20)

where θδ is a periodically updated copy of θ. The loss function L is the mean
squared error (MSE) between q and qδ on a batch of sample transitions B,

L(q, qδ) = 1
|B|
∑
b∈B

(qb − qδb
)2. (3.21)

33

3.2 Reinforcement learning

Note that because qδ is a copy of q where only the i-th element is altered via the
update rule in Equation (3.20), the difference between all other entries in those two
vectors is zero. As Q-values are defined in terms of (s, a)-pairs, this approach does
not naturally apply to environments with continuous action spaces. In this case,
the continuous action space has to be binned into a discrete representation.

Q-values can take an arbitrary range, which is determined by the environment’s
reward function and the discount factor γ, which controls how strongly expected
future rewards influence the agent’s decisions and is in general specified by the
environment definition. Depending on γ, the optimal Q-values for the same
environment can take highly varying values, and can therefore be viewed as
different learning environments themselves. In practice, it is not necessary that
an agent learns the optimal Q-values exactly. As the next action at step t is
chosen according to Equation (3.18), it is sufficient that the action with the highest
expected reward has the highest Q-value for the sake of solving an environment
presuming a deterministic policy. In other words, for solving an environment only
the descending order of Q-values is important, and the task is to learn this correct
order by observing rewards from the environment through interaction.

3.2.3 Policy gradients

As described above, when using a policy gradient method, the goal is to learn a
parametrized policy directly based on a quantity J(θ), that in the fixed-horizon
setting is equal to the value function (3.14),

J(θ) := Vπθ
(s). (3.22)

In a gradient-based optimization procedure the parameters are updated according
to

θt+1 = θt + α∇J(θt), (3.23)

with a learning rate α, i.e., we perform gradient ascent on the parameters to
maximize the expected return. The policy gradient theorem [109] then states that
the gradient of the performance measure can be written as

∇J(θ) = ∇Vπθ
(s)

∝
∑

s

µ(s)
∑

a

∇πθ(a|s)Qπ(s, a)

= E
πθ

[∑
a

∇πθ(a|St)Qπ(St, a)
]
, (3.24)

34

3.3 Quantum machine learning

where µ(s) is the on-policy distribution under the current policy, which depends on
the time spent in each state, and St in the third line of Equation (3.24) are states
sampled under the policy π. Using this, we can now derive the REINFORCE
algorithm, that is the basis of policy gradient based training.

Our goal is to perform gradient ascent on the parametrized policy purely from
samples generated from said policy through interactions with the environment.
The last line of Equation (3.24) still contains a sum over all actions a, which we
can replace by the sample At ∼ π after multiplying and dividing the terms in the
sum by πθ(a|St),

∇J(θ) ∝ E
πθ

[∑
a

πθ(a|St)Qπ(St, a)∇πθ(a|St)
πθ(a|St)

]

= E
πθ

[
Qπ(St, At)

∇πθ(At|St)
πθ(At|St)

]
= E

πθ

[
Gt
∇πθ(At|St)
πθ(At|St)

]
, (3.25)

where Gt is the expected return from Equation (3.13). Now, by using the fact that
∇ log x = ∇x

x , we can write

E
πθ

[
Gt
∇πθ(At|St)
πθ(At|St)

]
= E

πθ

[Gt · ∇ log πθ(At|St)] . (3.26)

This equation allows us to estimate the gradient of J(θ) simply by taking samples
of interactions with the environment under the current policy πθ, and leads us to
the following parameter update in each iteration of the algorithm,

θ ← θ + αγt
T∑

k=t+1
γk−t−1Rk ∇ log πθ(At, St), (3.27)

where α is again the learning rate, Rk is the reward, and T is the length of the
episode. As mentioned above, value- and policy-based algorithms both have their
strengths and shortcomings, and which of the two should be used depends on the
environment. Indeed, both of these approaches, as well as their combination in
the actor-critic framework, have been studied extensively classically as well as in a
quantum setting, as we will see in the following section.

3.3 Quantum machine learning

After getting a basic understanding of quantum computing in Chapter 2, and the
field of machine learning in this chapter, it is finally time to turn to the intersection

35

3.3 Quantum machine learning

of these two fields: quantum machine learning (QML). As the focus of this thesis
is on the near-term algorithms we described in Section 2.2.1, we will regard QML
from the angle of VQAs, and will not discuss fault-tolerant algorithms, like the
previously-mentioned one for solving linear systems of equations [5], in much
detail. In Section 2.2.1, we have already seen how a gradient-based optimizer can
be used to iteratively train the parameters of a quantum circuit, and how this
can be applied to a number of different tasks in combinatorial optimization or
quantum chemistry and simulation. When using these types of algorithms in a ML
context, the parameter optimization scheme stays essentially the same. The only
difference is that the parameters now have to be found for a set of training samples
instead of just for the ground state of a single Hamiltonian, which introduces the
same problems we have already studied for NNs above, like overfitting and the
bias-variance tradeoff, to the realm of VQAs. Additionally, the quantum cousin of
the vanishing gradient problem, the barren plateau phenomenon we have described
in Section 2.2.1.2, remains to pose a challenge in the variational QML setting as
well. Nonetheless, QML is a quickly evolving field [120, 121, 122], and these types
of algorithms have been studied in a multitude of contexts, as we will see in the
following section.

3.3.1 Near-term quantum machine learning

The QML algorithms that have been proposed for the NISQ-era can be broadly
divided into two types: the VQAs we already know, which in this context are also
referred to as quantum neural networks (QNNs)1, and another approach that is
based on the classical ideas of kernel methods [124]. Kernel methods are based on
a similarity function called a kernel that maps data points into a feature space,
and they make use of the so-called kernel trick. This trick allows computation
of the similarity of data points in the potentially infinite-dimensional feature
space given by the kernel, without ever having to compute the coordinates of the
data points in that feature space directly. Instead, it suffices to only compute
the inner products between the images of all pairs of data points to determine
their similarity. A well-known example of a ML algorithm that utilizes kernels

1Note that there are also efforts to directly implement the classical neuron/perceptron model
with a quantum approach [123], which is also sometimes referred to as a “quantum neural network.”
However, most of these are not suitable for NISQ devices so we do not consider them in this
thesis. When we refer to QNNs, we mean parametrized quantum circuits that are trained with
ML techniques to learn a certain task.

36

3.3 Quantum machine learning

is the support vector machine (SVM) [125]. Simply put, the SVM is a linear
classifier that learns to divide a set of points into two partitions, and does this
by finding a separating hyperplane where the separation between data points in
the two partitions is maximal. As this technique can only be used for linearly
seperable data, it is combined with a kernel, where the kernel is chosen such that
the given data points become linearly seperable in the high-dimensional feature
space. The SVM then only has to effectively partition a linearly seperable data
set. The idea of computing inner products of data points in a high-dimensional
space suggests itself to be translated to the quantum domain, and indeed quantum
kernel methods have enjoyed much popularity in the QML community in the past
years [126, 26, 127, 128, 129]. One advantage of this type of model in the quantum
setting is that the quantum device is only used to compute the kernel function, and
therefore there is no need to variationally train circuit parameters. Furthermore,
it has been shown that there exists a quantum kernel that allows for a rigorous
separation between classical and quantum learners [128], even though it is for a
contrived learning problem that does not directly translate to a task of practical
relevance. Despite having no trainable parameters, however, it has been shown
that quantum kernel methods suffer from a similar effect as the barren plateaus in
VQAs, namely an exponential concentration of the inner products in the number
of qubits [130].

In the classical literature, kernel methods were popular before the onset of deep
learning that was a result of increased hardware performance in the early 2000’s,
and since then focus has substantially shifted to NNs in research as well as industry.
Nonetheless, kernel methods are still interesting from the theoretical perspective, as
they are much more amenable to obtaining rigorous results about their performance
than NNs. Additionally, a certain type of kernel, called the neural tangent kernel
(NTK), can be used to describe the evolution of certain NNs when they are trained
with gradient descent [131]. With the NTK, theoretical results from kernel methods
can be used to study NNs, and it was, for example, used to prove that wide enough
NNs converge to a global minimum of the loss function [132, 133]. An analogous
connection between QNNs and quantum kernel methods has been established as
well [127, 134], and quantum versions of the NTK have also been studied [135, 136].
This connection between QNNs and kernel methods and its theoretical implications
are a promising direction for future research.

37

3.3 Quantum machine learning

QNNs themselves were studied in the context of a variety of different learning tasks
in all the three main branches of ML. Early work in the field introduced QNNs
for classification [137, 39, 138, 74], alongside classification with quantum kernel
methods as mentioned above. Another well-studied area of QML is generative
learning, a branch of unsupervised learning where the goal is to model a probability
distribution that generated a given data set, to then produce similar samples that
were not in the training set. As sampling from classically hard distributions is the
basis of quantum supremacy experiments [2, 3], using PQCs to model probability
distributions seems to be a promising direction of research. Quantum generative
models can be broadly classified into three categories. The first are quantum circuit
born machines (QCBMs) [139, 140, 28], that got their name from the fact that the
model’s probability to produce a certain sample is given by the Born rule. The
second are quantum generative adversarial networks (GANs), inspired by classical
GANs [141], where two models are trained together with opposing targets. The
generator is trained to generate realistic samples of some data distribution, while
the discriminator’s goal is to detect the “fake” data generated by the generator.
Several proposals for quantum GANs have been made [142, 143, 144, 145]. The
third type of quantum generative model is related to classical Boltzmann machines
[146], which are energy-based models that can be defined in terms of a Hamiltonian,
and are closely related to Ising models and spin-glasses. Due to this connection
to physics, Boltzmann machines naturally lend themselves to be adapted to the
quantum domain, and indeed multiple proposals for variational quantum Boltzmann
machines exist [147, 148], as well as general Hamiltonian-based models for learning
thermal states [149].

Variational QML algorithms for the third branch of ML, reinforcement learning,
are also an active area of research. Policy gradient methods, where the policy is
parametrized in form of a PQC, have been explored in [150, 151, 76, 152], while
Q-learning with PQCs as function approximators was studied in [153, 154, 75, 155,
156]. The combination of both types of models in the actor-critic framework was
studied in [157, 158]. Variational RL is also the main type of learning explored
in this thesis, where we study quantum Q-learning in Chapter 5, use it to train a
model to solve instances of combinatorial optimization problems in Chapter 6, and
evaluate the noise-robustness of variational proposals for Q-learning and policy
gradients in Chapter 7, considering noise sources present on near-term quantum
hardware.

38

3.3 Quantum machine learning

Finally, it is also worth mentioning another type of variational QML that promises
to be a fruitful direction for future research, namely hybrid quantum-classical
algorithms. The term “hybrid” here does not refer to the fact that a classical
model is used to find optimal parameters for a PQC, but is due to a classical and
quantum model being trained together [159, 160, 161, 162, 163]. The idea behind
this is that classical resources are leveraged as much as possible, and only those
computations where a quantum computer is really beneficial are outsourced to the
quantum model. As, especially for learning tasks that involve classical data, it can
be expected that quantum resources will only be required for part of the overall
computation, this approach enables getting the most out of the scarce quantum
resources we expect to have in the near future. A key question in this setting is
what exactly the classically hard parts in QML on a classical data set are or if
they even exist in generic learning problems, for which so far, there is no clear
answer, and this question is an interesting direction for future research.

3.3.2 Data encoding and the choice of ansatz

A major difference to VQAs used in the ML setting, as opposed to finding the
ground states of Hamiltonians, is the fact that we now want to train a PQC given
a set of training data samples. This raises the question of how to best provide
the PQC with this data, which is especially important when we consider learning
tasks on classical data, where this data has to be encoded into a quantum state
that is accessible to the PQC.

One of the first ideas on how to efficiently store classical data in a quantum state
was amplitude encoding, where a vector of n input values is stored in the amplitudes
of a qubit register. This approach is efficient in the sense that it only requires
logarithmically many qubits in the length of the input vector, so it is efficient in
space. However, this comes at the cost of time, as in general, it takes time O(2n) to
prepare this state [164]. This means that amplitude encoding can require relatively
deep circuits, so this approach is not practical for NISQ devices. Additionally, it
turns out that classifying states resulting from amplitude encoded data can even
be less efficient than classifying the original vectors directly [165], so care must be
taken about the specific encoding that is used. When the data consists of bitstrings
instead of real values, a simpler approach is to directly use these classical bitstrings
as the inputs to a PQC by initializing each qubit in the register in the state |0⟩ or
|1⟩, respectively, called basis encoding.

39

3.3 Quantum machine learning

A third method, sometimes referred to as qubit encoding or angle encoding [166],
inputs real-valued data as rotation angles of parametrized gates on the single- or
multi-qubit level. While this method obviously does not share the advantage of
being space-efficient, as in the case of amplitude encoding, qubit encoding can
be performed with arbitrary parametrizable gates and shallow circuits, and it is
therefore usually the number one choice in NISQ algorithms. However, care must
be taken on how this encoding is performed, in order to ensure a high expressivity
of the resulting QML model [167, 168, 169]. The authors of [167, 169] establish a
connection between PQCs and Fourier series, where each PQC with input data x
can be written as a truncated Fourier series f(x) in the following way,

f(x) =
∑
ω∈Ω

cωe
iωx, (3.28)

where Ω is the frequency spectrum of the Fourier series, which completely depends
on the choice of gates used to encode the data. Therefore, the data encoding used
in a QML model determines the complexity of the functions that this model can
fit. If the encoding is too simple, for example when only a layer of parametrized
X-rotations is used where the data is only encoded once, the model can only learn
a sine function of its input, irrespective of the complexity of the rest of the circuit.
One method to address this issue while keeping the encoding gates simple is to
repeatedly encode the data in subsequent layers of the circuit (or equivalently in
parallel on the level of the qubits), interspersed with the trainable parametrized
gates [167, 168, 169]. This approach has been introduced under the name of data
re-uploading in [168]. The number of repetitions of the data encoding directly
influences the frequency spectrum of the Fourier series and, therefore, represents a
hyperparameter that can be used to tune the model complexity in a PQC. While
qubit encoding represents an easy and theoretically well-motivated method to
encode data into a PQC, this direct correspondence between the dimension of
the input vector and the number of qubits is somewhat problematic. Considering
that state-of-the-art classical NNs can be trained on high-dimensional inputs, like
thousands of pixels of an image, the question arises how these types of inputs can
be efficiently encoded into PQCs without resorting to amplitude encoding. So far,
there is no clear answer to this, and finding good data encoding techniques is an
active area of research.

Along with the data encoding technique, a second architectural choice has to
be made in designing a PQC for QML: the overall structure of the circuit. The

40

3.3 Quantum machine learning

question of suitable ansatzes for QML is one that has only recently begun to be
studied in the community. In lieu of ansatzes targeted for specific problems, an
ansatz dubbed hardware-efficient (HWE) ansatz, that was originally introduced in
[170], is often used. The idea behind this ansatz, as the name suggests, is to pick
the circuit structure and gates in it according to the device it is targeted for, best
utilizing the native connectivity of the quantum processing unit. Apart from this
idea there is no clear definition of what a HWE ansatz looks like, but usually it
consists of layers of parametrized single-qubit gates and additional entangling gates
following a simple topology like a ring. While this ansatz can be a good choice for
small-scale models, it is prone to suffer from barren plateaus (see Section 2.2.1.2)
as the system size is scaled up. Therefore, it is clear that devising ansatzes that
can be scaled up to a large number of qubits is of key importance.

One possibility to do this is to create problem-tailored ansatzes, and the nascent
field of quantum geometric learning, inspired by the classical field of geometric deep
learning introduced in Section 3.1.3, is a promising approach for doing this. The
first ansatz of this type is called the quantum convolutional NN [55], in reference
to classical convolutional NNs. The number of parameters in this ansatz grows
only logarithmically with the input size, which makes it suitable for NISQ devices.
In addition, it was proven that this ansatz does not suffer from the barren plateau
phenomenon due to the shallowness of the resulting circuit [56]. A recent line of
research also focuses on how to create circuits that are invariant or equivariant
under certain group actions [171, 172, 173, 174, 175, 176, 57]. The permutation
equivariant circuit that we introduce in Chapter 6 also belongs to this class of
ansatzes. While these ansatzes are already promising, the search for scalable and
performant problem-tailored quantum circuits has only just begun.

3.3.3 Is there potential for quantum advantage?

Possibly the most important question for near-term QML is whether we can expect
any form of quantum advantage. As we have mentioned before, showing rigorous
quantum advantage for VQAs is hard due to their heuristic nature, and empirical
advantages are for now out of reach as the hardware is not there yet. In addition,
quantum advantage, as opposed to quantum supremacy [2, 3], is not clearly defined
so it is hard to give a definite answer to the above question. At least at the time
of writing this thesis, there is no indication that variational QML will yield a
speed-up on real-world, classical learning tasks.

41

3.3 Quantum machine learning

Nonetheless, there are a number of interesting theoretical results that motivate
further research in the field of QML. A prominent example is learning from quantum
data, where data is fed into the QML model directly from a quantum source, i.e., an
experiment or another quantum device. The idea behind this is similar to Richard
Feynman’s original quote that the most suitable tool to simulate a quantum system,
is another quantum system. In the same vein, if you want to learn about quantum
data, you better make the learning model quantum, too. It was shown that in this
setting, there can be an exponential separation between classical and quantum
learners [177]. Furthermore, the authors of [178] show that for some classically hard-
to-compute functions, their outcomes can still be efficiently predicted by a classical
ML model when it is given access to data generated by these functions.

In addition to speed-ups, the differences between classical and quantum NNs have
also been studied from the angle of expressivity and the families of functions they
can model. The authors of [179] investigate the expressivity of both types of models
from an information geometric perspective, and introduce the effective dimension
as a means to measure model complexity. They show that quantum models can
have a higher effective dimension and a more favorable Fisher information spectrum
compared to their classical counterparts. In a similar vein, but more specific to the
generative learning setting, the authors of [28] show that there exist probability
distributions that can be represented by a quantum circuit, but are hard to learn
classically, and similar results were established in the context of the QAOA as well
[180].

Looking beyond results that are deemed accessible to NISQ devices, there have
been a number of works pertaining the families of functions that can be learned by
quantum models. The authors of [128] establish en exponential separation between
classical and quantum learners in the context on an SVM, where the data set
is based on the discrete logarithm problem. In this setting, a quantum learner
can efficiently compute the discrete logarithms of a given set of data points, and
thereby turn a data set that looks essentially randomly labeled to a classical learner,
into one that is linearly separable. This result has been extended to a RL setting
for policy gradients in [150], showing the same exponential separation between
classical and quantum RL agents, and we show in Section 5.2 that this separation
also holds for certain types of environments in the Q-learning setting. Based on
similar arguments from cryptography, the authors of [181] show an exponential
separation for learning discrete distributions.

42

3.3 Quantum machine learning

The above results show that there definitely exist functions that can not efficiently
be learned with classical models. However, the settings in which this was shown
are contrived and in a way reverse engineered by defining classically hard data sets
on known classically hard tasks. The question remains whether these differences
in quantum and classical models will eventually be beneficial on tasks that are
practically relevant.

43

ch
ap

te
r

4
Layerwise learning for quantum neural net-
works

A key aspect of successfully training the variational quantum machine learning
models introduced in Section 3.3 is the classical outer loop that optimizes the circuit
parameters. One of the most popular choices for parameter optimization in this
context are gradient-based methods such as stochastic gradient descent, inspired by
their extensive use in the optimization of classical NNs. While the gradient-based
backpropagation algorithm [87] is one of the most successful methods used to train
NNs today, its direct translation to quantum neural network (QNN)s has been
challenging. For QNNs, parameter updates for minimizing an objective function are
calculated by stochastic gradient descent, based on direct evaluation of derivatives
of the objective with respect to parameters in a PQC, as described in Section 2.2.1.
The PQC is executed on a quantum device, while the parameter optimization
routine is handled by a classical outer loop. The outer loop’s success depends on
the quality of the quantum device’s output, which in the case of gradient-based
optimizers are the partial derivatives of the loss function with respect to the
PQC.

As the authors of [41] have shown, gradients of random PQCs vanish exponentially
in the number of qubits, as a function of the number of layers. Furthermore, the
authors of [44] show that this effect also depends heavily on the choice of cost
function, where the barren plateau effect is worst for global cost functions like the
fidelity between two quantum states. Furthermore, it was shown that the partial
derivatives vanish exponentially in the number of qubits under local Pauli noise,
if the depth of the circuit grows linearly with the number of qubits [49]. When
executed on a NISQ device, the issue is further amplified because small gradient

44

values can not be distinguished from hardware noise, or will need exponentially
many measurements to do so. These challenges motivate the study of training
strategies that avoid initialization on a barren plateau, as well as avoid creeping
onto a plateau during the optimization process.

Indeed, a number of different optimization strategies for PQCs have been explored,
including deterministic and stochastic optimizers [182, 23, 183, 184, 185, 186].
Regardless of the specific form of parameter update, the magnitudes of partial
derivatives play a crucial role in descending towards the minimum of the objective
function. Excessively small values will slow down the learning progress significantly,
prevent progress, or even lead to false convergence of the algorithm to a sub-
optimal objective function value. Crucially to this work, small values ultimately
lead to a poor signal-to-noise ratio in PQC training algorithms due to the cost of
information readout on a quantum device. Even if only sub-circuits of the overall
circuit become sufficiently random during the training process, gradient values in
a PQC will become exponentially small in the number of qubits [41]. Moreover,
in quantum-classical algorithms there is a fundamental readout complexity cost
of O(1/ϵ) [187] as compared to a similar cost of O(log(1/ϵ)) classically. This is
because classical arithmetic with floating point numbers for calculating analytic
gradients may be done one digit at a time, incurring a cost O(log(1/ϵ)). In contrast,
quantum methods that require estimation of expectation values by measurements,
such as those utilized in NISQ algorithms, converge similarly to classical Monte
Carlo sampling. This means that small gradient magnitudes can result in an
exponential signal-to-noise problem when training quantum circuits, as the number
of measurements required to precisely estimate a value is related to the magnitude
of that value. As a consequence, gradients can become too small to be useful even
for modest numbers of qubits and circuit depths, and a randomly initialized PQC
will start the training procedure on a saddle point in the training landscape with
no interesting directions in sight.

To utilize the capabilities of PQCs, methods that overcome this challenge have
to be studied. Due to the vast success of gradient-based methods in the classical
regime, this work is concerned with understanding how these methods can be
adapted effectively for quantum circuits. We propose layerwise learning, where
individual components of a circuit are added to the training routine successively.
By starting the training routine in a shallow circuit configuration, we avoid the
unfavorable type of random initialization described in [41] and Section 2.2.1.2,

45

which is inherent to randomly initialized circuits of even modest depth. In our
approach, the circuit structure and number of parameters is successively grown
while the circuit is trained, and randomization effects are contained to subsets of
the parameters at all training steps. This does not only avoid initializing on a
plateau, but also reduces the probability of creeping onto a plateau during training,
e.g., when gradient values become smaller on approaching a local minimum.

We compare our approach to a simple strategy to avoid initialization on a barren
plateau, namely setting all parameters to zero, and show how the use of a layerwise
learning strategy increases the probability of successfully training a PQC with
restricted precision induced by shot noise by up to 40% for classifying images
of handwritten digits. Intuitively, this happens for reasons that are closely tied
to the sampling complexity of gradients on quantum computers. By restricting
the training and randomization to a smaller number of circuit components, we
focus the magnitude of the gradient into a small parameter manifold. This avoids
the randomization issue associated with barren plateaus, but importantly is also
beneficial for a NISQ quantum cost model, which must stochastically sample from
the training data as well as the components of the gradient. Simply put, with more
magnitude in fewer components at each iteration, we receive meaningful training
signal with fewer quantum circuit repetitions.

Another strategy to avoid barren plateaus was recently proposed by Grant et
al. [53], where only a small part of the circuit is initialized randomly, and the
remaining parameters are chosen such that the circuit represents the identity
operation. This prevents initialization on a plateau, but only does so for the
first training step, and also trains a large number of parameters during the whole
training routine. Another way to avoid plateaus was introduced in [54], where
multiple parameters of the circuit are enforced to take the same value. This reduces
the overall number of trained parameters and restricts optimization to a specific
manifold, at the cost of requiring a deeper circuit for convergence [188]. Aside from
the context of barren plateaus, [189] investigates a layer-by-layer training scheme
to speed up the learning process of a variational quantum eigensolver.

In the classical setting, layerwise learning strategies have been shown to produce
results comparable to training a full network with respect to error rate and time
to convergence for classical NNs [190, 191]. It has also been introduced as an
efficient method to train deep belief networks, which are generative models that
consist of restricted Boltzmann machines (RBMs) [192]. Here, multiple layers of

46

4.1 Layerwise learning

RBMs are stacked and trained greedily layer-by-layer, where each layer is trained
individually by taking the output of its preceding layer as the training data. In
classical NNs, [193] shows that this strategy can be successfully used as a form
of pre-training of the full network to avoid the problem of vanishing gradients
caused by random initialization. In contrast to greedy layerwise pre-training, our
approach does not necessarily train each layer individually, but successively grows
the circuit to increase the number of parameters and therefore its representational
capacity.

4.1 Layerwise learning

In Section 2.2.1.2, we described why training random PQCs with growing system
size becomes increasingly harder, as the variance of gradients vanishes exponentially
in the number of qubits and layers for these types of circuits. This necessitates
the search for i) non-random circuit structures that are immune to this issue, or ii)
optimization techniques that can combat the problem of vanishing gradients. We
will later focus our attention on i) in Chapter 6, while in this section, we introduce
a training method for PQCs in the line of ii). We call this optimization technique
layerwise learning (LL) for parametrized quantum circuits, a training strategy
that creates an ansatz during optimization, and only trains subsets of parameters
simultaneously to ensure a favorable signal-to-noise ratio. The algorithm consists
of two phases.

Phase one: The first phase of the algorithm constructs the ansatz by successively
adding layers. The training starts by optimizing a circuit that consists of a small
number s of start layers, e.g. s = 2, where all parameters are initialized as zero.
We call these the initial layers l1(θ1):

l1(θ1) =
s∏

j=1
U1j (θ1j)W , (4.1)

where θ1 is the set of angles parametrizing unitary U1j
, and contains one angle for

each local rotation gate per qubit, and W represents operators connecting qubits.
The number of start layers is a hyperparamter, and should be chosen so that the
initial circuit is shallow, but still sufficiently deep in order to advance training.
How many start layers are required to fulfill this depends strongly on the learning
task.

47

4.1 Layerwise learning

After a fixed number of epochs, another set of layers is added, and the previous
layers’ parameters are frozen. We define one epoch as the set of iterations it takes
the algorithm to see each training sample once, and one iteration as one update
over all trainable parameters. E.g., an algorithm trained on 100 samples with
a batch size of 20 will need 5 iterations to complete one epoch. The number of
epochs per layer, el, is a tunable hyperparameter. Each consecutive layer li(θi)
takes the form

li(θi) =
p∏

j=1
Uij

(θij
)W , (4.2)

with a fixed W , as the connectivity of qubits stays the same during the whole
training procedure, and p denoting the number of layers added at once. All angles
in θi are set to zero when they are added, which provides additional degrees of
freedom for the optimization routine without perturbing the current solution. The
parameters added with each layer are optimized together with the existing set of
parameters of previous layers in a configuration dependent on two hyperparameters
p and q. The hyperparameter p determines how many layers are added in each
step, and q specifies after how many layers the previous layers’ parameters are
frozen. E.g., with p = 2 and q = 4, we add two layers in each step, and layers more
than four steps back from the last layer are frozen. This process is repeated either
until additional layers do not yield an improvement in objective function value,
or until a desired depth is reached. The final circuit that consists of L layers can
then be represented by

U(θ) =
L∏

i=1
li(θi) . (4.3)

Phase two: In the second phase of the algorithm, we take the pre-trained circuit
acquired in phase one, and train larger contiguous partitions of layers at a time.
The hyperparameter r specifies the percentage of parameters that is trained in
one step, e.g., a quarter or a half of the circuit’s layers. The number of epochs for
which these partitions are trained is also controlled by el, which we keep at the
same value as in phase one for the sake of simplicity, but which could in principle
be treated as a separate hyperparameter. In this setting, we perform additional
optimization sweeps where we alternate over training the specified subsets of
parameters simultaneously, until the algorithm converges. This allows us to train
larger partitions of the circuit at once, as the parameters from phase one provide a
sufficiently non-random initialization. As the randomness is contained to shallower
sub-circuits during the whole training routine, we also minimize the probability to

48

4.1 Layerwise learning

creep onto a plateau during training as a consequence of stochastic or hardware
noise present in the sampling procedure.

In general, the specific structure of layers li(θi) can be arbitrary, as long as
they allow successively increasing the number of layers, like in the hardware-
efficient ansatz introduced in [170]. In this work, we indirectly compare the
quality of gradients produced by our optimization strategy with respect to the
results described in section 2.2.1.2 through overall optimization performance, so
we consider circuits that consist of layers of randomly chosen gates as used in [41].
They can be represented in the following form:

U(θ) =
L∏

l=1
Ul(θl)W , (4.4)

where Ul(θl) =
∏n

i=1 exp(−iθl,iVi) with a Hermitian operator Vi, n is the number
of qubits, and W is a generic fixed unitary operator. For ease of exposition, we
drop the subscripts of the individual gates in the remainder of this work. We
consider single qubit generators V which are the Pauli operators X, Y and Z for
each qubit, parametrized by θl, while W are CZ gates coupling arbitrary pairs of
qubits. An example layer is depicted in Figure 4.1.

The structure and parameters of a quantum circuit define which regions of an
optimization landscape given by a certain objective function can be captured.
As the number of parametrized non-commuting gates grows, this allows a more
fine-grained representation of the optimization landscape [188]. In a setting where
arbitrarily small gradients do not pose a problem, e.g. noiseless simulation of PQC
training, it is often preferable to simultaneously train all parameters in a circuit to
make use of the full range of degree of freedom in the parameter landscape. We
will refer to this training scheme as complete-depth learning (CDL) from now on.
In a noiseless setting, LL and CDL will perform similarly w.r.t. the number of
calls to a quantum processing unit (QPU) until convergence and final accuracy
of results, as we show in the appendix. This is due to a trade off between the
number of parameters in a circuit and the number of sampling steps to convergence
[188]. A circuit with more parameters will converge faster in number of training
epochs, but will need more QPU calls to train the full set of parameters in each
epoch. On the other hand, a circuit with fewer parameters will show a less steep
learning curve, but will also need fewer calls to the QPU in each update step
due to the reduced number of parameters. When we consider actual number of

49

4.1 Layerwise learning

Figure 4.1: Sample circuit layout of the first layer in an LL circuit. D represents
the data input which is only present once at the beginning of the circuit. The full
circuit is built by successively stacking single rotation gates and two qubit gates to
form all-to-all connected layers. For the classification example we show in 4.2, a
measurement gate is added on the last qubit after the last layer.

calls to a quantum device until convergence as a figure of merit, training the full
circuit and performing LL will perform similarly in a noise-free setting for this
reason. However, this is not true when we enter a more realistic regime, where
measurement of gradient values will be affected by stochastic as well as hardware
noise, as we will show on the example of shot noise in Section 4.2. In such more
realistic settings, the layerwise strategy offers considerable advantage in time to
solution and quality of solution.

As noted in the appendix of [41], the convergence of a circuit to a 2-design does not
only depend on the number of qubits, their connectivity and the circuit depth, but
also on the characteristics of the cost function used. This was further investigated
in [44], where cost functions are divided into those that are local and global, in the
sense that a global cost function uses the combined output of all qubits (e.g., the
fidelity of two states), whereas a local cost function compares values of individual
qubits or subsets thereof (e.g., a majority vote). Both works show that for global
cost functions, the variance of gradients decays more rapidly, and that barren
plateaus will present themselves even in shallow circuits. As our training strategy
relies on using larger gradient values in shallow circuit configurations, especially
during the beginning of the training routine, we expect that LL will mostly yield
an advantage in combination with local cost functions.

50

4.2 Results

4.2 Results

4.2.1 Setup

To examine the effectiveness of LL, we use it to train a circuit with fully-connected
layers as described in Section 4.1. While fully-connected layers are not realistic
on NISQ hardware, we choose this configuration for our numerical investigations
because it leads circuits to converge to a 2-design with the smallest number of
qubits and layers [41], which allows us to reduce the computational cost of our
simulations while examining some of the most challenging situations. To compare
the performance of LL and CDL we perform binary classification on the MNIST
data set of handwritten digits, where the circuit learns to distinguish between the
numbers six and nine. We use the binary cross-entropy as the training objective
function, given by

−L(θ) = −
(
y log (E(θ)) + (1− y) log (1− E(θ))

)
, (4.5)

where log is the natural logarithm, E(θ) is given by a measurement in the Z-
direction M = Zo on qubit o which we rescale to lie between 0 and 1 instead of −1
and 1, y is the correct label value for a given sample, and θ are the parameters
of the PQC. The loss is computed as the average binary cross entropy over the
batch of samples. In this case, the partial derivative of the loss function is given
by

∂L(θ)
∂θi

= y
1

E(θ)
∂E(θ)
∂θi

− (1− y) 1
1− E(θ)

∂E(θ)
∂θi

. (4.6)

To calculate the objective function value, we take the expectation value of the
circuit of observable M ,

E(θ) = ⟨ψ|U†(θ)MU(θ) |ψ⟩ , (4.7)

where |ψ⟩ is the initial state of the circuit given by the training data set. The
objective function now takes the form L(E(θ)) and the partial derivative for
parameter θi is defined using the chain rule as

∂L
∂θi

= ∂L
∂E(θi)

· ∂E(θi)
∂θi

. (4.8)

To compute gradients of E(θ), we use the parameter-shift rule [39, 33] as described
in Section 2.2.1.1. We note that in the numerical implementation, care must be

51

4.2 Results

taken to avoid singularities in the training processes related to E(θ) = {0, 1}
treated similarly for both the loss and its derivative (we clip values to lie in
[10−15, 1 − 10−15]). We choose the last qubit in the circuit as the readout o,
as shown in Figure 4.1. An expectation value of 0 (1) denotes a classification
result for class sixes (nines). As we perform binary classification, we encode the
classification result into one measurement qubit for ease of implementation. This
can be generalized to multi-label classification by encoding classification results
into multiple qubits, by assigning the measurement of one observable to one data
label. We use the Adam optimizer [38] with varying learning rates to calculate
parameter updates and leave the rest of the Adam hyperparameters at their typical
publication values.

To feed training data into the PQC, we use qubit encoding in combination with
principal component analysis (PCA), following [24]. Due to the small circuits
used in this work, we have to heavily downsample the MNIST images. For this, a
PCA is run on the data set, and the number of principal components with highest
variance corresponding to the number of qubits is used to encode the data into the
PQC. This is done by scaling the component values to lie within [0, 2π), and using
the scaled values to parametrize a data layer consisting of local X-gates. In case
of 10 qubits, this means that each image is represented by a vector d with the 10
components, and the data layer can be written as

∏10
i=1 exp(−idiXi).

Different circuits of the same size behave more and more similarly during training
as they grow more random as a direct consequence of the results in [41]. This
means that we can pick a random circuit instance that, as a function of its number
of qubits and layers, lies in the 2-design regime as shown in Figure 2.3, and gather
representative training statistics on this instance. As noted in Section 4.1, an LL
scheme is more advantageous in a setting where training the full circuit is infeasible,
therefore we pick a circuit with 8 qubits and 21 layers for our experiments, at which
size the circuit is in this regime. When using only a subset of qubits in a circuit as
readout, a randomly generated layer might not be able to significantly change its
output. For example, if in our simple circuit in Figure 4.1, U5(θ1,5) is a rotation
around the Z axis followed only by CZ gates, no change in θ1,5 will affect the
measurement outcome on the bottom qubit. When choosing generators randomly
from {X,Y, Z} in this setting, there is a chance of 1/3 to pick an unsuitable
generator. To avoid this effect, we enforce at least one X gate in each set of layers

52

4.2 Results

that is trained. For our experiments, we take one random circuit instance and
perform LL and CDL with varying hyperparameters.

4.2.2 Sampling requirements

To give insight into the sampling requirements of our algorithm, we have to
determine the components that we need to sample. Our training algorithm makes
use of gradients of the objective function that are sampled from the circuit on
the quantum computer via the parameter shift rule as described in Section 4.2.1.
The precision of our gradients now depends on the precision of the expectation
values for the two parts of the r.h.s. in Equation 2.16. The estimation of an
expectation value scales in the number of measurements N as O(1

ϵα), with error ϵ
and α > 1 [187]. For most near-term implementations using operator averaging,
α = 2, resembling classical central limit theorem statistics of sampling. This means
that the magnitude of partial derivatives ∂E

∂θi
of the objective function directly

influences the number of samples needed by setting a lower bound on ϵ, and
hence the signal-to-noise ratio achievable for a fixed sampling cost. If all of the
magnitudes of ∂E

∂θi
are much smaller than ϵ, a gradient based algorithm will exhibit

dynamics more resembling a random walk than optimization.

4.2.3 Comparison to CDL strategies

We compare LL to a simple approach to avoid initialization on a barren plateau,
which is to set all circuit parameters in a circuit to zero followed by a CDL
training strategy. We argue that considering the sampling requirements of training
PQCs as described in Section 4.2.2, an LL strategy will be more frugal in the
number of samples it needs from the QPU. Shallow circuits produce gradients
with larger magnitude as can be seen in Figure 2.3, so the number of samples 1/ϵ2

we need to achieve precision ϵ directly depends on the largest component in the
gradient. This difference is exhibited naturally when considering the number of
samples as a hyperparameter in improving time to solution for training. In this low
sample regime, the training progress depends largely on the learning rate. A small
batch size and low number of measurements will increase the variance of objective
function values. This can be balanced by choosing a lower learning rate, at the cost
of taking more optimization steps to reach the same objective function value. We
argue that the CDL approach will need much smaller learning rates to compensate
for smaller gradient values and the simultaneous update of all parameters in each

53

4.2 Results

training step, and therefore more samples from the QPU to reach similar objective
function values as LL. We compare both approaches w.r.t. their probability to
reach a given accuracy on the test set, and infer the number of repeated re-starts
one would expect in a real-world experiment based on that.

In order to easily translate the simulated results here to experimental impact, we
also compute an average runtime by assuming a sampling rate of 10kHz. This value
is assumed to be realistic in the near term future, based on current superconducting
qubit experiments shown in [2] which were done with a sampling rate of 5kHz, not
including cloud latency effects. The cumulative number of individual measurements
taken from a quantum device during training is defined as

ri = ri−1 + 2npmb , (4.9)

where np is the number of parameters (taken times two to account for the parameter
shift rule shown in Section 4.2.1), m the number of measurements taken from
the quantum device for each expectation value estimation, and b the batch size.
This gives us a realistic estimate of the resources used by both approaches in an
experimental setting on a quantum device.

4.2.4 Numerical results

For the following experiments, we use a circuit with 8 qubits, 1 initial layer and 20
added layers, which makes 21 layers in total. As can be seen in Figure 2.3, this is
a depth where a fully random circuit is expected to converge to a 2-design for the
all-to-all connectivity that we chose. After doing a hyperparameter search over
p, q and el, we set the LL hyperparameters to p = q = 2 and el = 10, with one
initial layer that is always active during training. This means that three layers are
trained at once in phase one of the algorithm, and 10 and 11 layers are trained as
one contiguous partition in phase two, respectively. For CDL, the same circuit is
trained with all-zero initialization.

We argue that LL not only avoids initialization on a plateau, but is also less
susceptible to randomization during training. In NISQ devices, this type of
randomization is expected to come from two sources: (i) hardware noise, (ii) shot
noise, or measurement uncertainty. The smaller the values we want to estimate
and the less exact the measurements we can take from a QPU are, the more
often we have to repeat them to get an accurate result. Here, we investigate the
robustness of both methods to shot noise. The hyperparameters we can tune are the

54

4.2 Results

number of measurements m, batch size b and learning rate η. The randomization
of circuits during training can be reduced by choosing smaller learning rates to
reduce the effect of each individual parameter update, at the cost of more epochs
to convergence. Therefore we focus our hyperparameter search on the learning rate
η, after fixing the batch size to b = 20 and the number of measurements to m = 10.
This combination of m and b was chosen for a fixed, small m after conducting a
search over b ∈ {20, 50, 100} for which both LL and CDL could perform successful
runs that do not diverge during training. As we lower the batch size, we also
increase the variance in objective function values similar to when the number of
measurements is reduced, so these two values have to be tuned to match each
other. In the remainder of this section we show results for these hyperparameters,
and different learning rates for both methods. All of the results are based on 100
runs of the same hyperparameter configurations. We use 50 samples of each class
to calculate the cross entropy during training, and another 50 samples per class to
calculate the test error. To compute the test error, we let the model predict binary
class labels for each presented sample, where a prediction ≤ 0.5 is interpreted as
class 0 (sixes) and > 0.5 as class 1 (nines). The test error is then the average error
over all classified samples.

Figure 4.2 shows average runtimes of LL and CDL runs that have a final average
error on the test set that is less than 0.5, which corresponds to random guessing.
We compute the runtime by computing the number of samples taken as shown
in Section 4.2.3 and assume a sampling rate of 10kHz. Here, LL reaches a lower
error on the test set on average, and also requires a lower runtime to get there.
Compared to the CDL configuration with the highest success probability shown in
Figure 4.3 (b) (red line), the best LL configuration (blue line) takes approximately
half as much time to converge. This illustrates that LL does not only increase the
probability of successful runs, but can also drastically reduce the runtime to train
PQCs by only training a subset of all parameters at a given training step. Note
also that the test error of CDL with η = 0.05 and η = 0.01 slowly increases at later
training steps, which might look like overfitting at first. Here it is important to
emphasize that these are averaged results, and what is slowly increasing is rather
the percentage of circuits that have randomized or diverged at later training steps.
The actual randomization in an individual run usually happens with a sudden
jump in test error, after which the circuit can not return to a regular training
routine anymore.

55

4.2 Results

0 100 200 300 400 500
minutes (sampling rate 10kHz)

0.30

0.35

0.40

0.45

0.50

Te
st

 e
rro

r

LL, = 0.01, 71/100
LL, = 0.005, 72/100
CDL, = 0.001, 56/100
CDL, = 0.005, 64/100
CDL, = 0.05, 55/100
CDL, = 0.01, 58/100

Figure 4.2: Average test error as a function of runtimes for runs that have a final
average test error less than 0.5 (random guessing) over the last ten training epochs,
assuming a sampling rate of 10kHz and number of samples taken as described in
Section 4.2.3. Numbers in labels indicate how many out of 100 runs were included
in the average, i.e. fraction of runs that did not diverge in training, exhibiting less
than 50% error on the test set. Increasing test error for CDL runs with η = 0.01
and η = 0.05 is not due to overfitting, but due to a larger number of runs in the
average that start creeping onto a plateau due to the increased learning rate.

56

4.2 Results

0.50 0.55 0.60 0.65 0.70
Accuracy

101

102

Ex
pe

ct
ed

 re
pe

tit
io

ns

LL, = 0.01
LL, = 0.005
CDL, = 0.001
CDL, = 0.005
CDL, = 0.01
CDL, = 0.05

(a) expected number of repetitions

0.50 0.55 0.60 0.65 0.70 0.75
Accuracy

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Su
cc

es
s p

ro
ba

bi
lit

y LL, = 0.01
LL, = 0.005
CDL, = 0.001
CDL, = 0.005
CDL, = 0.01
CDL, = 0.05

(b) success probability

Figure 4.3: LL decreases expected run time and increases probability of success on
random restarts. (a) Expected number of experiment repetitions needed until a
given configuration reaches a certain accuracy defined as (1 − errortest), where
errortest is the average error on the test set, for LL and CDL with different learning
rates. One experiment repetition constitutes in one complete training run of a
circuit to a fixed number of epochs. Results are based on 100 runs for each
configuration with m = 10, b = 20, and in case of LL, el = 10. LL circuits better
avoid randomization during training, and therefore need less than two repetitions
on average for learning rates with varying magnitudes. CDL is more susceptible to
entering a plateau during training in a noisy environment, as all parameters are
affected on a perturbative update. This effect becomes more pronounced as learning
rates are increased. (b) Probability of reaching a certain accuracy on the test set for
the same configurations shown in (a). Success probability of LL stays constant up
to an accuracy of 0.65 and starts decaying from there, as fewer runs reach higher
accuracies on average. All CDL configurations have a lower success probability than
the LL configurations overall, which decays almost linearly as we demand a higher
average accuracy. Notably, the CDL configurations with highest success probability
are also the ones with the highest runtime, as shown in Figure 4.2.

57

4.3 Conclusion and outlook

Figure 4.3 (a) shows the number of expected training repetitions one has to perform
to get a training run that reaches a given accuracy on the test set, where we define
accuracy as (1− errortest). One training run constitutes training the circuit to a
fixed number of epochs, where the average training time for one run is shown in
Figure 4.2. An accuracy of 0.5 corresponds to random guessing, while an accuracy
of around 0.73 is the highest accuracy any of the performed runs reached, and
corresponds to the model classifying 73% of samples correctly. We note that in
a noiseless setting as shown in Chapter 8, both LL and CDL manage to reach
accuracies around 0.9, and the strong reduction in number of measurements leads
to a decrease in the final accuracy reached by all models. We find that LL performs
well for different magnitudes of learning rates as η = 0.01 and η = 0.005, and
that these configurations have a number of expected repetitions that stays almost
constant as we increase the desired accuracy. On average, one needs less than two
restarts to get a successful training run when using LL. For CDL, the number of
repetitions increases as we require the test error to reach lower values. The best
configurations were those with η = 0.001 and η = 0.005, which reach similarly
low test errors as LL, but need between 3 and 7 restarts to succeed in doing so.
This is due to the effect of randomization during training, which is caused by
the high variance in objective function values, and the simultaneous update of all
parameters in each training step. In Figure 4.3 (b), we show the probability of
each configuration shown in (a) to reach a given accuracy on the test set. All CDL
configurations have a probability lower than 0.3 to reach an accuracy above 0.65,
while LL reaches this accuracy with a probability of over 0.7 in both cases. This
translates to the almost constant number of repetitions for LL runs in Figure 4.3
(a). Due to the small number of measurements and the low batch size, some of
the runs performed for both methods fail to learn at all, which is why none of the
configurations have a success probability of 1 for all runs to be better than random
guessing.

4.3 Conclusion and outlook

We have shown that the effects of barren plateaus in QNN training landscapes
can be dampened by avoiding Haar random initialization and randomization
during training through layerwise learning. While performance of LL and CDL
strategies is similar when considering noiseless simulation and exact analytical
gradients, LL strategies outperform CDL training on average when experimentally

58

4.3 Conclusion and outlook

realistic measurement strategies are considered. Intuitively, the advantage of this
approach is drawn from both preventing excess randomization and concentrating
the contributions of the training gradient into fewer, known components. Doing
so directly decreases the sample requirements for a favorable signal-to-noise ratio
in training with stochastic quantum samples. To quantify this in a cost effective
manner for simulation, we reduce the number of measurements taken for estimating
each expectation value. We show that LL can reach lower objective function values
with this small number of measurements, while reducing the number of overall
experiment repetitions until convergence to roughly half of the repetitions needed
by CDL when comparing the configurations with highest success probability. This
makes LL a more suitable approach for implementation on NISQ devices, where
taking a large number of measurements is still costly and where results are further
diluted by decoherence effects and other machine errors. While our approach relies
on manipulating the circuit structure itself to avoid initializing a circuit that forms
a 2-design, it can be combined with approaches that seek to find a favorable initial
set of parameters as shown in [53]. The combination of these two approaches by
choosing good initial parameters for new layers is especially interesting as the
circuits grow in size. This work has also only explored the most basic training
scheme of adding a new layer after a fixed number of epochs, which can still be
improved by picking smarter criteria like only adding a new layer after the previous
circuit configuration converged, or replacing gates in layers which provide little
effect on changes of the objective function value. Moreover, one could consider
training strategies which group sets of coordinates rather than circuit layers. These
possibilities provide interesting directions for additional research, and we leave
their investigation for future works.

59

ch
ap

te
r

5
Quantum agents in the Gym: A variational
quantum algorithm for deep Q-learning

The focus of Chapter 4 was to introduce a training method for VQAs that addresses
the problem of barren plateaus, while reducing the number of trained parameters
in ever update step of the optimization routine. While we demonstrated the
feasibility and effectiveness of our method on a supervised learning task, the
learning problem itself was not the focus of that work. In this chapter, we go
deeper into investigating the use of VQAs for a specific type of ML algorithm. Many
proposals for QML algorithms have been made in supervised [39, 74, 126, 26, 137]
and unsupervised [194, 28, 148, 195, 143, 196] learning. In contrast, RL is a subfield
of machine learning that has received less attention in the QML community
[197, 198], and especially proposals for VQA-based approaches are only now
emerging [153, 154, 199, 120, 150]. RL is essentially a way to solve the problem
of optimal control. In a RL task, an agent is not given a fixed set of training
data, but learns from interaction with an environment. Environments are defined
by a space of states they can be in, and a space of actions that an agent uses to
alter the environment’s state. The agent chooses its next action based on a policy
(probability distribution over actions given states) and receives a reward at each
step, and the goal is to learn an optimal policy that maximizes the long-term reward
the agent gets in the environment. State and action spaces can be arbitrarily
complex, and it’s an open question which types of models are best suited for these
learning tasks. In classical RL, using NNs as function approximators for the agents’
policy has received increased interest in the past decade. As opposed to learning
exact functions to model agent behavior which is infeasible in large state and action
spaces, this method of RL only approximates the optimal function. These types
of RL algorithms have been shown to play Atari arcade games as well as human

60

players [119], and even reach super-human levels of performance on games as
complex as Go [29], Dota [200] and StarCraft [201]. RL algorithms can be divided
into policy-based and value-based methods, as described in Section 3.2. These two
methods constitute related but fundamentally different approaches to solve RL
tasks, and both have their own (dis-)advantages. Interestingly, these two methods
can also be combined in a so-called actor-critic setting which leverages the strengths
of both approaches [114]. Actor-critic methods are among the state-of-the-art
in current RL literature [115], and therefore both value-based and policy-based
algorithms are areas of active research.

RL is one of the hardest modes of learning in current ML research, and is known
to require careful tuning of model architectures and hyperparameters to perform
well. For NN-based approaches, one unfavorable hyperparameter setting can lead
to complete failure of the learning algorithm on a specific task. Additionally,
these hyperparameters and architectures are highly task dependent and there is
no a-priori way to know which settings are best. Well-performing settings are
found by experts via trial-and-error, and the ability to quickly find these settings
is considered a “black art that requires years of experience to acquire” [202]. Thus
a whole field of heuristics and numerical studies has formed on finding good sets
of hyperparameters like NN architectures [203, 204, 205], activation functions
[206, 207, 208], or learning rates and batch sizes [202, 209]. An increasingly
investigated branch of research focuses on methods to automate the whole process
of finding good architectures and hyperparameters, among which there is neural
architecture search [210] and automated machine learning [211].

It is thus to be expected that quantum models in a VQA-based RL setting also need
to be selected carefully. Even more so, it is still an open question whether VQAs are
suitable for function approximation in RL at all. This question is directly related to
choices made when defining an architecture for a VQA. There are three important
factors to consider: the structure (or ansatz) of the model, the data-encoding
technique, and the readout operators. For the choice of structure, there is a
trade-off between the expressivity and trainability of a model, as certain structures
are subject to the barren plateau phenomenon as described in Section 2.2.1.2. On
the other hand, overparametrization has been observed to simplify optimization
landscapes and lead to faster convergence for certain VQAs [212, 213]. Apart
from that, the choice of structure is also limited by hardware constraints like the
topology of a certain quantum device. While the model structure is an important

61

factor in training VQAs that has received much attention in the QML community
[44, 49, 214, 47, 215, 216, 217], the authors of [169] have shown that the technique
used to encode data into the model plays an equally important role, and that
even highly expressive structures fail to fit simple functions with an insufficient
data-encoding strategy.

A less explored architectural choice in the context of QML is that of the observables
used to read out information from the quantum model. Considering that the readout
operator of a quantum model fixes the range of values it can produce, this choice
is especially important for tasks where the goal is to fit a real-valued function with
a given range, as is the case in many RL algorithms. This is in contrast to NNs,
which have no restriction on the range of output values and can even change this
range dynamically during training. In Q-learning, the goal is to approximate the
real-valued optimal Q-function, which can have an arbitrary range based on the
environment. Crucially, this range can change depending on the performance of
the agent in the environment, which is an impediment for quantum models with a
fixed range of output values.

A first step to study the influence of architectural choices on PQCs for policy-based
RL algorithms has been made in [150], who point out that data-encoding and
readout strategies play a crucial role in these types of RL tasks, though they leave
the open question if similar architectural choices are also required in a value-based
setting. Previous work on Q-learning with PQCs has addressed certain other
fundamental questions about the applicability of VQAs in a value-based context.
A VQA for Q-learning in discrete state spaces was introduced in [153], where the
quantum model’s output is followed by a layer of additive weights, and it has
been shown that the model successfully solves two discrete-state environments. A
VQA for Q-learning in environments with continuous and discrete state spaces
has been proposed in [154], who simplify the continuous environments’ potentially
infinite range of input values to a restricted encoding into angles of one initial
layer of rotation gates, and use measurements in the Z-basis to represent Q-values.
Notably, none of the models in [154] that were run for the continuous state-space
environment Cart Pole reach a performance that is considered to be solving the
environment according to its original specification [218], so it remains an open
question whether a value-based algorithm that utilizes a PQC as the function
approximator can solve this type of learning task.

62

These initial works prompt a number of vital follow-up questions related to the
architectural choices that are required to succeed in arbitrary RL environments
with a quantum Q-learning agent. We address these questions in form of our
main contributions as follows: first, we propose a VQA which can encode states of
discrete and continuous RL environments and explain the intricate relationship
between the environment’s specification and the requirements on the readout
operators of the quantum model. We show how a quantum Q-learning agent only
succeeds if these requirements are met. Second, to enable the model to match the
environment’s requirements on the range of output values, we make this range itself
trainable by introducing additional weights on the model outputs. We show how the
necessity of these weights can be inferred from the range that the optimal Q-values
take in an environment. Third, we study the performance of our model on two
benchmark environments from the OpenAI Gym [219], Frozen Lake and Cart Pole.
For the continuous-state Cart Pole environment, we also study a number of data
encoding methods and illustrate the benefit of previously introduced techniques
to increase quantum model expressivity, like data re-uploading [168] or trainable
weights on the input data [168, 150]. Additionally, the state space dimension of
both environments is small enough so that inputs can be directly encoded into
the quantum model without the use of a dimensionality reduction technique. This
makes it possible to directly compare our model to a NN performing the same type
of Q-learning algorithm to evaluate its performance. Specifically, we perform an
in-depth comparison of the performance of PQCs and NNs with varying numbers
of parameters on the Cart Pole environment. We show that recent results in
classical deep Q-learning also apply to the case when a PQC is used as the function
approximator, namely that increasing the number of parameters is only beneficial
up to some point [220]. After this, learning becomes increasingly unstable for both
PQCs and NNs. As an empirical comparison between PQCs and NNs can only
give us insight into model performance on the specific environments we study, we
also explain when recent separation results for policy gradient RL between classical
and quantum agents [150] also hold in the Q-learning setting for restricted families
of environments.

The remainder of this chapter is structured as follows: we give a description of
our quantum Q-learning model in Section 5.1 and show when recent results for a
separation between classical and quantum algorithms for policy-based learning also
apply in the case of Q-learning in Section 5.2. In Section 5.3 we numerically evaluate
the performance of our algorithm and compare it to a classical approach, and

63

5.1 Quantum Q-learning

finally discuss our findings in Section 5.4. The full code that was used to perform
the numerical experiments in this work can be found on Github [221].

5.1 Quantum Q-learning

In this work, we adapt the DQN algorithm to use a PQC as its Q-function
approximator instead of a NN. For this, we use a hardware-efficient ansatz [170]
as shown in Figure 5.1. This ansatz is known to be highly expressive, and is
susceptible to the barren plateau phenomenon for a large number of qubits and
layers, although this is not an issue for the small state and action spaces we consider
here. All other aspects of the Q-learning algorithm described in Section 3.2.2 stay
the same: we use a target network, an ϵ-greedy policy to determine the agent’s
next action, and experience replay to draw samples for training the Q-network
PQC. Our Q-network PQC is then Uθ(s) parametrized by θ and the target network
PQC is Ûθδ

(s), where θδ is a snapshot of the parameters θ which is taken after
fixed intervals of episodes δ and the circuit is otherwise identical to that of Uθ(s).
We now explain how environment states are encoded into our quantum model, and
how measurements are performed to obtain Q-values.

5.1.1 Encoding environment states

ℰ1

ℰ2

ℰ3

ℰ4

Ry

Ry

Ry

Ry

Rz

Rz

Rz

Rz

Figure 5.1: PQC architecture used in this work. Each layer consists of a
parametrized rotation along the Y and Z axes on each qubit, and a daisy chain of
CZ gates. The green boxes correspond to data encoding gates that encode data
as parameters of X rotations. When data re-uploading is used, the whole circuit
pictured is repeated in each layer, without data re-uploading only the variational
part without the initial X rotations is repeated.

Depending on the state space of the environment, we distinguish between two
different types of encoding in this work:

64

5.1 Quantum Q-learning

Discrete state space: Discrete states are mapped to bitstrings and then input into
the model, where on an all-zero state the bits corresponding to ones in the input
state are flipped.

Continuous state space: For continuous input states, we scale each component x
of an input state vector x to x′ = arctan(x) ∈ [−π/2, π/2] and then perform a
variational encoding, which consists of X-rotations by the angles x′.

As shown in [169], when data is encoded into a PQC by local rotation gates along
the X-axis, the PQC can only model simple sine functions of its input. To further
increase the expressivity of the circuit, the data encoding can be repeated in
two ways: either in parallel by increasing the number of qubits and duplicating
the data encoding on them, or in sequence in an alternating fashion with the
variational layers of the circuit. The latter is also referred to as data re-uploading
in [168]. Where needed, we will introduce data re-uploading to our model in
Section 5.3.

The formalism introduced in [169] establishes a connection between PQCs and
partial Fourier series by showing that the functions a given PQC can model can be
represented as a Fourier series, where the accessible frequency spectrum depends
on the eigenvalues of the data encoding gates, and the coefficients depend on the
architecture of the variational part of the PQC and the observable that defines the
readout operation. They show that in models as ours, where data is encoded in
form of Pauli rotations, only Fourier series up to a certain degree can be learned,
where the degree depends on the number of times the encoding gate is repeated.
Additionally, the scale of the input data must match the scale of the frequencies
of the modeled function for the model to fit the target function exactly. Making
the scaling of input data itself trainable to increase a PQC’s expressivity has been
suggested in [168, 150], which we will also use by introducing a weight wd on the
input data. The input value x′

i then becomes:

x′
i = arctan(xi · wdi

) , (5.1)

where wdi
is the weight for input xi. We will illustrate the advantage of these

enhanced data-encoding strategies numerically in Section 5.3.

65

5.1 Quantum Q-learning

5.1.2 Computing Q-values

The Q-values of our quantum agent are computed as the expectation values of a
PQC that is fed a state s as

Q(s, a) =
〈
0⊗n

∣∣U†
θ(s)OaUθ(s)

∣∣0⊗n
〉
, (5.2)

where Oa is an observable and n the number of qubits, and our model outputs a
vector including Q-values for each possible Oa as described in Section 3.2.2. Note
that in practice, we can only compute an approximation of Equation (5.2) on a
quantum device. The type of measurements we perform to estimate Q-values will
be described in more detail in Section 5.3 for each environment. Before that, we
want to highlight why the way Q-values are read out from the PQC is an important
factor that determines the success at solving the environment at hand. A key
difference between PQCs and NNs is that a PQC has a fixed range of output
defined by its measurements, while a NN’s range of output values can change
arbitrarily during training depending on its weights and activation function. To
understand why this is an important difference in a RL setting, we need to recall
that Q-values are an estimate of the expected return

Qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ

[
H−1∑
k=0

γkrt+k+1|st = s, at = a

]
.

This quantity is directly linked to the performance of the agent in a given environ-
ment, so the model needs to have the ability to match the range of optimal Q-values
in order to approximate the optimal Q-function. This means that the observables
in a PQC-based Q-learning agent need to be chosen with care, and highly depend
on the specific environment. To provide a simple example where an insufficient
range prevents an agent from solving an environment, consider tabular learning in
an environment that consists of a single state s and two actions a1 and a2, where
the agent should learn to always pick a1. One episode has a maximum length
of H = 10 when the agent picks a1 in each time step, and otherwise terminates
when the agents picks action a2. We consider a modification where the values in
the Q-table are capped at 1, i.e., Q-values can not become larger than one, and
both Q-values are initialized at zero. The environment is such that the reward for
each action is 1 and the Q-value corresponding to the optimal action is > 1. For
simplicity we set α = 1 and γ = 1, which gives us an optimal value Q∗(s, a1) = 10.

66

5.1 Quantum Q-learning

We now perform an update on both Q-values according to the update rule in
Equation (3.19),

Q(st, at)← rt+1 + argmaxaQ(st+1, a).

For action a2, the transition from s leads to episode termination, so the update
rule yields Q(s, a2) = rt+1 = 1. For action a1, we get Q(s, a1) = 2, however,
due to the capped Q-table, we also get Q(s, a1) = 1 for this state-action pair.
We see that after a single update according to this update rule, both Q-values
will be one and due to the capped range of the Q-table the Q-values are already
saturated. No further update can change the Q-values, which means that the agent
can do no better than random guessing hereafter. This simple example illustrates
why it is essential in a tabular Q-learning setting that the range of values in the
Q-table accommodates the magnitude of optimal Q-values. Updates in the function
approximation case like in the gradient-based DQN algorithm are more complex
due to the regression task that the agent solves to perform parameter updates,
however, a similar saturation can still occur as the update rule for Q-values is the
same (see Equation (3.20)).

We have seen that it is crucial for a PQC-based Q-learning agent to have an output
range that matches that of the optimal Q-values that it seeks to approximate.
There are two ways to approach this issue: (i) multiply PQC outputs by a fixed
factor to increase their range in a way that accommodates the theoretical maximum
Q-value, (ii) make the output range itself a trainable model parameter. Multiplying
the outputs of the PQC by a fixed factor increases the range of output values, but at
the cost of potentially being close to the estimated maximum from the beginning,
which makes this approach more sensitive to randomness in model parameter
initialization. In particular, as Q-values are initialized randomly depending on the
initial parameters of the PQC, the Q-values for actions of a specific state might
have large differences. Considering that the reward which controls the magnitude
of change given by the Q-value updates in Equation (3.20) is comparatively small
and actions are picked based on the argmax policy argmaxaQ(s, a), it may take
a long time before subsequent updates of Q-values will lead to the agent picking
the right actions. Even if we consider models that are initialized such that all
Q-values are close to zero in the beginning, the actual changes in the rotation
angles that the PQC needs to perform for Q-values of large ranges can become very
small. Especially on NISQ devices, these changes might be impractically small to
be reliably performed and measured on hardware. For these reasons, we focus on

67

5.2 Separation between quantum and classical Q-learning in restricted
environments

option (ii). We add a trainable weight wo ∈ R to each readout operation, so that
the output Q-value Q(s, a) becomes

Q(s, a) =
〈
0⊗n

∣∣Uθ(s)†OaUθ(s)
∣∣0⊗n

〉
· woa , (5.3)

and each action has a separate weight woa
. We make the weights multiplicative

in analogy to weights in a NN. This gives the model the possibility to flexibly
increase the magnitude of Q-values to match the given environment. Notably, the
number of actions in an environment is usually small compared to the number
of parameters in the model, so adding one extra weight corresponding to each
action does not designate a large overhead. In Section 5.3.2.1, we numerically show
that the approach of using a trainable weight on the output value outperforms
multiplying the model output by a fixed factor that is motivated by the range of
optimal Q-values.

5.2 Separation between quantum and classical Q-
learning in restricted environments

In this section, we make formal statements about a separation between quantum
and classical models for Q-learning in a restricted family of environments. These
statements are based on recent results in supervised [128] and policy gradient based
reinforcement learning [150]. The latter work constructs families of environments
that are proven to be hard for any classical learner, but can be solved in polynomial
time by a quantum learner in a policy learning setting. Learning policies is closely
related to learning Q-values, however, Q-values contain more information about the
environment per definition as they cover the whole state-action space. This means
that it is not straightforward to generalize the results from [150] to a Q-learning
setting. In this section, we will show under which conditions optimal Q-values can
be inferred from optimal policies, so that the separation results in [150] also apply
to the Q-learning case. The environments constructed in [150] are based on the
supervised learning task introduced in [128], which are proven to be classically
hard assuming the widely-believed hardness of the discrete logarithm problem, but
can be solved by a quantum learner in polynomial time. To understand how a
separation in supervised learning can be generalized to a RL setting, it is important
to state that any classification task can be turned into an environment for RL.
To do this, rewards in the environment are assigned according to the prediction

68

5.2 Separation between quantum and classical Q-learning in restricted
environments

the agent makes. First examples of this were introduced in [222] for cases where
the environment allows quantum access to its states. A classification task like
the one proposed in [128] can be turned into a RL task by simply assigning a
reward of 1 (-1) for a correct (incorrect) classification, and defining an episode
as being presented with a set of training samples. In this section, we will briefly
revise the separation results for supervised learning given in [128] and those for
policy gradient RL given in [150], before we move on to characterize the types of
environments that allow a generalization of the results in [150] to a Q-learning
setting.

5.2.1 A classification task based on the discrete logarithm
problem

The authors of [128] construct a classification task that is intractable for any
classical learner, but can be solved by a quantum learner in polynomial time. The
classification task is based on the discrete logarithm problem (DLP), and the
separation relies on the the quantum learner’s ability to perform the algorithm
provided by Shor in [1] to solve the DLP efficiently.

Definition 5.1 (Discrete logarithm problem). Let Z∗
p = {1, 2, . . . , p− 1} be the

cyclic multiplicative group of integers modulo p for a large prime p, and g a
generator of this group. The DLP is defined as computing logg x for an input
x ∈ Z∗

p.

It is widely believed that no classical algorithm can solve the DLP efficiently,
however, it is proven that the algorithm provided by Shor can solve DLP in poly(n)
time for n = ⌈log2 p⌉ [1]. Based on this, [128] construct a classification task
with a concept class C = {fs}s∈Z∗

p
and data points defined over the data space

X = Z∗
p ⊆ {0, 1}n as

fs(x) =
{

+1, if logg x ∈ [s, s+ p−3
2]

−1, otherwise,
(5.4)

where each concept fs : Z∗
p → {−1, 1} maps one half of the elements in Z∗

p to 1 and
the other half to −1, which yields a linearly separable set of data points in log-space.
A quantum learner can make use of the algorithm from [1] to compute the discrete
logarithm and solve the resulting trivial learning task. However, if a classical
learner could solve the above learning task this would imply that there exists an

69

5.2 Separation between quantum and classical Q-learning in restricted
environments

efficient classical algorithm that solves the DLP. This is contrary to the widely
believed conjecture that no efficient classical algorithm can solve the DLP, and
[128] proves that no classical learner can do better than random guessing.

To connect these results to the RL setting, it is useful to be a bit more precise and
define some terminology. The learning task is defined as finding a decision rule
f∗, which assigns a label y ∈ {−1, 1} to data point x ∈ X 1. f∗ is learned on a set
of labeled examples S = {xi, yi}i=1,...,m generated by the unknown decision rule,
or concept, f . An efficient learner needs to compute f∗ in time polynomial in n

that agrees with the labeling given by f with high probability, or in other words
reaches a high test accuracy on unseen samples,

accf (f∗) = Pr
x∈X

[f(x) = f∗(x)]. (5.5)

The authors of [128] prove that no efficient classical learner can achieve

accf (f∗) = 1
2 + 1

poly(n)

unless an efficient classical algorithm that solves the DLP exists, while there exists
a quantum learner that achieves close to perfect accuracy with high probability in
polynomial time.

5.2.2 Learning optimal policies in environments based on
the DLP classification task

After stating the classification task based on the DLP in the previous section, we
now briefly review how the authors of [150] construct families of environments
based on the DLP classification task to transfer the separation results to RL. They
show that (i) solving these environments is classically hard for any learner unless
there exists an efficient classical algorithm that solves the DLP, (ii) there exists
a quantum learner that can solve these environments in polynomial time. To
understand how the DLP classification task can be used to construct a classically
hard to solve RL environment, it is important to note again that any classification

1Note that we are adhering to the notation given in [128], where the asterisk stands for the
learned decision rule and the function without an asterisk stands for the decision rule we seek to
learn. This is the opposite of the notation used in Q-learning literature where Q∗ stands for the
optimal Q-values, which we have followed in previous sections. The authors of [150] have also
adopted the latter notation in their paper to describe the DLP classification task. We will stick
to denoting the learned decision rule with an asterisk in this section.

70

5.2 Separation between quantum and classical Q-learning in restricted
environments

task can be trivially turned into a RL task by letting each data point x ∈ X denote
a state in the environment, and giving rewards to the agent depending on whether
it correctly assigns a state to its predefined label y. The rewards for the DLP
classification task are 1 (−1) for a correct (false) classification. While [128] are
interested in achieving a high test accuracy, in a RL setting we want to find an
agent with close-to-optimal performance in the given environment. The authors of
[150] measure this performance in terms of a value function Vπ(s) for policy π and
state s,

Vπ(s) = Eπ

[
H−1∑
t=0

γtrt|st = s

]
(5.6)

which is the expected reward for following policy π for an episode of length H

in state s. Based on the DLP classification task from [128], the authors of [150]
define three different environments that are classically hard to learn, where the
value function of each of these environments is closely related to the accuracy in
Equation (5.5) of the policy on the classification task. This allows them to get
bounds on the value function as a function of bounds on the accuracy. Roughly
speaking, by Theorem 1 of [128] no classical learner can achieve performance better
than that of random guessing in poly(n) time on those environments, unless an
efficient classical algorithm to solve the DLP exists. We will briefly explain the
set-up of the quantum learner in [150], before going into more detail on one of the
families of environments they construct to show a separation between classical and
quantum learners for policy learning.

A RL agent can be trivially constructed from the classifier in [128], which is based
on a classical support vector machine (SVM) that takes the samples that have
been “decrypted" by a quantum feature map as an input. (This type of classifier is
also referred to as an implicit SVM). However, to get a learner that more closely
matches the parametrized training of a quantum learner done in [150], they use a
model where the feature embedding and classification task are both solved by a
PQC. This method is referred to as an explicit SVM. The explicit SVM comprises a
feature-encoding unitary U(x) applied on the all zero state, which they refer to as
|ϕ(x)⟩ = U(x) |0⊗n⟩, a variational part V (θ) with parameters θ, and an observable
O. The feature-encoding unitary for the DLP task is the same as used in [128]
so that feature states take the following form for k = n− t logn for a constant t
related to noisy classification (we refer the reader to [150] for a detailed description

71

5.2 Separation between quantum and classical Q-learning in restricted
environments

of classification under noise),

|ϕ(x)⟩ = 1√
2k

2k−1∑
i=0

∣∣x · gi
〉
. (5.7)

These states can be efficiently prepared on a fault-tolerant quantum computer
by a circuit that uses the algorithm proposed by Shor in [1] as a subroutine. It
was proven in [128] that for all concepts fs the data points with labels 1 and −1,
respectively, can be separated by a hyperplane with a large margin, and that this
hyperplane always exists. The learning task of the PQC V (θ) is then to find this
hyperplane. The hyperplanes are normal to states of the form

|ϕs′⟩ = 1√
(p− 1)/2

(p−3)/2∑
i=0

∣∣∣gs′+i
〉
, (5.8)

for s′ ∈ Z∗
p. A classifier hs′(x) for these data points can then be defined as

hs′(x) =
{

1, if | ⟨ϕ(x)|ϕs′ |ϕ(x)|ϕs′⟩ |2/∆ ≥ 1/2
−1, otherwise,

(5.9)

where ∆ = 2k+1
p−1 is the largest value the inner product | ⟨ϕ(x)|ϕs′ |ϕ(x)|ϕs′⟩ |2

takes and is used to renormalize it to [0, 1]. The variational circuit is defined
as V (θ) = V̂ (s′) which is similar in implementation to U(xi) with xi = gs′ and
k ≈ n/2, and a measurement operator O = |0⊗n⟩ ⟨0⊗n|.

The simplest way of turning the DLP classification task into an environment is to
define one episode as the agent being in a randomly chosen state corresponding
to a training sample, performing an action which assigns the predicted label, and
giving a reward of 1 (-1) for a correct (incorrect) classification. This family of
environments is referred to as SL-DLP in [150]. While the family of SL-DLP
environments is a straightforward way to generalize the results from [128] to
policy learning, it lacks the characteristics typically associated with RL, namely a
temporal structure in the state transitions, such that these depend on the actions
taken by the agent. To construct a family of environments based on the DLP
which includes this kind of structure, [150] introduce the family of Cliffwalk-DLP
environments, inspired by the textbook Cliffwalk environment from [109]. Here,
the goal is still to assign correct labels to given states, but now these states follow
a randomly assigned but fixed order. The agent has to “walk along the edge
of a cliff", where this edge is represented by the sequence of ordered states the

72

5.2 Separation between quantum and classical Q-learning in restricted
environments

environment takes. A correct classification leads to the next state in the sequence,
while an incorrect classification leads to “falling off the cliff" and immediate episode
termination. The authors of [150] show that the quantum learnability results of
the SL-DLP environment also hold for the family of Cliffwalk-DLP environments.
In the following section we will generalize these results to Q-values by giving a
definition of the types of environments where knowledge of an optimal policy lets
us infer optimal Q-values.

5.2.3 Estimating optimal Q-values from optimal policies

In Section 5.2.2, we revised how [150] construct an efficient quantum agent that
can achieve close-to-optimal policies in families of environments based on the
DLP. Now, we turn to generalizing their results to the Q-learning setting. The
classical hardness of the environment still holds irrespective of the learner that is
used. The remaining question is now whether there exists an efficient algorithm to
obtain optimal Q-values, given we have access to an optimal policy. Concretely,
our goal is to compute optimal Q-values Q∗(s, a) for state-action pairs from an
environment, where s is given by the environment and a is determined by the
optimal policy.

One could imagine thatQ∗(s, a) can be easily estimated using Monte Carlo sampling
since the definition involves only the use of the optimal policy after the move (s, a)
(cf. Equation (3.16)). However, in general it is not possible for an agent to get to
arbitrary states s in poly time. We circumvent this problem by considering special
cases of environments that are classically hard, where there are only two actions
{a, a′}, and where the analytic values of Q∗(s, a) and Q∗(s, a′) are known. The
only unknown is which action a or a′ is the optimal one. In this case it is clear
that access to the optimal policy resolves the question.

As an example of such an environment, consider the SL-DLP family of environments
from [150]. In each episode, the agent needs to classify one random sample from
a set of samples corresponding to the DLP classification task from Section 5.2.1,
where a correct (incorrect) classification yields a reward of 1 (-1). If we set γ = 0,
the two possible Q-values for a given state and the two possible actions are simply
the rewards corresponding to the result of the classification. To get the Q-value
Q∗(s, a), we query the policy π∗(a|s) for the optimal action and assign the reward
for a correct classification to the corresponding Q-value. (Note that we can also
directly infer Q∗(s, a′) for the wrong action a′ from this, as there are only two

73

5.3 Numerical results

distinct Q-values.) This can also be trivially extended to episodes with a horizon
greater than one and γ > 0. After querying the policy for the optimal action
given the initial state of the episode, the expected return is computed directly
assuming optimal actions until the end of the episode is reached. I.e., we simply
compute

Q∗(st, at) = Eπ∗

[
H−1∑
k=0

γkrt+k+1|st = s, at = a

]
for at given by the optimal policy, where all rewards are one from time step t

onward. (For more details on settings with longer horizon and a discount factor
larger than zero, and an analytic expression of the Q-values in these cases, see
[150]).

In more general cases, the issue of approximation reduces to the problem of
reaching the desired state s efficiently. When this is possible (i.e., it is possible to
construct environments which allow this without becoming easy to learn), then
so is estimating Q-values given an optimal policy. Note that for all of the above,
the same caveat as in [150] applies, namely that this method of obtaining optimal
Q-values does not resemble Q-learning in the sense that we use a tabular or DQN-
type approach as shown in Section 3.2.2, and it is still an open question whether a
rigorous quantum advantage can be shown in these settings for either policy-based
RL or Q-learning.

5.3 Numerical results

In this section, we present results for our PQC model on two benchmark RL tasks
from the OpenAI Gym [219], Frozen Lake v0 [223] and Cart Pole v0 [218] (see
Figure 5.2). We ran an extensive hyperparameter search for both environments,
and present our results for the best sets of hyperparameters. A detailed description
of the hyperparameters we tuned and their best values can be found in Chapter 8.
Our experiments were run with TensorFlow Quantum [224] and Cirq [225], the
full code can be found on Github [221].

5.3.1 Frozen Lake

The Frozen Lake (FL) environment serves as an example for environments with a
simple, discrete state space and with a reward structure that allows us to use an
agent which performs measurements in the Z-basis to compute Q-values without

74

5.3 Numerical results

a) b)

cart position

pole angle

0

14 15

11

1312

1 2 3

4 5 6 7

8 9 10

Figure 5.2: Gym environments solved by the quantum model. a) Frozen Lake
environment, where an agent needs to learn to navigate from the top left of a grid to
retrieve the Frisbee at the bottom right without falling into any of the holes (dark
squares), b) Cart Pole environment, which consists of learning to balance a pole on
a cart which moves left and right on a frictionless track.

the need for trainable weights to scale the output range. It consists of a 4x4 grid
representing a frozen surface, where the agent can choose to move one step up,
down, left or right. The goal is to cross the lake from the top left corner to the
bottom right corner where the goal is located. However, some of the grid positions
correspond to holes in the ice, and when the agent steps on them the episode
terminates and it has to start again from the initial state. In each episode, the
agent is allowed to take a maximum number of steps mmax. The episode terminates
if one of the following conditions is met: the agent performs mmax = 200 steps,
reaches the goal, or falls into a hole. For each episode in which the goal is reached
the agent receives a reward of 1, and a reward of 0 otherwise. The environment
is considered solved when the agent reaches the goal for 100 contiguous episodes.
(See [223] for full environment specification.)

As the FL environment is discrete and the dimensions of the state and action
spaces are small, there is no true notion of generalization in this environment, as all
distinct state-action pairs are likely observed during training. On the other hand,
generalization to unseen state-action pairs is one of the key reasons why function
approximation was introduced to Q-learning. For this reason, environments like
Frozen Lake are not a natural fit for these types of algorithms and we refrain
from comparing to a classical function approximator. Note that we also refrain

75

5.3 Numerical results

0 500 1000 1500 2000 2500 3000 3500
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

5 layers
10 layers
15 layers

(a) average scores

0 2000 4000 6000 8000 10000
Time step

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

M
AE

(Q
, Q

*)

5 layers
10 layers
15 layers

(b) mean absolute error with optimal Q-values

Figure 5.3: Agents with varying depth playing the Frozen Lake environment, and
their closeness to the optimal Q-values. The environment is solved when the agent
reaches the goal (receives a score of 1) for 100 contiguous episodes. a) Average score
over 10 agents for circuits of depth 5, 10, and 15, respectively. All agents manage
to solve the environment, higher circuit depth leads to lower time to convergence.
Shaded area shows standard deviation from the mean. b) Mean absolute error
between agents’ Q-values and the optimal Q-values Q∗ for all (s, a) pairs over
time steps in episodes, where one time step corresponds to one transition in the
environment. Shaded region shows standard error of the mean.

76

5.3 Numerical results

from comparing to the tabular approach, as this is (i) guaranteed to converge
and (ii) not interesting beyond environments with very limited state and action
spaces. However, this environment is interesting from another perspective: there
are only 64 Q-values which we can compute exactly, and therefore we can directly
compare the Q-values learned by our model to the optimal Q-values Q∗, which
is not possible for the continuous-state Cart Pole environment that we study in
Section 5.3.2.1. We show the difference between our agents’ Q-values and the
optimal Q-values during the course of training in Figure 5.3 b). Additionally, the
FL environment serves as a nice example for environments where a PQC with
simple measurements in the Z-basis can be used to solve a RL task, without
requiring additional post-processing, as we describe below.

The FL environment has 16 states (one for each square on the grid) of which four
are holes (marked as darker squares in Figure 5.2 a), and 4 actions (top, down,
left, right). We encode each position on the grid as one of the computational basis
states of a 4-qubit system, without use of trainable input data weights or data
re-uploading. The optimal Q-values for each state-action pair can be computed as
Q∗(s, a) = γβ (cf. Equation (3.16)), where β is the number of steps following the
shortest path to the goal from the state s′ that the agent is in after the transition
(s, a). We will now motivate our choice of observables for the FL agent by studying
the range the optimal Q-values can take. Note that these optimal Q-values are
defined for the tabular case only, and serve as a reference for the Q-values we want
our Q-function approximator to model. We know that only one transition, that
from state 14 to the goal state 15, is rewarded. This corresponds to a Q-value
Q∗(14, R) = γ. As the only other state adjacent to the goal (state 11) is a hole, no
other transition in this environment is rewarded. Through the recursive Q-value
update rule (see Equation (3.19)), all other Q-values depend on Q∗(14, R), and are
smaller due to the discount factor and the zero reward of all other transitions. In
case of a function approximator, the Q-values may not be the same as the optimal
values, but the relationship between Q(14, R) and all other Q-values still applies
as the update rule in Equation (3.19) changes values according to the observed
reward and discounted expected reward. That is, if the function approximator
outputs values that match the range of optimal Q-values and is not fundamentally
limited in the updates that can be performed to it, the relationship above can be
replicated. This means that we have an upper bound on the range of Q-values
that we want to model which only depends on γ ≤ 1 and stays constant over all
episodes. Therefore we do not expect that Q-values need to become larger than γ

77

5.3 Numerical results

for our agent to solve the environment, and only become larger in practice if the
initialization of our model happens to yield higher values for some state-action
pairs. Motivated by this, we represent the Q-values for the four actions as the
expectation values of a measurement with the operator Zi for each of the four
qubits i ∈ {1, . . . , 4}, which we scale to lie between [0, 1] instead of [−1, 1]. Note
that even when parameter initialization yields Q-values higher than the largest
optimal Q-value, they will still be close to this value as both optimal Q-values
and those of our model are upper-bounded by 1. Figure 5.3 a) shows the average
scores of ten agents, each configuration trained with a circuit depth of 5, 10, and
15 layers, respectively. All agents manage to solve the environment, and the time
to convergence decreases as the number of layers increases. Figure 5.3 b) shows
the averaged mean absolute error (MAE) between the optimal Q-values and the
Q-values produced by the agents at each time step during training. The agents
trained on circuits of depth 15 reach the lowest values and converge earlier to an
average MAE that is roughly 0.05 lower than that of the agents trained on a circuit
of depth 5. This illustrates that as we increase the complexity of the function
approximator, the optimal Q-values can be more accurately modelled. However,
the improvement between 10 and 15 layers is relatively small compared to that
between 5 and 10 layers, similar to a saturation in performance w.r.t. number of
parameters found in classical deep RL [220]. We will study this type of scaling
behaviour more in-depth and compare it to that of NNs in Section 5.3.2.1. At the
same time, we see that producing optimal Q-values is not necessary to solve an
environment, as we argue in Section 3.2.2. In the following section, we study an
environment where we are not able to compute the optimal Q-values analytically
due to the continuous state space, but where we compare to a classical approach
to assess the quality of our solution instead.

5.3.2 Cart Pole

In the previous section, we have seen that for an environment with discrete state
space and a reward function that results in an upper bound of Q-values of one,
a simple PQC without enhanced data encoding our readout strategies suffices
to solve the environment. Now we turn to an environment that is slightly more
complex: the continuous state space necessitates a more evolved data encoding
strategy, while the reward function results in Q-values that far exceed the range of
a Z-basis measurement. In the Cart Pole v0 environment, an agent needs to learn
to balance a pole upright on a cart that moves on a frictionless track. The action

78

5.3 Numerical results

space consists of two actions: moving the cart left and right. Its state space is
continuous and consists of the following variables: cart position, cart velocity, pole
angle, and pole velocity at the tip. The cart position is bounded between ±2.4,
where values outside of this range mean leaving the space that the environment
is defined in and terminating the episode. The pole angle is bounded between
±41.8 degrees. The other two variables can take infinite values, but are bounded in
practice by how episode termination is defined. An episode terminates if the pole
angle is outside of ±12 degrees, the cart position is outside of ±2.4, or the agent
reaches the maximum steps per episode mmax = 200. For each step of the episode
(including the terminal step) the agent receives a reward of one. At the beginning
of each episode, the four variables of the environment state are randomly initialized
in a stable state within the range [-0.05, 0.05]. The episode score is computed as
the cumulative reward of all steps taken in the episode. The environment is solved
when the average score of the last 100 episodes is ≥ 195. (See [218, 109] for full
environment specification.)

As in Section 5.3.1, we now motive our choice of observables depending on how
rewards are received in this environment. For this, we recall that a Q-value gives
us the expected return for a given state-action pair,

Qπ(s, a) =
∞∑

k=0
γkrt+k+1.

Cart Pole is an episodic environment with a maximum number of time steps
H = 200 in the version of the environment we study here, so the Q-value following
optimal policy π∗ from a stable state s is

Q∗(s, a) =
H−1∑
k=0

γk.

When following an arbitrary policy π and starting in a random stable state of the
environment, the Q-value is

Qπ(s, a) =
h−1∑
k=0

γk,

where h ≤ H is the length of the episode which is determined by the policy. The
longer the agent balances the pole, the higher h, with h = H the maximum number
of steps allowed in an episode. When not considering random actions taken by the
ϵ-greedy policy, h depends solely on the performance of the agent, which changes

79

5.3 Numerical results

as the agent gets better at balancing the pole. Consequently, the Q-values we want
to approximate are lower bounded by the minimum number of steps it takes to
make the episode terminate when always picking the wrong action (i.e., the pole
doesn’t immediately fall by taking one false action alone), and upper bounded
by the Q-values assuming the optimal policy, where h = H. We stress that this
upper bound applies to the optimal policy in one episode only, and that in practice
the upper bound of the magnitude of Q-values during training depends on the
performance of the agent as well as the number of episodes played. Compared to
the range of expectation values of computational basis measurements these values
can become very high, e.g. for γ = 0.99 we get max Q∗(s, a) ≈ 86. Even when
considering that Q-values need not necessarily be close to the optimal values to
solve an environment, the range given by computational basis measurements is
clearly too small compared to the frequency with which rewards are given and the
number of episodes needed until convergence.

To give the agent the possibility to flexibly adjust it’s output range, we add
trainable weights on the output values as described in Section 5.1.2. The Q-values
now take the form

Q(s, a) =
〈
0⊗4
∣∣Uθ(s)†OaUθ(s)

∣∣0⊗4〉+ 1
2 · woa , (5.10)

where Oa=L = Z1Z2 and Oa=R = Z3Z4 are Pauli-ZZ operators on qubits (1, 2)
and (3, 4) respectively, corresponding to actions left and right. To further improve
performance, we also use data re-uploading and add trainable weights on the input
values as described in Section 5.1.1.

5.3.2.1 Comparison of data encoding and readout strategies

To illustrate the effect of data re-uploading and trainable weights on the input
and output values, we perform an ablation study and assess the impact of each
of these enhancements on learning performance. To illustrate that our proposed
architecture (i) performs better overall, and (ii) is less sensitive to changes in
hyperparameters, we show results for the best set of hyperparameters that were
found for a circuit of depth five, as well as a sub-optimal set of hyperparameters
with which it is less easy for the agents to solve the Cart Pole environment.
The hyperparameters we optimize over are: batch size, learning rates and update
frequencies of the Q-value-generating model and the target model (cf. Section 3.2.2)

80

5.3 Numerical results

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200

Sc
or

e

0 200 400 600
0

50

100

150

200

w/o data re-uploading
w/o trainable scaling
data re-uploading and
trainable scaling

(a) average scores with varying data encoding strategies
for best set of hyperparameters

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200

Sc
or

e

w/o data re-uploading
w/o trainable scaling
data re-uploading and
trainable scaling

(b) average scores with varying data encoding strategies
for sub-optimal set of hyperparameters

Figure 5.4: Comparison of data-encoding strategies for the optimal and one sub-
optimal set of hyperparameters for agents training in the Cart Pole environment.
The environment is solved when an agent has an average reward ≥ 195 for the past
100 episodes, after which training is stopped. Results are averaged over 10 agents
each, where each agent consists of 5 layers of the circuit architecture depicted in
Figure 5.1.

81

5.3 Numerical results

(see Chapter 8 for a detailed list of hyperparameter settings). Otherwise, we only
vary the hyperparameters of the enhancements we want to study. The average
performance of ten randomly initialized agents for each configuration is presented
in Figure 5.4 and Figure 5.5. Once an agent solves the environment, we stop
training and in the figures show the last encountered score for each agent in the
averages (i.e., to form averages over equal lengths of episodes, we assume that each
agent continues scoring the same value as it did in its last interaction with the
environment).

Figure 5.4 a) and b) show the effects of varying data encoding strategies. While both
data re-uploading and trainable weights on the input values alone do not produce
agents that solve the environment in up to 5000 episodes for both the best and
sub-optimal set of hyperparameters, combining both of these enhancements yields
agents that solve Cart Pole in 3000 and 600 episodes at most on average, respectively.
The fact that agents with trainable input weights and data re-uploading perform
much better than those without, emphasizes the importance of matching the PQC’s
expressivity to the learning task at hand, as described in [169]. In Figure 5.5 a)
and b), we compare agents with varying output ranges. Again, the green curves
represent agents that are enhanced with a trainable weight corresponding to each
Q-value that lets them flexibly adjust their output range during training, and
these agents succeed with both sets of the remaining hyperparameters. The purple
curves show agents with a fixed range of outputs of [0, 1], all of which stay at an
extremely low score during all 5000 episodes, as they fail to fit a good Q-function
approximation regardless of hyperparameters. The yellow curves show agents with
a fixed output range of maximally 90, which is motivated by the range of optimal
Q-values. These agents also solve the environment on average, however, they are
much more sensitive to parameter initialization and the remaining hyperparameters
than agents with a trainable output range. The low final value of the yellow agents
in Figure 5.5 a) is due to their last interaction with the environment achieving a
relatively low score on average.

As described above, the magnitude of Q-values crucially depends on the agent’s
ability to balance the pole in each episode, and as a general trend it will increase
over the course of training for agents that perform well. How large the final Q-values
of a solving agent are therefore also depends on the number of episodes it requires
until convergence, so a range which is upper bounded by 90 presumes agents that
converge relatively quickly. Considering the range of final Q-values of agents in

82

5.3 Numerical results

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200
Sc

or
e

0 200 400 600
0

50

100

150

200

trainable output weights
fixed range [0, 180]
fixed range [0, 90]
fixed range [0, 1]

(a) average scores with varying output ranges for best set
of hyperparameters

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200

Sc
or

e

trainable output weights
fixed range [0, 1]
fixed range [0, 90]
fixed range [0, 180]

(b) average scores with varying output ranges for sub-
optimal set of hyperparameters

Figure 5.5: Comparison of different readout strategies of the same agents as in
Figure 5.4 with the optimal and one sub-optimal set of hyperparameters.

83

5.3 Numerical results

the green curves, they can become as high as approximately 176 for agents that
converge late. However, as we see for agents with a fixed output range of [0, 180]
(magenta curves), increasing the range to accommodate agents that converge later
can lead to complete failure depending on the remaining hyperparameters.

5.3.2.2 Comparison to the classical DQN algorithm

In addition to investigating the effects of varying data encoding and readout
strategies, we compare the performance of our PQC model to that of the standard
DQN algorithm that uses a NN as a function approximator. We do this for varying
numbers of parameters for both the PQC and NN, and study how performance
changes as the number of parameters increases. Note that because environments are
strictly defined with a fixed number of input state variables, we cannot change the
number of qubits arbitrarily for a certain environment. Studying varying system
sizes in terms of qubits requires either artificially adjusting the data encoding
to fit a certain number of qubits, or studying completely different environments
all together. Therefore we focus on studying different model sizes in terms of
number of parameters here. Additionally, the standard approach to increase model
performance in supervised and unsupervised learning in the classical and quantum
literature alike is often to add more parameters. However, it has been shown
that this strategy does often not lead to success in classical deep RL due to the
instability of training larger networks [220]. Instead, it is much more important
to find good settings of hyperparameters (including the random initialization of
model parameters), and it is preferable to use models which are less sensitive to
changes in these settings.

To study whether this effect is also present when the function approximator is
a PQC, we compare agents with up to 30 layers of the hardware efficient ansatz
depicted in Figure 5.1. All agents use the enhancements which have shown to yield
good performance in Figure 5.4 and Figure 5.5, namely data re-uploading and
trainable input and output weights. The other hyperparameters that yield to the
best performance for each depth are found through an extensive hyperparameter
search and include the three different learning rates (Q-network, input and output
weights), batch size, and update frequency of the Q-network and target network
(see Chapter 8 for detailed settings). Figure 5.6 a) shows the average performance
over 10 quantum agents of each configuration. We indeed observe that increasing
the number of parameters is only efficient up to a certain point, after which

84

5.3 Numerical results

0 250 500 750 1000
0

100

200

5 (62)

0 250 500 750 1000
0

100

200
10 (122)

0 250 500 750 1000
0

100

200

15 (182)

0 250 500 750 1000
0

100

200

20 (242)

0 250 500 750 1000
0

100

200
25 (302)

0 250 500 750 1000
0

100

200

30 (362)

Episode

Sc
or

e

(a) PQCs, labels show: #layers (#parameters)

0 250 500 750 1000
0

100

200

(10, 10), 182

0 250 500 750 1000
0

100

200

(15, 15), 347

0 250 500 750 1000
0

100

200
(20, 20), 562

0 250 500 750 1000
0

100

200

(24, 24), 770

0 250 500 750 1000
0

100

200

(30, 30), 1142

0 250 500 750 1000
0

100

200

(64, 64), 4610

Episode

Sc
or

e

(b) NNs, labels show: (#units in hidden layer 1, 2),
#parameters

Figure 5.6: Comparison of classical and quantum agents with varying numbers of
parameters in the Cart Pole environment. Each sub-figure contains results averaged
over ten agents, and the vertical dashed line marks the average number of episodes
until solving the environment. We performed a hyperparameter optimization for
each parameter configuration separately, and show the best setting for each. (See
Chapter 8 for all settings and a list of hyperparameters that were searched over.)

85

5.3 Numerical results

additional layers lead to slower convergence. The best-performing configuration on
average is a PQC with 25 layers and 302 parameters, which takes 500 episodes on
average to solve the Cart Pole environment.

To investigate the performance of the classical DQN algorithm which uses a NN as
the function approximator, we compare NNs with two hidden layers with varying
numbers of units. As simply increasing the depth of the NNs has not been beneficial
in a RL setting, it has been proposed to use shallow networks with increased width
instead [220]. Therefore we keep the depth of our NNs fixed at two, and vary the
width by changing the number of units in each hidden layer. This configuration is
also inspired by well-performing agents on the official OpenAi Gym leaderboard
[226].1 We make the same observation for the NNs in Figure 5.6 b) as we did for
the PQCs – increasing the number of parameters does not necessarily improve
performance. The best-performing NN is one with 20 units in each of its hidden
layers, which yields a network with 562 parameters overall that solves the Cart Pole
environment in 250 episodes on average. Comparing the configurations of PQC
and NN that perform best on average, the best NN configuration takes roughly
half as many episodes on average to solve Cart Pole than the best PQC, and does
this with roughly twice as many parameters. Notably, the PQCs seem to suffer
more from an instability during training as the number of parameters is increased
than the NNs do. We also show a comparison of the best individual (not averaged)
PQC and NN agents in Figure 5.7. Here, the gap is relatively small: the best PQC
(5 layers, 62 parameters) takes 206 episodes to solve Cart Pole, while the best NN
(2 hidden layers with 30 units each, 1142 parameters) takes 186 episodes.

Finally, we note that unlike for the Frozen Lake environment, it is not straightfor-
ward to compute optimal Q-values for Cart Pole as its state space is continuous. A
trained model that is known to implement the optimal policy (i.e., correct ordering
of Q-values for all (s, a)-pairs) could be used as a baseline to compare other models
to, but the magnitudes of Q-values can highly vary even among agents that solve
the environment so this comparison will not provide much insight, which is why
we refrain from including it here. Nonetheless, we provide a visualization of the
Q-values learned by one of our best-performing quantum models in Chapter 8. We
observe that these Q-values have a maximum value close to what we expected
from an optimal agent (i.e., 86).

1However, we note that it is hard to find reliable benchmarks on the Cart Pole environment in
classical literature, as it was already too small to be considered in state-of-the-art deep learning
when the DQN algorithm was introduced in [119].

86

5.4 Conclusion

0 50 100 150 200
Episode

0

25

50

75

100

125

150

175

200

Sc
or

e

NN, (30, 30), 1142
PQC, 5 (62)

Figure 5.7: Best PQC and NN from the configurations we study in Figure 5.6. The
best PQC (orange, 5 layers, 62 parameters) takes 20 episodes longer to solve Cart
Pole than the best NN (blue, two hidden layers with 30 units each, 1142 parameters).

5.4 Conclusion

In this chapter, we have proposed a quantum model for deep Q-learning which
can encode states of environments with discrete and continuous state spaces. We
have illustrated the importance of picking the observables of a quantum model
such that it can represent the range of optimal Q-values that this algorithm
should learn to approximate. One crucial difference between PQCs and classical
methods based on NNs, namely the former’s restricted range of output values
defined by its measurement operators, was identified as a major impediment to
successfully perform Q-learning in certain types of environments. Based on the
range of optimal Q-values, we illustrate how an informed choice can be made for
the quantum model’s observables. We also introduce trainable weights on the
observables of our model to achieve a flexible range of output values as given
by a NN and empirically show the benefit of this strategy on the Cart Pole
environment by performing ablation studies. Our results show that a trainable
output range can lead to better performance as well as lower sensitivity to the
choice of hyperparameters and random initialization of parameters of the model.
We also perform ablation studies on a number of data encoding techniques which
enhance the expressivity of PQCs, namely data re-uploading [168] and trainable

87

5.4 Conclusion

weights on the input [168, 150]. We show the benefit of combining both approaches
in the Cart Pole environment, where any of the two encoding strategies on its
own does not suffice to reliably solve the environment. Our results illustrate the
importance of architectural choices for QML models, especially for a RL algorithm
as Q-learning that has very specific demands on the range of output values the
model can produce.

Additionally, we investigated whether recent results in classical deep Q-learning also
hold for PQC-based Q-learning, namely that increasing the number of parameters
in a model might lead to lower performance due to instability in training. To
evaluate the performance of our model compared to the classical approach where
the same DQN algorithm is used with a NN as the Q-function approximator,
we study the performance of a number of classical and quantum models with
increasing numbers of parameters. Our results confirm that PQC-based agents
behave similarly to their NN counterparts as the number of parameters increases.
Performance only increases up to a certain point and then declines afterward. We
find that in both cases, the hyperparameter settings (and in case of the PQC
data encoding and readout strategies) are the determining factors for a model’s
success much more than the number of parameters. This is in contrast to previous
results for training PQCs on supervised and unsupervised learning tasks, where
additional layers are likely to increase performance [213, 212, 139]. The effect that
an increased number of parameters hampers performance in Q-learning also seems
to be more prominent in PQCs than in NNs, which raises the question whether we
need additional mechanisms to increase learning stability in this setting than the
ones from classical literature.

In addition to our numerical studies, we also investigated whether a recent proof
of quantum advantage for policy gradient RL agents [150] implies a separation
of classical and quantum Q-learning agents as well. We show how optimal Q-
values for state-action pairs can be efficiently computed given access to an optimal
policy in the SL-DLP family of environments from [150]. We explain additional
requirements on the structure of states in a given environment that need to be
fulfilled to allow efficiently inferring optimal Q-values from optimal policies in more
general environments. However, the separation results in [150] only guarantee
that quantum learners can be constructed in general, and not that the optimal
policy can be learned by policy gradient methods directly. It is an interesting open
question if a separation between classical and quantum agents can also be proven

88

5.4 Conclusion

for learning algorithms that use policy gradient or Q-value updates as shown
in Equation (3.19). This opens up the path to future investigations of possible
quantum advantages of these types of quantum agents in relevant settings.

89

ch
ap

te
r

6
Equivariant quantum circuits for learning on
weighted graphs

In Chapter 5, we described that the three key architectural choices one has to
make for a variational QML model are i) the data encoding technique, ii) the
circuit ansatz, and iii) the observable to measure. In that chapter, we have focused
on how to encode data and pick suitable observables for a variational Q-learning
algorithm. In this chapter, we turn to the question of how to design ansatzes that
are tailored to a specific learning problem.

It is known that the right choice of ansatz is of key importance for the performance
of these models. Much work has been dedicated to understand how circuits have to
be structured to address problems in optimization [59, 227] or chemistry [71, 228].
For QML however, it is largely unknown which type of ansatz should be used for a
given type of data. In absence of an informed choice, general architectures as the
hardware-efficient ansatz [170] are often used [120]. It is known that ansatzes with
randomly selected structure scale badly as the width and depth of the circuit grows,
most prominently because of the barren plateau phenomenon [229, 52, 47] where the
gradients of a PQC vanish exponentially as the system size grows and thus render
training impossible, as we have described in detail in Section 2.2.1.2. This situation
can be compared to the early days of NNs, where fully connected feedforward NNs
were the standard architecture. These types of NNs also suffer from trainability
issues that prevent their large-scale usage [230]. Recent breakthroughs in deep
learning were in part possible because more efficient architectures that are directly
motivated by the training data structure have been developed [29, 30, 231]. In
fact, a whole field that studies the mathematical properties of successful NN
architectures has emerged in the past decade, known as geometric deep learning.

90

permutation

(a) equivariant
function, e.g.

(b) invariant
function, e.g.

5
1

2
4

3

5

5 c 5 c

1

1 c 1 c

3

3 c 3 c

2

2 c 2 c

4

4 c 4 c

5 + 3 + 1 + 4 + 2 = 15 1 + 3 + 4 + 2 + 5 = 15

Figure 6.1: Depiction of two functions that respect important symmetries of
graphs: a) The permutation equivariant function will yield the same output values
for each graph permutation, but reordered according to the reordering of nodes.
The above example shows a simple function that takes node features as an input
and multiplies them with a constant. b) An invariant function will yield the same
output, regardless of the permutation. The above example shows a simple function
that takes node features as input and computes their sum. Which type of symmetry
is preferable depends on the task at hand.

This field studies the properties of common NN architectures, like convolutional
NNs or graph NNs, through the lens of group theory and geometry and provides an
understanding of why these structured types of models are the main drivers of recent
advances in deep learning. The success of these models can largely be attributed to
the fact that they preserve certain symmetries that are present in the training data.
Graph NNs, for example, take graph-structured data as input and their layers are
designed such that they respect one of two important graph symmetries: invariance
or equivariance under permutation of vertices [232], as depicted in Figure 6.1.
Graph-structured data is ubiquitous in real-world problems, for example to predict
properties of molecules [30] or to solve combinatorial optimization problems [108].
Even images can be viewed as special types of graphs, namely those defined on a
lattice with nearest-neighbor connections. This makes graph NNs applicable in
a multitude of contexts, and motivated a number of works that study quantum
versions of these models [149, 233, 234, 172]. However, the key questions of how to
design symmetry-preserving ansatzes motivated by a concrete input data structure
and how these ansatzes perform compared to those that are structurally unrelated
to the given learning problem remain open.

91

In this work, we address these open questions by introducing a symmetry-preserving
ansatz for learning problems where the training data is given in form of weighted
graphs, and study its performance both numerically and analytically. To do this,
we extend the family of ansatzes from [172] to incorporate weighted edges of
the input graphs and prove that the resulting ansatz is equivariant under node
permutations. To evaluate this ansatz on a complex learning task where preserving
a given symmetry can yield a significant performance advantage, we apply it in a
domain where classical graph NNs have been used extensively: neural combinatorial
optimization (NCO) [108]. In this setting, a model is trained to solve instances of a
combinatorial optimization problem. Namely, we train our proposed ansatz to find
approximate solutions to the Traveling Salesperson Problem (TSP). We numerically
compare our ansatz to three non-equivariant ansatzes on instances with up to 20
cities (20 qubits), and show that the more the equivariance property of the ansatz
is broken, the worse performance becomes and that a simple hardware-efficient
ansatz completely fails on this learning task. Additionally, we analytically study
the expressivity of our model at depth one, and show under which conditions there
exists a parameter setting for any given TSP instance of arbitrary size for our
ansatz that produces the optimal tour with the learning scheme that is applied in
this work.

The neural combinatorial optimization approach presented in this work also pro-
vides an alternative method to employ near-term quantum computers to tackle
combinatorial optimization problems. As problem instances are directly encoded
into the circuit in form of graphs without the need to specify a cost Hamiltonian,
this approach is even more frugal than that of the quantum approximate optimiza-
tion algorithm (QAOA) [59] in terms of the requirement on the number of qubits
and connectivity in cases where the problem encoding is non-trivial. For the TSP
specifically, standard Hamiltonian encodings require n2 variables where n is the
number of cities (or n log(n) variables at the cost of increased circuit depth) [235],
whereas our approach requires only n qubits and two-body interactions. We do
note that the theoretical underpinnings and expected guarantees of performance
of our method are very different and less rigorous than those of the QAOA, so the
two are hard to compare directly. However, we establish a theoretical connection
to the QAOA based on the structure of our ansatz, and in addition numerically
compare QAOA performance on TSP instances with 5 cities to the performance of
the proposed neural combinatorial optimization approach. We find that our ansatz
at depth one outperforms the QAOA even at depth up to three. From a pragmatic

92

6.1 Geometric learning - quantum and classical

point of view, linear scaling in qubit numbers w.r.t. number of problem variables,
as opposed to e.g. quadratic scaling as in the case of the TSP, dramatically changes
the applicability of quantum algorithms in the near- to mid-term.

Our work illustrates the merit of using symmetry-preserving ansatzes for QML on
the example of graph-based learning, and underlines the notion that in order to
successfully apply variational quantum algorithms for ML tasks in the future, the
usage of ansatzes unrelated to the problem structure, which are popular in current
QML research, is limited as problem sizes grow. This work motivates further study
of “geometric quantum learning” in the vein of the classical field of geometric deep
learning, to establish more effective ansatzes for QML, as these are a prerequisite
to efficiently apply quantum models on any practically relevant learning task in
the near-term.

6.1 Geometric learning - quantum and classical

Learning approaches that utilize geometric properties of a given problem have lead
to major successes in the field of ML, such as AlphaFold for the complex task of
protein folding [30, 31] and have become an increasingly popular research field
over the past few years. Arguably, the prime example of a successful geometric
model is the convolutional NN (CNN), which has been developed at the end of the
20th century in an effort to enable efficient training of image recognition models
[104]. Since then, it has been shown that one of the main reasons that CNNs are so
effective is that they are translation invariant: if an object in a given input image is
shifted by some amount, the model will still “recognize” it as the same object and
thus effectively requires fewer training data [100]. While CNNs are the standard
architecture used for images, symmetry-preserving architectures have also been
developed for time-series data in the form of recurrent NNs [236], and for graph
data with GNNs [107]. GNNs have seen a surge of interest in the classical machine
learning community in the past decade [107, 232]. They are designed to process
data that is presented in graph form, like social networks [107], molecules [106],
images [237] or instances of combinatorial optimization problems [108].

The first attempt to implement a geometric learning model in the quantum realm
was made with the quantum convolutional NN in [55], where the authors introduce
a translation invariant architecture motivated by classical convolutional NNs.
Approaches to translate the GNN formalism to QNNs were taken in [149], where

93

6.1 Geometric learning - quantum and classical

input graphs are represented in terms of a parametrized Hamiltonian, which is
then used to prepare the ansatz of a quantum model called a quantum graph neural
network (QGNN). While the approach in [149] yields promising results, this work
does not take symmetries of the input graph into account.1 The authors of [233]
introduce the so-called quantum evolution kernel, where they devise a graph-based
kernel for a quantum kernel method for graph classification. Again, their ansatz is
based on alternating layers of Hamiltonians, where one Hamiltonian in each layer
encodes the problem graph, while a second parametrized Hamiltonian is trained
to solve a given problem. A proposal for a quantum graph convolutional NN was
made in [234], and the authors of [238] propose directly encoding the adjacency
matrix of a graph into a unitary to build a quantum circuit for graph convolutions.
While all of the above works introduce forms of structured QML models, none of
them study their properties explicitly from a geometric learning perspective or
relate their performance to unstructured ansatzes.

The authors of [172] take the step to introduce an equivariant model family for
graph data and generalize the QGNN picture to so-called equivariant quantum
graph circuits (EQGCs). EQGCs are a very broad class of ansatzes that respect the
connectivity of a given input graph. The authors of [172] also introduce a subclass
of EQGCs called equivariant quantum Hamiltonian graph circuits (EH-QGCs),
that includes the QGNNs by [149] as a special case. EH-QGCs are implemented in
terms of a Hamiltonian that is constructed based on the input graph structure, and
they are explicitly equivariant under permutation of vertices in the input graph.
The framework that the authors of [172] propose can be seen as a generalization
of the above proposals. Different from the above proposals, EQGCs use a post-
measurement classical layer that performs the functionality of an aggregation
function as those found in classical GNNs. In classical GNNs, the aggregation
function in each layer is responsible for aggregating node and edge information in
an equivariant or invariant manner. Popular aggregation functions are sums or
products, as they trivially fulfill the equivariance property. In the case of EQGCs,
there is no aggregation in the quantum circuit, and this step is offloaded to a
classical layer that takes as input the measurements of the PQC. Additionally, the
EQGC family is defined over unweighted graphs and only considers the adjacency
matrix of the underlying input graph to determine the connectivity of the qubits.
The authors of [172] also show that their EQGC outperforms a standard message

1However, in an independent work prepared at the time of writing this manuscript, one of
the authors of [149] shows that one of their proposed ansatzes is permutation invariant [173].

94

6.2 Neural combinatorial optimization with reinforcement learning

passing neural network on a graph classification task, and thereby demonstrate a
first separation of quantum and classical models on a graph-based learning task.
A work on invariant quantum machine learning models was published by the
authors of [173]. They prove for a number of selected learning tasks whether an
invariant quantum machine learning model for specific types of symmetries exists.
Their work focuses on group invariance, and leaves proposals for NISQ-friendly
equivariant quantum models as an open question.

Our proposal is most closely related to EH-QGCs, but with a number of deviations.
First, our model is defined on weighted graphs and can therefore be used for
learning tasks that contain node as well as edge features. Second, the initial state
of our model is always the uniform superposition, which allows each layer in the
ansatz to perform graph feature aggregation via sums and products of node and
edge features, as discussed in Section 6.3. Third, we do not require a classical
post-processing layer, so our EQC model is purely quantum. Additionally, in
its simplest form as used in this work, the number of qubits in our model scales
linearly with the number of nodes in the input graph, while the depth of each layer
depends on the graph’s connectivity, and therefore it provides one answer to the
question of a NISQ-friendly equivariant quantum model posed by [173].

6.2 Neural combinatorial optimization with rein-
forcement learning

The idea behind NCO is to use a ML model to learn a heuristic for a given
optimization problem based on data. When combined with RL, this data manifests
in form of states of an environment, while the objective is defined in terms of
a reward function, as we described in Section 3.2. To do NCO in this setting,
the reward function is defined such that maximizing the expected return (see
Equation (3.16)) corresponds to finding the optimum of the given combinatorial
optimization problem. In this work, we use a Q-learning agent as introduced in
Section 5.1 as the learning model in this NCO scheme, and train it in an evironment
that is specified to solve instances of the TSP.

95

6.2 Neural combinatorial optimization with reinforcement learning

6.2.1 Solving the Traveling Salesperson Problem with rein-
forcement learning

To evaluate the performance gains of an ansatz that respects certain symmetries
relevant to the problem at hand, we apply our model to a practically motivated
learning task on graphs. The TSP is a low-level abstraction of a problem commonly
encountered in mobility and logistics: given a list of locations, find the shortest
route that connects all of these locations without visiting any of them twice.
Formally, given a graph G(V, E) with vertices V and weighted edges E , the goal
is to find a permutation of the vertices such that the resulting tour length is
minimal, where a tour is a cycle that visits each vertex exactly once. A special
case of the TSP is the 2D Euclidean TSP, where each node is defined in terms
of its x and y coordinates in Euclidean space, and the edge weights are given
by the Euclidean distance between these points. In this work, we deal with the
symmetric Euclidean TSP on a complete graph, where the edges in the graph are
undirected. This reduces the number of possible tours from n! to (n−1)!

2 . However,
even in this reduced case the number of possible tours is already larger than 100k
for instances with a modest number of ten cities, and the TSP is a well-known
NP-hard problem.

To solve this problem with a RL approach, we follow the strategy introduced in
[239]. In this work, a classical GNN is used to solve a number of combinatorial
optimization problems on graphs. The authors show that this approach can
outperform dedicated approximation algorithms defined for the TSP, like the
Christofides algorithm, on instances of up to 300 cities. One episode of this learning
algorithm for the TSP can be seen in Figure 6.3, and a detailed description of the
learning task as implemented in our work is given in Section 6.4.1.

6.2.2 Solving the TSP with the QAOA

The quantum NCO scheme that we propose in this work poses an alternative to the
well known quantum approximate optimization algorithm (QAOA), and for this
reason we provide a comparison to this algorithm in addition to the comparison to
non-equivariant ansatzes. The QAOA is implemented as a PQC by a Trotterization
of Adiabatic Quantum Computation (AQC) [59]. In general, for AQC, we consider
a starting Hamiltonian H0, for which both the formulation and the ground state
are well known, and a final Hamiltonian HP , that encodes the combinatorial

96

6.2 Neural combinatorial optimization with reinforcement learning

optimization problem to be solved. The system is prepared in the ground state
of the Hamiltonian H0 and then it is evolved according to the time-dependent
Hamiltonian:

H(t) := (1− s(t))H0 + s(t)HP ,

where s(t) is a real function called annealing schedule that satisfies the boundary
conditions: s(0) = 0 and s(T) = 1, with T the duration of the evolution. To
implement this as a quantum circuit we use the following approximation:

eA+B ≈
(
e

A
r e

B
r

)r

, r → +∞, (6.1)

which is knwon as the Trotter-Suzuki formula. By using this formula to approximate
the evolution according to H(t) and by parameterizing time we obtain:

e−iβpH0e−iγpHP · · · e−iβ1H0e−iγ1HP . (6.2)

All of these matrices are unitary since the Hamiltonians in the argument of the
exponential are all Hermitian. We define a parameter p (integer known as the
depth, or level) of QAOA which has the same role as r in Equation (6.1). Increasing
the depth p adds additional layers to the QAOA circuit, and thus more closely
approximates the H(t) [59].

In QAOA, all qubits are initialized to |+⟩⊗n , which is the ground state of H0 =∑
i σ

(i)
x . Alternating layers of Hp and H0 are added to the circuit (p times),

parameterized by γ and β as defined in Equation (6.2). The values of γ and β

are found by minimizing the expectation value of Hp, and thus approximate the
optimal solution to the original combinatorial optimization problem. When using
QAOA, we do not solve the TSP directly, but a QUBO representation of this
problem. This representation is well-known, and can be found in [235]:

∑
(i,j)∈E

N∑
t=1

εi,j

W
xi,txj,t+1 +

∑
i∈V

(
1−

N∑
t=1

xi,t

)2

+

+
N∑

t=1

(
1−

∑
i∈V

xi,t

)2

+
∑

(i,j)/∈E

N∑
t=1

xi,txj,t+1.

Here, εi,j are the distances between two nodes i, j ∈ V and W := max(i,j)∈E εi,j .
The variables xv,t are binary decision variables denoting whether node v is visited
at step t. We optimize the β and γ parameters for p = 1 by performing a
uniform random search over the space [0, 2π]2, and selecting the best configuration
found.

97

6.3 Equivariant quantum circuit

6.3 Equivariant quantum circuit

In this section, we formally introduce the structure of our equivariant quantum
circuit (EQC) for learning tasks on weighted graphs that we use in this work.
Examples of graph-structured data that can be used as input in this type of
learning task are images [231], social networks [240] or molecules [30]. In general,
when learning based on graph data, there are two sets of features: node features
and edge features. Depending on the specific learning task, it might be enough to
use only one set of these features as input data, and the specific implementation of
the circuit will change accordingly. As mentioned above, an example of an ansatz
for cases where encoding node features suffices is the family of ansatzes introduced
in [172]. In our case, we use both node and edge features to solve TSP instances.
In case of the nodes, we encode whether a node (city) is already present in the
partial tour at time step t to inform the node selection process described later
in Definition 6.2. For the edges, we simply encode the edge weights of the graph
as these correspond to the distances between nodes in the TSP instance’s graph.
In this work, we use one qubit per node in the graph, but in general multiple
qubits per node are also possible. We discuss the details of this in ??. We now
proceed to define the ansatz in terms of encoding node information in form of α
(see Definition 6.1) and edge information in terms of the weighted graph edges
εij ∈ E . For didactic reasons we relate the node and edge features to the concrete
learning task that we seek to solve in this work, however, we note that this encoding
scheme is applicable in the context of other learning tasks on weighted graphs as
well.

6.3.1 Ansatz structure and equivariance

Given a graph G(V, E) with node features α and weighted edges E , and trainable
parameters β,γ ∈ Rp, our ansatz at depth p is of the following form

|E ,α,β,γ⟩p = UN (α, βp)UG(E , γp) . . . UN (α, β1)UG(E , γ1) |s⟩ , (6.3)

where |s⟩ is the uniform superposition of bitstrings of length n,

|s⟩ = 1√
2n

∑
x∈{0,1}n

|x⟩ , (6.4)

98

6.3 Equivariant quantum circuit

UN (α, βj) with Rx(θ) = e−i θ
2 X , is defined as

UN (α, βj) =
n⊗

l=1
Rx(αl · βj), (6.5)

and UG(E , γj) is
UG(E , γj) = exp(−iγjHG) (6.6)

with HG =
∑

(i,j)∈E εijσ
(i)
z σ

(j)
z and E are the edges of graph G weighted by εij . A

5-qubit example of this ansatz can be seen in Figure 6.2.

For p = 1, we have

|E ,α, β, γ⟩1 = UN (α, β)UG(E , γ) |s⟩

= 1√
2n

·
∑

x∈{0,1}n

(
cosα1β

2 + · · · − isinαlβ

2 − · · · − isinαnβ

2

)
︸ ︷︷ ︸

weighted bitflip terms

· exp

 ∑
(i,j)∈E

diag(ZiZj)|x⟩ · −i
π

2 γεij

︸ ︷︷ ︸

edge weights

|x⟩ , (6.7)

where diag(ZiZj)|x⟩ = ±1 is the entry in the matrix corresponding to each ZiZj

term, e.g., I1 ⊗ · · · ⊗Zi ⊗ Ik ⊗ · · · ⊗Zj ⊗ · · · ⊗ In, corresponding to the basis state
|x⟩. (E.g., the first term on the diagonal corresponds to the all-zero state, and
so on.) We see that the first group of terms, denoted weighted bitflip terms, is a
sum over products of terms that encode the node features. In other words, in the
one-qubit case we get a sum over sine and cosine terms, in the two-qubit case we
get a sum over products of pairs of sine and cosine terms, and so on. The terms in
the second part of the equation denoted edge weights is the exponential of a sum
over edge weight terms. As we start in the uniform superposition, each basis state’s
amplitude depends on all node and edge features, but with different signs and
therefore different terms interfering constructively and destructively for every basis
state. This can be regarded as a quantum version of the aggregation functions used
in classical graph NNs, where the k-th layer of a NN aggregates information over
the k-local neighborhood of the graph in a permutation equivariant way [100]. In
a similar fashion, the terms in Equation (6.7) aggregate node and edge information
and become more complex with each additional layer in the PQC.

99

6.3 Equivariant quantum circuit

. . .𝑈𝐺(ℰ, 𝛾1)

one layer

𝑈𝑁(𝛼, 𝛽1)

Figure 6.2: EQC used in this work. Each layer consists of two parts: the first part
UG encodes edge features, while the second part UN encodes node features. Each of
the two parts is parametrized by one parameter βl, γl, respectively.

The reader may already have observed that this ansatz is closely related to an ansatz
that is well-known in quantum optimization: that of the quantum approximate
optimization algorithm [59]. Indeed, our ansatz can be seen as a special case of
the QAOA, where instead of using a cost Hamiltonian to encode the problem, we
directly encode instances of graphs and apply the “mixer terms" in Equation (6.5)
only to nodes not yet in the partial tour. This correspondence will later let us
use known results for QAOA-type ansatzes at depth one [241] to derive exact
analytical forms of the expectation values of our ansatz, and use these to study its
expressivity.

As our focus is on implementing an ansatz that respects a symmetry that is
useful in graph learning tasks, namely an equivariance under permutation of
vertices of the input graph, we now show that each part of our ansatz respects this
symmetry.

Theorem 6.1 (Permutation equivariance of the ansatz). Let the ansatz of depth p
be of the type as defined in Equation (6.3) with initial state |+⟩⊗n and parameters
β,γ ∈ Rp, that represents an instance of a graph G with nodes V and the list of edges
E with corresponding edge weights εij , and node features α ∈ Rn with n = |V|. Let
σ be a permutation of the vertices in V, Pσ ∈ Bn×n the corresponding permutation
matrix that acts on the weighted adjacency matrix A of G, and P̃σ ∈ B2n×2n a
matrix that maps the tensor product |v1⟩ ⊗ |v2⟩ ⊗ · · · ⊗ |vn⟩ with |vi⟩ ∈ C2 to

100

6.3 Equivariant quantum circuit∣∣vp̃σ(1)
〉
⊗
∣∣vp̃σ(2)

〉
⊗ · · · ⊗

∣∣vp̃σ(n)
〉
. Then, the following relation holds,

|EA,α,β,γ⟩p = P̃σ

∣∣E(P T
σ APσ), P

T
σ α,β,γ

〉
p
, (6.8)

where E(·) denotes a specific permutation of the adjacency matrix A of the given
graph. We call an ansatz that satisfies this property permutation equivariant.

Proof of Theorem 6.1. We want to prove that our ansatz is equivariant under
permutations of the nodes of the input graph G(V, E),

|E(P T
σ APσ), P

T
σ α,β,γ⟩p = P̃σ|EA,α,β,γ⟩p. (6.9)

For this, we have to prove that the unitaries that are used to construct the full
circuit are permutation equivariant, i.e.,

P̃σUG(EA, γl)P̃ †
σ = UG(E(P T

σ APσ), γl) (6.10)

and
P̃σUN (α, βl)P̃ †

σ = UN (PT
σ α, βl). (6.11)

We begin with the edge-encoding unitary UG:

P̃σUG(EA, γl)P̃ †
σ = P̃σe

−iγlHG P̃ †
σ (6.12)

= e−iγlP̃σHG P̃ †
σ (6.13)

= e
−iγlHG(P T

σ APσ) (6.14)
= UG(E(P T

σ APσ), γl), (6.15)

where line (6.13) holds because for any unitary U we have Ue−iHGU† = e−iUHGU† ,
and line (6.14) holds because HG =

∑
ε∈E εijZiZj is defined completely through

the adjacency matrix and the edge weights of the input graph G, and P̃σ and Pσ

are defined through permutations σ on the nodes of G. Similarly, we get

P̃σUN (α, βl)P̃ †
σ = P̃σ

|V|⊗
i

Rx(αi, βl)P̃ †
σ (6.16)

= P̃σ

|V|⊗
i

exp
(
−iαiβl

2 X

)
P̃ †

σ (6.17)

=
|V|⊗
i

exp
(
−i
ασ−1(i)βl

2 X

)
(6.18)

= UN (PT
σ α, βl). (6.19)

101

6.3 Equivariant quantum circuit

As each of the unitaries in the circuit is equivariant under permutations of the
graph nodes, and the initial state is trivially permutation invariant |+⟩ = P̃σ |+⟩,
we arrive at Equation (6.9).

As mentioned before, our ansatz is closely related to those in [172], and the authors
of this work prove permutation equivariance of unitaries that are defined in terms
of unweighted adjacency matrices of graphs. In order to prove equivariance of our
circuit, we have to generalize their result to the case where a weighted graph is
encoded in the form of a Hamiltonian, and parametrized by a set of free parameters
as described in Equation (6.3). In the non-parametrized case this is trivial, as
edge weights and node features are directly permuted as a consequence of the
permutation of the graph. When introducing parameters to the node and edge
features, however, we have to make sure that the parameters themselves preserve
equivariance, as the parameters are not tied to the adjacency matrix but to the
circuit itself. To guarantee this, we make the parametrization itself permutation
invariant by assigning one node and edge parameter per layer, respectively, and
this makes us arrive at the QAOA-type parametrization shown in Equation (6.3).
Another difference of our proof to that in [172] is that we consider a complete
circuit including its initial state, instead of only guaranteeing that the unitaries
that act on the initial state are permutation equivariant.

The above definition and proof are given in terms of a learning problem where we
map one vertex to one qubit directly. However, settings where we require more
than one qubit to encode node information are easily possible with this type of
architecture as well. In order to preserve equivariance of our ansatz construction,
three conditions have to hold: i) the initial state of the circuit has to be permutation
invariant or equivariant, ii) the two-qubit gates used to encode edge weights have
to commute, iii) the parametrization of the gates has to be permutation invariant.
In the case where each vertex or edge is represented with more than just one gate
per layer, one has freedom on how to do this as long as the above i)-iii) still hold. A
simple example is when each vertex is represented by m qubits: i) the initial state
remains to be the uniform superposition, ii) the topology of the two-qubit gates
that represent edges has to be changed according to the addition of the new qubits,
but ZZ-gates can still be used to encode the information, iii) the parametrization
is the same as in the one-qubit-per-vertex case.

102

6.3 Equivariant quantum circuit

6.3.2 Trainability of ansatz

Our goal in this work is to introduce a problem-tailored ansatz for a specific data
type that provides trainability advantages compared to unstructured ansatzes. One
important question that arises in this context is that of barren plateaus, where
the variance of derivatives for random circuits vanishes exponentially with the
system size [229]. This effect poses challenges for scaling up circuit architectures
like the hardware-efficient ansatz [170], as even at a modest number of qubits and
layers a quantum model like this can become untrainable [44, 47, 52]. Therefore it
is important to address the presence of barren plateaus when introducing a new
ansatz. In a recent work [57], it has been proven that barren plateaus are not
present in circuits that are equivariant under the symmetric group Sn, namely
the group of permutations on n elements, in this case all permutations over the
qubits. While our circuit is also permutation equivariant, we define permutations
based on the input graphs and not the qubits themselves, so our approach differs
from the equivariant quantum neural networks in [57] as a) the incorporation of
edge weights into the unitaries prevents the unitaries from commuting with all
possible permutations of qubits, and b) multiple qubits can potentially correspond
to one vertex. While permutation equivariance poses some restrictions on the
expressibility of the ansatz and one would expect a better scaling of gradients
than in, e.g., hardware-efficient types of circuits, the results of [57] do not directly
translate to our work for the above reasons.

To get additional insight, one can also turn to results on barren plateaus related
to QAOA-type circuits, due to the structural similarity that our ansatz has to
them. The authors of [242] investigate the scaling of the variance of gradients of
two related types of ansatzes. They characterize ansatzes given by the following
two Hamiltonians: the transverse field Ising model (TFIM),

HTFIM =
nf∑
i=1

ZiZi+1 + hx

n∑
i=1

Xi, (6.20)

where nf = n− 1 (nf = n) for open (periodic) boundary conditions, and a spin
glass (SG),

HSG =
∑
i<j

hiZi + JijZiZj +
n∑

i=1
Xi, (6.21)

with hi, Jij drawn from a Gaussian distribution. Based on the generators of those
two ansatzes, the authors of [242] show that an ansatz that consists of layers given

103

6.3 Equivariant quantum circuit

by the TFIM Hamiltonian has a favorable scaling of gradients. An ansatz that
consists of layers given by HSG, on the other hand, does not. Considering the
results for the two above Hamiltonians, one can expect that whether our ansatz
exhibits barren plateaus will strongly depend on the encoded graphs, i.e., the
connectivity, edge weights and node features. Which types of graphs lead to a
favorable scaling of gradients, and for what learning tasks our ansatz exhibits good
performance at a number of layers polynomial in the input size, is an interesting
question that we leave for future work.

Additionally to barren plateaus that are a result of the randomness of the circuit,
there is a type of barren plateau that is caused by hardware noise, called noise-
induced barren plateaus (NIBPs) [49]. This problem can not be directly mitigated
by the choice of circuit architecture, as eventually all circuit architectures are
affected by hardware noise, especially when they become deeper. We do not expect
that our circuit is resilient to NIBPs, however, the numerical results in Section 6.5
show that the EQC already performs well with only one layer for the environment
we study in this work as we scale up the problem size. This provides hope that,
at least in terms of circuit depth, the EQC will scale favorably in the number of
layers as the number of qubits in the circuit is increased, and therefore the effect
of NIBPs will be less severe than for other circuit architectures with the same
number of qubits.

Another important question for the training of ML models is that of data efficiency,
i.e., how many training data points are required to achieve a low generalization
error. Indeed, one of the key motivating factors behind the design of geometric
models that preserve symmetries in the training data is to reduce the size of the
training data set. In the classical literature, it was shown that geometric models
require fewer training data and as a result often fewer parameters as models that
do not preserve said symmetries [243]. Recent work showed that this is also true for
Sn-equivariant quantum models [57], where the authors give an improved bound
on the generalization error compared to the bounds that were previously shown to
exist for general classes of PQCs [244]. However, the results from [57] do again
not directly translate to our approach as stated in the context of barren plateaus
above.

104

6.4 Quantum neural combinatorial optimization with the EQC

6.4 Quantum neural combinatorial optimization
with the EQC

Combinatorial optimization problems are ubiquitous, be it in transportation and
logistics, electronics, or scheduling tasks. These types of problems have also
been studied in computer science and mathematics for decades. Many interesting
combinatorial optimization problems that are relevant in industry today are NP-
hard, so that no general efficient solution is expected to exist. For this reason,
heuristics have gained much popularity, as they often provide high-quality solutions
to real-world instances of many NP-hard problems. However, good heuristics
require domain expertise in their design and they have to be defined on a per-
problem basis. To circumvent hand-crafting heuristic algorithms, machine learning
approaches for solving combinatorial optimization problems have been studied.
One line of research in this area investigates using NNs to learn algorithms for
solving combinatorial optimization problems [108, 245], which is known as NCO.
Here, NNs learn to solve combinatorial optimization problems based on data,
and can then be used to find approximate solutions to arbitrary instances of the
same problem. First approaches in this direction used supervised learning to find
approximate solutions based on NN techniques from natural language processing
[246]. A downside of the supervised approach is that it requires access to a large
amount of training data in form of solved instances of the given problem, which
requires solving many NP-hard instances of the problem to completion. At large
problem sizes, this is a serious impediment for the practicability of this method.
For this reason, RL was introduced as a technique to train these heuristics. These
RL-based approaches have been shown to successfully solve even instances of
significant size in problems with a geometric structure like the convex hull problem
[239], chip placement [247] or the vehicle routing problem [248]. To implement
NCO in this work we use Q-learning as described in Section 3.2 and Section 5.1
following [239].

In this section, we formally define the NCO task that we address in this work, and
the specific setup of the EQC and its observables. We show that each component
of the QNCO scheme is equivariant under permutation of the vertices, and then
analytically study the expressivity of our ansatz at depth one.

105

6.4 Quantum neural combinatorial optimization with the EQC

6.4.1 Formal definition of learning task and figures of merit

Our goal is to use the ansatz described in Section 6.3 to train a model that, once
trained, implements a heuristic to produce tours for previously unseen instances of
the TSP. The TSP consists of finding a permutation of a set of cities such that
the resulting length of a tour visiting each city in this sequence is minimal. The
heuristic takes as input an instance of the TSP problem in form of a weighted
2D Euclidean graph G(V, E) with n = |V| vertices representing the cities and edge
weights εij = d(vi, vj), where d(vi, vj) is the Euclidean distance between nodes
vi and vj . Specifically, we are dealing with the symmetric TSP, where the edges
in the graph are undirected. Given G, the algorithm constructs a tour in n − 2
steps. Starting from a given (fixed) node in the proposed tour Tt=1, in each step t
of the tour selection process the algorithm proposes the next node (city) in the
tour. Once the second-before-last node has been added to the tour, the last one is
also directly added, hence the tour selection process requires n− 2 steps. This can
also be viewed as the process of successively marking nodes in a graph as they are
added to a tour. In order to refer to versions of the input graph at different time
steps where the nodes that are already present in the tour are marked, we now
define the annotated graph.

Definition 6.1 (Annotated graph). For a graph G(V, E), we call G(V, E ,α(t)) the
annotated graph at time step t. The vector α(t) ∈ {0, π}n specifies which nodes are
already in the tour Tt (α(t)

i = 0) and which nodes are still available for selection
(α(t)

i = π).

In each time step of an episode in the algorithm, the model is given an annotated
graph as input. Based on the annotated graph, the model should select the next
node to add to the partial tour Tt at step t. The annotation can be used to
partition the nodes V into the set of available nodes Va = {vi|α(t)

i = π} and the
set of unavailable nodes Vu = {vi|α(t)

i = 0}. The node selection process can now
be defined as follows.

Definition 6.2 (Node selection). Given an annotated graph G(V, E ,α(t)), the node
selection process consist of selecting nodes in a tour in a step-wise fashion. To add
a node to the partial tour Tt, the next node is selected from the set of available
nodes Va. The unavailable nodes Vu are ignored in this process.

After n− 2 steps, the model has produced a tour Tn. A depiction of this process
can be found in Figure 6.3. To assess the quality of the generated tour, we compare

106

6.4 Quantum neural combinatorial optimization with the EQC

EQC

state actionagent

one episode

n-2 times

input: graph output: tour

Figure 6.3: An illustration of one episode in the TSP environment. The agent
receives a graph instance as input, where the first node is already added to the
proposed tour (marked red), which can always be done without loss of generality. In
each time step, the agent proposes which node should be added to the tour next.
After the second-to-last node has been selected, the agent returns a proposed tour.

the tour length c(Tn) to the length of the optimal tour c(T ∗), where

c(T) =
∑

{i,j}∈ET

εij (6.22)

is the sum of edge weights (distances) for all edges between the nodes in the
tour, with ET ⊂ E . We measure the quality of the generated tour in form of the
approximation ratio

c(Tn)
c(T ∗) . (6.23)

In order to perform Q-learning we need to define a reward function that provides
feedback to the RL agent on the quality of its proposed tour. The rewards in this
environment are defined by the difference in overall length of the partial tour Tt at
time step t, and upon addition of a given node vl at time step t+ 1:

r(Tt, vl) = −c(T(t+1,vl)) + c(Tt). (6.24)

Note that we use the negative of the cost as a reward, as a Q-learning agent will
always select the action that leads to the maximum expected reward.

107

6.4 Quantum neural combinatorial optimization with the EQC

The learning process is defined in terms of a DQN algorithm, where the Q-function
approximator is implemented in form of a PQC (which is described in detail in
Section 6.3). Here, we define the TSP in terms of an RL environment, where the
set of states S = {Gi(V, E ,α(t)) for i = 1, . . . , |X | and t = 1, . . . , n− 1} consists of
all possible annotated graphs (i.e., all possible configurations of values of α(t)) for
each instance i in the training set X . This means that the number of states in this
environment is |S| = 2n−1|X |. The action that the agent is required to perform
is selecting the next node in each step of the node selection process described in
Definition 6.2, so the action space A consists of a set of indices for all but the
first node in each instance (as we always start from the first node in terms of
the list of nodes we are presented with for each graph, so α

(t)
1 = 0, ∀ t), and

|A| = n− 1.

The Q-function approximator gets as input an annotated graph, and returns as
output the index of the node that should next be added to the tour. Which index
this is, is decided in terms of measuring an observable corresponding to each of the
available nodes Va. Depending on the last node added to the partial tour, denoted
as vt−1, the observable for each available node vl is defined as

Ovl
= εvt−1,vl

Zvt−1Zvl
(6.25)

weighted by the edge weight εvt−1,vl
, and the Q-value corresponding to each action

is
Q(Gi(V, E ,α(t)), vl) =

〈
E ,α(t),β,γ

∣∣∣
p
Ovl

∣∣∣E ,α(t),β,γ
〉

p
, (6.26)

where the exact form of
∣∣E ,α(t),β,γ

〉
p

is described in Section 6.3. The node that
is added to the tour next is the one with the highest Q-value,

argmaxvl
Q(Gi(V, E ,α(t)), vl). (6.27)

All unavailable nodes vl ∈ Vu are not included in the node selection process, so we
manually set their Q-values to a large negative number to exclude them, e.g.,

Q(Gi(V, E ,α(t)), vl) = −10000 ∀ vl ∈ Vu.

We also define a stopping criterion for our algorithm, which corresponds to the agent
solving the TSP environment for a given instance size. As we aim at comparing
the results of our algorithm to optimal solutions in this work, we have access to a
labeled set of instances and define our stopping criterion based on these. However,

108

6.4 Quantum neural combinatorial optimization with the EQC

note that the optimal solutions are not required for training, as a stopping criterion
can also be defined in terms of number of episodes or other figures of merit that
are not related to the optimal solution. In this work, the environment is considered
as solved and training is stopped when the average approximation ratio of the past
100 iterations is < 1.05, where an approximation ratio of 1 means that the agent
returns the optimal solution for the instances it was presented with in the past 100
episodes. We do not set the stopping criterion at optimality for two reasons: i) it is
unlikely that the algorithm finds a parameter setting that universally produces the
optimal tour for all training instances, and ii) we want to avoid overfitting on the
training data set. If the agent does not fulfill the stopping criterion, the algorithm
will run until a predefined number of episodes is reached. In our numerical results
shown in Section 6.5, however, most agents do not reach the stopping criterion
of having an average approximation ratio below 1.05, and run for the predefined
number of episodes instead. Our goal is to generate a model that is, once fully
trained, capable of solving previously unseen instances of the TSP.

6.4.2 Equivariance of algorithm components

We showed in Section 6.3.1 that our ansatz of arbitrary depth is permutation
equivariant. Now we proceed to show that the Q-values that are generated
from measurements of this PQC, and the tour generation process as described in
Section 6.4.1 are equivariant as well. While the equivariance of all components of an
algorithm is not a pre-requisite to harness the advantage gained by an equivariant
model, knowing which parts of our learning strategy fulfill this property provides
additional insight for studying the performance of our model later. As we show
that the whole node selection process is equivariant, we know that the algorithm
will always generate the same tour for every possible permutation of the input
graph for a fixed setting of parameters, given that the model underlying the tour
generation process is equivariant. This is not necessarily true for a non-equivariant
model, and simply by virtue of giving a permuted graph as input, the algorithm
can potentially return a different tour.

Theorem 6.2 (Equivariance of Q-values). Let Q(G(V, E ,α), vl) = Q(G, vl) be
a Q-value as defined in Equation (6.26), where we drop instance-specific sub-
and superscripts for brevity. Let σ be a permutation of n = |V| elements, where
the l-th element corresponds to the l-th vertex vl and σQ be a permutation that
reorders the set of Q-values Q(G) = {Q(G, v1), . . . , Q(G, vn)} in correspondence

109

6.4 Quantum neural combinatorial optimization with the EQC

to the reordering of the vertices by σ. Then the Q-values Q(G) are permutation
equivariant,

Q(G) = σQQ(Gσ), (6.28)

where Gσ is the permuted graph.

Proof. We know from Theorem 6.1 that the ansatz we use, and therefore the
expectation values ⟨Ovl

⟩, are permutation equivariant. The Q-values are defined
as Q(G, vl) = εij⟨Ovl

⟩ (see Equation (6.26)) and therefore additionally depend on
the edge weights of the graph G. The edge weights are computed according to the
graph’s adjacency matrix, and re-ordered under a permutation of the vertices and
assigned to their corresponding permuted expectation values.

As a second step, to show that all components of our algorithm are permutation
equivariant, it remains to show that the tours that our model produces as described
in Section 6.4.1 are also permutation equivariant.

Corollary 6.1 (Equivariance of tours). Let T (G,β,γ, v0) be a tour generated by a
permutation equivariant agent implemented with a PQC as defined in Equation (6.3)
and Q-values as defined in Equation (6.26), for a fixed set of parameters β,γ and
a given start node v0, where a tour is a cycle over all vertices vl ∈ V that contains
each vertex exactly once. Let σ be a permutation of the vertices V, and σT a
permutation that reorders the vertices in the tour accordingly. Then the output
tour is permutation equivariant,

T (G,β,γ, v0) = σTT (Gσ,β,γ, vσ(0)). (6.29)

Proof. We have shown in Theorem 6.2 that the Q-values of our model are permuta-
tion equivariant, meaning that a permutation of vertices results in a reordering of
Q-values to different indices. Action selection is done by vt+1 = argmaxvQ(G(t)

i , v),
and the node at the index corresponding to the largest Q-value is chosen. To
generate a tour, the agent starts at a given node v0 and sequentially selects the
following n − 1 vertices. Upon a permutation of the input graph, the tour now
starts at another node index vσ(0). Each step in the selection process can now be
seen w.r.t. the original graph G and the permuted graph Gσ. As we have shown
in Theorem 6.1, equivariance of the model holds for arbitrary input graphs, so in
particular it holds for each G and Gσ in the action selection process, and the output
tour under the permuted graph is equal to the output tour under the original
graph up to a renaming of the vertices.

110

6.4 Quantum neural combinatorial optimization with the EQC

6.4.3 Analysis of expressivity

In this section, we analyze under which conditions there exists a setting of β, γ for
a given graph instance Gi for our ansatz at depth one that can produce the optimal
tour for this instance. Note that this does not show anything about constructing the
optimal tour for a number of instances simultaneously with this set of parameters,
or how easy it is to find any of these sets of parameters. Those questions are
beyond the scope of this work. The capability to produce optimal tours at any
depth for individual instances is of interest because first, we do not expect that
the model can find a set of parameters that is close-to-optimal for a large number
of instances if it is not expressive enough to contain a parameter setting that is
optimal for individual instances. Second, the goal of a ML model is always to find
similarities within the training data that can be used to generalize well on the
given learning task, so the ability to find optimal solutions on individual instances
is beneficial for the goal of generalizing on a larger set of instances. Additionally,
how well the model generalizes also depends on the specific instances and the
parameter optimization routine, and therefore it is hard to make formal statements
about the general case where we find one universal set of parameters that produces
the optimal solution for arbitrary sets of instances.

For our model at p = 1, we can compute the analytic form of the expectation
values of our circuit as defined in Equation (6.25) and Equation (6.26) as the
following, by a similar derivation as in [241],

⟨Ovl
⟩ = εvt−1,vl

· sin(βπ) sin(εvt−1,vl
γ) ·

∏
(vl,k)∈E
k ̸=vt−1

cos(εvl,kγ), (6.30)

where vt−1 is the last node in the partial tour and vl is the candidate node.
Note that due to the specific setup of node features used in our work where the
contributions of nodes already present in the tour are turned off, these expectation
values are simpler than those given for Ising-type Hamiltonians in [241]. For
a learning task where contributions of all nodes are present in every step, the
expectation values of the EQC will be the same as those for Ising Hamiltonians
without local fields given in [241], with the additional node features α. Due to
this structural similarity to the ansatz used in the QAOA, results on the hardness
to give an analytic form of these expectation values at p > 1 also transfer to our
model. Even at depth p = 2 analytic expressions can only be given for certain types

111

6.4 Quantum neural combinatorial optimization with the EQC

of graphs [249, 250], and everything beyond this quickly becomes too complex. For
this reason, we can only make statements for p = 1 in this work.

In order to generate an arbitrary tour of our choice, in particular also the optimal
tour, it suffices to guarantee that for a suitable choice of (fixed) γ, at each step
in the node selection process the edge we want to add next to the partial tour
has highest expectation. One way we can do this is by controlling the signs of
each sine and cosine term in Equation (6.30) such that only the expectation values
corresponding to edges that we want to select are positive, and all others are
negative.

To understand whether this is possible, we can leverage known results about the
expressivity of the sine function. For any rationally independent set of {x1, ..., xn}
with labels yi ∈ (−1, 1), the sine function can approximate these points to arbitrary
precision ϵ as shown in [251], i.e., there exists an ω s.t.

|sin(ωxi)− yi| < ϵ for i = 1, . . . , n. (6.31)

In general, the edge weights of graphs that represent TSP instances are not
rationally independent.1 However, in principle they can easily be made rationally
independent by adding a finite perturbation ϵ′i to each edge weight. The results in
[251] imply that almost any set of points x1, . . . , xn with 0 < xi < 1 is rationally
independent, so we can choose ϵ′i to be drawn uniformly at random from (0, ϵmax].
As long as these perturbations are applied to the edge weights in a way that does
not change the optimal tour, as could be done by ensuring that ϵmax is small
enough so that the proportions between edge weights are preserved, we can use
this perturbed version of the graph to infer the optimal tour. (Such an ϵmax can
be computed efficiently.) In this way we can guarantee that the ansatz at depth
one can produce arbitrary labelings of our edges, which in turn let us produce
expectation values such that only the ones that correspond to edges in the tour
of our choice will have positive values. We note that in the analysis we assume
real-valued (irrational) perturbations, which of course cannot be represented in the
computer. However, by using the results of [251] and approximating ±1 within a
small epsilon, we can get a robust statement where finite precision suffices.

1The real numbers x1, . . . , xn are said to be rationally independent if no integers k1, . . . , kn

exist such that x1k1 + · · · + xnkn = 0, besides the trivial solution ki = 0 ∀ k. Rational
independence also implies the points are not rational numbers, so they are also not numbers
normally represented by a computer.

112

6.4 Quantum neural combinatorial optimization with the EQC

Theorem 6.3 (Ansatz can generate optimal tours for rationally independent edge
weights). There exists a setting (β, γ)∗ for each graph instance of the symmetric
TSP such that the ansatz at depth one described in Section 6.3 will produce the
optimal tour T ∗ with the node selection process described in Definition 6.2, given
that the edge weights εij of the graph are rationally independent and

εijγ ̸=
π

4 + nπ ∀ n ∈ Z.

Proof. As known from [251], we can find a parameter ω such that we can approxi-
mate an arbitrary labeling in [−1, 1] for our rationally independent edge weights
with the sine function. Given that this labeling exists, we now show how to use
this labeling to generate the optimal tour with the EQC at depth one.

For p = 1, we can compute the analytic form of the expectation values of our
circuit as defined in Equation (6.25) and Equation (6.26) as the following, by a
similar derivation as in [241],

⟨Ovl
⟩ = εvt−1,vl

· sin(βπ) sin(εvt−1,vl
γ) ·

∏
(vl,k)∈E
k ̸=vt−1

cos(εvl,kγ), (6.32)

where vt−1 is the last node in the partial tour and vl is the candidate node. By
the identity cos(θ) = sin(π

2 − θ) we can rewrite Equation (6.30) as

⟨Ovl
⟩ = εvt−1,vl

· sin(βπ) sin(εvt−1,vl
γ) ·

∏
(vl,k)∈E
k ̸=vt−1

sin
(π

2 − εvl,kγ
)
. (6.33)

Let us now assume that we want to construct a fixed (but arbitrary) tour T . First,
we notice that the term sin(βπ) does not depend on vt−1 or vl and is the same
for all vl. This means that this term can merely flip the sign of all ⟨Ovl

⟩, and
from now on w.l.o.g. we assume that β is such that the term is positive. Now we
can again formulate the tour generation task in terms of a binary classification
problem, where we want to find a configuration of labels for our remaining sin
terms in Equation (6.33) s.t. the product will have the highest expectation value
in each node selection step for the edge that produces the ordering we have chosen
for T . Again, we can accomplish this for arbitrary settings of edge weights by
only considering the sign of the resulting product. This means that we have to
find an assignment of the edges εij to the classes f± that at each step of the node
selection process will lead to the node being picked that we specify in T . As all
edges can occur in the above products multiple times during the node selection
process, this is a non-trivial task. However, if we can guarantee that each ⟨Ovl

⟩t at

113

6.4 Quantum neural combinatorial optimization with the EQC

node selection step t contains at least one unique term that is only present in this
specific expectation value, we can use this term to control the sign of this specific
value. Each εij occurs either in the leading term sin(εijγ) (corresponding to the
candidate edge to be potentially added in the next step) or in the product term as
sin(π

2 − εijγ) (corresponding to an outgoing edge from the current candidate). We
can easily see that the leading term only appears in the case when we ask for this
specific εij to be the next edge in the tour, and from Definition 6.2 we know that
this only happens once in the node selection process. In all other expectations,
εij appears only with the “offset” of π

2 . This means that this leading term is the
unique term that we are looking for, as long as sin(εijγ) ̸= sin(π

2 − εijγ), so as
long as sin(εijγ) ̸= cos(εijγ). We know that cos(θ) = sin(θ) for θ = π

4 + nπ with
n ∈ Z. So as long as

εijγ ̸=
π

4 + nπ ∀ n ∈ Z, εij ∈ E , (6.34)

and all εij are unique, our ansatz can construct the desired tour T . In this case,
we have a guarantee that we can construct the tour T for any configuration of
edges that fulfills Equation (6.34). In particular, this means that we can construct
the optimal tour in this way.

However, we point out that the parameter γ that leads to the construction of the
optimal tour can in principle be arbitrarily large and hard to find. We do not go
deeper into this discussion since in fact we do not want to rely on this proof of
optimality as a guiding explanation of how the algorithm works.

The reason for this is that in some way, this proof of optimality works despite
the presence of the TSP graph and not because of it. This is similar in vein
to universality results for QAOA-type circuits, where it can be shown that for
very specific types of Hamiltonians, alternating applications of the cost and mixer
Hamiltonian leads to quantum computationally universal dynamics, i.e., it can
reach all unitaries to arbitrary precision [195, 252], but these Hamiltonians are
not related to any of the combinatorial optimization problems that were studied
in the context of the QAOA. While these results provide valuable insight into
the expressivity of the models, in our case they do not inform us about the
possibility of a quantum advantage on the learning problem that we study in this
work. In particular, we do not know from these results whether the EQC utilizes
the information provided by the graph features in a way in which the algorithm
benefits from the quantumness of the model, at depth one or otherwise. As it is

114

6.5 Numerical results

b) NEQC

c) HWETE

d) HWE

a) EQC

Figure 6.4: One layer of each of the circuits studied in this work. a) The EQC
with two trainable parameters β, γ per layer. b) The same set of gates as in the
EQC, but we break equivariance by introducing one individual free parameter per
gate (denoted NEQC). c) Similar to the NEQC, but we start from the all-zero state
and add a final layer of trainable one-qubit gates and a ladder of CZ-gates (denoted
hardware-efficient with trainable encoding, HWETE). d) Same as the HWETE, but
only the single-qubit Y-rotation parameters are trained (denoted HWE).

known that the QAOA applied to ground state finding benefits from interference
effects, investigating whether similar results hold for our algorithm is an interesting
question that we leave for future work.

Additionally, we note that high expressivity alone does not necessarily lead to a
good model, and may even lead to issues in training as the well-studied phenomenon
of barren plateaus [229], or a susceptibility to overfitting on the training data. In
practice, the best models are those that strike a balance between being expressive
enough, and also restricting the search space of the model in a way that suits
the given training data. Studying and designing models that have this balance is
exactly the goal of geometric learning, and the permutation equivariance we have
proven for our model is a helpful geometric prior for learning tasks on graphs.

6.5 Numerical results

After proving that our model is equivariant under node permutations and ana-
lytically studying the expressivity of our ansatz, we now numerically study the
training and validation performance of this model on TSP instances of varying size

115

6.5 Numerical results

in a NCO context. The training data set that we use is taken from [246], where the
authors propose a novel classical attention approach and evaluate it on a number
of geometric learning tasks.1 To compute optimal solutions for the TSP instances
with 10 and 20 cities we used the library [253].

We evaluate the performance of the EQC on TSP instances with 5, 10 and 20 cities
(corresponding to 5, 10, and 20 qubits, respectively). As described in Section 6.4.1,
the environment is considered as solved by an agent when the running average of
the approximation ratio over the past 100 episodes is less than 1.05. Otherwise,
each agent will run until it reaches the maximum number of episodes, that we set
to be 5000 for all agents. Note that this is merely a convenience to shorten the
overall training times, as we have access to the optimal solutions of our training
instances. In a realistic scenario where one does not have access to optimal solutions,
the algorithm would simply run for a fixed number of episodes or until another
convergence criterion is met. When evaluating the final average approximation
ratios, we always use the parameter setting that was stored in the final episode,
regardless of the final training error. When variations in training lead to a slightly
worse performance than what was achieved before, we still use the final parameter
setting. We do this because as noted above, in a realistic scenario one does not
have knowledge about the ratio to the optimal solutions during training. Unless
otherwise stated, all models are trained on 100 training instances and evaluated
on 100 validation instances.

As we are interested in the performance benefits that we gain by using an ansatz
that respects an important graph symmetry, we compare our model to versions
of the same ansatz where we gradually break the equivariance property. We
start with the simplest case, were the circuit structure is still the same as for
the EQC, but instead of having one βl, γl in each layer, every X- and ZZ-gate is
individually parametrized. As these parameters are now tied directly to certain
one- and two-qubits gates, e.g. an edge between qubits one and two, they will not
change location upon a graph permutation and therefore break equivariance. We
call this the non-equivariant quantum circuit (NEQC). To go one step further,
we take the NEQC and add a variational part to each layer that is completely
unrelated to the graph structure: namely a hardware-efficient layer that consists

1We note that we have re-computed the optimal tours for all instances that we use, as the
data set uploaded by the authors of [246] erroneously contains sub-optimal solutions. This was
confirmed with the authors, but at the time of writing of this work their repository has not been
updated with the correct solutions.

116

6.5 Numerical results

of parametrized Y-rotations and a ladder of CZ-gates. In this ansatz, we have a
division between a data encoding part and a variational part, as is often done in
QML. To be closer to standard types of ansatzes often used in QML, we also omit
the initial layer of H-gates here and start from the all-zero state (which requires
us to switch the order of X- and ZZ-gates)1. We denote this the hardware-efficient
with trainable embedding (HWETE) ansatz. Finally, we study a third ansatz,
where we take the HWETE and now only train the Y-rotation gates, and the
graph-embedding part of the circuit only serves as a data encoding step. We call
this simply the hardware-efficient (HWE) ansatz. A depiction of all ansatzes can
be seen in Figure 6.4.

We start by comparing the EQC to the NEQC on TSP instances with 5, 10 and
20 cities. We show the training and validation results in Figure 6.5. To evaluate
the performance of the models that we study, we compute the ratio to the optimal
tour length as shown in Equation (6.23), as the instances that we can simulate the
circuits for are small enough to allow computing optimal tours for.2 To provide an
additional classical baseline, we also show results for the nearest-neighbor heuristic.
This heuristic starts at a random node and selects the closest neighboring node
in each step to generate the final tour. The nearest-neighbor algorithm finds a
solution quickly also for instances with increasing size, but there is no guarantee
that this tour is close to the optimal one. However, as we know the optimal tours
for all instances, the nearest-neighbor heuristic provides an easy to understand
classical baseline that we can use. Additionally, we add the upper bound given by
one of the most widely used approximation algorithms for the TSP (as implemented
e.g. in Google OR-Tools): the Christofides algorithm. This algorithm is guaranteed
to find a tour that is at most 1.5 times as long as the optimal tour [254]. In the
case where any of our models produces validation results that are on average above
this upper bound of the Christofides algorithm, we consider it failed, as it is more
efficient to use a polynomial approximation algorithm for these instances. However,
we stress that this upper bound can only serve to inform us about the failure of
our algorithms and not their success, as in practice the Christofides algorithm
often achieves much better results than those given by the upper bound. We
also note that both the Christofides and nearest-neighbor algorithms are provided

1However, in practice it did not make a difference whether we started from the all-zero or
uniform superposition state in the learning task that we study.

2For reference, the authors of [246], who generated the training instances that we use, stop
comparing to optimal solutions at n = 20 as it becomes extremely costly to find optimal tours
from thereon out.

117

6.5 Numerical results

0 200 400 600 800 1000
Episode

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ra
tio

 to
 o

pt
im

al
 to

ur
 le

ng
th

EQC-TSP5
EQC-TSP10
EQC-TSP20
NEQC-TSP5
NEQC-TSP10
NEQC-TSP20

(a) Training performance, 1 layer

TSP5 TSP10 TSP20

1.0

1.1

1.2

1.3

1.4

1.5

Ap
pr

ox
im

at
io

n
ra

tio

EQC
NEQC
NN

(b) Validation performance, 1 layer

0 200 400 600 800 1000
Episode

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

Ra
tio

 to
 o

pt
im

al
 to

ur
 le

ng
th

EQC-TSP5
EQC-TSP10
EQC-TSP20
NEQC-TSP5
NEQC-TSP10
NEQC-TSP20

(c) Training performance, 4 layers

TSP5 TSP10 TSP20

1.0

1.1

1.2

1.3

1.4

1.5

Ap
pr

ox
im

at
io

n
ra

tio

EQC
NEQC
NN

(d) Validation performance, 4 layers

Figure 6.5: Comparison between the EQC and its non-equivariant version (NEQC)
in terms of approximation ratio (lower is better) of ten trained models on a set of 100
previously unseen TSP instances for each instance size. The boxes show the upper
quartile, median and lower quartile for each model configuration, the whiskers of the
boxes extend to 1.5 times the interquartile range, and the black diamonds denote
outliers. We additionally show the means of each box as white circles. In the NEQC
each gate is parametrized separately but the ansatz structure is otherwise identical
to the EQC, as described in Section 6.5. Results are shown on TSP instances with
5, 10 and 20 cities (TSP5, TSP10 and TSP20, respectively). To provide a classical
baseline, we also show results for the nearest-neighbor heuristic (NN). a) and b)
show the training and validation performance for both ansatzes with one layer, while
c) and d) show the same for four layers. The dashed, grey line on the left-hand side
figures denotes optimal performance. The dotted, black line on the right-hand side
figures denotes the upper bound of the Christofides algorithm, a popular classical
approximation algorithm that is guaranteed to find a solution that is at most 1.5
times as long as the optimal tour. Figures a) and c) show the running average over
the last ten episodes.

118

6.5 Numerical results

here to assure that our algorithm produces reasonable results, and not to show
that our algorithm outperforms classical methods as this is not the topic of the
present manuscript. The bound is shown as a dotted black line in Figure 6.5 and
Figure 6.6.

Geometric learning models are expected to be more data-efficient than their
unstructured counterparts, as they respect certain symmetries in the training data.
This means that when a number of symmetric instances are present in the training
or validation data, the effective size of these data sets is decreased. This usually
translates into models that are more resource-efficient in training, e.g. by requiring
fewer parameters or fewer training samples. In our comparison of the EQC and the
NEQC, we fix the number of training samples and compare the different models in
terms of circuit depth and number of parameters to achieve a certain validation
error and expect that the EQC will need fewer layers to achieve the same validation
performance as the NEQC. This comparison can be seen in Figure 6.5. In Figure 6.5
a) and b), we show the training and validation performance of both ansatzes at
depth one. For instances with five cities, both ansatzes perform almost identically
on the validation set, where the NEQC performs worse on a few validation instances.
As the instance size increases, the gap between EQC and NEQC becomes bigger.
We see that even though the two ansatzes are structurally identical, the specific
type of parametrizations we choose and the properties of both ansatzes that result
from this make a noticeable difference in performance. While the EQC at depth
one has only two parameters per layer regardless of instance size, the NEQC’s
number of parameters per layer depends on the number of nodes and edges in
the graph. Despite having much fewer parameters, the EQC still outperforms the
NEQC on instances of all sizes. Increasing the depth of the circuits also does not
change this. In Figure 6.5 c) and d) we see that at a depth of four, the EQC still
beats the NEQC. The latter’s validation performance even slightly decreases with
more layers, which is likely due to the increased complexity of the optimization
task, as the number of trainable parameters per layer is (n−1)n

2 + n, which for the
20-city instances means 840 trainable parameters at depth four (compared to 8
parameters in case of the EQC). This shows that at a fraction of the number of
trainable parameters, the EQC is competitive with its non-equivariant counterpart
even though the underlying structure of both circuits is identical. Compared to
the classical nearest-neighbor heuristic, both ansatzes perform well and beat it
at all instance sizes, and both ansatzes are also below the approximation ratio
upper bound given by the Christofides algorithm on all validation instances. The

119

6.5 Numerical results

box plots in Figure 6.5 show a comparison of the EQC and NEQC in terms of the
quartiles of the approximation ratios on the validation set. As it is hard to infer
statistical significance of results directly from the box plots, especially when the
distributions of data points are not very far apart, we additionally plot the means
of the distributions and their standard error, and compute p-values based on a
t-test to give more insight on the comparison of these two models in Chapter 8.
To show statistical significance of the comparison of the EQC and NEQC, we
perform a two-sample t-test with the null-hypothesis that the averages of the
two distributions are the same, as is common in statistical analysis, and compute
p-values based on this. The p-values confirm that there is indeed a statistical
significance in the comparison between models for the 10- and 20-city instances,
and that we can be more certain about the significance as we scale up the instance
size. The average approximation ratios in case of the 5-city instances are roughly
the same, as we can expect due to the fact that there exist only 12 permutations
of the TSP graphs of this size. However, even for these small instances the EQC
achieves the same result with fewer parameters, namely 2 per layer instead of the
15 per layer required in the NEQC.

Next, we compare the EQC to ansatzes in which we introduce additional variational
components that are completely unrelated to the training data structure, as
described above. We show results for the HWETE and the HWE ansatz in
Figure 6.6. To our own surprise, we did not manage to get satisfactory results with
either of those two ansatzes, especially at larger instances, despite an intensive
hyperparameter search. Even the HWETE, which is basically identical to the
NEQC with additional trainable parameters in each layer, failed to show any
significant performance. To gauge how badly those two ansatzes perform, we
also show results for an algorithm that selects a random tour for each validation
instance in Figure 6.6. In this figure, we show results for TSP instances with five
and ten cities for both ansatzes with one and four layers, respectively. Additionally,
we show how the validation performance changes when the models are trained
with either a training data set consisting of 10 or 100 instances, in the hopes of
seeing improved performance as the size of the training set increases. We see
that in neither configuration, the HWETE or HWE outperform the Christofides
upper bound on all validation instances. Additionally, in almost all cases those
two ansatzes do not even outperform the random algorithm. This example shows
that in a complex learning scenario, where the number of permutations of each
input instance grows combinatorially with instance size and the number of states

120

6.5 Numerical results

10 100
Number of training instances

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Ap
pr

ox
im

at
io

n
ra

tio

EQC
HWETE
HWE
random

(a) TSP5, 1 layer

10 100
Number of training instances

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Ap
pr

ox
im

at
io

n
ra

tio

EQC
HWETE
HWE
random

(b) TSP5, 4 layers

10 100
Number of training instances

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ap
pr

ox
im

at
io

n
ra

tio

EQC
HWETE
HWE
random

(c) TSP10, 1 layer

10 100
Number of training instances

1.00

1.25

1.50

1.75

2.00

2.25

2.50

2.75

3.00

Ap
pr

ox
im

at
io

n
ra

tio

EQC
HWETE
HWE
random

(d) TSP10, 4 layers

Figure 6.6: Comparison between EQC and two hardware-efficient ansatzes where
we gradually break the equivariance of the original ansatz. We show results for TSP
instances with five and ten cities (TSP5, TSP10 respectively) for models trained
on 10 and 100 instances, and with one and four layers. Each box is computed
over results for ten agents. The hardware-efficient ansatz with trainable embedding
(HWETE) consists of trainable graph encoding layers as those in the EQC, with an
additional variational part in each layer that consists of parametrized single-qubit
Y-gates and a ladder of CZ-gates. The HWE ansatz is the same as the HWETE, but
where the graph-embedding part is not trainable and only the Y-gates in each layer
are trained. We also show approximation ratios of a random algorithm, where a
random tour is picked as the solution to each instance. The dotted, black lines denote
the upper bound of the Christofides algorithm. We see that the HWE ansatzes
perform extremely badly and barely outperform picking random tours only in some
cases.

121

6.5 Numerical results

in the RL environment grows exponentially with the number of instances, a simple
hardware-efficient ansatz will fail even when the data encoding part of the PQC is
motivated by the problem data structure. While increasing the size of the training
set and/or the number of layers in the circuit seems to provide small advantages in
some cases, it also leads to a decrease in performance in others. On the other hand,
the EQC is mostly agnostic to changes in the number of layers or the training data
size. Overall, we see that the closer the ansatz is to an equivariant configuration,
the better it performs, and picking ansatzes that respect symmetries inherent to
the problem at hand is the key to success in this graph-based learning task.

In Section 6.3 we have also pointed out that the EQC is structurally related to the
ansatz used in the QAOA. The main difference in solving instances of the TSP
with the NCO approach used in our work and solving it with the QAOA lies in the
way in which the problem is encoded in the ansatz, and in the quantity that is used
to compute the objective function value for parameter optimization. We give a
detailed description of how the TSP is formulated in terms of a problem Hamiltonian
suitable for the QAOA and how parameters are optimized in Section 6.2.2. As the
QAOA is arguably the most explored variational quantum optimization algorithm
at the time of writing, and due to the structural similarity between the EQC and
the QAOA’s ansatz, we also compare these two approaches on TSP instances with
five cities.

For p = 2 and 3, we optimized the circuit parameters using Constrained Opti-
mization BY Linear Approximation (COBYLA). In addition, similar to [255], we
employed a p-dependent initialization technique for the circuit parameters. Specifi-
cally, (p + 1)-depth QAOA circuit parameters were initialized with the optimal
parameters from the p-depth circuit, as follows:

γ = (γ1, . . . , γp′ , 0),

β = (β1, . . . , βp′ , 0).

This way we are allowing the parameter training procedure to start in a known
acceptable state based on the results of the previous step. In Figure 6.7 we show
our results for five-city instances of the TSP. The approximation ratio shown is
derived by dividing the tour length of the best feasible solution, measured as the
output of the trained QAOA circuit, by the optimal tour length of the respective
instance. In addition, we compute results for two different p = 3 QAOA circuits:
the first is trained in the procedure described above (where the parameters are

122

6.5 Numerical results

1 2 3 3, conc.
p

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Ap
pr

ox
im

at
io

n
ra

tio

Figure 6.7: Approximation ratio of QAOA up to depth three. Dashed black line
denotes average final performance of the EQC at depth one during the last 100
iterations of training on the same instances. Last box shows the results for the
best parameters found for one instance at p = 3 applied to all training instances,
following a parameter concentration argument. The dotted, black line denotes the
upper bound of the Christofides algorithm.

trained for each instance). The second uses the parameters of the best QAOA
circuit out of those for all instances evaluated at p = 3, following a concentration
of parameters argument as presented in [61]. The second method is closer to what
is done in a ML context, where one set of parameters is used to evaluate the
performance on all validation samples.

Due to the number of qubits required to formulate a QUBO for the TSP, we
were not able to run QAOA for all TSP instances. For example, an instance with
six cities already requires 25 qubits (we can fix the choice of the first city to be
visited without loss of generality, requiring only (n − 1)2 variables to formulate
the QUBO). A different formulation of the QUBO problem presented in [256],
that needs O(n log(n)) qubits, avoids this issue by modifying the circuit design.
However, this proposal increases the circuit depth considerably and is therefore
ill-suited for the NISQ era.

In Figure 6.7, we can see that finding a good set of parameters for QAOA to
solve TSP is hard even for five-city instances. We note that the performance
of QAOA improves with higher p, however, QAOA performance is still far from

123

6.6 Discussion

matching the approximation ratios obtained by EQC even for p = 3, which can be
seen in Figure 6.7 as a black dashed line. Furthermore, we note that significant
computational effort is required to obtain these results: methods like COBYLA
are based on gradient descent, which requires us to evaluate the circuit many times
until either convergence or the maximum number of iterations is reached. We also
note that due to the heuristic optimization of the QAOA parameters themselves,
we are not guaranteed that the configuration of parameters is optimal, which may
result in either insufficient iterations to converge or premature convergence to
sub-optimal parameter values. In an attempt to mitigate this, we tested several
optimizers (Adam, SPSA, BFGS and COBYLA) and used the best results, which
were those found by COBYLA.

We see in Figure 6.7 that already on these small instances, the QAOA requires
significantly deep circuits to achieve good results, that may be out of reach in a
noisy near-term setting. The EQC on the other hand i) uses a number of qubits
that scales linearly with the number of nodes of the input graph as opposed to the
n2 number of variables required for QAOA, and ii) already shows good performance
at depth one for instances with up to 20 cities. In addition to optimizing QAOA
parameters for each instance individually, we also show results of applying one
set of parameters that performed well on one instance at depth three, on other
instances of the same problem following the parameter concentration argument
given in [61] and described in more detail in Section 6.2.2. While we find that
parameters seem to transfer well to other instances of the same problem in case of
the TSP, the overall performance of the QAOA is still much worse than that of
the EQC.

6.6 Discussion

After providing analytic insight on the expressivity of our ansatz, we have numeri-
cally investigated the performance of our EQC model on TSP instances with 5,
10, and 20 cities (corresponding to 5, 10, 20 qubits respectively), and compared
them to other types of ansatzes that do not respect any graph symmetries. To
get a fair comparison, we designed PQCs that gradually break the equivariance
property of the EQC and assessed their performance. We find that ansatzes that
contain structures that are completely unrelated to the input data structure are
extremely hard to train for this learning task where the size of the state space
scales exponentially in the number of input nodes of the graph. Despite much

124

6.6 Discussion

effort and hyperparameter optimization, we did not manage to get satisfactory
results with these ansatzes. The EQC on the other hand works almost out-of-the
box, and achieves good generalization performance with minimal hyperparameter
tuning and relatively few trainable parameters. We have also compared using the
EQC in a neural combinatorial optimization scheme with the QAOA, and find
that even on TSP instances with only five cities the NCO approach significantly
outperforms the QAOA. In addition to training the QAOA parameters for every
instance individually, we have also investigated the performance in light of known
parameter concentration results that state that in some cases, parameters found
on one instance perform well on average for other instances of the same problem.
While this is true in the case of the TSP instances we investigate here as well, the
overall performance is still worse than that of the EQC.

Comparing our algorithm to the QAOA is also interesting from a different per-
spective. In Section 6.3 we have seen that our ansatz can be regarded as a special
case of a QAOA-type ansatz, where instead of encoding a problem Hamiltonian
we encode a graph instance directly, and in case of the specific formulation of the
TSP used in this work, include mixing terms only for a problem-dependent subset
of qubits. This lets us derive an exact formulation of the expectation values of
our model at depth one from those of the QAOA given in [241]. For the QAOA,
it is known that in the limit of infinite depth, it can find the ground state of the
problem Hamiltonian and therefore the optimal solution to a given combinatorial
optimization problem [59]. Additionally, it has been shown that even at low depth,
the probability distributions generated by QAOA-type circuits are hard to sample
from classically [180]. These results give a clear motivation of why using a quantum
model in these settings can provide a potential advantage. While our model is
structurally almost identical to that of the QAOA, in our case the potential for
advantage is less clear. We saw in Equation (6.30) that at depth one, in each step
the expectation value of each edge that we consider to be selected consists of i) a
term corresponding to the edge between the last added node and the candidate
node, and ii) all outgoing edges from the candidate node. So our model considers
the one-step neighborhood of each candidate node at depth one. In the case of the
TSP it is not clear whether this can provide a quantum advantage for the learning
task as specified in Section 6.4.1. In terms of QAOA, it was shown that in order to
find optimal solutions, the algorithm has to “see the whole graph” [257], meaning
that all edges in the graph contribute to the expectation values used to minimize
the energy. To alleviate this strong requirement on depth, a recursive version of

125

6.6 Discussion

the QAOA (RQAOA) was introduced in [258]. It works by iteratively eliminating
variables in the problem graph based on their correlation, and thereby gradually
reducing the problem to a smaller instance that can be solved efficiently by a
classical algorithm, e.g. by brute-force search. The authors of [258] show that the
depth-one RQAOA outperforms QAOA with constant depth p, and that RQAOA
achieves an approximation ratio of one for a family of Ising Hamiltonians.

The node selection process performed by our algorithm with the EQC used as the
ansatz is similar to the variable elimination process in the RQAOA, where instead
of merging edges, the mixer terms for nodes that have already been selected are
turned off, therefore effectively turning expectation values of edges corresponding
to unavailable nodes to zero. Furthermore, the specific setup of weighted ZiZj-
correlations (see Equation (6.25)) that we measure to compute Q-values in our RL
scheme to solve TSP instances are of the same form as those in the Hamiltonian
for the weighted MaxCut problem,

HMaxCut = −1
2
∑

ij

wij(1− ZiZj).

The MaxCut problem and its weighted variant have been studied in depth in the
context of the QAOA, and it has been shown that it performs well on certain
instances of graphs for this task [59, 259, 260, 61]. While the TSP and weighted
MaxCut are clearly very different problems, the similarity between our algorithm
and the RQAOA raises the interesting question whether the mechanisms under-
lying the successful performance of both models in those two learning tasks are
related. Based on this, one may ask the broader question of whether QAOA-type
ansatzes implement a favorable bias for hybrid quantum-classical optimization
algorithms on weighted graphs, like the RQAOA or the quantum NCO scheme
in this work. Specifically, by relating the mechanism underlying the variable
elimination procedure in RQAOA, which eliminates variables based on their largest
(anti-)correlation in terms of ZiZj operators, to the node selection process in our
algorithm that solves TSP instances, we can establish a connection between the
EQC and known results for the (R)QAOA on weighted MaxCut. It is an interesting
question whether results that establish a quantum advantage of the QAOA can
be related to the EQC in a NCO context as we present here, and we leave this
question for future work.

126

ch
ap

te
r

7
Robustness of quantum reinforcement learning
under hardware errors

One of the reasons that VQAs have gained increased interest in the past years
is that their hybrid nature, where a large part of the computation is offloaded
to a classical device, is hypothesized to make them robust to quantum hardware
noise to some extent [261, 14]. This hypothesis is also inspired by classical neural
networks, which are robust under certain types of noise. In the classical setting,
one can broadly distinguish between two types of noise: benign noise that does not
severely impact the training procedure or can even improve generalization [262,
263, 264, 265], and adversarial noise which is deliberately constructed to study
where neural networks fail [266, 267, 268, 269]. Furthermore, we can distinguish
between noise that is present during training, and noise that is present when
using the trained model. Adversarial noise is usually of the latter case, where
a trained neural network can produce completely wrong outputs due to small
perturbations of the input data [270]. The benign type of noise mentioned above
on the other hand is usually present at training time in form of perturbations of
the input data, activation functions, weights or structure of the neural network,
and has even been established as a method to combat overfitting in the classical
literature [262, 263, 264, 265, 271].

These results inspired the hypothesis that variational quantum algorithms possess a
similar robustness to certain types of noise and may even benefit from its presence
when trained on a quantum device. However, thorough investigations that confirm
such robustness of VQAs against hardware-related noise, or even a beneficial
effect from it, are still lacking. In terms of negative results for the trainability
of VQAs under noise, it has been shown that optimization landscapes of noisy

127

QRL Models Environments Noise sources

Policy Gradient (PG)

Q–learning

Cartpole

Travelling Salesperson Problem (TSP)

Shot noise

Coherent errors Incoherent errors

Figure 7.1: Summary of the scenarios analysed in the present work. We consider two
models for quantum reinforcement learning (QRL) agents and test their performances
on two environments, CartPole and the Travelling Salesperson Problem (TSP). We
analyse the performances of the agents when these are trained and used in the
presence of most common noise sources found on real quantum hardware, namely
statistical fluctuations due to shot noise, coherent errors due to imperfect control or
calibration of the device, and finally incoherent errors coming from the unavoidable
interaction of the quantum hardware with its environment.

quantum circuits become increasingly flat at a rate that scales exponentially with
the number of qubits under local Pauli noise when the circuit depth grows linearly
with the number of qubits [49]. In the case of the variational quantum eigensolver,
where the goal is to find the ground state of a given Hamiltonian, the presence of
noise has been shown to lead to increasing deviation from the ideal energy [272].
Similar effects have been studied in the context of the quantum approximate
optimization algorithm (QAOA) [59], where the goal is to find the ground state
of a Hamiltonian that represents the solution to a combinatorial optimization
problem [273, 68].

When it comes to QML, in-depth studies on the effect of noise on the trainability
and performance of VQAs are scarce. Apart from the work mentioned above on
noise-induced barren plateaus [49], the authors of [166] provided first insights into
how the data encoding method used in a quantum classifier influences its resilience
to varying types of noise. As for the potential benefit of noise, the authors of [274]
show that the stochasticity induced by measurements in a QML model can help
the optimizer to escape saddle points. The above results show that, on the one
hand, too much noise will make the model untrainable, while on the other hand,
modest amounts of noise can even improve trainability [274]. However, it remains

128

unclear how large the gap is between tolerable and harmful amounts of noise [261],
and it is not expected that this can be answered in a general way for all different
types of learning algorithms and noise sources.

In this chapter, we shed light on this question from the angle of variational
quantum reinforcement learning. Classical reinforcement learning models have
been shown to be sensitive to noise, either during training [275] or in the form
of adversarial samples [276, 277]. Additionally, it is known that a bottleneck
of RL algorithms is their sample inefficiency, i.e., many interactions with an
environment are needed for training [278]. Still, RL resembles human-type learning
most closely among the main branches of modern ML, and therefore motivates
further studies in this area. Among these studies, RL with VQAs has been
proposed and extensively investigated in the noise-free setting over the past few
years [153, 154, 150, 75, 157, 199, 76, 279, 156]. These results provide promising
perspectives, as quantum models have empirically been shown to perform similarly
to neural networks on small classical benchmark tasks [75, 76], while at the same
time an exponential separation between classical and quantum learners can be
proven for specific contrived environments based on classically hard tasks [150, 75].
These results motivate further studies on how large the above-mentioned gap
between tolerable and too much noise is in the case of variational RL algorithms,
and how close the algorithm performance can get to the noise-free setting for
various types of noise that can be present on near-term devices.

We investigate this for two types of variational RL algorithms, Q-learning and the
policy gradient method, by performing extensive numerical experiments for both
types of algorithms with two different environments, CartPole and the Travelling
Salesperson Problem, and under the effect of a wide class of noise sources, namely
shot noise, coherent and incoherent errors. In Figure 7.1 we summarise the
approach of the present work showing the QRL models, environments and noise
sources considered in the analysis. We start by considering the trade-off between the
number of measurement shots taken for each circuit evaluation and the performance
of variational agents. As the number of shots required by a QML algorithm can be
a bottleneck on near-term devices and RL is known to require many interactions
with the environment to learn, we propose a method for Q-learning to reduce
the number of overall measurements by taking advantage of the structure of
the underlying RL algorithm. Second, we model coherent errors with a random
Gaussian perturbation of the variational parameters, and analytically study the

129

7.1 Environments and implementation

effect of these perturbations on the output of parameterised quantum circuits,
similarly to [280]. We provide an upper bound on the perturbation induced by such
Gaussian coherent noise based on the Hessian matrix of the circuit, and theoretically
and numerically show that hardware-efficient ansätze may be particularly resilient
against this type of error due to small second derivatives [51]. Finally, we analyse
the performance of the above algorithms under the action of incoherent errors
coming from the unavoidable interaction of the qubits with the environment which
we have no control over. To study this type of noise, we start by investigating the
effect of single-qubit depolarization channels. In addition, we consider a custom
noise model that combines various types of errors present on hardware, and study
the effect of this noise model with error probabilities that are present in currently
available superconducting quantum hardware. Our results show that both policy
gradient methods and Q-learning exhibit a robustness to noise that may enable
successfully running them on near-term devices. This motivates further study in
the quest to find a real-world problem of interest where a quantum advantage for
variational RL could be possible.

7.1 Environments and implementation

Our goal is to get insight into the effect of noisy training on quantum RL algorithms.
For this, we consider quantum versions of the two main paradigms in RL that
have been introduced in previous sections: value-based methods (see Section 3.2.2)
and policy gradient methods (see Section 3.2.3). As we are interested in the
effect of noisy training on models that have otherwise been proven to work well in
the noise-free setting, we study models and environments that have been already
investigated in this setting before [150, 75, 174]. In this way, we have evidence
that the models and hyperparameters that we choose are suitable for the studied
environments, and can focus our efforts on understanding the effect that noise
has on the training and performance of these agents. The code that was used to
generate the numerical results in this work can be found on Github [281].

7.1.1 CartPole

The first environment that we study is the CartPole environment from the OpenAI
Gym [282] that was also studied in Chapter 5. For a detailed description of
the environment and the implementation of the quantum Q-learning agent, we
refer the reader to Section 5.1. For the policy gradient method, we follow the

130

7.1 Environments and implementation

Rx(w1x1) Ry Rz

Rx(w2x2) Ry Rz

Rx(w3x3) Ry Rz

Rx(w4x4) Ry Rz

(a) HWE-Q

Rx(w1x1) Rx Ry Rz

Rx(w2x2) Rx Ry Rz

Rx(w3x3) Rx Ry Rz

Rx(w4x4) Rx Ry Rz

(b) HWE-PG

· · ·

|+〉

Z
Z
(ε

1
2
γ
)

Z
Z
(ε

1
5
γ
)

Rx(α1β)

|+〉

Z
Z
(ε

2
3
γ
)

Rx(α2β)

|+〉 Rx(α3β)

|+〉

Z
Z
(ε

4
5
γ
)

Rx(α4β)

|+〉 Rx(α5β)

(c) EQC

Figure 7.2: Parameterised circuits used in this work. (a) Hardware-efficient ansatz
for Q-learning in the CartPole environment from [75], (b) hardware-efficient ansatz
for policy gradient method in the CartPole environment from [150], (c) equivariant
quantum circuit for Q-learning and policy gradient method in the TSP environment
from [174]. For (a) and (b) we use 5 repetitions of the template shown above, while
for (c) we use just one layer.

131

7.2 Shot noise

implementation used in [150] and made available at [283], which uses five layers
of the same hardware-efficient ansatz used for the Q-learning agent, except that
each layer has an additional trainable rotation around the x-axis on each qubit
(see Figure 7.2(b)), and the action observables are defined as OL = Z1Z2Z3Z4 and
OR = I−OL. As before, input features are multiplied with an additional trainable
parameter each. Since the policy is a probability distribution, a final SoftMax
layer is used to map the expectation values ⟨Oa⟩s,θ ∈ [−1, 1] to the appropriate
range [0, 1], and so probabilities for each action eventually become

πθ(a|s) = eβ⟨Oa⟩s,θ∑
a′ e

β⟨Oa′ ⟩s,θ

, (7.1)

where β ∈ R is a also a trainable parameter. A depiction of both circuits can be
seen in Figure 7.2 a) and b).

7.1.2 Traveling Salesperson Problem

The second environment that we study is the TSP environment from Chapter 6,
where again the Q-learning agent and the environment are implemented as described
in Section 6.2 and the ansatz can be seen in Figure 7.2 c). For policy gradient
agents the ansatz is the same as in the Q-learning case, but as the policy has to
be a probability distribution we again use a final SoftMax layer with a trainable
inverse temperature β on the observable, as in Equation (7.1). The authors of [150]
have shown that using this type of final layer can be highly beneficial for policy
gradient training, compared to only using the probability distribution resulting
from the quantum state directly. This is due to the fact that the trainable inverse
temperature enables the agent to tune its level of exploration of the state space.
As the optimal solutions to TSP instances are deterministic, it is favourable in
this environment to have a tunable inverse temperature that allows exploration of
the large state space early in training, as well as close-to-deterministic decisions
towards the end.

7.2 Shot noise

We start our studies with the type of noise that is arguably the simplest to
characterize: noise induced by statistical errors that result from the probabilistic
nature of quantum measurements. For each circuit evaluation, be it for action
selection of the RL agent or for computing parameter updates via the parameter

132

7.2 Shot noise

shift rule, we take a fixed number of measurements M and compute the resulting
expectation value. The precision ϵ of this expectation value depends on M and
scales as ϵ ∼ 1/

√
M , as we will explain in more detail below.

Variational algorithms often require a very large number of measurements to be
executed, and this problem is exacerbated in QML tasks that typically involve
separate circuit evaluations for all training data points. For this reason, it is
not only important to understand the effect of shot noise on the trainability and
performance of QML models, but it is also desirable to develop methods that
lead to a smaller shot footprint than simply assigning a fixed number of shots to
each circuit evaluation. Depending on knowledge of the algorithm itself, it can be
possible to make an informed decision on the number of shots that suffice in each
step. In this section, we develop such a method specifically for Q-learning that is
a natural extension to the original algorithm.

7.2.1 Reducing the number of shots in a Q-learning algo-
rithm

As described in Section 3.2.2, a Q-learning agent selects actions based on the
following rule (see Equation (3.18))

at = argmaxaQπ(st, a;θ),

that is, it chooses actions according to the largest Q-value.1 Now, consider a
quantum agent that only has access to noisy estimates of the Q-values Q̃(st, at;θ)
resulting from the statistical uncertainty of a measurement process involving a finite
number of shots M . If the sample size is large enough M ≫ 1, then by the central
limit theorem each noisy Q-value can be described as a random variable

Q̃(st, at;θ) = Q(st, at;θ) + ϵ , (7.2)

where Q(st, at;θ) is the true noise-free value, and ϵ is a random variable sampled
from a Gaussian distribution centered in zero µϵ = E[ϵ] = 0, and with standard
deviation inversely proportional to the square root of the number of measurement
shots σϵ = Std[ϵ] ∼ 1/

√
M . Since actions are selected through an argmax function,

1In the ϵ-greedy policy (see Section 3.2.2) we consider here, the agent picks either the action
corresponding to the argmax Q-value, or a random action. As no circuit evaluation is required to
pick a random action, we only consider the steps with actual action selection by the agent in this
section.

133

7.2 Shot noise

the perturbation ϵ will not affect the action selection process as long as the order
between the largest and the remaining Q-values remains unchanged. Then, one
may ask: is there a minimal number of shots that suffice to reliably distinguish
the largest Q-value Qmax and the second-largest Q-value Q2?

When the observables associated to the actions are non-commuting, they have to
be estimated independently from each other, and one has the freedom of choosing
how to allocate the measurement shots among the observables of interest, possibly
in a clever way. In our case, the goal is to estimate which of the observables has
the highest Q-value while trying to be shot-frugal, and this task can be related to
the theory of multi-armed bandits [284]. The multi-armed bandit is a RL problem
in which an agent can allocate only a limited amount of resources between a
number of choices, e.g., a number of arms on a bandit machine, and is asked to
determine which of these choices leads to the highest expected reward. There exists
a trade-off between exploration (i.e., trying the different arms) and exploitation
(always choosing the arm that appears best according to the current knowledge),
and the upper confidence bound (UCB) [285, 286] algorithm shows how to use
statistical confidence bounds to allocate exploratory resources. The UCB algorithm
could be used in the scenario described above where a number of non-commuting
observables have to be estimated, and we want to find the optimal strategy to
allocate a fixed budget of measurement shots to the task of identifying the largest
Q-value.

However, in the specific implementations of QRL agents based on recent literature
that we study in this work [150, 75, 174], only commuting observables are used,
hence it is not necessary to apply the UCB procedure to determine which one
should be measured more often. Nonetheless, inspired by the UCB algorithm, we
can still define a rather general simple heuristic that can be used to reduce the
overall number of shots required to train the Q-learning models as those studied in
this work. The idea is to use the knowledge about the scaling of the estimation error
with respect to the number of measurements (see Equation (7.2)), to determine
with confidence whether we have taken enough shots to determine the maximum
Q-value.

The procedure goes as follows. First, we take a small number of initial measurements
minit, for example minit = 100, of all observables to compute the estimates
Q̃minit(st, a), ∀ a ∈ A. Based on these values, we compute the absolute difference
between the largest and the second largest Q-values. If this difference is larger

134

7.2 Shot noise

Algorithm 1 Algorithm to reduce the number of measurements in Q-learning
Input minit, minc, mmax

Output mest

mest ← minit

while mest < mmax do
Q̃(st, a1) = ⟨Oa1⟩mest

Q̃(st, a2) = ⟨Oa2⟩mest

∆Q̃ = |Q̃(st, a1)− Q̃(st, a2)|
if ∆Q̃ < 2/√mest then

mest ← mest +minc

else
return min(mest,mmax)

end if
end while
return min(mest,mmax)

than twice the estimation error ϵ = 2/√minit (as both of the Q-values are noisy),
we have found the largest Q-value with high confidence and we stop here. On
the other hand, if the difference is smaller, we increment the sample size with
additional minc measurements each, and recompute the estimated Q-values with
the minc +minit shots. We again compute the absolute difference of the two largest
Q-values and determine whether the number of measurements suffices based on
the error ϵ = 2/

√
minit +minc. This measure-and-compare scheme is performed

until either the two largest Q-values can be distinguished with high confidence,
or a fixed shot budget mmax is reached. In Algorithm 1 we provide a description
of this procedure, where for the sake of simplicity we describe the case where
there are only two possible actions, and we therefore only have to find the larger
of two Q-values. However, the scheme can be used for an arbitrary number of
Q-values, as it is only important to distinguish between the highest and the second-
highest Q-value with high confidence. The algorithm takes as input the number
of initial measurements minit, the number of additional measurements in every
step minc, and the maximum number of measurements that are allowed in one
run of the shot-allocation algorithm (i.e., finding the largest Q-value) mmax. The
output is the number of measurements mest that are sufficient to find the argmax
Q-value with high confidence based on the rules above. The values ⟨Oai⟩mest are
the expectation values of observables Oai

corresponding to action ai, estimated

135

7.2 Shot noise

with mest shots. Note that the proposed scheme works both for commuting or
non-commuting observables, where in the former case one can spare shots by
computing the observables from the same set of measurement outcomes. Moreover,
note that we ignore the coefficients in the statistics of the Q-values coming from ??,
when considering the measurement stopping criterion. This choice has no impact
on the effectiveness of the proposed method, as it is always found to be very well
performing in the presented form.

While this algorithm can clearly determine the optimal number of shots in the
action selection process in a methodical manner, one should check that this will
not introduce errors in the remaining parts of the variational Q-learning model, i.e.,
during the parameter update step. Recall that each parameter update of the model
is computed based on the output of the model itself (see Equation (3.19))

Qπ(st, at;θ)← rt+1 + γmax
a

Qπ(st+1, a;θ),

which means that in the parameter update step we do not need to perform action
selection, but instead care about the actual Q-values in order to compute the
loss function. The question is now to what precision we need to approximate the
Q-values in order to learn a good Q-function. Technically, even the noise-free
Q-function is only an approximation of the true Q-function, which is the whole
point of doing Q-learning with function approximators. This suggests that there is
some leeway to make even the approximate function itself an approximation by
taking only as many measurements as are necessary to find the argmax Q-value
with high confidence. Indeed, it has been shown in [75] that even the Q-functions
of agents that successfully solve an environment can produce Q-values that are far
from the optimal Q-values, and that learning the correct order of Q-values is more
important in this setting than approximating the optimal Q-value as precisely as
possible. Consequently, when we compute the Q-values that are used to perform
parameter updates, we use the same algorithm as that in Algorithm 1 to determine
the number of measurements to take.

7.2.2 Numerical results

We now numerically compare the performance of agents in the CartPole and TSP
environments in settings where a fixed number of shots is used in each circuit
evaluation, and where the number of shots in each step is determined by the
algorithm we introduced in Section 7.2.1. To give an overview of the number of

136

7.2 Shot noise

CP, fixed CP, flexible TSP, fixed TSP, flexible

Figure 7.3: Comparison of the cumulative number of shots per observable over a full
training run, for the flexible shot allocation technique (blue) and for a standard fixed
measurement scheme using the same number of shots for every circuit evaluation
(orange), both for CartPole (triangles) and TSP (circles). Each data point shows
the average over ten trained agents.

shots used in one training run under varying hyperparameter settings, we show
the average cumulative number of shots for different settings in Figure 7.3. For the
CartPole environment (triangles), the number of cumulative shots grows quickly
with the number of shots in each step in the fixed setting (orange). This is not
true for the flexible shot allocation technique (blue), where for values of mmax ∈
{100, 1000, 10000} the cumulative number of shots is relatively similar. As we see
in Figure 7.4 a), a low number of shots such as 1000 is already sufficient to achieve
close to optimal performance in the CartPole environment. Therefore, we focus
on comparing settings with 100 and 1000 (maximum) shots per circuit evaluation
in that figure. Comparing the cumulative number of shots for mfixed = 100 and
mmax = 1000 in Figure 7.3, we see that these two configurations use almost the
same number of measurements overall. Still, the final performance of the agents
trained with the flexible shot allocation technique is almost optimal, while those
trained with a fixed number of shots in each circuit evaluation are below a final
score of 175 on average. However, as we allow agents to use even less than 100 shots
per evaluation with the flexible allocation method of Algorithm 1, performance
starts to degrade, so at least 100 shots are required in this setting. To not clutter

137

7.2 Shot noise

the figure we show the results for agents that use fewer than 100 shots per circuit
evaluation in Figure 6 in the Appendix.

In the TSP environment, each step in an episode constitutes of a constant and
(compared to CartPole) relatively low number of circuit evaluations. We still see
that the higher the setting for the (maximum) number of shots is, the bigger the
gap in average cumulative number of shots becomes. For agents trained in the TSP
environment, shown in Figure 7.4 b), the final performance remains unchanged by
the additional noise introduced by the flexible shot allocation technique, and agents
reach the same accuracy of those trained with a corresponding but fixed number of
shots per circuit evaluation. The only difference between the two approaches is that
the agents using the flexible shot allocation method take slightly longer to converge
in some cases. Independently from the estimation method used (flexible or fixed),
it is clear from Figure 7.4 that it is the number of shots available that plays the
major role in determining the performance of the noisy agents, as measured by the
proximity to the average approximation ratios reached in the noise-free scenario,
namely when agents have access to exact the expectation values (M →∞). In this
environment, there is a trade-off between delayed convergence due to less precision
in the approximation of the Q-function, and using a higher number of shots to
arrive at the same final performance.

To summarize, we have seen that Q-learning models can be successfully trained
even in the presence of statistical noise introduced by a measurement processes
carried out with a limited number of shots. In addition, by leveraging the specifics
of the Q-learning algorithm, we introduced an easy-to-implement and effective
method that can be used to reduce the number of shots needed to train variational
Q-learning agents. How many shots one can save during training with this method
depends on the agents’ resilience to shot noise, as well as the specific characteristics
of the environment. In the CartPole environment, where one bad decision does not
lead to immediate failure, the additional noise introduced by estimating expectation
values with a low number of measurements and approximating an imprecise Q-
function does not affect performance severely. In the TSP environment on the
other hand, where one bad choice of the next city in the tour can lead to a much
longer path, we observe that the number of measurements has to be relatively
high to get close to optimal performance. However, even in this setting we can
achieve a reduction in the overall number of measurements by taking an informed
approach at when to measure an observable more often.

138

7.2 Shot noise

0 1000 2000 3000 4000 5000

25

50

75

100

125

150

175

200

exact
100 shots
1000 shots
1000 max shots

(a) CartPole

0 250 500 750 1000 1250 1500 1750 2000
Episode

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ap
pr

ox
im

at
io

n
ra

tio

exact
100 shots
1000 shots
10000 shots
100 max shots
1000 max shots
10000 max shots

(b) Traveling Salesperson Problem

Figure 7.4: Comparison of Q-learning with shot noise using the informed shot-
allocation method (labeled “max shots") proposed in this work, and a standard
measurement scheme that simply assigns a fixed number of shots to each circuit
evaluation (labeled “shots"). Results are averaged over ten agents for each config-
uration. (a) Shows results for agents trained in CartPole environment, (b) shows
results for agents in the TSP environment.

139

7.3 Coherent noise

7.3 Coherent noise

In this section, we turn our attention to coherent noise, that is, errors that preserve
the unitary evolution of the quantum circuit but still change its output [287].
In our analysis, we model coherent noise as an over- or under-rotation of the
parametrized gates, by adding a random Gaussian perturbation to the variational
parameters in the considered circuits.

This type of error could occur in real quantum devices as a drift in the parameters
for example due to an imperfect control of the system or a miscalibration of
the hardware, and it is therefore an important component of the overall picture
of an imperfect quantum device. Specifically, we assume that the perturbation
remains unchanged during the estimation a given observable, i.e. it does not change
considerably between repeated measurements on the same experimental setup.
However the perturbation amount change whenever the experiment is changed,
for example due to measuring a different observable, or using the circuit with a
different set of parameters.

Gaussian coherent noise is also an interesting model because it lends itself very
well to theoretical analysis, and one can estimate the effect of such an error on
the output of a parameterised quantum circuit. In the following, we first proceed
with an analytical treatment of the error introduced by Gaussian perturbations
on variational circuits, and then proceed with the numerical results for the two
environments considered in this work.

7.3.1 Effect of Gaussian coherent noise on circuit output

Consider a general parametrized quantum circuit acting on a system of n qubits,
with unitary U(θ) ∈ C2n ×C2n and parameter vector θ = (θ1, . . . , θM) ∈ RM . Let
O be on observable and ρ = |0⟩⟨0| the initial state of the quantum system, the
outcome of the variational circuit is the expectation value

f(θ) = ⟨O⟩θ = Tr
[
OU(θ)ρU†(θ)

]
. (7.3)

Suppose that the parameters are affected by a noise process that adds a perturba-
tion

θ → θ + δθ , (7.4)

140

7.3 Coherent noise

where δθ = (δθ1, . . . , δθM) ∈ RM are i.i.d. according to a Gaussian distribution
N (µ, σ) with zero mean µ = 0 and equal variance σ2, namely

δθi ∼ N (0, σ2) ,

E[δθi] = 0 , ∀i ∈ {1, . . . ,M} (7.5)

E[δθiδθj] = σ2δij .

As discussed earlier, in our analysis in this section and in the numerical simulations
in section 7.3.3.1, we assume that the perturbed parameters remain the same
during the evaluation of a single expectation value. In a real experiment on
quantum hardware, this would mean that for all measurements used to estimate
the expectation value, the perturbations stay at least approximately unchanged. Of
course, without this assumption, the resulting noise model could not be considered
unitary, and one may then resort to a noise channel formulation of Gaussian noise
as proposed in [261, 280]. Hence, in the following we restrict our attention to the
setting described above.

The effect of Gaussian noise on the circuit can be evaluated by Taylor expanding the
circuit around the unperturbed parameters θ. For ease of explanation, we hereby
report only the main ideas and results, and we refer to Appendix 8 for a complete
and detailed derivation of all the calculations performed in this section.

Let f(θ + δθ) be the function evaluated on the perturbed parameters, its Taylor
expansion up to fourth-order reads

f(θ + δθ) ≈f(θ) +
M∑

i=1

∂f(θ)
∂θi

δθi + 1
2

M∑
i,j=1

∂2f(θ)
∂θi∂θj

δθiδθj

+ 1
3!

M∑
i,j,k=1

∂f(θ)
∂θi∂θj∂θk

δθiδθjδθk +O
(
δθ4) . (7.6)

With this expression one can evaluate the expected value of the noisy func-
tion E[f(θ + δθ)] over the distribution of the Gaussian perturbations, E(·) =
Eδθi∼N (0,σ2)(·). Since every odd moment of a Gaussian distribution vanishes, using

141

7.3 Coherent noise

relations (7.5) in the expansion (7.6) one obtains

E[f(θ + δθ)] ≈ f(θ) + 1
2
∑

ij

∂f(θ)
∂θi∂θj

E[δθiδθj]

≈ f(θ) + 1
2σ

2
∑

ij

∂f(θ)
∂θi∂θj

δij

≈ f(θ) + 1
2σ

2 Tr[H(θ)] +O
(
σ4),

(7.7)

where Tr[H(θ)] denotes the trace of the Hessian matrix

Hij(θ) = ∂2f(θ)
∂θi∂θj

i, j = 1 . . . ,M. (7.8)

Thus, the first non-vanishing correction term caused by the noise is proportional
to the noise variance σ2, and the Hessian of the parametrized quantum circuit,
which conveys geometric information about the curvature of the function landscape
around the unperturbed point θ.

Higher-order terms in the expansion can be evaluated in a similar way, specifically
making use of so-called Wick’s relations for multivariate normal distributions as
shown in Appendix 8. If all the derivatives of the function f(θ) are bounded, as
it is the case for parametrized quantum circuits, then it is possible to derive an
upper bound on the error induced by the perturbations which only depends on
the noise strength σ2 and the total number of parameters M , as we show in the
following.

Using the parameter shift rule [33, 39], one can show that any derivative of
a parametrized quantum circuit can be expressed as a linear combination of
circuit outcomes evaluated at specific points in parameter space [280, 51]. Let
α = (α1, . . . , αM) ∈ NM be a multi index keeping track of the order of partial
derivatives, define the derivative operator

∂α := ∂|α|

∂θα1
1 · · · ∂θ

αM

M

, (7.9)

where |α| :=
∑M

i=1 αi. By nested applications of the parameter shift rule, one can
show that

∂αf(θ) = 1
2|α|

2|α|∑
i=1

sm f(θm) , (7.10)

142

7.3 Coherent noise

where sm ∈ {±1} are signs, and θm are parameters obtained shifting the parameter
vector θ along different directions. Now, since the measurement outcome of every
circuit is bounded by the maximum absolute eigenvalue of the observable, i.e.
|f(θ)| ≤ ∥O∥∞, consequently it also holds that |∂αf(θ)| ≤ ∥O∥∞ (see Appendix
8). Note that we only consider bounded observables here, like the Pauli operators
commonly used in variational RL algorithms [153, 154, 150, 75].

Since all the derivatives of the function are bounded, it is possible to bound every
term in the Taylor series and then compute an upper bound to the error caused
by the perturbation. In fact, defining the absolute (average) error caused by the
noise as

εθ := |E[f(θ + δθ)]− f(θ)| , (7.11)

one can prove that this is upper bounded by (see Appendix 8)

εθ ≤ ∥O∥∞

(
eσ2M/2 − 1

)
. (7.12)

Note that since εθ ≤ 2∥O∥∞ is always true, the bound is informative only as long
as eσ2M/2 − 1 < 2.

This expression only depends on the noise strength σ2, the total number of noisy
parameters M , and the operator norm of the observable ∥O∥∞, and it can be used
to estimate a sufficient condition on the noise strength to guarantee a desired error
threshold εθ. Rearranging Equation (7.12), a sufficient condition to have error εθ
not larger than ϵ, is to have Gaussian perturbations satisfying

σ ≤
√

2
M

log
(

1 + ϵ

∥O∥∞

)
. (7.13)

As the allowable error is small ϵ≪ 1, by approximating the logarithm log(1 + x) ≈
x, one derives that the perturbations must follow the scaling

σ ∈ O
(

ϵ

M1/2∥O∥∞

)
. (7.14)

Note that a similar scaling law was recently derived also in [280], though via a
slightly different method based on the moment generating function of the probability
distribution characterising the perturbations.

To provide an example, assume one is willing to tolerate an error of ϵ = 10%,
that ∥O∥∞ = 1 as for measuring a Pauli operator and that the PQC consists
of M = 100 noisy parametrized gates, then one can be sure of such accuracy if

143

7.3 Coherent noise

σ ∼ 0.1/
√

100 = 0.01. However, we stress again that the scaling Equation (7.13)
is only a sufficient but not necessary condition for achieving an error ϵ. In fact,
apart from the requirement of bounded derivatives, Equation (7.13) is agnostic
with respect to the specifics of the function, and such bound can be quite loose in
real instances where a much larger noise level still causes a small error, as shown
in Figure 7.5.

In Figure 7.5, we report simulation results obtained by simulating the parametrized
ansatz depicted in Figure 7.2(b) subject to Gaussian coherent noise of increasing
strength. It is clear that the output of the circuit closely follows the approximation
of Equation (7.7) given by the Hessian even at moderately large value of the noise
σ ⪅ 0.15. When the noise is too strong (σ > 0.2), the circuit becomes essentially
random, and the average expectation value when measuring a Pauli operator is
zero. This is a consequence of PQCs often behaving like unitary designs upon
random initialization of the parameters [229, 44], a fact which we discuss in detail
in Sec. 7.3.2. At last, as discussed earlier, while the upper bound (7.12) holds, it
is indeed very loose and only holds tightly at small σ ⪅ 0.01.

We now proceed discussing why hardware-efficient parametrized quantum circuits
can be resilient to Gaussian coherent noise. Roughly, this is because such circuits are
found to behave like random unitaries upon random assignment of the parameters,
which implies that the derivatives of such circuits tend to vanish as the system
size grows large [51].

7.3.2 Resilience of Hardware-Efficient ansatzes to Gaussian
coherent noise

The previous analysis showed that Gaussian perturbations induce an error depend-
ing on the Hessian of the circuit (see Equation (7.7)), so that up to fourth order in
the perturbation it holds that

E[f(θ + δθ)] ≈ f(θ) + 1
2σ

2 Tr[H(θ)] . (7.15)

This equation tells us that if the optimization landscape is flat or close to being
flat, then the Hessian is small, and so the perturbation will have little effect on the
output of the circuit. On the contrary, in the presence of a very curved landscape,
noise will have a great impact and the output of the circuit may change sensibly. It
is known that the curvature of the optimization landscape produced by a PQC is

144

7.3 Coherent noise

0.0 0.2 0.4 0.6 0.8 1.0
σ

0.0

0.1

0.2

0.3

ε
=
|E

[〈O
〉 n

o
is

y
]−
〈O
〉]|

0.0 0.1

0.1

|〈O〉|
|Tr[H]| σ2 / 2

eMσ2/2 − 1

Figure 7.5: Effect of Gaussian coherent noise on the output of the parametrized
quantum circuit shown in Figure 7.2(b). The plot is obtained by first choosing a
parameter vector θ0 ∈ R92 corresponding to a the ideal noise-free expectation value
f(θ0) = ⟨O⟩ with O = Z⊗4. With this baseline fixed, random Gaussian perturbations
are added to the angles θnoisy = θ0 + δθ, and the resulting noisy expectation vales
⟨O⟩noisy are computed. Each point in the plot is the average over N = 105 different
perturbation vectors sampled from a multivariate Gaussian distribution of a given σ.
The experiments are then repeated for increasing values of the noise strength σ. The
error bars show the statistical error of the mean. For small noise levels, the output of
the quantum circuit closely follows the behaviour predicted by Equation (7.7), where
the Hessian is evaluated at the unperturbed value H = H(θ0). When the error is
too large the circuit behaves as a random circuit whose output is on average zero,
hence the error plateaus to the unperturbed expectation value ε = |⟨O⟩| = |f(θ0)|).
The upper bound predicted by Equation (7.12) is very loose in general, and holds
tightly only for very small values of σ ⪅ 0.01.

145

7.3 Coherent noise

closely related to the barren plateau phenomenon [229, 44, 48], where the variance
of the first and second derivative vanishes exponentially in the number of qubits
and layers in a random circuit. Additionally, the hardware-efficient ansatz we use
for some of the environments in this work is known to suffer from barren plateaus
when the system size is large. As the curvature of the optimization landscape
of these types of circuits is very flat, it can also be expected that the type of
noise induced by the Gaussian perturbations on parameters that we study in this
work should not affect circuits that generally produce small first and second order
derivatives. While circuits that are in the barren plateau regime are obviously
undesirable as they quickly become untrainable, one can consider circuits of the
size such that the variance in gradients is relatively small, but the circuit has
not yet converged to an approximate 2-design, as shown in [229]. We make this
statement more formal in the following.

We can use standard results on averages of unitary designs [288, 289] to characterize
the Hessian of hardware-efficient circuits, and thus gain insight on their performance
under Gaussian noise. We report the main results of our analysis here, full
derivations can be found in Chapter 8. In the following, we suppose that sampling
a random value of the parameter vector θ in the parametrized circuit U(θ), is
equivalent to sampling a unitary from a unitary 2-design, defined as a set of unitary
matrices that match the Haar distribution up to the second moment. Also, we
consider observables O being Pauli strings, so that Tr[O] = 0 and Tr

[
O2] = 2n.

In order to distinguish from the previous notation where averages were computed
over the Gaussian distribution of the perturbations, we use EU [·] and VarU [·] to
denote average values and variances evaluated over the random unitaries.

Then, under reasonable and usual assumptions on parts of the parametrized
quantum circuit being 2-designs, it is possible to show that the diagonal elements
of the Hessian Hii = ∂2f(θ)/∂θ2

i satisfy [51] (see also Appendix 8 for an explicit
derivation)

EU [Hii] = 0 , VarU [Hii] ∈ O
(

1
2n

)
. (7.16)

That is, in addition to first order derivatives, also second order derivatives of
random parameterized quantum circuits are found to be zero on average, and with
a variance which is exponentially vanishing.

146

7.3 Coherent noise

−40 −20 0 20 40
Tr[H]

0

50

100

150

200

250 Numerical 2σ

Approximation

Bound

Figure 7.6: Simulation results of evaluating the trace of the Hessian matrix for the
circuit shown in Fig. 7.2(b) with random assignments of the parameters and O = Z⊗4.
The simulations are performed by sampling 2000 random parameter vectors {θm}2000

m=1

with θi ∼ Unif[0, 2π[and then evaluating the trace of the corresponding Hessian
matrix Tr[H(θm)]. These values are used to build the histogram showing the fre-
quency distribution of Tr[H]. The length of the arrows are, respectively: “Numerical
2σ" (black solid line) twice the numerical standard deviation, “Approximation"
(dashed red) twice the square root of the approximation in Eq. (7.18), “Bound"
(dashed-dotted green) twice the square root of the upper bound in Eq. (7.17).

Starting from the results above, one can calculate the statistics of the trace of the
Hessian, for which it holds

EU [Tr[H]] = 0 , VarU [Tr[H]] ⪅ M2

2n
. (7.17)

Furthermore, our numerical simulations suggest that the variance of the trace of the
Hessian is actually smaller, and is well captured by the following expression

VarU [Tr[H]] ≈ M(M + 1)
4(2n + 1) ≈

1
4
M2

2n
, (7.18)

a fact which we justify and discuss in Chapter 8.

In Figure 7.6 we report simulation results of evaluating the trace of the Hessian
matrix for the circuit shown in Figure 7.2(b). The histogram represents the
frequency of obtaining a given value of the trace of the Hessian Tr[H(θ)] upon
random assignments of the parameters. Indeed, there is a very good agreement
between the variance obtained via numerical simulations (black solid line), and
the one calculated with the approximation (7.18) (dashed red line).

The circuit used has M = 92 parameters and n = 4 qubits, and plugging these
values in Equation (7.18) yields a standard deviation σU = StdU [Tr[H]] ≈ 11.
Then, if the behaviour of the PQCs in practical scenarios is well described by its

147

7.3 Coherent noise

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200
Sc

or
e

exact
= 0.1
= 0.15
= 0.16
= 0.17
= 0.18
= 0.19
= 0.2

(a) training performance

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Parameter perturbation at test time

0

50

100

150

200

Av
er

ag
e

re
wa

rd

exact
= 0.1
= 0.15
= 0.16
= 0.17
= 0.18
= 0.19
= 0.2

(b) evaluation performance

Figure 7.7: Q-learning agents on the CartPole environment trained and evaluated
at varying perturbations σ. Panel (a) shows training performance, while panel (b)
shows the performance of the same agents after training and evaluated under different
perturbation levels than those present during training. Each point is computed as
the average score of the 10 agents under the perturbation indicated on the x-axis.

148

7.3 Coherent noise

0 1000 2000 3000 4000 5000
Episode

0

25

50

75

100

125

150

175

200
Av

er
ag

e
sc

or
e

exact
PG, = 0.1
PG, = 0.15
PG, = 0.16
PG, = 0.17
PG, = 0.18
PG, = 0.19
PG, = 0.2

(a) training performance

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Parameter perturbation at test time

50

100

150

200

Av
er

ag
e

re
wa

rd

exact
= 0.1
= 0.15
= 0.16
= 0.17
= 0.18
= 0.19
= 0.2

(b) evaluation performance

Figure 7.8: Policy gradient agents on the CartPole environment trained and
evaluated at varying perturbations σ. Panel (a) shows training performance, while
panel (b) shows the performance of the same agents after training and evaluated
under different perturbation levels than those present during training. Each point is
computed as the average score of the 10 agents under the perturbation indicated on
the x-axis.

149

7.3 Coherent noise

random parameter regime, one expects the trace of the Hessian to be on average
zero and in general not much bigger (in absolute value) than σU ≈ 11. With this
order of magnitude for the trace, the first order correction Equation (7.15) even
with a Gaussian noise level of σ = 0.1 is very small, as it amounts to

|E[f(θ + δθ)]− f(θ)| ≈ 1
2σ

2|Tr[H(θ)]| ≈ 0.05 .

Summing up, for those PQCs whose cost landscape is close to being flat, then
Gaussian perturbations on the variational parameters will have a limited impact
on the output of the quantum circuit.

7.3.3 Numerical results

7.3.3.1 CartPole

First, we evaluate the performance of policy gradient and Q-learning algorithms
when Gaussian perturbations are applied at each circuit evaluation during training.
In Figure 7.7 (a) and (b), we show the training and evaluation performance,
respectively, of Q-learning agents in the CartPole environment with perturbations
in the range σ ∈ {0, 0.1, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2}. Only the agent trained
with noise level σ = 0.1 learns the environment successfully and remains close to
optimal performance. As suggested by our theoretical analysis in Section 7.3.1,
performance starts to degrade as we consider higher perturbations of σ > 0.1,
and none of those agents manage to achieve a better performance than a score of
125 on average. In Figure 7.7 (b) we evaluate the performance of trained agents
when they act in an environment with different perturbation levels than those
present when they were trained. Even agents that do not perform well during
training achieve close to optimal performance when evaluated in the noise-free
setting. This suggests that despite their bad training performance due to the added
perturbations, these agents still learn a good Q-function. Notably, the agents
trained without noise perform worst when they are evaluated under various levels
of perturbations.

Results for agents trained with the policy gradient method are shown in Figure 7.8
(a). While again only the agents trained with a perturbation of σ = 0.1 perform
well and even reach optimal performance, agents with higher perturbations also
largely stay close to optimal performance with a final score of 125 on average.
Even the agent trained with a relatively high σ = 0.2 is robust in this setting, even

150

7.3 Coherent noise

(a) pole angle, cart position (PG) (b) pole angle, cart position (QL)

(c) pole angle, cart velocity (PG) (d) pole angle, cart velocity (QL)

(e) pole angle, pole velocity (PG) (f) pole angle, pole velocity (QL)

Figure 7.9: Comparison of average learned policies (PG) and Q-functions (QL) of
agents from Figure 7.7 and Figure 7.8, in the noise-free setting (blue) and with a
perturbation level σ = 0.2 (yellow).

151

7.3 Coherent noise

though it requires by far the most training episodes to get to a good score. This
positive trend is also visible in Figure 7.8(b), where we see that all agents achieve
close to optimal performance when evaluated with perturbation levels σ ≤ 0.1,
which is again in line we our theoretical analysis in section 7.3.1. The difference
between agents trained with Gaussian perturbations and those trained without is
not as large as in the Q-learning setting, and at evaluation time both algorithms
perform similarly. Another observation about the policy gradient agents is that
those trained with σ = 0.2 achieve optimal or close to optimal performance in
the environment under various perturbation levels at evaluation time, and are the
most robust out of all agents trained in this setting. Overall, the policy gradient
method shows a larger resilience to Gaussian noise in our experiments for the
CartPole environment. It is an open question why this is the case, however, we
did not observe better performance of the policy gradient algorithm under noise in
general, as results in later sections will show.

In addition to studying the performance of Q-learning and policy gradient agents
at training and evaluation time, we visualize the learned policies and Q-functions
of both in the noisy and noise-free setting in Figure 7.9. As learned policies and
Q-functions can look different even when training the same agent twice, we show
averages of the ten agents shown in Figure 7.7 and Figure 7.8 for both algorithms,
and for perturbation levels of σ = 0 (blue) and σ = 0.2 (yellow), respectively.
The CartPole environment has four inputs: cart position and velocity, and pole
angle and velocity. To visualize the learned policies and Q-functions, we show the
probabilities and Q-values for taking the action “right” as a function of pairs of
state values. The state inputs that are not in the figure are set to zero, and for the
sake of clarity we do not apply perturbations to the parameters when visualizing
the policy. In Figure 7.9 (a), (c), and (e), we see results for policy gradient agents.
Overall, it can be seen that the agents trained without perturbations learn smoother
policies, hence for most states there is a clear decision on which action to take.
Training with perturbations makes the policies slightly more rippled, but they still
mostly follow the contours of the policy learned under ideal conditions.

The approximated Q-functions can be seen in Figure 7.9 (b), (d), and (f). One
observation we make here is that the range that Q-values take blows up considerably
compared to the noise-free setting. This is due to the trainable output weights that
the expectation values are multiplied with in the Q-learning setting (see Section 7.1)
becoming considerably larger for agents trained in the noisy setting. However, as

152

7.3 Coherent noise

we can see in the Appendix in Figure 7, the shapes of the learned Q-functions of
the noise-free and noisy agents are still very similar, which explains why even the
agents trained with σ = 0.2 perform almost optimally when evaluated without
perturbations in Figure 7.7 (b). We also note that the range of Q-values of both
the noisy and noise-free agents is much larger than the range of optimal Q-values
given in [75]. This can be understood as the agent consistently overestimating the
expected return, a problem known to arise in classical Q-learning, and which is
exacerbated by noise [290]. However, the authors of [75] also point out that in the
function approximation setting, it is more important to learn the order of Q-values
for each state (i.e., preserving that the argmax Q-value corresponds to the optimal
action) than learning a close representation of the optimal Q-values.

7.3.3.2 Traveling Salesperson Problem

In this section, we study the performance of Q-learning and policy gradient
algorithms with Gaussian coherent noise in the TSP environment. Panels (a) and
(b) in Figure 7.10 show the training and evaluation performance of Q-learning
agents in this environment under perturbations in the range

σ ∈ {0, 0.1, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2}.

We note that the Q-learning agents trained without noise already converge after
600 episodes on average, but to get an equal runtime in terms of episodes for
all settings, we also let them run for 10000 episodes. This unnecessarily long
runtime causes the optimizer to leave the local minimum again, which we ignore
as an artifact here and consider the lowest average approximation ratio for the
comparison with the other models.

For the TSP environment, we observe that with increasing levels of Gaussian
perturbations, convergence of agents is delayed and their final approximation ratio
becomes worse compared to the noise-free agents’ performance. Still, all agents
seem to learn very similar policies despite being trained with different settings
of σ, as we can see by their almost identical performance at evaluation time
shown in Figure 7.10 (b). Despite a drop in performance during training, the final
performance of the models on a test set of previously unseen TSP instances stays
almost unaffected by the noise present during training. While we see that agents
trained with more noise seem to learn more noise-robust policies as in the case
of the CartPole environment, this effect is not as pronounced here. Additionally,

153

7.3 Coherent noise

0 2000 4000 6000 8000 10000
Episode

1.2

1.4

1.6

1.8

2.0

2.2
Ra

tio
 to

 o
pt

im
al

 to
ur

 le
ng

th
exact

= 0.1
= 0.15
= 0.16
= 0.17
= 0.18
= 0.19
= 0.2

(a) training performance

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Parameter perturbation at test time

1.0

1.1

1.2

1.3

1.4

Ra
tio

 to
 o

pt
im

al
 to

ur
 le

ng
th

exact
0.1
0.15
0.16
0.17
0.18
0.19
0.2

(b) evaluation performance

Figure 7.10: Training and evaluation of Q-learning agents in the TSP environment
under various perturbations σ. Panel (a) shows the effect of perturbations during
training, panel (b) shows results for the same agents evaluated on varying perturba-
tion levels after training, different to those present at training time.

154

7.3 Coherent noise

0 200 400 600 800 1000
Episode

1.2

1.4

1.6

1.8

2.0

2.2

2.4
Ra

tio
 to

 o
pt

im
al

 to
ur

 le
ng

th
exact

= 0.1
= 0.15
= 0.16
= 0.17
= 0.18
= 0.19
= 0.2

(a) training performance

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Parameter perturbation at test time

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Ra
tio

 to
 o

pt
im

al
 to

ur
 le

ng
th

exact
= 0.1
= 0.15
= 0.16
= 0.17
= 0.18
= 0.19
= 0.2

(b) evaluation performance

Figure 7.11: Training and evaluation of policy gradient agents in the TSP envi-
ronment under various perturbations σ. Panel (a) shows the effect of perturbations
during training, panel (b) shows results for the same agents evaluated on varying
perturbation levels after training, different to those present at training time.

155

7.4 Incoherent noise

we again see that performance of trained models in Figure 7.10 (b) starts to drop
at σ > 0.1, as indicated by our theoretical analysis in Section 7.3.1. While the
policy gradient method shows a certain robustness to noise during training in the
CartPole environment, this is not the case for the TSP environment, as we show
in Figure 7.11 (a). The only agent that gets close in performance to the noise free
agent is the one trained with σ = 0.1, while higher perturbations yield agents that
are relatively bad with an approximation ratio between 1.4 and 1.6 on average.
However, again, all agents seem to learn similar policies as indicated by their test
performance in Figure 7.11 (b). Similar to CartPole, the agents’ performance on
the test set under varying perturbation levels closely matches that of the noise-free
agents, and again we see a large drop in performance for perturbations that are
higher than σ = 0.1.

Overall, the Q-learning algorithm performs better in the TSP environment than the
policy gradient method. The optimal tour for each TSP instance is deterministic, so
using a stochastic policy as in the policy gradient approach introduces an additional
source of error, as there is always a non-zero probability to chose a non-optimal
action. This leads to an increased susceptibility to the Gaussian perturbations
present during the evaluation of the policy gradient algorithm. This is not the case
for Q-learning, where choices are made based on the argmax Q-value. Additionally,
the ansatz that we use does not separate between data encoding and trainable
parameters as described in Section 7.1. As the optimal tour of a TSP instance does
not change upon small perturbations of the edge weights, this leads to a relative
robustness of this ansatz used in conjunction with Q-learning to Gaussian coherent
noise in this environment.

7.4 Incoherent noise

The Gaussian perturbation noise that we studied in Section 7.3 is well-suited to
model coherent errors due to imprecision in the control of the quantum device, but
it does not reflect noise that results from undesired interactions of the quantum
system with its environment. To study the effect of this type of incoherent noise
we perform additional experiments in this section.

We simulate this type of noise with TensorFlow Quantum (TFQ) [224], where they
are implemented through a Monte-Carlo trajectory sampling method [291, 292]
that approximates the effect of noise by averaging over state vectors generated from

156

7.4 Incoherent noise

a probabilistic application of the noise channel. This method of simulating noise
essentially trades off the overhead in memory needed to store the 2n × 2n sized
density matrices necessary to simulate incoherent noise, with a runtime overhead.
The precision of this approximation is determined by the number of repetitions,
which specifies how many “noisy” state vectors are used. This adds a stochastic
element to the simulation of the noise channels, and we get closer to simulating
the exact noise model as the number of trajectories increases. Depending on the
environments, we choose the number of trajectories so that it is possible to perform
simulations in a reasonable time frame, and specify this number individually for
each of the experiments below. We note that the runtime requirements for CartPole
when simulating this type of noise are especially high, as the number of time steps
in each episode, as well as the number of episodes itself depends strongly on the
performance of the agent. In particular, agents that perform neither very well
nor very poorly, which are exactly the noise configurations we are interested in
studying here, take especially long to simulate, as they do not converge early by
solving the environment, but still take on the order of 100 time steps in each
episode. Therefore we focus our attention mainly on the TSP environment in this
section.

7.4.1 Depolarizing noise

Depolarizing noise affects a quantum state by either replacing it with the completely
mixed state with probability p, or leaving it untouched otherwise [293]. Let ρ be
the density matrix of a qubit, then depolarizing noise is defined by the map

Dp(ρ) = (1− p)ρ+ p
1

2 . (7.19)

We model depolarization noise with Cirq [291] and TFQ [224] by appending a layer
of local depolarizing channels to every qubit after each time step of the computation,
where a time step is defined as the largest set of gates that can be implemented
simultaneously. This implementation takes into account the possibility of cross-talk
between qubits [294]. Also, note that while the use of depolarizing channels alone
may not be a good approximation of real single qubits errors, it may become a
good effective description of the overall noise process for the case where many
qubits and layers are used [295].

In our simulations, we assume that both single- and two-qubits gates are noisy, and
consist of a composition of the ideal gates followed by local depolarizing channels

157

7.4 Incoherent noise

of equal probability p, acting independently on each qubit. In particular, the
application of a depolarizing noise channel is implemented by performing one out
of four actions at each circuit execution (trajectory): do nothing with probability
1− p, or apply at random one of the three Pauli operators with probability p, and
then average over the results. We remark that the average gate error of single-qubit
gates in currently available superconducting quantum computing hardware is of
the order of r ⪅ 0.01, with gate fidelities exceeding > 99%. Finally, we note that
one can relate the depolarisation strength p to the average gate error r over single
qubit Cliffords, as measured by Randomized Benchmarking (RB) [296, 294, 296]
and commonly reported for quantum devices [297, 298], via r = p/2. However, our
circuits do not only use Cliffords, and moreover, estimates for the gate error in RB
depend on the basis gates available on the device. Therefore, one should consider
our simulations with depolarizing noise of strength p as a proxy for a quantum
device whose average error rate r is of the same order of magnitude of p. While a
single-qubit error noise model may not be accurate enough to closely mimic the
behaviour of a real quantum device, it gives us the possibility to study the effect
of single-qubit errors separately, before we go on to study a noise model that also
includes two-qubit gate errors in section 7.4.2.

As mentioned above, simulating incoherent noise has high runtime requirements, so
in the following we limit our studies to: (i) Q-learning in the CartPole environment,
and (ii) the policy gradient method in the TSP environment. We pick these settings
as they were the ones that were more sensitive to Gaussian coherent noise in our
studies in Section 7.3, and in that sense represent the worst case instances from
the previous section. To simulate the noisy quantum circuits, we use the Monte
Carlo sampling as described above, where the number of trajectories used depends
on the environment. As the CartPole environment requires a very high number
of environment interactions (the better the agent, the more circuit evaluations
are required per episode), we use 100 trajectories in this setting. In the TSP
environment, the number of steps in each episode is constant and therefore we can
use a higher number of 1000 trajectories and still perform simulations in a timely
manner.

Figure 7.12 shows results of Q-learning agents trained in the CartPole environment
with various error probabilities p. Agents with a realistic error probability of up to
p = 0.01 still solve the environment in less than 2000 episodes on average. Agents
trained with error probability p = 0.005 reach higher scores almost as quickly as

158

7.4 Incoherent noise

0 1000 2000 3000 4000 5000
Episode

25

50

75

100

125

150

175

200

Sc
or

e

exact
p = 0.005
p = 0.01
p = 0.1

Figure 7.12: Q-learning agents trained with varying probabilities p of depolarization
errors, and five layers of the circuit depicted in Figure 7.2 a). Noise is simulated
with 100 Monte Carlo trajectories. The noisy curves are averaged over 5 agents, the
exact one is averaged over 10 agents as in previous figures.

159

7.4 Incoherent noise

0 200 400 600 800 1000
Episode

1.2

1.4

1.6

1.8

2.0

2.2

2.4

Ra
tio

 to
 o

pt
im

al
 to

ur
 le

ng
th

exact
p = 0.001
p = 0.005
p = 0.01
p = 0.1

Figure 7.13: Policy gradient agents trained in the TSP environment with varying
probabilities p of depolarization error, with one layer of the circuit depicted in
Figure 7.2 c). Noise is simulated with 1000 Monte Carlo trajectories. All curves are
averaged over 10 agents.

160

7.4 Incoherent noise

agents trained in the noise-free setting, but stay somewhat unstable until they
solve the environment after 3500 episodes on average. When the noise probability
is increased to p = 0.1, we see that agents fail to make any learning progress at
all.

Figure 7.13 shows the performance of the policy gradient method under one-qubit
depolarization errors in the TSP environment. In this setting, agents trained
with error probability p = 0.01, as is a realistic assumption on current devices,
perform noticeably worse than agents in the noise-free setting with a drop in
approximation ration of around 0.2 on average. Only when we consider an error
probability of p = 0.001 do we get performance that is almost exactly the same as
that in the noise-free case. Similar to the results of the Q-learning agent in the
CartPole environment, agents trained with an error probability of p = 0.1 show no
meaningful learning progress.

7.4.2 Noise model based on current hardware

After studying the effect of single-qubit depolarization errors in Section 7.4.1, we
now study the performance of the Q-learning algorithm in the TSP environment
in the presence of a more realistic noise model that captures the behaviour of a
near-term superconductive quantum device. The error sources we incorporate into
this noise model are the following: single-qubit and two-qubit depolarization errors,
single qubit amplitude damping error, and measurement noise. While hardware
providers like IBM and Google offer the possibility of simulating noise models of
specific devices, we do not want to take device-specific factors like qubit topology
and native gate sets into account in this work, as the performance in these settings
also depends strongly on the quality of the circuit compiled to the native gate set
and qubit connectivity [299]. Instead, we define a custom noise model based on
gate fidelities published by hardware vendors, but do not take the above details
into account. To determine realistic settings for the error probability of each noise
source, we use calibration data published by IBM [300] at the time of writing. The
noise model used in our simulation is specified as follows:

• Depolarization error: Single qubit depolarization channels with p = 0.001
are applied after every single qubit gate. Two-qubit depolarization errors,
defined by properly adjusting the definition in Equation (7.19), with p2 = 0.01
are applied after every two-qubit gate on the corresponding pair of qubits.

161

7.4 Incoherent noise

Error source a) b) c) d)
Depolarization (1Q) 0.001 0.001 0.01 0.1
Depolarization (2Q) 0.01 0.01 0.1 0.2
Amplitude damping 0.0003 0.03 0.03 0.1
Bitflip (measurement) 0.01 0.01 0.1 0.1

Table 7.1: Error strengths for the configurations of the custom noise model
used in Figure 7.14. Depolarization (1Q) indicates the single qubit depolarising
channel applied after each single-qubit gate, and similarly for 2Q for two-qubit gates.
Configuration a) in bold is based on error rates published by IBM at the time of
writing, as described in the main text.

• Amplitude damping error: Amplitude damping channels with decay
parameter γ = 0.003 are applied after each single- and two-qubit gate on the
corresponding qubits. Such a decay rate is valid for real devices having single
qubit gate durations of t = 35ns, and average qubit decay times T1 ≈ 100µs,
which correspond to a decay parameter of γ = 1− exp(−t/T1) ≈ 0.0003.

• Measurement noise Measurement errors are modeled by appending a
bit-flip channel with probability p = 0.01 to every qubit right before the
measurement process.

We recall that the circuit ansatz for the TSP environment is the one depicted
in Figure 7.2(c), where input information about the edge weights of the TSP
instance is encoded by means of two-qubit gates. We therefore chose to study this
ansatz in the context of a noise model that incorporates two-qubit errors, as we
expect that these types of errors will affect performance of an ansatz that encodes
crucial information in two-qubit gates more severely. Additionally, it is hard to
perform simulations in this setting for the CartPole environment in a reasonable
amount of time, as discussed above. For these reasons, we restrict our attention to
the TSP environment in this section.

Figure 7.14 shows results averaged over five Q-learning agents in the TSP environ-
ment for each of the error probability configurations of the custom noise model
described above. We show the specific error probabilities used for the simulations
in Table 7.1. Configuration a) corresponds to error probabilities that are consistent
with those present on current quantum hardware as described above. Based on
this, we specify three other error probabilities b) - d) by increasing the error on
varying error sources. We note that while the error probabilities themselves in

162

7.4 Incoherent noise

0 250 500 750 1000 1250 1500 1750 2000
Episode

1.2

1.4

1.6

1.8

2.0

2.2

Ra
tio

 to
 o

pt
im

al
 to

ur
 le

ng
th

exact
a)
b)
c)
d)

Figure 7.14: Q-learning agents trained in the TSP environment with one layer of
the circuit depicted in Figure 7.2 c) and custom noise model, using 1000 Monte Carlo
trajectories. The labels indicate the custom noise configurations defined in Table 7.1,
results are averaged over five agents in each curve, except for the exact curve which
is averaged over ten agents as done in previous figures.

configuration a) are consistent with those on current hardware, our simulation is
only an approximation of this error due to the Monte Carlo trajectory sampling
method described in Section 7.4. To perform simulations in a reasonable time
frame, we use 1000 trajectories for each circuit evaluation. The circuit that we
simulate has 145 gates (counting a ZZ-gate as two CNOTs and one Z gate), and
for small error probabilities the chance of applying each of the noise channels is
relatively small. This means that in each trajectory, a relatively small number
of noise channels is applied. Hence we expect that the results in Figure 7.14 are
slightly better than what we would get if the exact noise model was simulated (i.e.,
in the limit of a large number of trajectories, or by considering the full density
matrix).

Looking at the results in Figure 7.14, we see that for configuration a) (blue), the
performance of the agents matches those of the noise-free ones (dotted black)

163

7.5 Conclusions

almost exactly, and the noise model based on realistic error strengths of current
devices does not affect training. We see a slight drop in performance when we
increase the error probability of the amplitude damping channels from 0.0003
to 0.03 (orange), as described in Table 7.1, column b). For configuration c), we
also increase the other remaining error sources’ probabilities, which leads to a
considerable drop in performance. In configuration d), we assume extremely high
error probabilities for each of the noise channels, which leads to a complete failure
of the agents to make any meaningful learning progress in this environment.

7.5 Conclusions

Our goal in this chapter was to evaluate the resilience of variational RL algorithms
to various types of noise that are present on real quantum hardware. First, we
investigated shot noise, which results from the probabilistic nature of quantum
measurements. We introduced a method to reduce the number of shots to train
a Q-learning agent, motivated by the specific structure of the underlying RL
algorithm. Our shot allocation technique enables a more shot-frugal training of
variational Q-learning models with little or no effect on the final performance of
the agents.

After considering shot noise, we moved on to study the effect of Gaussian coherent
errors that can arise on real hardware due to miscalibration of the device, or
imprecise pulse sequences that implement the parameterised gates in the quantum
circuit. We gave an analytic expression for how this type of noise affects the output
of a quantum RL agent, and provided a bound on the standard deviation of the
Gaussian error that elucidates the tolerable magnitude of the error on the output
of a quantum model. We confirm this bound in our simulations, where we study
the effect of various levels of Gaussian perturbations on the performance of training
policy gradient and Q-learning agents in two different environments. For one of
these environments, we find that agents trained with higher noise probabilities
also learn more robust policies and Q-functions, in the sense that under evaluation
of different perturbation levels, these agents achieve optimal or close to optimal
performance more often.

Finally, we studied incoherent noise that emerges in real hardware due to undesired
interactions of the qubits with the surrounding environment, as the device is not
completely shielded from external effects. To this end, we consider single-qubit

164

7.5 Conclusions

depolarization errors, as well as a custom noise model that combines single- and two
qubit depolarization errors, amplitude damping errors, and bitflip (measurement)
errors. For the latter, we perform simulations with realistic error probabilities for
each of the noise channels, in line with data published for IBM devices at the time
of writing.

Overall, we find that the effect of noise on training variational RL algorithms for
Q-learning and the policy gradient method depends strongly on the strength of
the noise, as well as the type of noise itself. For some cases, like decoherence errors
with realistic error probabilities of current devices, the drop in performance is
relatively small. On the other hand, we find that large Gaussian perturbations
as well as errors induced by the probabilistic nature of quantum measurements
can affect performance in highly detrimental ways. Additionally, we find that for
Gaussian coherent noise agents that are trained with higher perturbations learn
more noise-robust policies in some cases, similar to results in classical literature,
where noise is used as a regularization technique.

While our results were performed in a regime that is still efficiently simulable on
classical computers, it is an interesting question for future work to consider the
implications of noise-robustness of large-scale quantum models in light of recent
results which show that in certain settings, the outputs of noisy quantum circuits
can be efficiently approximated classically [50, 301]. This raises the question to
what extent an inherent noise-robustness of hybrid variational quantum machine
learning affects the possibility to achieve a quantum advantage with these types of
models.

On the practical side, the optimization procedures that we used in this work were
the same as those commonly used to train models in noise-free simulations and are
not tailored to account for quantum hardware specific noise. This raises the question
on how optimization methods that are tailored for the special characteristics of
variational quantum models could further improve the performance of these types
of models in a noisy setting. For the optimization of PQC parameters in the
combinatorial optimization or quantum chemistry setting, it is known that some
optmization methods, like simultaneous perturbation stochastic approximation
(SPSA), actually become better with noise. It is an interesting area of future
research to design quantum-specific optimization routines for machine learning
that address or even combat specific types of noise, for example leveraging effective
quantum error mitigation techniques [302, 303, 304]. This work motivates the study

165

7.5 Conclusions

of these types of optimization methods, as well as continued efforts to find learning
tasks where variational RL algorithms can potentially provide an advantage.

166

ch
ap

te
r

8
Conclusion

Throughout this thesis, we have investigated how to design and train variational
quantum machine learning models, with a focus on reinforcement learning. We
identified four main areas that influence the performance of VQAs in Chapter 1: i)
the way in which data is fed in to and read out from the circuit, ii) the structure
of the ansatz of the PQC that is used, iii) the classical optimization method used
to find the parameters of the circuit, and iv) the influence of noise present on
quantum hardware on the training of variational models. We dedicated a chapter
to each of these areas.

In Chapter 4, we studied how the classical optimization routine used in a VQA
can help to mitigate the barren plateau phenomenon for certain types of circuits.
For this, we introduce a method to build the ansatz in an iterative fashion, and
partition the set of parameters that are trained in the circuit in a way that prevents
the onset of barren plateaus during the optimization routine. We compared this
approach to the standard technique of training a fixed ansatz and updating all
parameters in every step, and found that our algorithm achieves a lower error on
the test set, as well as requiring less wall-clock time considering a realistic sampling
rate of a current device.

We address the question of how the data-encoding technique, as well as the choice
of observables to read out actions from a quantum Q-learning agent where the
PQC is used as a Q-function approximator, influence its performance on two
benchmark environments from classical RL literature in Chapter 5. In addition to
this, we establish a theoretical separation between classical and quantum learners
in a Q-learning setting, and perform an in-depth empirical comparison between
quantum Q-learning and the classical DQN algorithm, where we find that the

167

quantum model achieves the same performance as its classical counterpart with a
fraction of the parameters.

After this, we address the question of how to design problem-tailored ansatzes for
a certain input data type, namely weighted graphs, in Chapter 6. In this chapter,
we introduce an ansatz that is equivariant under permutations of the nodes of
the input graphs, meaning that the outcome of the PQC does not depend on
the order in which representations of nodes are fed into the circuit. We establish
a connection to the field of classical geometric deep learning, that is concerned
with the design of efficient NN architectures that preserve certain symmetries.
We study our ansatz in the context of a learning task on graphs, where a QML
model is trained to solve instances of a combinatorial optimization problem by
using reinforcement learning. First, we theoretically study the expressivity of
our model and find that for our ansatz at depth one, there exists a setting of
parameters, for arbitrarily sized instances of the optimization problem that we
study, so that our model produces the optimal solution. After establishing that our
model is theoretically expressive enough to solve instances of the given optimization
problem, we numerically compare our ansatz to general hardware-efficient ansatzes
that are unrelated to the problem structure, and find that our equivariant ansatz
outperforms them by a large margin.

Finally, we turn to the question of how noise that is present on quantum hardware
influences the performance of variational RL models for policy gradients and
Q-learning. This study is motivated by a common folklore in the QML community,
that conjectures that variational QML models are robust to hardware noise to some
degree, due to the classical parameter optimization scheme. In addition, certain
results in the classical literature of training neural networks hint at the possibility
that a small amount of noise can even be used as a method to combat overfitting.
We analytically and numerically study the effect of various noise sources present on
quantum hardware: shot noise that is based on the probabilistic nature of quantum
measurements, coherent errors due to imperfect control of the quantum device, and
incoherent errors that occur due to the device’s interaction with its environment.
We find that there indeed exists a regime where noise does not prevent quantum
RL agents from successfully performing in a given environment, and that there
exist cases when training under noisy conditions leads to more robust policies.
Additionally, we provide an algorithm to flexibly determine the number of shots
required for estimating Q-values, such that the overall number of shots is reduced

168

compared to setting a fixed number of measurements for each circuit evaluation
when training a Q-learning agent.

As alluded to in Chapter 1, the goal of this thesis is to contribute to the knowledge
of how to successfully train variational QML models, with the aim to foster
empirical studies of areas where these types of models can eventually become
useful in the future. This is motivated by theoretical results that show that there,
indeed, are functions that can only be efficiently learned in a quantum setting, but
which are somewhat contrived and not applicable to real-world problems, as well as
the historical development of heuristics and machine learning, which showed that
often large progress is made when improved hardware becomes available. We hope
that, similarly to the development of classical deep learning, the availability of
large-scale quantum hardware will lead to the discovery of interesting and valuable
applications of quantum machine learning.

“We are only one creative algorithm away from valuable near-term
applications.”

– Arute et al. [2]

169

Appendix

Layerwise learning for quantum neural networks

As alluded to in Section 4.1, LL and CDL perform similarly in a perfect simulation
scenario, where we assume neither shot nor hardware noise. Figure 1 a) shows
a comparison of LL and CDL under perfect conditions, i.e. infinite number of
measurements and a batch size that corresponds to the number of samples, which
enables computation of exact gradients. Here, the magnitude of gradients doesn’t
affect the learning process severely, as the Adam optimizer uses adaptive learning
rates for each parameter and can therefore handle different ranges of gradient
magnitudes well as long as there is some variance in the computed gradients. In
this regime, both approaches show similar performance.

The convergence rate of a PQC increases proportionally to the number of parameters
in a model [188], so the number of experiment repetitions is almost equal for LL
and CDL. LL has less parameters and needs more epochs to converge due to this,
whereas CDL needs more calls to the quantum device for one update step, but in
turn needs less epochs to converge. In terms of cross entropy, both LL and CDL
converge to a value of roughly 0.51. The corresponding test error of all approaches,
except for the randomly initialized CDL, reaches almost 0 but doesn’t converge
there and settles around an error of roughly 0.1 eventually, as seen in Figure 1
b).

171

0 2 105 6 105 10 105 14 105

Experiment repetitions

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Cr
os

s e
nt

ro
py

LL, 10 epochs per layer
LL, 20 epochs per layer
LL, 30 epochs per layer
CDL zero initialization
CDL random initialization

(a) cross entropy

0 5 105 15 105 25 105

Experiment repetitions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Te
st

 e
rro

r

LL, 10 epochs per layer
LL, 20 epochs per layer
LL, 30 epochs per layer
CDL zero initialization
CDL random initialization

(b) test error

Figure 1: a) Cross entropy of LL and CDL during training with exact gradient
calculation corresponding to infinite number of measurements. When one assumes
the unphysical situation of infinite measurements (m = ∞) all methods seem to
perform similarly. In particular, we compare LL to CDL with zero and random
initialization, where the initial parameters for the latter are chosen uniformly from
[0, 2π). The hyperparameters for all configurations were set to m = ∞, b = 100 and
η = 0.01. (For computing the number of experiment repetitions as defined in
Section 4.2.3, we drop m.) b) Test error corresponding to the runs shown in Figure
1. This further supports the observation that when one allows unphysical, arbitrary
precision queries(m = ∞), all tuned training strategies seem to perform similarly.

172

Quantum agents in the Gym: A variational quan-
tum algorithm for deep Q-learning

Visualization of a learned Q-function

Pole angle

0.4
0.2

0.0
0.2

0.4 Cart
 po

sit
ion

2
1

0
1

2

Le
ar

ne
d

Q-
va

lu
es

65
70
75
80
85

Pole angle

0.4
0.2

0.0
0.2

0.4 Cart
 ve

loc
ity

2
1

0
1

2

Le
ar

ne
d

Q-
va

lu
es

60
65
70
75
80
85

Pole angle

0.4
0.2

0.0
0.2

0.4 Po
le

an
gu

lar
 ve

loc
ity

2
1

0
1

2

Le
ar

ne
d

Q-
va

lu
es

60
65
70
75
80
85

Figure 2: Visualization of the approximate Q-function learned by a quantum
Q-learning agent solving Cart Pole. Due to the 4 dimensions of the state space in
Cart Pole, we represent the Q-values associated to the actions “left” (green) and
“right” (blue) on 3 subspaces of the state space by fixing unrepresented dimensions to
0 in each plot. As opposed to the analogue values (i.e., unnormalized policy) learned
by policy-gradient PQC agents in this environment [150], the approximate Q-values
appear nicely-behaved, likely due to the stronger constraints that Q-learning has on
well-performing function approximations.

Model hyperparameters

In the following, we give a detailed list of the hyperparameters for each configuration
in fig. 5.3, fig. 5.4, fig. 5.5, fig. 5.6 and fig. 5.7. The hyperparameters that
we searched over for each model were the following (see explanations of each
hyperparameter in table 1):

• Frozen Lake v0 : update model, update target model, η

• Cart Pole v0, quantum model: batch size, update model, update target
model, η, train wd, train wo, ηwd

, ηwo

• Cart Pole v0, classical model: number of units per layer, batch size, update
model, update target model, η

173

Hyperparameter explanation

qubits number of qubits in circuit

layers number of layers

γ discount factor for Q-learning

train wd train weights on the model input as defined in section 5.1.1

train wo train weights on the model output as defined in section 5.1.2

η model parameter learning rate

ηwd
input weight learning rate

ηwo
output weight learning rate

batch size number of samples shown to optimizer at each update

ϵinit initial value for ϵ-greedy policy

ϵdec decay of ϵ for ϵ-greedy policy

ϵmin minimal value of ϵ for ϵ-greedy policy

update model time steps after which model is updated

update target model time steps after which model parameters are copied to target model

size of replay memory size of memory for experience replay

data re-uploading use data re-uploading as defined in section 5.1.1

Table 1: Description of hyperparameters considered in this work

Frozen Lake v0, fig. 5.3 Cart Pole v0, optimal Cart Pole v0, sub-optimal

qubits 4 4 4

layers 5, 10, 15 5 5

γ 0.8 0.99 0.99

train wd no yes, no yes, no

train wo no yes, no yes, no

η 0.001 0.001 0.001

ηwd
– 0.001 0.001

ηwo
– 0.1 0.1

batch size 11 16 16

ϵinit 1 1 1

ϵdec 0.99 0.99 0.99

ϵmin 0.01 0.01 0.01

update model 5 1 10

update target model 10 1 30

size of replay memory 10000 10000 10000

data re-uploading no yes, no yes, no

Table 2: Hyperparameter settings of PQCs in fig. 5.3, fig. 5.4 and fig. 5.5

174

layers 5 10 15 20 25 30

qubits 4 4 4 4 4 4

γ 0.99 0.99 0.99 0.99 0.99 0.99

train wd yes yes yes yes yes yes

train wo yes yes yes yes yes yes

η 0.001 0.001 0.001 0.001 0.001 0.001

ηwd
0.001 0.001 0.001 0.001 0.001 0.001

ηwo
0.1 0.1 0.1 0.1 0.1 0.1

batch size 16 64 32 16 64 16

ϵinit 1 1 1 1 1 1

ϵdec 0.99 0.99 0.99 0.99 0.99 0.99

ϵmin 0.01 0.01 0.01 0.01 0.01 0.01

update model 1 10 10 10 10 10

update target model 1 30 30 30 30 30

size of replay memory 10000 10000 10000 10000 10000 10000

data re-uploading yes yes yes yes yes yes

Table 3: Hyperparameter settings of PQCs in fig. 5.6 a)

units in hidden layers (10, 10) (15, 15) (20, 20) (24, 24) (30, 30) (64, 64)

γ 0.99 0.99 0.99 0.99 0.99 0.99

η 0.001 0.001 0.001 0.001 0.001 0.001

batch size 64 16 64 64 64 16

ϵinit 1 1 1 1 1 1

ϵdec 0.99 0.99 0.99 0.99 0.99 0.99

ϵmin 0.01 0.01 0.01 0.01 0.01 0.01

update model 1 1 1 1 1 1

update target model 1 1 1 1 1 1

size of replay memory 10000 10000 10000 10000 10000 10000

Table 4: Hyperparameter settings of NNs in fig. 5.6 b)

175

Equivariant quantum circuits for learning on weighted
graphs

Additional results on statistical significance of comparison
between EQC and NEQC

To make statements on the statistical significance of the difference between the
performance of the EQC and NEQC shown in Figure 6.5, we perform a two-sample
t-test on the two models for the same instance sizes (i.e., for the data in the two
boxes for each instance size) with the null hypothesis that the averages of the two
distributions are the same. Based on this, we compute p-values to quantify the
statistical significance of the differences between models.

Figure 3 a) shows p-values for the depth-one EQCs and NEQCs from Figure 6.5 b).
For the 5-city instances, we can not reject the null hypothesis. Indeed, it is already
visible by looking at the boxes that the distributions are very similar, which can
be expected as the number of permutations of a graph with five vertices is small.
However, as we scale up the instance size to ten cities, the corresponding p-value
is much smaller than 0.05, which means that we can reject the null hypothesis that
the two distributions have the same average with high confidence. This is also the
case for the instances with twenty cities, where the p-value is less than 0.01.

Figure 3 b) shows p-values for the depth four EQCs and NEQCs from Figure 6.5
d). Again, the p-value of the 5-city instances is very high with 0.74, so that we
can not reject the null hypothesis. Also similarly to the above, the p-values get
smaller as we scale up the instance size. For the depth-four ansatzes, the p-value is
smallest for the twenty city instances, with a value much smaller than 0.05.

To provide additional insight, we also plot the means and their standard error
for both the 1-layer (EQC-1, NEQC-1) and 4-layer (EQC-4, NEQC-4) models in
Figure 6.5. As a rule of thumb, one can expect that when the error bars given by
the standard errors of two means do not overlap, the p-value can be smaller than
0.05, while in the case that they do overlap, the p-value is likely much larger. The
error bars in Figure 4 are in line with this statement, where we see that the error
bars for the five-city instances overlap for both circuit depths, while this is not the
case for the larger instance sizes and in addition the distance between the means
increases for those instance sizes. Remarkably, we also see that the difference

176

TSP5 TSP10 TSP20

1.0

1.1

1.2

1.3

1.4

1.5
Ap

pr
ox

im
at

io
n

ra
tio

p 0.01

p = 0.60

p 1e-5

EQC
NEQC
NN

(a) one layer

TSP5 TSP10 TSP20

1.0

1.1

1.2

1.3

1.4

1.5

Ap
pr

ox
im

at
io

n
ra

tio

p 1e-5

p = 0.74

p = 0.03

EQC
NEQC
NN

(b) four layers

Figure 3: P-values for comparison of EQCs and NEQCs at depth one and four
from Figure 6.5 b) and d).

177

6 8 10 12 14 16 18 20
Instance size

1.02

1.04

1.06

1.08

1.10

1.12

1.14

1.16
Ap

pr
ox

im
at

io
n

ra
tio

EQC-1
NEQC-1
EQC-4
NEQC-4

Figure 4: Mean and standard error of the mean for the one- and four-layer EQCs
and NEQCs in Figure 6.5 b), d).

between the EQC at depths one and four is very small, and that increasing the
circuit depth does not provide much benefit on this learning task.

178

Robustness of quantum reinforcement learning un-
der hardware errors

Gaussian Noise Analysis

In this Appendix we perform the noise analysis of a scalar function whose pa-
rameters are corrupted by independently distributed Gaussian perturbations.
Let f : RM → R be the function under investigation, whose parameters θ =
(θ1, . . . , θM) ∈ RM are corrupted by a Gaussian noise θi → θi + δθi with zero mean
and variance σ2, i.e.

δθi ∼ N (0, σ2) ∀i = 1, . . . ,M ,

E[δθi] = 0 ,

E[δθiδθj] = σ2δij .

(1)

Since the perturbations are independently distributed and Gaussian, all higher
order moments can be evaluated starting from two-point correlators of the form
E[δθiδθj], as dictated by Wick’s formulas for multivariate normal distributions
[305]

E[δθi1 · · · δθi2n+1] = 0 ,

E[δθi1 · · · δθi2n
] =

∑
P

E[δθk1δθk2] · · ·E[δθk2n−1δθk2n
] , (2)

where with P we denote all the possible distinct (2n−1)!! pairings of the n variables,
as these can be used to express all higher order even moments in terms of products of
second moments. Note that all the terms involving an odd number of perturbations
δθi vanish, and only even moments remain. For example, expression (2) for the
fourth-order moment (n = 4) amounts to

E[δθiδθjδθkδθm] = E[δθiδθj]E[δθkδθm] + E[δθiδθk]E[δθjδθm] + E[δθiδθm]E[δθjδθk]

= σ4(δijδkm + δikδjm + δimδjk

)
.

(3)

We now proceed considering the multi dimensional Taylor expansion of the function

179

f(θ + δθ) around the noise-free point. Up to arbitrary order, this reads

f(θ + δθ) = f(θ) +
M∑

i=1

∂f(θ)
∂θi

δθi + 1
2!

M∑
i,j=1

∂2f(θ)
∂θi∂θj

δθiδθj

+ 1
3!

M∑
i,j,k=1

∂3f(θ)
∂θi∂θj∂θk

δθiδθjδθk + (4)

where we used the equal sign because we are considering the full Taylor series, and
we assume that this converges to the true function (this statement can be made
precise by showing that the remainder term of the expansion goes to zero as the
order of expansion goes to infinity).

Before proceeding, we simplify the notation to make the calculation of the Taylor
expansion easier to follow. First, we denote the partial derivatives with respect to
parameter θi as ∂i := ∂/∂θi, and similarly for higher order derivatives, for example
∂ij = ∂2/∂θi∂θj . Also, we suppress the explicit dependence of the function on
θ, using the short-hand f instead of f(θ). At last, we make use of Einstein’
summation notation where repeated indexes imply summation.

With this setup, using Eqs. (1), (2) and (3) in (4), one can evaluate the expectation
value of the function over the perturbations’ distributions as

E[f(θ + δθ)] = f(θ) + ∂if E[δθi] + 1
2∂ijf E[δθiδθj] + 1

3!∂ijkf E[δθiδθjδθk]

+ 1
4!∂ijkmf E[δθiδθjδθkδθm] + . . .

= f(θ) + σ2

2 ∂ijf δij + σ4

4! ∂ijkmf (δijδkm + δikδjm + δimδjk) + . . .

= f(θ) + σ2

2
∑

i

∂2f

∂θ2
i

+ σ4

4! 3
∑

ij

∂4f

∂θ2
i ∂θ

2
j

+ . . .

(5)
where in the last line we simplified the fourth order term as

E[f (4)] = σ4

4! ∂ijkmf
(
δijδkm + δikδjm + δimδjk

)
= σ4

4!

(∑
ik

∂4f

∂θ2
i ∂θ

2
k

+
∑

ij

∂4f

∂θ2
i ∂θ

2
j

+
∑
im

∂4f

∂θ2
i ∂θ

2
m

)

= σ4

4! 3
∑

ij

∂4f

∂θ2
i ∂θ

2
j

.

180

Since the expectation values involving an odd number of perturbations vanish,
only the even order terms survive, and these can be expressed as

E[f (2n)] = σ2n

(2n)! (2n− 1)!!
∑

i1,...,in

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

. (6)

where the coefficient (2n − 1)!! is the number of distinct pairings of 2n objects,
which comes from Eq. Equation (1).

Thus, the full Taylor series can be formally written as

E[f(θ + δθ)] = f(θ) +
∞∑

n=1

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

(7)

= f(θ) + σ2

2 Tr[H(θ)] +
∞∑

n=2

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

,(8)

where we introduced the Hessian matrix H(θ), whose elements are given by
[H(θ)]ij = ∂ijf(θ), and we see that this term represent the first non-vanishing
correction to the function caused by the perturbation.

Our goal is to bound the absolute error

εθ := |E[f(θ + δθ)]− f(θ)| =

∣∣∣∣∣∣
∞∑

n=1

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

∣∣∣∣∣∣(9)

caused by the gaussian noise, and we can do that by using the property that all the
derivatives of most PQC (Parametrized Quantum Circuit) are bounded. In fact,
for those circuits for which a parameter-shift rule holds [? ?], one can show that
any derivative of the function f(θ) = ⟨O⟩ = Tr

[
OU(θ) |0⟩⟨0|U†(θ)

]
obeys∣∣∣∣∂α1+...αM f(θ)

∂θα1
1 . . . ∂θαM

M

∣∣∣∣ ≤ ∥O∥∞ , (10)

where ∥O∥∞ is the infinity norm of the observable, namely its largest absolute
eigenvalue. We give a proof of this below in Sec. 8.

Plugging this in Eq. (9), we can obtain an upper bound to the error εθ as desired.
Indeed, remembering that for even numbers the double factorial can be expressed

181

as (2n− 1)!! = (2n)!/(2nn!), it holds

εθ =

∣∣∣∣∣∣
∞∑

n=1

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

∣∣∣∣∣∣ (11)

≤
∞∑

n=1

σ2n

(2n)! (2n− 1)!!
M∑

i1,...,in=1

∣∣∣∣ ∂2nf(θ)
∂θ2

i1
. . . ∂θ2

in

∣∣∣∣︸ ︷︷ ︸
≤∥O∥∞

≤
∞∑

n=1

σ2n

(2n)! (2n− 1)!! ∥O∥∞ Mn (12)

= ∥O∥∞

∞∑
n=1

1
(2n)!

(2n)!
2nn! (σ2M)n = ∥O∥∞

∞∑
n=1

(Mσ2/2)n

n!

= ∥O∥∞

(
eσ2M/2 − 1

)
=⇒ εθ = |E[f(θ + δθ)]− f(θ)| ≤ ∥O∥∞

(
eMσ2/2 − 1

)
, (13)

where in the last line we used the definition of the exponential function ex =∑∞
n=0

xn

n! .

One can see that the noise variance σ2 must scale as the inverse of the number of
parameters σ2 ∈ O

(
M−1) in order to have small deviations induced by the noise.

Also, note that since the difference between the noise-free function f(θ) and its
perturbed version f(θ + δθ) cannot be larger than twice the maximum eigenvalue
of O, |f(θ + δθ)− f(θ)| ≤ |f(θ + δθ)| + |f(θ)| = 2∥O∥∞, the bound (11) is
informative only as long as exp

[
Mσ2/2

]
− 1 < 2.

It is worth noticing that an identical procedure can be used to bound the average
error obtained by approximating the perturbed function with its first non-vanishing
correction given by the Hessian. Indeed, starting from Eq. (8) are repeating the
same calculation from above, one obtains∣∣∣∣E[f(θ + δθ)]− f(θ)− σ2

2 Tr[H(θ)]
∣∣∣∣ ≤ ∥O∥∞

(
eMσ2/2 − 1− Mσ2

2

)
. (14)

Parameter-Shift rule and bounds to the derivatives

Let f(θ) = Tr
[
OU(θ) |0⟩⟨0|U†(θ)

]
be the expectation value of an observable O on

the parametrized state |ψ(θ)⟩ = U(θ) |0⟩ obtained with a parametrized quantum
circuit U(θ). When the variational parameters θ ∈ RM enter in the quantum
circuit via rotation gates of the form V (θi) = exp[−iθiP/2] with P 2 = 1 being

182

Pauli operators, then the parameter-shift rule can be used to evaluate gradients of
the expectation value [39, 33], as described in Section 2.2.1.1,

∂f(θ)
∂θi

= 1
2

(
f
(
θ + π

2 ei
)
− f

(
θ − π

2 ei
))

, (15)

where ei is the unit vector with zero entries and a one in the i−th position
corresponding to angle θi. Similarly, by applying the parameter-shift rule twice
one can express second order derivatives as follows using four evaluations of the
circuit [280, 306]

∂2f(θ)
∂θiθj

= 1
2

[
∂

∂θi
f
(
θ + π

2 ej
)
− ∂

∂θi
f
(
θ − π

2 ej
)]

(16)

= 1
4[f(θ + π

2 ej + π

2 ei)− f(θ + π

2 ej −
π

2 ei) (17)

−f
(
θ − π

2 ej + π

2 ei
)

+ f
(
θ − π

2 ej −
π

2 ei
)

]. (18)

In particular, for the diagonal elements i = j, one has

∂2f(θ)
∂θ2

i

= 1
4[f(θ + πei)− 2f(θ) + f(θ − πei)]

= 1
2 [f(θ + πei)− f(θ)] , (19)

where we used the fact that f(θ + πei) = f(θ − πei). This last equality can be
seen intuitively from the 2π periodicity of the rotation gates or by direct evaluation.
In fact, let U(θ) = U2 exp[−iθiPi/2]U1 be a factorization of the parametrized
unitary where we isolated the dependence on the parameter θi to be shifted. Then,
since exp[−i 2πP/2] = cosπ I− i sin π P = −I, one has

|ψ(θ − πei)⟩ = U2 exp[−i(θi − π)Pi/2]U1 |0⟩

= U2 exp[−i(θi − π)Pi/2]− exp[−i 2π Pi/2]︸ ︷︷ ︸
I

U1 |0⟩

= −U2 exp[−i(θi − π + 2π)Pi/2]U1 |0⟩

= − |ψ(θ + πei)⟩ ,

(20)

and thus ⟨ψ(θ − πei)|O|ψ(θ − πei)⟩ = ⟨ψ(θ + πei)|O|ψ(θ + πei)⟩.

Hence, using Eq. (19) it is possible to estimate the diagonal elements of the Hessian
matrix with just two different evaluations of the quantum circuit.

183

By repeated application of the parameter-shift rule one can also evaluate arbitrary
higher-order derivatives as linear combinations of circuit evaluations [280, 51]. Let
α = (α1, . . . , αM) ∈ NM be a multi-index keeping track of the orders of derivatives,
and let |α| =

∑M
i=1 αi. Then

∂αf(θ) := ∂|α| f(θ)
∂θα1

1 . . . ∂θαM

M

= 1
2|α|

2|α|∑
m=1

smf(θ̃m) , (21)

where sm ∈ {±1} are signs, and θ̃m are angles obtained by accumulation of shifts
along multiple directions.

Since the output of any circuit evaluation is bounded by the infinity norm
(i.e, the largest absolute eigenvalue) of the observable ∥O∥∞ = max{|oi| , O =∑

i oi |oi⟩⟨oi|}

|f(θ)| = |Tr[O ρ(θ)]| ≤ ∥O∥∞∥ρ(θ)∥1 = ∥O∥∞ ∀θ ∈ RM , (22)

then one can bound the sum in Eq. (21) simply as

|∂αf(θ)| ≤ 1
2|α|

2|α|∑
m=1

∣∣∣f(θ̃m)
∣∣∣ ≤ ∥O∥∞ . (23)

Average value of the Hessian of random PQCs

In this section we derive the formulas (7.16) and (7.17) for the expected value
of the Hessian as shown in the main text. Consider a system of n qubits
and a parametrized quantum circuit with unitary U(θ) ∈ U(2n), where U(2n)
is the group of unitary matrices of dimension 2n. Given a set of parameter
vectors {θ1,θ2, . . . ,θK}, one can construct the corresponding set of unitaries
U = {U1, U2, . . . , UK}, with Ui = U(θi) and clearly U ∈ U(2n).

It is now well known that sampling a parametrized quantum circuit from a random
assignment of the parameters is approximately equal to drawing a random unitary
from the Haar distribution, a phenomenon which is at the root of the insurgence
of barren plateaus (BPs) [48, 229, 44]. Specifically, it is numerically observed that
parametrized quantum circuits behave like unitary 2-designs, that is averaging over
unitaries Ui sampled from U yields the same result of averaging over Haar-random
unitaries, up until second order moments.

As standard in the literature regarding BPs, in the following we assume that the
considered parametrized unitaries (and parts of them) are indeed 2-designs, and so

184

we make use of the following relations for integration over random unitaries [289,
307, 288, 48, 44]

EU [UAU†] =
∫
dµ(U)UAU† = 1Tr[A]

2n
(24)

EU [AUBU†CUDU†] = Tr[BD] Tr[C]A+ Tr[B] Tr[D]AC
22n − 1 (25)

−Tr[BD]AC + Tr[B] Tr[C] Tr[D]A
2n(22n − 1) (26)

Statistics of the Hessian

Let f(θ) = Tr
[
OU(θ) |0⟩⟨0|U(θ)†] and assume that the observable O is such that

Tr[O] = 0 and Tr
[
O2] = 2n, as is the case of measuring a Pauli string. As shown

in Eq. (19), diagonal elements of the Hessian matrix H can be calculated as

Hii = ∂2f(θ)
∂θ2

i

= 1
2[f(θ + πei)− f(θ)] . (27)

For simplicity, from now on we drop the explicit dependence on the parameter
vector θ when not explicitly needed. The variational parameters enter the quantum
circuit via Pauli rotations e−iθiPi/2 with Pi = P †

i and P 2
i = 1, and so the shifted

unitary U(θ + πei) can be rewritten as

U(θ + πei) = ULe
−iπPi/2UR = −i ULPiUR , (28)

where UL and UR form a bipartition of the circuit at the position of the shifted
angle, so that U(θ) = ULUR.

Assuming that the set of unitaries UL generated by UL is at least a 1-design, one
has that

EUL
[f(θ + πei)] = EUL

[
Tr
[
OULPiUR |0⟩⟨0|U†

RPiU
†
L

]]
(29)

= Tr
[
OEUL

[
ULPiUR |0⟩⟨0|U†

RPiU
†
L

]]
(30)

= Tr

O Tr
[
PiUR |0⟩⟨0|U†

RPi

]
1

2n

 = Tr[O]
2n

= 0 , (31)

where in the first line we exchanged the trace and the expectation value since
both are linear operations, and in the second line we made use of Eq. (24) for the
first moment of the Haar distribution. Similarly, one can show that if UR forms a

185

1-design, then averaging over it yields the same result, namely EUR
[f(θ+πei)] = 0.

The same calculation for f(θ) shows that EUR
[f(θ)] = EUL

[f(θ)] = 0.

Thus, for every diagonal element of the Hessian, if either UL or UR is a 1-design
(that is Eq. (24) hold), then its expectation value vanishes

EUR,UL
[Hii] = 0 ∀i if either UL or UR is a 1-design. (32)

The variance of the diagonal elements can be calculated in a similar manner, even
though the calculation is more involved. Substituting Eq. (27) in the defition of
the variance, one obtains

Var[Hii] := E[H2
ii]− E[Hii]2 = E[H2

ii]

= 1
4
[
E[f(θ + πei)2] + E[f(θ)2]− 2E[f(θ + πei)f(θ)]

]
. (33)

In order to use Eq. (26) for second moment integrals, we can rewrite these expec-
tation values as follows

E[f(θ + πei)2] = E
[
Tr
[
OULPiUR |0⟩⟨0|U†

RPiU
†
L

]2
]

= E
[
Tr
[
OULPiUR |0⟩⟨0|U†

RPiU
†
L

]
⟨0|U†

RPiU
†
LOULPiUR|0⟩

]
= E

[
Tr
[
OULPiUR |0⟩⟨0|U†

RPiU
†
LOULPiUR |0⟩⟨0|U†

RPiU
†
L

]]
= Tr

[
E[OULPiUR |0⟩⟨0|U†

RPiU
†
LOULPiUR |0⟩⟨0|U†

RPiU
†
L]
]
, (34)

and similarly for the remaining two terms. Assuming that the set of unitaries UL

generated by UL is a 2-design, then

EUL
[f(θ + πei)2] = Tr

EUL
[OUL PiUR |0⟩⟨0|U†

RPi︸ ︷︷ ︸
B

U†
LOUL PiUR |0⟩⟨0|U†

RPi︸ ︷︷ ︸
B

U†
L]

(35)

= Tr
[

Tr
[
B2]Tr[O]O + Tr[B]2O2

22n − 1 −
Tr
[
B2]O2 + Tr[B]2 Tr[O]O

2n(22n − 1)

]
(36)

=
Tr[O]2 + Tr

[
O2]

22n − 1 −
Tr
[
O2]+ Tr[O]2

2n(22n − 1) = 1
2n + 1 , (37)

where in the second line we made use of Eq. (26), and the third line the used that
Tr[B] = Tr

[
B2] = 1 since B = PiUR |0⟩⟨0|U†

RPi is a projector, and that Tr[O] = 0

186

and Tr
[
O2] = 2n. Similarly, one can show that integration over UR yields the same

result. Also, the same calculation leads to EUL
[f(θ)2] = EUR

[f(θ)2] = 1/(2n + 1).
Thus, if either UL or UR is a 2-design then

EUR,UL
[f(θ)2] = EUR,UL

[f(θ+πei)2] = 1
2n + 1 ∀i if either UL or UR is a 2-design.

(38)

Now we evaluate the correlation term E[f(θ + πei)f(θ)]. If UL is a 2-design,
then

EUL
[f(θ + πei)f(θ)] = Tr

[
EUL

[
OULPiUR |0⟩⟨0|U†

RU
†
LOULUR |0⟩⟨0|U†

RPiU
†
L

]]
= Tr

Tr
[
PiUR |0⟩⟨0|U†

R

]2
O2

22n − 1 − O2

2n(22n − 1)

= 1

22n − 1

[
2n Tr

[
PiUR |0⟩⟨0|U†

R

]2
− 1
]
. (39)

While if UR is a 2-design instead it holds

EUR
[f(θ + πei)f(θ)] = Tr

[
OULPi EUR

[
UR |0⟩⟨0|U†

RU
†
LOULUR |0⟩⟨0|U†

R

]
PiU

†
L

]
= Tr

[
OULPi

(2n − 1)U†
LOUL

2n(22n − 1) PiU
†
L

]

= 1
2n(2n + 1) Tr

[
OULPiU

†
LOULPiU

†
L

]
. (40)

If both of them are 2-designs, then continuing from Eq. (40), one obtains

EUL,UR
[f(θ + πei)f(θ)] = 1

2n(2n + 1) Tr
[
EUL

[
OULPiU

†
LOULPiU

†
L

]]
= 1

2n(2n + 1) Tr
[

Tr[Pi]2O2 + Tr
[
P 2

i

]
Tr[O]O

22n − 1 −
Tr
[
P 2

i

]
O2 + Tr[Pi]2 Tr[O]O
2n(22n − 1)

]

= − 1
2n(2n + 1)

Tr
[
P 2

i

]
Tr
[
O2]

2n(22n − 1) = − 1
(2n + 1)(22n − 1) ∈ O

(
2−3n

)
(41)

187

Finally, plugging Eqs. (39), (40) and (41) in Eq. (33), one has ∀i = 1, . . . ,M

VarUL,UR
[Hii] = 1

2E[f(θ)2]− 1
2E[f(θ + πei)f(θ)]

= 1
2(2n + 1) −

1
2

1
22n − 1

[
2n Tr

[
PiUR |0⟩⟨0|U†

R

]2
− 1
]
∀i , if UL 2-design

1
2n(2n + 1) Tr

[
OULPiU

†
LOULPiU

†
L

]
∀i , if UR 2-design

− 1
(2n + 1)(22n − 1) ∀i , if UL,UR 2-designs

(42)

where UR = U(i)
R and UL = U(i)

L are defined as in Eq. (28) and actually depend on
the index i of the parameter.

Not surprisingly, as it happens for first order derivatives, also second order deriva-
tives of PQCs are found to be exponentially vanishing [51, 48], as from Eq. (42)
one can check that Var[Hii] ∈ O(2−n).

Statistics of the trace of the Hessian

The average value of the trace of the Hessian is easily found to be zero using
Eq. (32), in fact

EUR,UL
[Tr[H]] =

M∑
i=1

E
U

(i)
R

,U
(i)
L

[Hii] = 0 , (43)

where we assume that for every parameter i either U(i)
R or U(i)

L is a 1-design. The
variance of the trace is instead

VarUR,UL
[Tr[H]] = Var

[
M∑

i=1
Hii

]
=

M∑
i=1

Var[Hii] + 2
M∑

i<j

Cov[HiiHjj] . (44)

We can upper bound this quantity using the covariance inequality [308],

|Cov[Hii, Hjj]| ≤
√

Var[Hii] Var[Hjj] ≈ Var[Hii] ,

were we assumed that Var[Hii] ≈ Var[Hjj]∀i, j. Using that Var[Hii] ∈ O(2−n)
one finally has

VarUR,UL
[Tr[H]] ≤

M∑
i=1

Var[Hii] + 2
M∑

i<j

Var[Hii] ∈ O
(
M2

2n

)
. (45)

188

Alternatively, one can obtain a tighter yet qualitative approximation by explicitly
considering the nature of the sums in Eq. (44). First, by using Eq. (27), the
covariance term is explicitly

Cov[Hii, Hjj] = E[HiiHjj]

= 1
4E[(fi − f)(fj − f)]

= 1
4E[f2] + 1

4E[fifj]− 1
4E[fif]− 1

4E[fjf] ,

(46)

where for ease of notation we defined fi,j = f(θ + πei,j) and f = f(θ). Note that
except for the first term which is always positive, all remaining correlations terms
can be both positive and negative. Also, all of these terms are bounded from above
by the same quantity, as via Cauchy-Schwarz it follows

|E[fifj]| ≤
√
E[f2

i]E[f2
j] = 1

2n + 1 and |E[fif]| ≤
√

E[f2
i]E[f2] = 1

2n + 1 ,
(47)

where we have used E[f2] = E[f2
i] = 1/(2n + 1) from Eq. (38). Then, the variance

can be written as

VarUR,UL
[Tr[H]] =

M∑
i=1

Var[Hii] + 2
M∑

i<j

E[HiiHjj]

=
M∑

i=1

E[f2]− E[fif]
2 + 2

M∑
i<j

E[f2] + E[fifj]− E[fif]− E[fjf]
4

= 1
2

 M∑
i=1

+
M∑

i<j

E[f2]− 1
2

 M∑
i=1

E[fif] +
M∑

i<j

E[fif] +
M∑

i<j

E[fjf]

+ 1
2

M∑
i<j

E[fifj]

= M(M + 1)
4 E[f2]− M

2

M∑
i=1

E[fif] + 1
2

M∑
i<j

E[fifj]︸ ︷︷ ︸
∆

. (48)

Numerical simulations In addition to Figure 7.6 in the main text, in Figure 5
we report numerical evidence for the trace of the Hessian for two common hardware-
efficient parametrized quantum circuit ansatzes. The histograms represent the
frequency of obtaining a given value of the trace of the Hessian Tr[H(θ)] upon
random assignments of the parameters. The length of the arrows are, respectively:
“Numerical 2σ" (black solid line) twice the statistical standard deviation computed
from the numerical results, “Approximation" (dashed red) twice the square root of

189

−10 0 10
Tr[H]

0

50

100

150

200

250
Numerical 2σ

Approximation

Bound

Layer

Rx

Rx

Rx

Rx

Rx

−20 −10 0 10 20
Tr[H]

0

50

100

150

200

250

300
Numerical 2σ

Approximation

Bound

Layer

Ry Ry

Ry Ry Ry

Ry Ry Ry

Ry Ry Ry

Ry Ry

Figure 5: Simulation results of evaluating the trace of the Hessian matrix for two
different hardware-efficient ansatzes with random values of the parameters. The
plot on the left is obtained using the layer template shown in the figure for n = 6
qubits and l = 6 layers. The plot on the right instead with n = 5 and l = 5 layers of
the template shown in the corresponding inset. The simulations are performed by
sampling 2000 random parameter vectors θm with θi ∼ Unif[0, 2π[, evaluating the
trace of the Hessian matrix Tr[H(θ)], and then building the histogram to show its
frequency distribution. In both experiments the measured observable is Z⊗n. The
length of the arrows are respectively: “Numerical 2σ" (black solid line) twice the
numerical standard deviation, “Approximation" (dashed red) twice the square root
of the approximation in Eq. (49), “Bound" (dashed-dotted green) twice the square
root of the upper Bound in Eq. (45). These parametrized circuits correspond to the
templates BasicEntanglinLayer and Simplified2Design defined in Pennylane [?
], and used for example in [44] to study barren plateaus.

190

the Eq. (48) with ∆ = 0, “Bound" (dashed-dotted green) twice the square root of
the upper Bound in Eq. (45).

All simulations confirm the bound (45), and, more interestingly, both the circuit
on the left of Fig. 5 and the one in Fig. 7.6 in the main text, have a numerical
variance which is very well approximated by Eq. (48) with ∆ = 0. We conjecture
this is due to the fact that all correlation terms in Eq. (48) are roughly of the
same order of magnitude (see Eq. (47)), and can be either positive and negative,
depending on the parameter and the specifics of the ansatz. Thus, one can expect
the whole contribution to either vanish ∆ ≈ 0, or be negligible with respect to the
leading term. If this is the case, then substituting E[f2] = 1/(2n + 1), the variance
of the Hessian is approximately

VarUR,UL
[Tr[H]] ≈ M(M + 1)

4 E[f2] = M(M + 1)
4(2n + 1) ≈

1
4
M2

2n
, (49)

which is four times smaller then the upper bound Eq. (45), but clearly has the
same scaling. While we numerically verified it also at other number of qubits, more
investigations are needed to understand if and when this approximation holds, and
we leave a detailed study of this phenomenon for future work.

191

Additional results for flexible vs. fixed number of shots in
Q-learning

0 1000 2000 3000 4000 5000

25

50

75

100

125

150

175

200

exact
100 shots
100 max shots

Figure 6: Performance of agents trained with a fixed number of 100 shots (blue)
and mmax = 100 with flexible shot allocation (purple), compared to model trained
without shot noise (black dotted curve).

192

Visualization of CartPole policies obtained with Q-learning

(a) σ = 0

(b) σ = 0.2

Figure 7: Visualization of the Q-functions learned in the noise-free (a) and noisy
(b) settings. The red surface shows Q-values for pole angle and cart position, orange
for pole angle and cart velocity, and magenta for pole angle and pole velocity.

193

Bibliography

[1] Peter W Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM review, 41(2):303–332,
1999.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin,
Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A
Buell, et al. Quantum supremacy using a programmable superconducting
processor. Nature, 574(7779):505–510, 2019.

[3] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao
Peng, Yi-Han Luo, Jian Qin, Dian Wu, Xing Ding, Yi Hu, et al. Quantum
computational advantage using photons. Science, 370(6523):1460–1463, 2020.

[4] Lov K Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, pages 212–219, 1996.

[5] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm
for linear systems of equations. Physical review letters, 103(15):150502, 2009.

[6] Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. Quantum algo-
rithms for supervised and unsupervised machine learning. arXiv preprint
arXiv:1307.0411, 2013.

[7] Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vec-
tor machine for big data classification. Physical review letters, 113(13):130503,
2014.

[8] Vittorio Giovannetti, Seth Lloyd, and Lorenzo Maccone. Quantum random
access memory. Physical review letters, 100(16):160501, 2008.

[9] Scott Aaronson. Read the fine print. Nature Physics, 11(4):291–293, 2015.

194

BIBLIOGRAPHY

[10] Ewin Tang. A quantum-inspired classical algorithm for recommendation
systems. In Proceedings of the 51st annual ACM SIGACT symposium on
theory of computing, pages 217–228, 2019.

[11] Ainesh Bakshi and Ewin Tang. An improved classical singular value trans-
formation for quantum machine learning. arXiv preprint arXiv:2303.01492,
2023.

[12] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

[13] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner
Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen,
Jakob S Kottmann, Tim Menke, et al. Noisy intermediate-scale quantum
(nisq) algorithms. arXiv preprint arXiv:2101.08448, 2021.

[14] Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C Benjamin,
Suguru Endo, Keisuke Fujii, Jarrod R McClean, Kosuke Mitarai, Xiao Yuan,
Lukasz Cincio, et al. Variational quantum algorithms. Nature Reviews
Physics, 3(9):625–644, 2021.

[15] E. Farhi, J. Goldstone, and S. Gutmann. A Quantum Approximate Opti-
mization Algorithm. Preprint at arXiv:1411.4028, 2014.

[16] Zhihui Wang, Stuart Hadfield, Zhang Jiang, and Eleanor G Rieffel. Quantum
approximate optimization algorithm for maxcut: A fermionic view. Physical
Review A, 97(2):022304, 2018.

[17] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor Rieffel, Davide
Venturelli, Rupak Biswas, Stuart Hadfield, Zhihui Wang, Bryan O’Gorman,
Eleanor G. Rieffel, Davide Venturelli, and Rupak Biswas. From the Quantum
Approximate Optimization Algorithm to a Quantum Alternating Operator
Ansatz. Algorithms, 12(2):34, feb 2019.

[18] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi
Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational
eigenvalue solver on a photonic quantum processor. Nature communications,
5:4213, 2014.

195

BIBLIOGRAPHY

[19] M-H Yung, J Casanova, Antonio Mezzacapo, J McClean, L Lamata,
A Aspuru-Guzik, and E Solano. From transistor to trapped-ion computers
for quantum chemistry. Scientific Reports, 4(3589):1–7, 2014.

[20] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-
Guzik. The theory of variational hybrid quantum-classical algorithms. New
Journal of Physics, 18(2):023023, 2016.

[21] P. J. J. O’Malley, R. Babbush, I. D. Kivlichan, J. Romero, J. R. McClean,
R. Barends, J. Kelly, P. Roushan, A. Tranter, N. Ding, et al. Scalable
quantum simulation of molecular energies. Physical Review X, 6(3):031007,
2016.

[22] Raffaele Santagati, Jianwei Wang, Antonio A. Gentile, Stefano Paesani,
Nathan Wiebe, Jarrod R. McClean, Sam Morley-Short, Peter J. Shad-
bolt, Damien Bonneau, Joshua W. Silverstone, David P. Tew, Xiaoqi Zhou,
Jeremy L. O’Brien, and Mark G. Thompson. Witnessing eigenstates for
quantum simulation of hamiltonian spectra. Science Advances, 4:1, 2018.

[23] Jonathan Romero, Jonathan P Olson, and Alan Aspuru-Guzik. Quantum
autoencoders for efficient compression of quantum data. Quantum Science
and Technology, 2(4):045001, 2017.

[24] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua
Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini. Hierarchical
quantum classifiers. npj Quantum Information, 4(1):65, dec 2018.

[25] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit Born
machines. Physical Review A, 98(6):062324, dec 2018.

[26] Vojtěch Havlíček, Antonio D Córcoles, Kristan Temme, Aram W Harrow,
Abhinav Kandala, Jerry M Chow, and Jay M Gambetta. Supervised learning
with quantum-enhanced feature spaces. Nature, 567(7747):209–212, 2019.

[27] Marcello Benedetti, Edward Grant, Leonard Wossnig, and Simone Severini.
Adversarial quantum circuit learning for pure state approximation. New
Journal of Physics, 21(4):043023, apr 2019.

[28] Brian Coyle, Daniel Mills, Vincent Danos, and Elham Kashefi. The born
supremacy: Quantum advantage and training of an ising born machine. npj
Quantum Information, 6(1):1–11, 2020.

196

BIBLIOGRAPHY

[29] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre,
George Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, et al. Mastering the game of go with deep
neural networks and tree search. nature, 529(7587):484–489, 2016.

[30] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin
Žídek, Anna Potapenko, et al. Highly accurate protein structure prediction
with alphafold. Nature, 596(7873):583–589, 2021.

[31] Kathryn Tunyasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal
Zielinski, Augustin Žídek, Alex Bridgland, Andrew Cowie, Clemens Meyer,
Agata Laydon, et al. Highly accurate protein structure prediction for the
human proteome. Nature, 596(7873):590–596, 2021.

[32] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical text-conditional image generation with clip latents. arXiv
preprint arXiv:2204.06125, 2022.

[33] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan
Killoran. Evaluating analytic gradients on quantum hardware. Physical
Review A, 99(3):032331, mar 2019.

[34] Kevin J Sung, Jiahao Yao, Matthew P Harrigan, Nicholas C Rubin, Zhang
Jiang, Lin Lin, Ryan Babbush, and Jarrod R McClean. Using models to
improve optimizers for variational quantum algorithms. Quantum Science
and Technology, 5(4):044008, 2020.

[35] Xavier Bonet-Monroig, Hao Wang, Diederick Vermetten, Bruno Senjean,
Charles Moussa, Thomas Bäck, Vedran Dunjko, and Thomas E O’Brien.
Performance comparison of optimization methods on variational quantum
algorithms. arXiv preprint arXiv:2111.13454, 2021.

[36] Aidan Pellow-Jarman, Ilya Sinayskiy, Anban Pillay, and Francesco Petruc-
cione. A comparison of various classical optimizers for a variational quantum
linear solver. Quantum Information Processing, 20(6):1–14, 2021.

[37] Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, Hsi-Sheng Goan,
and Ying-Jer Kao. Variational quantum reinforcement learning via evolution-
ary optimization. Machine Learning: Science and Technology, 3(1):015025,
2022.

197

BIBLIOGRAPHY

[38] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic
Optimization. In International Conference on Learning Representations,
2015.

[39] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii.
Quantum circuit learning. Physical Review A, 98(3):032309, 2018.

[40] Gavin E Crooks. Gradients of parameterized quantum gates us-
ing the parameter-shift rule and gate decomposition. arXiv preprint
arXiv:1905.13311, 2019.

[41] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush,
and Hartmut Neven. Barren plateaus in quantum neural network training
landscapes. Nature Communications, 9(1):4812, dec 2018.

[42] Aram W. Harrow and Richard A. Low. Random Quantum Circuits are Ap-
proximate 2-designs. Communications in Mathematical Physics, 291(1):257–
302, oct 2009.

[43] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan
Ding, Zhang Jiang, Michael J. Bremner, John M. Martinis, and Hartmut
Neven. Characterizing quantum supremacy in near-term devices. Nature
Physics, 14(6):595–600, jun 2018.

[44] Marco Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J Coles.
Cost function dependent barren plateaus in shallow parametrized quantum
circuits. Nature communications, 12(1):1–12, 2021.

[45] AV Uvarov and Jacob D Biamonte. On barren plateaus and cost function lo-
cality in variational quantum algorithms. Journal of Physics A: Mathematical
and Theoretical, 54(24):245301, 2021.

[46] Zoë Holmes, Andrew Arrasmith, Bin Yan, Patrick J Coles, Andreas Albrecht,
and Andrew T Sornborger. Barren plateaus preclude learning scramblers,
arxiv preprints. arXiv preprint arXiv:2009.14808, 2020.

[47] Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe. Entanglement-
induced barren plateaus. PRX Quantum, 2(4):040316, 2021.

[48] Zoë Holmes, Kunal Sharma, Marco Cerezo, and Patrick J Coles. Connecting
ansatz expressibility to gradient magnitudes and barren plateaus. PRX
Quantum, 3(1):010313, 2022.

198

BIBLIOGRAPHY

[49] Samson Wang, Enrico Fontana, Marco Cerezo, Kunal Sharma, Akira Sone,
Lukasz Cincio, and Patrick J Coles. Noise-induced barren plateaus in
variational quantum algorithms. Nature communications, 12(1):1–11, 2021.

[50] Daniel Stilck França and Raul Garcia-Patron. Limitations of optimization
algorithms on noisy quantum devices. Nature Physics, 17(11):1221–1227,
2021.

[51] Marco Cerezo and Patrick J Coles. Higher order derivatives of quantum
neural networks with barren plateaus. Quantum Science and Technology,
6(3):035006, 2021.

[52] Andrew Arrasmith, M Cerezo, Piotr Czarnik, Lukasz Cincio, and Patrick J
Coles. Effect of barren plateaus on gradient-free optimization. Quantum,
5:558, 2021.

[53] Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello
Benedetti. An initialization strategy for addressing barren plateaus in
parametrized quantum circuits. Quantum, 3:214, 2019.

[54] Tyler Volkoff and Patrick J Coles. Large gradients via correlation in ran-
dom parameterized quantum circuits. Quantum Science and Technology,
6(2):025008, 2021.

[55] Iris Cong, Soonwon Choi, and Mikhail D Lukin. Quantum convolutional
neural networks. Nature Physics, 15(12):1273–1278, 2019.

[56] Arthur Pesah, M Cerezo, Samson Wang, Tyler Volkoff, Andrew T Sornborger,
and Patrick J Coles. Absence of barren plateaus in quantum convolutional
neural networks. Physical Review X, 11(4):041011, 2021.

[57] Louis Schatzki, Martin Larocca, Frederic Sauvage, and M Cerezo. Theoretical
guarantees for permutation-equivariant quantum neural networks. arXiv
preprint arXiv:2210.09974, 2022.

[58] Stefan H Sack, Raimel A Medina, Alexios A Michailidis, Richard Kueng, and
Maksym Serbyn. Avoiding barren plateaus using classical shadows. PRX
Quantum, 3(2):020365, 2022.

[59] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approxi-
mate optimization algorithm. arXiv preprint arXiv:1411.4028, 2014.

199

BIBLIOGRAPHY

[60] Gavin E Crooks. Performance of the quantum approximate optimization
algorithm on the maximum cut problem. arXiv preprint arXiv:1811.08419,
2018.

[61] Fernando G. Brandao, Michael Broughton, Edward Farhi, Sam Gutmann,
and Hartmut Neven. For fixed control parameters the quantum approximate
optimization algorithm’s objective function value concentrates for typical
instances. arXiv preprint arXiv:1812.04170, 2018.

[62] Stuart Hadfield, Zhihui Wang, Bryan O’Gorman, Eleanor G Rieffel, Davide
Venturelli, and Rupak Biswas. From the quantum approximate optimization
algorithm to a quantum alternating operator ansatz. Algorithms, 12(2):34,
2019.

[63] Gian Giacomo Guerreschi and Anne Y Matsuura. Qaoa for max-cut requires
hundreds of qubits for quantum speed-up. Scientific reports, 9(1):1–7, 2019.

[64] Román Orús, Samuel Mugel, and Enrique Lizaso. Quantum computing for
finance: Overview and prospects. Reviews in Physics, 4:100028, 2019.

[65] Michael Streif, Sheir Yarkoni, Andrea Skolik, Florian Neukart, and Mar-
tin Leib. Beating classical heuristics for the binary paint shop problem
with the quantum approximate optimization algorithm. Physical Review A,
104(1):012403, 2021.

[66] Andre Luckow, Johannes Klepsch, and Josef Pichlmeier. Quantum computing:
Towards industry reference problems. Digitale Welt, 5(2):38–45, 2021.

[67] Constantin Dalyac, Loïc Henriet, Emmanuel Jeandel, Wolfgang Lechner,
Simon Perdrix, Marc Porcheron, and Margarita Veshchezerova. Qualifying
quantum approaches for hard industrial optimization problems. a case study
in the field of smart-charging of electric vehicles. EPJ Quantum Technology,
8(1):12, 2021.

[68] Matthew P Harrigan, Kevin J Sung, Matthew Neeley, Kevin J Satzinger,
Frank Arute, Kunal Arya, Juan Atalaya, Joseph C Bardin, Rami Barends,
Sergio Boixo, et al. Quantum approximate optimization of non-planar graph
problems on a planar superconducting processor. Nature Physics, 17(3):332–
336, 2021.

200

BIBLIOGRAPHY

[69] Sepehr Ebadi, Alexander Keesling, Madelyn Cain, Tout T Wang, Harry
Levine, Dolev Bluvstein, Giulia Semeghini, Ahmed Omran, J-G Liu, Rhine
Samajdar, et al. Quantum optimization of maximum independent set using
rydberg atom arrays. Science, page eabo6587, 2022.

[70] Ying Li and Simon C Benjamin. Efficient variational quantum simulator
incorporating active error minimization. Physical Review X, 7(2):021050,
2017.

[71] Harper R Grimsley, Sophia E Economou, Edwin Barnes, and Nicholas J
Mayhall. An adaptive variational algorithm for exact molecular simulations
on a quantum computer. Nature communications, 10(1):1–9, 2019.

[72] Arthur G Rattew, Shaohan Hu, Marco Pistoia, Richard Chen, and Steve
Wood. A domain-agnostic, noise-resistant, hardware-efficient evolutionary
variational quantum eigensolver. arXiv preprint arXiv:1910.09694, 2019.

[73] Google AI Quantum, Collaborators*†, Frank Arute, Kunal Arya, Ryan
Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Sergio Boixo,
Michael Broughton, Bob B Buckley, et al. Hartree-fock on a superconducting
qubit quantum computer. Science, 369(6507):1084–1089, 2020.

[74] Maria Schuld, Alex Bocharov, Krysta M Svore, and Nathan Wiebe. Circuit-
centric quantum classifiers. Physical Review A, 101(3):032308, 2020.

[75] Andrea Skolik, Sofiene Jerbi, and Vedran Dunjko. Quantum agents in the
gym: a variational quantum algorithm for deep q-learning. Quantum, 6:720,
2022.

[76] André Sequeira, Luis Paulo Santos, and Luís Soares Barbosa. Variational
quantum policy gradients with an application to quantum control. arXiv
preprint arXiv:2203.10591, 2022.

[77] Asel Sagingalieva, Andrii Kurkin, Artem Melnikov, Daniil Kuhmistrov,
Michael Perelshtein, Alexey Melnikov, Andrea Skolik, and David Von Dollen.
Hyperparameter optimization of hybrid quantum neural networks for car
classification. arXiv preprint arXiv:2205.04878, 2022.

[78] Kristan Temme, Sergey Bravyi, and Jay M Gambetta. Error mitigation for
short-depth quantum circuits. Physical review letters, 119(18):180509, 2017.

201

BIBLIOGRAPHY

[79] Suguru Endo, Simon C Benjamin, and Ying Li. Practical quantum error
mitigation for near-future applications. Physical Review X, 8(3):031027,
2018.

[80] Philippe Suchsland, Francesco Tacchino, Mark H Fischer, Titus Neupert,
Panagiotis Kl Barkoutsos, and Ivano Tavernelli. Algorithmic error mitigation
scheme for current quantum processors. Quantum, 5:492, 2021.

[81] Ryuji Takagi, Suguru Endo, Shintaro Minagawa, and Mile Gu. Fundamental
limits of quantum error mitigation. npj Quantum Information, 8(1):1–11,
2022.

[82] Yihui Quek, Daniel Stilck França, Sumeet Khatri, Johannes Jakob Meyer,
and Jens Eisert. Exponentially tighter bounds on limitations of quantum
error mitigation. arXiv preprint arXiv:2210.11505, 2022.

[83] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and
machine learning, volume 4. Springer, 2006.

[84] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT
Press, 2022.

[85] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

[86] Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal,
30(10):947–954, 1960.

[87] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning
representations by back-propagating errors. Nature, 323(6088):533–536, oct
1986.

[88] Sepp Hochreiter. The vanishing gradient problem during learning recurrent
neural nets and problem solutions. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 6(02):107–116, 1998.

[89] Siddharth Krishna Kumar. On weight initialization in deep neural networks.
arXiv preprint arXiv:1704.08863, 2017.

[90] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier
neural networks. In Proceedings of the fourteenth international conference
on artificial intelligence and statistics, pages 315–323. JMLR Workshop and
Conference Proceedings, 2011.

202

http://www.deeplearningbook.org

BIBLIOGRAPHY

[91] Alex Graves and Jürgen Schmidhuber. Offline handwriting recognition with
multidimensional recurrent neural networks. Advances in neural information
processing systems, 21, 2008.

[92] George Cybenko. Approximation by superpositions of a sigmoidal function.
Mathematics of control, signals and systems, 2(4):303–314, 1989.

[93] Kurt Hornik. Approximation capabilities of multilayer feedforward networks.
Neural networks, 4(2):251–257, 1991.

[94] Ken-Ichi Funahashi. On the approximate realization of continuous mappings
by neural networks. Neural networks, 2(3):183–192, 1989.

[95] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedfor-
ward networks are universal approximators. Neural networks, 2(5):359–366,
1989.

[96] Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The
expressive power of neural networks: A view from the width. Advances in
neural information processing systems, 30, 2017.

[97] Vitaly Maiorov and Allan Pinkus. Lower bounds for approximation by mlp
neural networks. Neurocomputing, 25(1-3):81–91, 1999.

[98] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and
the bias/variance dilemma. Neural computation, 4(1):1–58, 1992.

[99] Richard Bellman. Dynamic programming. Science, 153(3731):34–37, 1966.

[100] Michael M Bronstein, Joan Bruna, Taco Cohen, and Petar Veličković. Geo-
metric deep learning: Grids, groups, graphs, geodesics, and gauges. arXiv
preprint arXiv:2104.13478, 2021.

[101] David J Gross. The role of symmetry in fundamental physics. Proceedings
of the National Academy of Sciences, 93(25):14256–14259, 1996.

[102] Kunihiko Fukushima and Sei Miyake. Neocognitron: A self-organizing neural
network model for a mechanism of visual pattern recognition. In Competition
and cooperation in neural nets, pages 267–285. Springer, 1982.

[103] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E
Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied
to handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

203

BIBLIOGRAPHY

[104] Yann LeCun, Yoshua Bengio, et al. Convolutional networks for images,
speech, and time series. The handbook of brain theory and neural networks,
3361(10):1995, 1995.

[105] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini. The graph neural network model. IEEE transactions
on neural networks, 20(1):61–80, 2008.

[106] Elman Mansimov, Omar Mahmood, Seokho Kang, and Kyunghyun Cho.
Molecular geometry prediction using a deep generative graph neural network.
Scientific reports, 9(1):1–13, 2019.

[107] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang,
and S Yu Philip. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems, 32(1):4–24, 2020.

[108] Quentin Cappart, Didier Chételat, Elias Khalil, Andrea Lodi, Christopher
Morris, and Petar Veličković. Combinatorial optimization and reasoning
with graph neural networks. arXiv preprint arXiv:2102.09544, 2021.

[109] Richard S Sutton and Andrew G Barto. Reinforcement learning: An intro-
duction. MIT press, 2018.

[110] Francisco S Melo. Convergence of q-learning: A simple proof. Institute Of
Systems and Robotics, Tech. Rep, pages 1–4, 2001.

[111] Donald E Kirk. Optimal control theory: an introduction. Courier Corporation,
2004.

[112] Richard S Sutton, David A McAllester, Satinder P Singh, Yishay Mansour,
et al. Policy gradient methods for reinforcement learning with function
approximation. In NIPs, volume 99, pages 1057–1063. Citeseer, 1999.

[113] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction
techniques for gradient estimates in reinforcement learning. Journal of
Machine Learning Research, 5(9), 2004.

[114] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances
in neural information processing systems, pages 1008–1014, 2000.

204

BIBLIOGRAPHY

[115] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves,
Timothy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning, pages 1928–1937. PMLR, 2016.

[116] Christopher John Cornish Hellaby Watkins. Learning from delayed rewards.
1989.

[117] Long-Ji Lin. Self-supervised Learning by Reinforcement and Artificial Neural
Networks. PhD thesis, Carnegie Mellon University, School of Computer
Science, 1992.

[118] Francisco S Melo and M Isabel Ribeiro. Q-learning with linear function
approximation. In International Conference on Computational Learning
Theory, pages 308–322. Springer, 2007.

[119] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel
Veness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforcement
learning. nature, 518(7540):529–533, 2015.

[120] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini. Pa-
rameterized quantum circuits as machine learning models. Quantum Science
and Technology, 4(4):043001, 2019.

[121] Vedran Dunjko and Peter Wittek. A non-review of quantum machine learning:
trends and explorations. Quantum Views, 4:32, 2020.

[122] M Cerezo, Guillaume Verdon, Hsin-Yuan Huang, Lukasz Cincio, and Patrick J
Coles. Challenges and opportunities in quantum machine learning. Nature
Computational Science, 2(9):567–576, 2022.

[123] Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. The quest for a
quantum neural network. Quantum Information Processing, 13:2567–2586,
2014.

[124] Bernhard Schölkopf, Alexander J Smola, Francis Bach, et al. Learning with
kernels: support vector machines, regularization, optimization, and beyond.
MIT press, 2002.

[125] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine
learning, 20(3):273–297, 1995.

205

BIBLIOGRAPHY

[126] Maria Schuld and Nathan Killoran. Quantum machine learning in feature
hilbert spaces. Physical review letters, 122(4):040504, 2019.

[127] Maria Schuld. Supervised quantum machine learning models are kernel
methods. arXiv preprint arXiv:2101.11020, 2021.

[128] Yunchao Liu, Srinivasan Arunachalam, and Kristan Temme. A rigorous and
robust quantum speed-up in supervised machine learning. Nature Physics,
pages 1–5, 2021.

[129] Evan Peters, João Caldeira, Alan Ho, Stefan Leichenauer, Masoud Mohseni,
Hartmut Neven, Panagiotis Spentzouris, Doug Strain, and Gabriel N Perdue.
Machine learning of high dimensional data on a noisy quantum processor.
npj Quantum Information, 7(1):1–5, 2021.

[130] Supanut Thanasilp, Samson Wang, Marco Cerezo, and Zoë Holmes. Expo-
nential concentration and untrainability in quantum kernel methods. arXiv
preprint arXiv:2208.11060, 2022.

[131] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel:
Convergence and generalization in neural networks. Advances in neural
information processing systems, 31, 2018.

[132] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for
deep learning via over-parameterization. arxiv e-prints, art. arXiv preprint
arXiv:1811.03962, 2018.

[133] SS Du, JD Lee, H Li, L Wang, and X Zhai. Gradient descent finds global
minima of deep 774 neural networks. CoRR abs/1811.03804, 775, 2018.

[134] Sofiene Jerbi, Lukas J Fiderer, Hendrik Poulsen Nautrup, Jonas M Kübler,
Hans J Briegel, and Vedran Dunjko. Quantum machine learning beyond
kernel methods. arXiv preprint arXiv:2110.13162, 2021.

[135] Norihito Shirai, Kenji Kubo, Kosuke Mitarai, and Keisuke Fujii. Quantum
tangent kernel. arXiv preprint arXiv:2111.02951, 2021.

[136] Junyu Liu, Francesco Tacchino, Jennifer R Glick, Liang Jiang, and Antonio
Mezzacapo. Representation learning via quantum neural tangent kernels.
PRX Quantum, 3(3):030323, 2022.

[137] Edward Farhi and Hartmut Neven. Classification with quantum neural
networks on near term processors. arXiv preprint arXiv:1802.06002, 2018.

206

BIBLIOGRAPHY

[138] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua
Lockhart, Vid Stojevic, Andrew G Green, and Simone Severini. Hierarchical
quantum classifiers. npj Quantum Information, 4(1):1–8, 2018.

[139] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit born
machines. Physical Review A, 98(6):062324, 2018.

[140] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-
Ortega, Yunseong Nam, and Alejandro Perdomo-Ortiz. A generative model-
ing approach for benchmarking and training shallow quantum circuits. npj
Quantum Information, 5(1):1–9, 2019.

[141] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial networks. Communications of the ACM, 63(11):139–144, 2020.

[142] Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative
adversarial networks. Physical Review A, 98(1):012324, 2018.

[143] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Quantum generative
adversarial networks for learning and loading random distributions. npj
Quantum Information, 5(1):1–9, 2019.

[144] He-Liang Huang, Yuxuan Du, Ming Gong, Youwei Zhao, Yulin Wu, Chaoyue
Wang, Shaowei Li, Futian Liang, Jin Lin, Yu Xu, et al. Experimental
quantum generative adversarial networks for image generation. Physical
Review Applied, 16(2):024051, 2021.

[145] Murphy Yuezhen Niu, Alexander Zlokapa, Michael Broughton, Sergio Boixo,
Masoud Mohseni, Vadim Smelyanskyi, and Hartmut Neven. Entangling quan-
tum generative adversarial networks. Physical Review Letters, 128(22):220505,
2022.

[146] John J Hopfield. Neural networks and physical systems with emergent
collective computational abilities. Proceedings of the national academy of
sciences, 79(8):2554–2558, 1982.

[147] Nathan Wiebe and Leonard Wossnig. Generative training of quantum
boltzmann machines with hidden units. arXiv preprint arXiv:1905.09902,
2019.

207

BIBLIOGRAPHY

[148] Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. Variational quantum
boltzmann machines. Quantum Machine Intelligence, 3(1):1–15, 2021.

[149] Guillaume Verdon, Trevor McCourt, Enxhell Luzhnica, Vikash Singh, Stefan
Leichenauer, and Jack Hidary. Quantum graph neural networks. arXiv
preprint arXiv:1909.12264, 2019.

[150] Sofiene Jerbi, Casper Gyurik, Simon Marshall, Hans Briegel, and Vedran
Dunjko. Parametrized quantum policies for reinforcement learning. Advances
in Neural Information Processing Systems, 34, 2021.

[151] Dániel Nagy, Zsolt Tabi, Péter Hága, Zsófia Kallus, and Zoltán Zimborás.
Photonic quantum policy learning in openai gym. In 2021 IEEE International
Conference on Quantum Computing and Engineering (QCE), pages 123–129.
IEEE, 2021.

[152] Nico Meyer, Daniel D Scherer, Axel Plinge, Christopher Mutschler, and
Michael J Hartmann. Quantum policy gradient algorithm with optimized
action decoding. arXiv preprint arXiv:2212.06663, 2022.

[153] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen, Xiaoli
Ma, and Hsi-Sheng Goan. Variational quantum circuits for deep reinforcement
learning. IEEE Access, 8:141007–141024, 2020.

[154] Owen Lockwood and Mei Si. Reinforcement learning with quantum varia-
tional circuit. In Proceedings of the AAAI Conference on Artificial Intelligence
and Interactive Digital Entertainment, pages 245–251, 2020.

[155] Dirk Heimann, Hans Hohenfeld, Felix Wiebe, and Frank Kirchner. Quantum
deep reinforcement learning for robot navigation tasks. arXiv preprint
arXiv:2202.12180, 2022.

[156] Maja Franz, Lucas Wolf, Maniraman Periyasamy, Christian Ufrecht, Daniel D
Scherer, Axel Plinge, Christopher Mutschler, and Wolfgang Mauerer. Uncov-
ering instabilities in variational-quantum deep q-networks. arXiv preprint
arXiv:2202.05195, 2022.

[157] Qingfeng Lan. Variational quantum soft actor-critic. arXiv preprint
arXiv:2112.11921, 2021.

208

BIBLIOGRAPHY

[158] Won Joon Yun, Yunseok Kwak, Jae Pyoung Kim, Hyunhee Cho, Soyi Jung,
Jihong Park, and Joongheon Kim. Quantum multi-agent reinforcement learn-
ing via variational quantum circuit design. arXiv preprint arXiv:2203.10443,
2022.

[159] Chen Zhao and Xiao-Shan Gao. Qdnn: Dnn with quantum neural network
layers. arXiv preprint arXiv:1912.12660, 2019.

[160] Andrea Mari, Thomas R Bromley, Josh Izaac, Maria Schuld, and Nathan
Killoran. Transfer learning in hybrid classical-quantum neural networks.
Quantum, 4:340, 2020.

[161] Maxwell Henderson, Samriddhi Shakya, Shashindra Pradhan, and Tristan
Cook. Quanvolutional neural networks: powering image recognition with
quantum circuits. Quantum Machine Intelligence, 2(1):1–9, 2020.

[162] Tong Dou, Kaiwei Wang, Zhenwei Zhou, Shilu Yan, and Wei Cui. An
unsupervised feature learning for quantum-classical convolutional network
with applications to fault detection. In 2021 40th Chinese Control Conference
(CCC), pages 6351–6355. IEEE, 2021.

[163] Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, and Ying-Jer
Kao. An end-to-end trainable hybrid classical-quantum classifier. Machine
Learning: Science and Technology, 2(4):045021, 2021.

[164] Emanuel Knill, Raymond Laflamme, and Gerald J Milburn. A scheme for
efficient quantum computation with linear optics. nature, 409(6816):46–52,
2001.

[165] Nathan Wiebe. Key questions for the quantum machine learner to ask
themselves. New Journal of Physics, 22(9):091001, 2020.

[166] Ryan LaRose and Brian Coyle. Robust data encodings for quantum classifiers.
Physical Review A, 102(3):032420, 2020.

[167] Francisco Javier Gil Vidal and Dirk Oliver Theis. Input redundancy for
parameterized quantum circuits. Frontiers in Physics, 8:297, 2020.

[168] Adrián Pérez-Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and José I
Latorre. Data re-uploading for a universal quantum classifier. Quantum,
4:226, 2020.

209

BIBLIOGRAPHY

[169] Maria Schuld, Ryan Sweke, and Johannes Jakob Meyer. Effect of data
encoding on the expressive power of variational quantum-machine-learning
models. Physical Review A, 103(3):032430, 2021.

[170] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita,
Markus Brink, Jerry M Chow, and Jay M Gambetta. Hardware-efficient
variational quantum eigensolver for small molecules and quantum magnets.
Nature, 549(7671):242–246, 2017.

[171] Han Zheng, Zimu Li, Junyu Liu, Sergii Strelchuk, and Risi Kondor. Speeding
up learning quantum states through group equivariant convolutional quantum
ansatze. arXiv preprint arXiv:2112.07611, 2021.

[172] Péter Mernyei, Konstantinos Meichanetzidis, and İsmail İlkan Ceylan. Equiv-
ariant quantum graph circuits. arXiv preprint arXiv:2112.05261, 2021.

[173] Martín Larocca, Frédéric Sauvage, Faris M. Sbahi, Guillaume Verdon,
Patrick J. Coles, and M. Cerezo. Group-invariant quantum machine learning.
arXiv preprint arXiv:2205.02261, 2022.

[174] Andrea Skolik, Michele Cattelan, Sheir Yarkoni, Thomas Bäck, and Vedran
Dunjko. Equivariant quantum circuits for learning on weighted graphs. arXiv
preprint arXiv:2205.06109, 2022.

[175] Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna
Mele, Francesco Arzani, Alissa Wilms, and Jens Eisert. Exploiting symmetry
in variational quantum machine learning. arXiv preprint arXiv:2205.06217,
2022.

[176] Quynh T Nguyen, Louis Schatzki, Paolo Braccia, Michael Ragone, Patrick J
Coles, Frederic Sauvage, Martin Larocca, and M Cerezo. Theory for equiv-
ariant quantum neural networks. arXiv preprint arXiv:2210.08566, 2022.

[177] Hsin-Yuan Huang, Michael Broughton, Jordan Cotler, Sitan Chen, Jerry Li,
Masoud Mohseni, Hartmut Neven, Ryan Babbush, Richard Kueng, John
Preskill, et al. Quantum advantage in learning from experiments. Science,
376(6598):1182–1186, 2022.

[178] Hsin-Yuan Huang, Michael Broughton, Masoud Mohseni, Ryan Babbush,
Sergio Boixo, Hartmut Neven, and Jarrod R McClean. Power of data in
quantum machine learning. Nature communications, 12(1):1–9, 2021.

210

BIBLIOGRAPHY

[179] Amira Abbas, David Sutter, Christa Zoufal, Aurélien Lucchi, Alessio Figalli,
and Stefan Woerner. The power of quantum neural networks. Nature
Computational Science, 1(6):403–409, 2021.

[180] Edward Farhi and Aram W Harrow. Quantum supremacy through the quan-
tum approximate optimization algorithm. arXiv preprint arXiv:1602.07674,
2016.

[181] Ryan Sweke, Jean-Pierre Seifert, Dominik Hangleiter, and Jens Eisert. On
the quantum versus classical learnability of discrete distributions. Quantum,
5:417, 2021.

[182] Dave Wecker, Matthew B Hastings, and Matthias Troyer. Progress towards
practical quantum variational algorithms. Physical Review A, 92(4):042303,
2015.

[183] Giacomo Nannicini. Performance of hybrid quantum-classical variational
heuristics for combinatorial optimization. Physical Review E, 99(1):013304,
2019.

[184] Ken M Nakanishi, Keisuke Fujii, and Synge Todo. Sequential minimal opti-
mization for quantum-classical hybrid algorithms. Physical Review Research,
2(4):043158, 2020.

[185] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D
Lukin. Quantum approximate optimization algorithm: performance,
mechanism, and implementation on near-term devices. Preprint at
arXiv:1812.01041, 2018.

[186] Kevin Jeffery Sung, Jiahao Yao, Matthew Harrigan, Nicholas Rubin, Zhang
Jiang, Lin Lin, Ryan Babbush, and Jarrod McClean. Using models to
improve optimizers for variational quantum algorithms. Quantum Science
and Technology, 2020.

[187] Emanuel Knill, Gerardo Ortiz, and Rolando D. Somma. Optimal quantum
measurements of expectation values of observables. Physical Review A,
75(1):012328, jan 2007.

[188] Bobak Toussi Kiani, Seth Lloyd, and Reevu Maity. Learning Unitaries by
Gradient Descent. 2020.

211

BIBLIOGRAPHY

[189] Chufan Lyu, Victor Montenegro, and Abolfazl Bayat. Accelerated variational
algorithms for digital quantum simulation of many-body ground states.
Quantum, 4:324, 2020.

[190] Scott E. Fahlman and Christian Lebiere. The cascade-correlation learning
architecture. Advances in Neural Information Processing, 2:524—-532, 1990.

[191] Chris Hettinger, Tanner Christensen, Ben Ehlert, Jeffrey Humpherys, Tyler
Jarvis, and Sean Wade. Forward Thinking: Building and Training Neural
Networks One Layer at a Time. In 31st Conference on Neural Information
Processing Systems, 2017.

[192] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A Fast Learning
Algorithm for Deep Belief Nets. Neural Computation, 18(7):1527–1554, jul
2006.

[193] Yoshua Bengio, Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo
Larochelle. Greedy layer-wise training of deep networks. Advances in Neural
Information Processing, 2007.

[194] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchyt-
skyy, and Roger Melko. Quantum boltzmann machine. Physical Review X,
8(2):021050, 2018.

[195] Seth Lloyd and Christian Weedbrook. Quantum generative adversarial
learning. Physical review letters, 121(4):040502, 2018.

[196] Shouvanik Chakrabarti, Huang Yiming, Tongyang Li, Soheil Feizi, and Xiaodi
Wu. Quantum wasserstein generative adversarial networks. In Advances in
Neural Information Processing Systems, pages 6781–6792, 2019.

[197] A Hamann, V Dunjko, and S Wölk. Quantum-accessible reinforcement learn-
ing beyond strictly epochal environments. arXiv preprint arXiv:2008.01481,
2020.

[198] Sofiene Jerbi, Lea M Trenkwalder, Hendrik Poulsen Nautrup, Hans J Briegel,
and Vedran Dunjko. Quantum enhancements for deep reinforcement learning
in large spaces. PRX Quantum, 2(1):010328, 2021.

[199] Shaojun Wu, Shan Jin, Dingding Wen, and Xiaoting Wang. Quan-
tum reinforcement learning in continuous action space. arXiv preprint
arXiv:2012.10711, 2020.

212

BIBLIOGRAPHY

[200] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemys-
law Debiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq Hashme,
Chris Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv
preprint arXiv:1912.06680, 2019.

[201] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu,
Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo
Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-
agent reinforcement learning. Nature, 575(7782):350–354, 2019.

[202] Leslie N Smith. A disciplined approach to neural network hyper-parameters:
Part 1–learning rate, batch size, momentum, and weight decay. arXiv preprint
arXiv:1803.09820, 2018.

[203] Ziyu Ye, Andrew Gilman, Qihang Peng, Kelly Levick, Pamela Cosman, and
Larry Milstein. Comparison of neural network architectures for spectrum
sensing. In 2019 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE,
2019.

[204] Hao Yu, Tiantian Xie, Michael Hamilton, and Bogdan Wilamowski. Com-
parison of different neural network architectures for digit image recognition.
In 2011 4th International Conference on Human System Interactions, HSI
2011, pages 98–103. IEEE, 2011.

[205] F Cordoni. A comparison of modern deep neural network architectures for
energy spot price forecasting. Digital Finance, 2:189–210, 2020.

[206] Tomasz Szandała. Review and comparison of commonly used activation
functions for deep neural networks. In Bio-inspired Neurocomputing, pages
203–224. Springer, 2021.

[207] Chigozie Nwankpa, Winifred Ijomah, Anthony Gachagan, and Stephen
Marshall. Activation functions: Comparison of trends in practice and research
for deep learning. arXiv preprint arXiv:1811.03378, 2018.

[208] Sebastian Urban. Neural network architectures and activation functions: A
gaussian process approach. PhD thesis, Technische Universität München,
2018.

213

BIBLIOGRAPHY

[209] Leslie N Smith. Cyclical learning rates for training neural networks. In 2017
IEEE winter conference on applications of computer vision (WACV), pages
464–472. IEEE, 2017.

[210] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture
search: A survey. The Journal of Machine Learning Research, 20(1):1997–
2017, 2019.

[211] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren. Automated machine
learning: methods, systems, challenges. Springer Nature, 2019.

[212] Bobak Toussi Kiani, Seth Lloyd, and Reevu Maity. Learning unitaries by
gradient descent. arXiv preprint arXiv:2001.11897, 2020.

[213] Roeland Wiersema, Cunlu Zhou, Yvette de Sereville, Juan Felipe Carrasquilla,
Yong Baek Kim, and Henry Yuen. Exploring entanglement and optimization
within the hamiltonian variational ansatz. PRX Quantum, 1(2):020319, 2020.

[214] Andrea Skolik, Jarrod R McClean, Masoud Mohseni, Patrick van der Smagt,
and Martin Leib. Layerwise learning for quantum neural networks. Quantum
Machine Intelligence, 3 (1):1–11, 2021.

[215] Sukin Sim, Peter D Johnson, and Alán Aspuru-Guzik. Expressibility and
entangling capability of parameterized quantum circuits for hybrid quantum-
classical algorithms. Advanced Quantum Technologies, 2(12):1900070, 2019.

[216] Sukin Sim, Jhonathan Romero Fontalvo, Jérôme F Gonthier, and Alexander A
Kunitsa. Adaptive pruning-based optimization of parameterized quantum
circuits. Quantum Science and Technology, 2021.

[217] Xiaoyuan Liu, Anthony Angone, Ruslan Shaydulin, Ilya Safro, Yuri Alexeev,
and Lukasz Cincio. Layer vqe: A variational approach for combinatorial
optimization on noisy quantum computers. arXiv preprint arXiv:2102.05566,
2021.

[218] OpenAI. Openai gym wiki, cartpole v0
https://github.com/openai/gym/wiki/cartpole-v0, 2021.

[219] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John
Schulman, Jie Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

214

BIBLIOGRAPHY

[220] Kei Ota, Devesh K Jha, and Asako Kanezaki. Training larger networks for
deep reinforcement learning. arXiv preprint arXiv:2102.07920, 2021.

[221] Andrea Skolik. Code used in this work
https://github.com/askolik/quantum_agents, 2021.

[222] Vedran Dunjko, Yi-Kai Liu, Xingyao Wu, and Jacob M Taylor. Exponential
improvements for quantum-accessible reinforcement learning. arXiv preprint
arXiv:1710.11160, 2017.

[223] OpenAI. Openai gym wiki, frozen lake v0
https://github.com/openai/gym/wiki/frozenlake-v0, 2021.

[224] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J Martinez,
Jae Hyeon Yoo, Sergei V Isakov, Philip Massey, Murphy Yuezhen Niu, Ramin
Halavati, Evan Peters, et al. Tensorflow quantum: A software framework for
quantum machine learning. arXiv preprint arXiv:2003.02989, 2020.

[225] Google. Cirq, https://quantumai.google/cirq, 2021.

[226] OpenAI. Openai gym leaderboard https://github.com/openai/gym/wiki/leaderboard,
2021.

[227] Tavis Bennett, Edric Matwiejew, Sam Marsh, and Jingbo B Wang. Quantum
walk-based vehicle routing optimisation. Frontiers in Physics, page 692,
2021.

[228] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi
Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational
eigenvalue solver on a photonic quantum processor. Nature communications,
5:4213, 2014.

[229] Jarrod R McClean, Sergio Boixo, Vadim N Smelyanskiy, Ryan Babbush,
and Hartmut Neven. Barren plateaus in quantum neural network training
landscapes. Nature communications, 9(1):1–6, 2018.

[230] Patrick van der Smagt and Gerd Hirzinger. Why feed-forward networks are
in a bad shape. In International Conference on Artificial Neural Networks,
pages 159–164. Springer, 1998.

[231] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec
Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation.

215

BIBLIOGRAPHY

In International Conference on Machine Learning, pages 8821–8831. PMLR,
2021.

[232] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks:
A review of methods and applications. AI Open, 1:57–81, 2020.

[233] Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, and Loïc Henriet.
Quantum evolution kernel: Machine learning on graphs with programmable
arrays of qubits. Physical Review A, 104(3):032416, 2021.

[234] Jin Zheng, Qing Gao, and Yanxuan Lü. Quantum graph convolutional neural
networks. In 2021 40th Chinese Control Conference (CCC), pages 6335–6340.
IEEE, 2021.

[235] Andrew Lucas. Ising formulations of many np problems. Frontiers in physics,
2:5, 2014.

[236] Robin M Schmidt. Recurrent neural networks (rnns): A gentle introduction
and overview. arXiv preprint arXiv:1912.05911, 2019.

[237] Jianwu Long et al. A graph neural network for superpixel image classification.
In Journal of Physics: Conference Series, volume 1871, page 012071. IOP
Publishing, 2021.

[238] Yanhu Chen, Cen Wang, Hongxiang Guo, et al. Novel architecture of
parameterized quantum circuit for graph convolutional network. arXiv
preprint arXiv:2203.03251, 2022.

[239] Hanjun Dai, Elias B Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song.
Learning combinatorial optimization algorithms over graphs. arXiv preprint
arXiv:1704.01665, 2017.

[240] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei
Yin. Graph neural networks for social recommendation. In The world wide
web conference, pages 417–426, 2019.

[241] Asier Ozaeta, Wim van Dam, and Peter L McMahon. Expectation values
from the single-layer quantum approximate optimization algorithm on ising
problems. Quantum Science and Technology, 2022.

216

BIBLIOGRAPHY

[242] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikrishnan Muraleedharan,
Patrick J Coles, and M Cerezo. Diagnosing barren plateaus with tools from
quantum optimal control. Quantum, 6:824, 2022.

[243] Song Mei, Theodor Misiakiewicz, and Andrea Montanari. Learning with
invariances in random features and kernel models. In Conference on Learning
Theory, pages 3351–3418. PMLR, 2021.

[244] Matthias C Caro, Hsin-Yuan Huang, Marco Cerezo, Kunal Sharma, Andrew
Sornborger, Lukasz Cincio, and Patrick J Coles. Generalization in quantum
machine learning from few training data. Nature communications, 13(1):1–11,
2022.

[245] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for
combinatorial optimization: a methodological tour d’horizon. European
Journal of Operational Research, 290(2):405–421, 2021.

[246] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. arXiv
preprint arXiv:1506.03134, 2015.

[247] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim
Songhori, Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sung-
min Bae, et al. Chip placement with deep reinforcement learning. arXiv
preprint arXiv:2004.10746, 2020.

[248] Mohammadreza Nazari, Afshin Oroojlooy, Lawrence V Snyder, and Martin
Takáč. Reinforcement learning for solving the vehicle routing problem. arXiv
preprint arXiv:1802.04240, 2018.

[249] Kunal Marwaha. Local classical max-cut algorithm outperforms p = 2 qaoa
on high-girth regular graphs. Quantum, 5:437, 2021.

[250] Mario Szegedy. What do qaoa energies reveal about graphs? arXiv preprint
arXiv:1912.12277, 2019.

[251] Gilbert H Harman, Sanjeev R Kulkarni, and Hariharan Narayanan. sin(ωx)
can approximate almost every finite set of samples. Constructive Approxi-
mation, 42(2):303–311, 2015.

[252] Mauro ES Morales, Jacob D Biamonte, and Zoltán Zimborás. On the
universality of the quantum approximate optimization algorithm. Quantum
Information Processing, 19(9):1–26, 2020.

217

BIBLIOGRAPHY

[253] Python-TSP.

[254] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical report, Carnegie-Mellon Univ Pittsburgh Pa
Management Sciences Research Group, 1976.

[255] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D
Lukin. Quantum approximate optimization algorithm: Performance, mech-
anism, and implementation on near-term devices. Physical Review X,
11(2):021067, 2020.

[256] Adam Glos, Alexandra Krawiec, and Zoltán Zimborás. Space-efficient binary
optimization for variational computing. arXiv preprint arXiv:2009.07309,
2020.

[257] Edward Farhi, David Gamarnik, and Sam Gutmann. The quantum approxi-
mate optimization algorithm needs to see the whole graph: A typical case.
arXiv preprint arXiv:2004.09002, 2020.

[258] Sergey Bravyi, Alexander Kliesch, Robert Koenig, and Eugene Tang. Obsta-
cles to variational quantum optimization from symmetry protection. Physical
review letters, 125(26):260505, 2020.

[259] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pichler, and Mikhail D
Lukin. Quantum approximate optimization algorithm: Performance, mech-
anism, and implementation on near-term devices. Physical Review X,
10(2):021067, 2020.

[260] Ruslan Shaydulin, Phillip C Lotshaw, Jeffrey Larson, James Ostrowski, and
Travis S Humble. Parameter transfer for quantum approximate optimization
of weighted maxcut. arXiv preprint arXiv:2201.11785, 2022.

[261] Laura Gentini, Alessandro Cuccoli, Stefano Pirandola, Paola Verrucchi,
and Leonardo Banchi. Noise-resilient variational hybrid quantum-classical
optimization. Physical Review A, 102(5):052414, 2020.

[262] Kam-Chuen Jim, C Lee Giles, and Bill G Horne. An analysis of noise in re-
current neural networks: convergence and generalization. IEEE Transactions
on neural networks, 7(6):1424–1438, 1996.

218

BIBLIOGRAPHY

[263] Hyeonwoo Noh, Tackgeun You, Jonghwan Mun, and Bohyung Han. Regu-
larizing deep neural networks by noise: Its interpretation and optimization.
Advances in Neural Information Processing Systems, 30, 2017.

[264] Alex Graves. Practical variational inference for neural networks. Advances
in neural information processing systems, 24, 2011.

[265] Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recog-
nition with deep recurrent neural networks. In 2013 IEEE international
conference on acoustics, speech and signal processing, pages 6645–6649. Ieee,
2013.

[266] Emilio Rafael Balda, Arash Behboodi, and Rudolf Mathar. Adversarial
examples in deep neural networks: An overview. Deep Learning: Algorithms
and Applications, pages 31–65, 2020.

[267] Cihang Xie, Jianyu Wang, Zhishuai Zhang, Zhou Ren, and Alan Yuille.
Mitigating adversarial effects through randomization. arXiv preprint
arXiv:1711.01991, 2017.

[268] Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin Cubuk. Adversarial
examples are a natural consequence of test error in noise. In International
Conference on Machine Learning, pages 2280–2289. PMLR, 2019.

[269] Florian Jaeckle and M Pawan Kumar. Generating adversarial examples
with graph neural networks. In Uncertainty in Artificial Intelligence, pages
1556–1564. PMLR, 2021.

[270] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572, 2014.

[271] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: a simple way to prevent neural networks
from overfitting. The journal of machine learning research, 15(1):1929–1958,
2014.

[272] Jinfeng Zeng, Zipeng Wu, Chenfeng Cao, Chao Zhang, Shi-Yao Hou, Pengx-
iang Xu, and Bei Zeng. Simulating noisy variational quantum eigensolver
with local noise models. Quantum Engineering, 3(4):e77, 2021.

219

BIBLIOGRAPHY

[273] Mahabubul Alam, Abdullah Ash-Saki, and Swaroop Ghosh. Analysis of
quantum approximate optimization algorithm under realistic noise in super-
conducting qubits. arXiv preprint arXiv:1907.09631, 2019.

[274] Junyu Liu, Frederik Wilde, Antonio Anna Mele, Liang Jiang, and Jens Eisert.
Noise can be helpful for variational quantum algorithms. arXiv preprint
arXiv:2210.06723, 2022.

[275] Jingkang Wang, Yang Liu, and Bo Li. Reinforcement learning with perturbed
rewards. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 6202–6209, 2020.

[276] Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter
Abbeel. Adversarial attacks on neural network policies. arXiv preprint
arXiv:1702.02284, 2017.

[277] Jernej Kos and Dawn Song. Delving into adversarial attacks on deep policies.
arXiv preprint arXiv:1705.06452, 2017.

[278] Yang Yu. Towards sample efficient reinforcement learning. In IJCAI, pages
5739–5743, 2018.

[279] Owen Lockwood and Mei Si. Playing atari with hybrid quantum-classical
reinforcement learning. In NeurIPS 2020 Workshop on Pre-registration in
Machine Learning, pages 285–301. PMLR, 2021.

[280] Kosuke Ito, Wataru Mizukami, and Keisuke Fujii. Universal noise-precision
relations in variational quantum algorithms. arXiv preprint arXiv:2106.03390,
2021.

[281] Andrea Skolik and Stefano Mangini. Code that was used for training of noisy
quantum agents. https://github.com/askolik/noisy_qrl, 2022.

[282] OpenAI. Openai gym. https://github.com/openai/gym/wiki, 2022. Ac-
cessed: 06-09-2022.

[283] Tensorflow quantum rl tutorial. https://www.tensorflow.org/quantum/

tutorials/quantum_reinforcement_learning. Accessed: 06-09-2022.

[284] Aleksandrs Slivkins et al. Introduction to multi-armed bandits. Foundations
and Trends® in Machine Learning, 12(1-2):1–286, 2019.

220

https://github.com/askolik/noisy_qrl
https://github.com/openai/gym/wiki
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning
https://www.tensorflow.org/quantum/tutorials/quantum_reinforcement_learning

BIBLIOGRAPHY

[285] Tze Leung Lai, Herbert Robbins, et al. Asymptotically efficient adaptive
allocation rules. Advances in applied mathematics, 6(1):4–22, 1985.

[286] Peter Auer. Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research, 3(Nov):397–422, 2002.

[287] Zhenyu Cai, Xiaosi Xu, and Simon C Benjamin. Mitigating coherent noise
using pauli conjugation. npj Quantum Information, 6(1):1–9, 2020.

[288] Hsin-Yuan Huang, Richard Kueng, and John Preskill. Predicting many
properties of a quantum system from very few measurements. Nature Physics,
16(10):1050–1057, 2020.

[289] Zbigniew Puchała and Jarosław Adam Miszczak. Symbolic integration
with respect to the haar measure on the unitary group. arXiv preprint
arXiv:1109.4244, 2011.

[290] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30, 2016.

[291] Google. Documentation of depolarizing channel in cirq. https://quantumai.

google/reference/python/cirq/depolarize, 2022.

[292] Sergei V. Isakov, Dvir Kafri, Orion Martin, Catherine Vollgraff Heidweiller,
Wojciech Mruczkiewicz, Matthew P. Harrigan, Nicholas C. Rubin, Ross
Thomson, Michael Broughton, Kevin Kissell, Evan Peters, Erik Gustafson,
Andy C. Y. Li, Henry Lamm, Gabriel Perdue, Alan K. Ho, Doug Strain, and
Sergio Boixo. Simulations of quantum circuits with approximate noise using
qsim and cirq, 2021.

[293] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quantum
information. Cambridge University Press, Cambridge, UK, 2010.

[294] Timothy Proctor, Stefan Seritan, Kenneth Rudinger, Erik Nielsen, Robin
Blume-Kohout, and Kevin Young. Scalable randomized benchmarking
of quantum computers using mirror circuits. Physical Review Letters,
129(15):150502, 2022.

[295] Joseph Vovrosh, Kiran E Khosla, Sean Greenaway, Christopher Self, Myung-
shik S Kim, and Johannes Knolle. Simple mitigation of global depolarizing
errors in quantum simulations. Physical Review E, 104(3):035309, 2021.

221

https://quantumai.google/reference/python/cirq/depolarize
https://quantumai.google/reference/python/cirq/depolarize

BIBLIOGRAPHY

[296] Easwar Magesan, Jay M Gambetta, and Joseph Emerson. Characteriz-
ing quantum gates via randomized benchmarking. Physical Review A,
85(4):042311, 2012.

[297] C Ryan-Anderson, NC Brown, MS Allman, B Arkin, G Asa-Attuah, C Bald-
win, J Berg, JG Bohnet, S Braxton, N Burdick, et al. Implementing fault-
tolerant entangling gates on the five-qubit code and the color code. arXiv
preprint arXiv:2208.01863, 2022.

[298] IBM. Ibmquantum. https://quantum-computing.ibm.com/, 2022.

[299] Elijah Pelofske, Andreas Bärtschi, and Stephan Eidenbenz. Quantum volume
in practice: What users can expect from nisq devices. arXiv preprint
arXiv:2203.03816, 2022.

[300] IBM Quantum Experience. IBM Quantum Experience. https://

quantum-computing.ibm.com/services/resources?tab=systems, 2022.

[301] Xun Gao and Luming Duan. Efficient classical simulation of noisy quantum
computation. arXiv preprint arXiv:1810.03176, 2018.

[302] Ryan LaRose, Andrea Mari, Sarah Kaiser, Peter J Karalekas, Andre A Alves,
Piotr Czarnik, Mohamed El Mandouh, Max H Gordon, Yousef Hindy, Aaron
Robertson, et al. Mitiq: A software package for error mitigation on noisy
quantum computers. Quantum, 6:774, 2022.

[303] Vincent Russo, Andrea Mari, Nathan Shammah, Ryan LaRose, and William J
Zeng. Testing platform-independent quantum error mitigation on noisy
quantum computers. arXiv preprint arXiv:2210.07194, 2022.

[304] Samson Wang, Piotr Czarnik, Andrew Arrasmith, Marco Cerezo, Lukasz
Cincio, and Patrick J Coles. Can error mitigation improve trainability of
noisy variational quantum algorithms? arXiv preprint arXiv:2109.01051,
2021.

[305] Gian-Carlo Wick. The evaluation of the collision matrix. Physical review,
80(2):268, 1950.

[306] Patrick Huembeli and Alexandre Dauphin. Characterizing the loss land-
scape of variational quantum circuits. Quantum Science and Technology,
6(2):025011, 2021.

222

https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/services/resources?tab=systems
https://quantum-computing.ibm.com/services/resources?tab=systems

BIBLIOGRAPHY

[307] Motohisa Fukuda, Robert König, and Ion Nechita. Rtni—a symbolic integra-
tor for haar-random tensor networks. Journal of Physics A: Mathematical
and Theoretical, 52(42):425303, 2019.

[308] Robert W. Keener. Theoretical Statistics: Topics for a Core Course. Springer
Texts in Statistics. Springer, 1 edition, 2010.

223

Summary

Variational quantum machine learning models are often described as the quantum
analog of classical neural networks due to the similarity in their training procedure,
and are therefore also referred to as quantum neural networks. Unlike for their
classical counterparts however, there are still numerous open questions about how
to design trainable and performant quantum neural networks. Examples of this
include the questions of how to encode classical data into a quantum model, how
to structure the gates in the circuits that are used to implement models, and how
to avoid pitfalls in the trainability of these models that are unique to the quantum
setting. Assuming that similarly to the history of classical machine learning,
the development of more performant quantum hardware will facilitate large-scale
empirical studies on the usefulness of variational quantum machine learning, it is
of key importance to build an understanding of how these models can be trained
successfully. This thesis aims to contribute to this understanding by studying
various aspects of training variational quantum machine learning models.

We start by giving a basic introduction to the topics of quantum computing,
machine learning, and their intersection in Chapters 2 and 3, respectively. In
Chapter 4, we study how a fundamental issue in the training of variational quantum
circuits, namely barren plateaus in the training landscapes, can be addressed by
the classical training algorithm to aid scaling up the size of quantum models.
To this end, we provide a training scheme that alleviates the problem of barren
plateaus for specific cases and compare it to standard training procedures in the
existing literature. While this type of training procedure can in principle be used
for arbitrary types of machine learning, we focus our attention on a specific type
of learning in subsequent chapters, namely on RL. First, we study in Chapter 5
how the architectural choices made for a PQC-based quantum agent influence
its performance on two classical benchmark tasks from RL literature, where we

224

Summary

specifically consider the question of encoding data into, and reading information
out of the quantum model. In addition, we establish a theoretical separation
between classical and quantum models for the specific type of RL algorithm that
we use, and also perform an in-depth empirical comparison of the quantum model
developed in our work to a classical neural network that performs the same task.
In addition to the questions of how to encode data and read out information
from a PQC, the third key question in the performance of a variational quantum
machine learning model is how to design the structure of the circuit itself, also
referred to as the ansatz. For this reason, we move on to study this question in
Chapter 6 and introduce an ansatz that is tailored to a specific type of input data,
namely to weighted graphs. To do this, we take inspiration from the classical
field of geometric deep learning, and design a PQC that preserves an important
symmetry in graph-based input data. We analytically study the expressivity of
this type of circuit, and then go on to numerically compare it to ansatzes that
are not tailored to the specific training data at hand. Finally, another important
consideration in the study of algorithms for the NISQ era is how the given learning
algorithms and models are influenced by quantum hardware-induced noise. In
Chapter 7, we study this for two of the variational RL paradigms from recent
literature. We investigate analytically and numerically how various types of errors,
namely coherent, incoherent, and measurement-based errors, affect the training
performance of variational RL algorithms and the robustness of the learned policies.
In particular, this study includes an evaluation of the performance of the models
we introduced in Chapter 5 and Chapter 6 under various types of noise that are
expected to be present on near-term hardware.

With the above, this thesis aims to contribute to building a foundation of knowledge
about how to successfully train variational quantum machine learning models,
in the hope that similarly to classical machine learning, this knowledge will one
day, when quantum hardware has sufficiently matured, aid demonstrations of the
practical usefulness of these types of algorithms.

225

Samenvatting

Variational quantum machine learning modellen worden vaak gezien als het quan-
tum analoog van klassieke neurale netwerken vanwege de gelijkenis in hun train-
ingsprocedure. Ze worden daarom ook wel quantum neurale netwerken genoemd.
In tegenstelling tot hun klassieke tegenhangers zijn er echter nog veel open vragen
over hoe trainbare en performante quantum neurale netwerken ontwerpen kunnen
worden. Bijvoorbeeld, hoe kan je standaard data in een quantum model represen-
teren; hoe moeten operaties in de circuits gestructureerd worden; of hoe kunnen
optimaliseringsprobelem, die specifiek voor quantum circuits zijn, verhinderd wor-
den. Net als klassieke hardware een game changer was voor de ontwikkeling van
machine learning, kan een verbetering van quantum hardware een grote invloed
hebben op de ontwikkelen van variational quantum machine learning modellen.
Het is daarom van groot belang een begrip te ontwikkelen van hoe deze mod-
ellen met succes getrained kunnen worden. Dit proefschrift draagt bij aan dit
begrip door zulke aspecten van variational quantum machine learning modellen te
bestuderen.

We beginnen met een inleiding tot de quantum computing, machine learning en
hun interactie in hoofdstukken 2 en 3. In hoofdstuk 4 bestuderen we hoe een
fundamenteel probleem in het trainen van variational quantum circuits, namelijk het
ontstaan van „barren plateaus” in de traininglandschappen, kan worden aangepakt
door een bestaande leermethoden, die dan tot een vergroting van quantum modellen
gebruikt kan worden. Hiertoe bieden we een trainingsprocedure dat het probleem
van „barren plateaus” voor specifieke gevallen verlicht en vergelijken we het met
standaard trainingsprocedures uit de literatuur.

Hoewel dit type trainingsprocedures in principe voor alle soorten machine learn-
ing kan worden gebruikt, richten we onze aandacht in de volgende hoofdstukken
specifiek op een bepaald type, namelijk op reinforcement learning (RL). Allereerst

226

Samenvatting

bestuderen we in hoofdstuk 5 hoe de architecturale keuzes voor een quantumagent
gebaseerd op een parameterized quantum circuit (PQC) de prestaties beïnvloeden
in twee benchmarks uit de RL-literatuur, waarbij we specifiek kijken naar de vraag
hoe gegevens te coderen zijn in, en informatie te lezen is uit het quantummodel.
Daarnaast stellen we een theoretische scheiding vast tussen klassieke- en quantum-
modellen voor het specifieke type RL-algoritme dat we gebruiken, en vergelijken
het quantummodel empirisch met een klassiek neuraal netwerk. Naast de vragen
hoe gegevens te coderen en te lezen uit een PQC, is de derde belangrijke vraag hoe
de structuur van een variational quantum machine learning model ontworpen moet
worden. Daarvoor gaan we in hoofdstuk 6 verder met het onderzoeken van deze
vraag en introduceren we een structuur die is aangepast aan een specifiek type
input, namelijk aan gewogen grafen. Hiervoor nemen we inspiratie uit het gebied
van geometrical deep learning, en ontwerpen we een PQC dat een belangrijke
symmetrie behoudt in graaf-gebaseerde input. We bestuderen de expressiviteit
van dit type circuit analytisch, en vergelijken het daarna numeriek met structuren
die niet aangepast zijn aan de specifieke input. Ten slotte is een andere belangrijk
overweging bij het bestuderen van algoritmen voor het NISQ-tijdperk hoe de
gegeven trainingsprocedures en modellen worden beïnvloed door de ruis veroorza-
akt door de quantumhardware. In hoodstuk 7 bestuderen we dit voor twee van de
variational RL-paradigma’s uit recente literatuur. We onderzoeken analytisch en
numeriek hoe verschillende soorten fouten, namelijk coherente, incoherente en op
metingen gebaseerde fouten, de trainingsprestaties van variational RL-algoritmen
en de robuustheid van de geleerde strategie beïnvloeden. In het bijzonder bevat
dit onderzoek een evaluatie van de prestaties van de modellen die we in hoodstuk
5 en hoodstuk 6 hebben ingevoerd onder verschillende soorten ruis die verwacht
worden aanwezig te zijn op quantumhardware.

Met bovenstaande hoopt dit proefschrift bij te dragen aan het opbouwen van een
basis van kennis over hoe variational quantum machine learning modellen met
succes opgeleid kunnen worden, in de hoop dat, zoals bij klassieke machine learning,
deze kennis ooit, als de quantumhardware voldoende performant is geworden, zal
helpen bij de praktische bruikbaarheid van dit soorten algoritmen.

227

About the author

Andrea Skolik received a Bachelors degree in Computer Science at the Hochschule
der Medien in Stuttgart in 2011, and her Masters degree in Computer Science at
Ulm University in Germany in 2015, with a focus on machine learning and robotics.
In between and after graduating, Andrea worked as a Software Engineer in various
areas such as logistics and finance, before joining the quantum computing team at
Volkswagen in 2018 to pursue reasearch in this field. She started her studies as a
PhD student at Leiden University in 2020 under the supervision of Vedran Dunjko
and Thomas Bäck, with a focus on the question of how quantum computers can
be used in conjunction with machine learning. Since 2022, Andrea is a full-time
quantum computing researcher at Volkswagen, where she continues to work at the
intersection of quantum computing and machine learning.

228

	Abstract
	Publications
	Acknowledgements
	1 Introduction
	2 Quantum computing
	2.1 Gate model quantum computing
	2.2 Noisy intermediate-scale quantum computing
	2.2.1 Variational quantum algorithms
	2.2.1.1 Computing gradients
	2.2.1.2 Challenges in the optimization of PQCs

	2.2.2 Application areas and outlook

	3 Machine learning
	3.1 Neural networks
	3.1.1 Neurons, layers, and backpropagation
	3.1.2 Generalization and overfitting
	3.1.3 Geometric deep learning

	3.2 Reinforcement learning
	3.2.1 Value-based and policy-based learning
	3.2.2 Q-learning
	3.2.3 Policy gradients

	3.3 Quantum machine learning
	3.3.1 Near-term quantum machine learning
	3.3.2 Data encoding and the choice of ansatz
	3.3.3 Is there potential for quantum advantage?

	4 Layerwise learning for quantum neural networks
	4.1 Layerwise learning
	4.2 Results
	4.2.1 Setup
	4.2.2 Sampling requirements
	4.2.3 Comparison to CDL strategies
	4.2.4 Numerical results

	4.3 Conclusion and outlook

	5 Quantum agents in the Gym: A variational quantum algorithm for deep Q-learning
	5.1 Quantum Q-learning
	5.1.1 Encoding environment states
	5.1.2 Computing Q-values

	5.2 Separation between quantum and classical Q-learning in restricted environments
	5.2.1 A classification task based on the discrete logarithm problem
	5.2.2 Learning optimal policies in environments based on the DLP classification task
	5.2.3 Estimating optimal Q-values from optimal policies

	5.3 Numerical results
	5.3.1 Frozen Lake
	5.3.2 Cart Pole
	5.3.2.1 Comparison of data encoding and readout strategies
	5.3.2.2 Comparison to the classical DQN algorithm

	5.4 Conclusion

	6 Equivariant quantum circuits for learning on weighted graphs
	6.1 Geometric learning - quantum and classical
	6.2 Neural combinatorial optimization with reinforcement learning
	6.2.1 Solving the Traveling Salesperson Problem with reinforcement learning
	6.2.2 Solving the TSP with the QAOA

	6.3 Equivariant quantum circuit
	6.3.1 Ansatz structure and equivariance
	6.3.2 Trainability of ansatz

	6.4 Quantum neural combinatorial optimization with the EQC
	6.4.1 Formal definition of learning task and figures of merit
	6.4.2 Equivariance of algorithm components
	6.4.3 Analysis of expressivity

	6.5 Numerical results
	6.6 Discussion

	7 Robustness of quantum reinforcement learning under hardware errors
	7.1 Environments and implementation
	7.1.1 CartPole
	7.1.2 Traveling Salesperson Problem

	7.2 Shot noise
	7.2.1 Reducing the number of shots in a Q-learning algorithm
	7.2.2 Numerical results

	7.3 Coherent noise
	7.3.1 Effect of Gaussian coherent noise on circuit output
	7.3.2 Resilience of Hardware-Efficient ansatzes to Gaussian coherent noise
	7.3.3 Numerical results
	7.3.3.1 CartPole
	7.3.3.2 Traveling Salesperson Problem

	7.4 Incoherent noise
	7.4.1 Depolarizing noise
	7.4.2 Noise model based on current hardware

	7.5 Conclusions

	8 Conclusion
	Appendix
	Bibliography
	Summary
	Samenvatting
	About the author

