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Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, Netherlands

Purpose: Intravoxel incoherent motion (IVIM) is a promising technique that can acquire
perfusion information without the use of contrast agent, contrary to the more established
dynamic contrast-enhanced (DCE) technique. This is of interest for treatment response
monitoring, where patients can be imaged on each treatment fraction. In this study,
longitudinal correlations between IVIM- and DCE parameters were assessed in prostate
cancer patients receiving radiation treatment.

Materials and Methods: 20 prostate cancer patients were treated on a 1.5 T MR-linac
with 20 x 3 or 3.1 Gy. Weekly IVIM and DCE scans were acquired. Tumors, the peripheral
zone (PZ), and the transition zone (TZ) were delineated on a T2-weighted scan acquired on
the first fraction. IVIM and DCE scans were registered to this scan and the delineations
were propagated. Median values from these delineations were used for further analysis.
The IVIM parameters D, f, D* and the product fD* were calculated. The Tofts model was
used to calculate the DCE parameters Ktrans, kep and ve. Pearson correlations were
calculated for the IVIM and DCE parameters on values from the first fraction for each
region of interest (ROI). For longitudinal analysis, the repeated measures correlation
coefficient was used to determine correlations between IVIM and DCE parameters in
each ROI.

Results:When averaging over patients, an increase during treatment in all IVIM and DCE
parameters was observed in all ROIs, except for D in the PZ and TZ. No significant
Pearson correlations were found between any pair of IVIM and DCE parameters measured
on the first fraction. Significant but low longitudinal correlations were found for some
combinations of IVIM and DCE parameters in the PZ and TZ, while no significant
longitudinal correlations were found in the tumor. Notably in the TZ, for both f and fD*,
significant longitudinal correlations with all DCE parameters were found.
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Conclusions: The increase in IVIM- and DCE parameters when averaging over patients
indicates a measurable response to radiation treatment with both techniques. Although
low, significant longitudinal correlations were found which suggests that IVIM could
potentially be used as an alternative to DCE for treatment response monitoring.
Keywords: DCE, IVIM, prostate cancer, treatment response, repeated measures, correlations, perfusion
1 INTRODUCTION

Non-invasive perfusion imaging is of interest in oncology, as low
perfusion is related to hypoxia which holds prognostic value (1–
3). A common way to measure perfusion is by using dynamic
contrast enhanced (DCE-) MRI (2, 4, 5). In addition to
prognosis, DCE has been shown to have value for mid-
treatment response assessment in cervix (6), esophageal (7),
and head-and-neck cancer (8–10).

Acquiring quantitative MRI (qMRI) images during radiation
treatment for the purpose of treatment response monitoring has
become feasible with the introduction of MR-guided
radiotherapy. Using MR-linacs, which consist of a linear
accelerator integrated with an MRI system, qMRI sequences
can be acquired on each treatment fraction, without the increase
of patient burden (11–16).

Although DCE-MRI is a candidate for treatment response
monitoring, acquiring a DCE scan during each treatment
fraction is undesirable due to the use of contrast agent.
Alternative techniques that can provide perfusion information
without the use of contrast agent are needed. One such
alternative is intravoxel incoherent motion (IVIM), which is an
extension to diffusion weighted imaging (DWI) (17). IVIM
parameters provide information about diffusion and perfusion.
It is based on the concept that inside a voxel, signal from water
flowing in the capillaries can be separated from diffusing water
(18). In addition to the diffusion coefficient (D), the perfusion
parameters f (perfusion fraction), D* (pseudo-diffusion
coefficient), and the product fD* can be determined.

Previous studies have investigated correlations between IVIM
and DCE-MRI parameters in different tumor sites, with
conflicting results (19). These studies usually determine the
correlation between IVIM and DCE parameters on a single
time point. For treatment response purposes however,
correlations between changes in parameters, induced by
radiation treatment, are more relevant. A study performed in
21 liver tumor-bearing rabbits assessed the correlations between
IVIM and DCE parameters longitudinally, while the rabbits were
treated with a vascular disrupting agent (20). Interestingly, the
authors did not find any significant correlations between IVIM
and DCE parameters when assessing the imaging time points
separately, but did find a significant longitudinal correlation.
This longitudinal correlation is of importance for treatment
response monitoring purposes and indicates that IVIM could
be a potential substitute for DCE-MRI for this purpose.

In the current study, longitudinal correlations between IVIM-
and DCE parameters are assessed in a cohort of prostate cancer
patients that were imaged weekly during radiation treatment.
2

Each week a DCE and an IVIM scan were acquired to enable
longitudinal assessment. The aim of this study is to determine
whether IVIM and DCE parameters correlate when measured
longitudinally and whether there is potential for IVIM to
substitute DCE for treatment response monitoring.
2 MATERIALS AND METHODS

2.1 Patients
Twenty patients, with a median age of 70.5 (range 53 – 82) years
with biopsy proven prostate cancer were included in this study.
Only patients with an adequate renal function (glomerular
filatration rate GFR > 60 ml/min/1.7m2) were included.
Thirteen patients were treated with 20 x 3 Gy and due to a
change in clinical practice, seven patients were treated with 20 x
3.1 Gy. Treatment took place over the course of five weeks.
Patient characteristics are presented in Table 1. The study was
approved by the local ethics committee and each patient gave
written informed consent.

2.2 Image Acquisition
All patients were treated on a 1.5 T MR-linac (Unity, Elekta AB,
Stockholm, Sweden). This is a hybrid system, where a linear
accelerator is integrated with an MRI scanner to enable
concurrent patient irradiation and MRI acquisition. The MRI
system of the MR-linac is based on a 1.5 T Ingenia system
(Philips Healthcare, Best, The Netherlands), with split gradient
coils to create a window for the radiotherapy beam (21). The
system uses an 8-channel radio-translucent phased array receive
coil (22).
TABLE 1 | Patient characteristics.

Patient characteristic Median (range)

Age (years) 70.5 (53 – 82)
iPSA (ng/ml) 15 (8 – 38)
GFR (ml/min/1.7m2)
Pre-treatment 79 (67 – 107)
Post-treatment 82 (65 – 110)

ISUP No. of patients
1 3
2 8
3 4
4 3
5 2
June 2022 | Volume 12
iPSA, initial prostate specific antigen; GFR, glomerular filtration rate; ISUP score, prostate
cancer grading score.
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A T2-weighted anatomical scan, an IVIM scan and a DCE-MRI
scan were acquired weekly over the course of five weeks, starting at
the first day of treatment. Scan parameters can be found in Table 2.
The IVIM sequence was optimized for the MR-linac system, which
has lower gradient performance compared to diagnostic systems
and lower SNR due to the simpler receive coil system (15, 23). To
compensate this, the highest b-value was limited to 500 s/mm2, and
a relatively large isotropic acquisition voxel size of 4 mm3 was used.
To calculate contrast agent concentration values, the pre-contrast T1

was measured using the variable flip angle (VFA) method with a
similar sequence as the DCE scan, but with a TR/TE of 20/4 ms and
flip angles of 3, 6, 10, 20, and 30 ˚. For the DCE scan, during the fifth
dynamic, 15 mmol gadoteric acid (Dotarem, Geurbet, France) was
injected at a rate of 3 mL/s using a power injector followed by a
30 ml saline flush. While a study by Wang et al. demonstrated no
significant effect of radiation on the chemical composition of
Gadolinium based contrast agents (24), DCE scans were acquired
after the radiation treatment, without repositioning of the patient to
avoid interactions of the contrast agent with radiation.

2.3 Image Registration
Tumor, peripheral zone (PZ), and transition zone (TZ) were
delineated on the T2-weighted scans of the first fraction. Of three
patients, who received a trans-urethral resection of the prostate
(TURP), the TURP cavity was delineated to be excluded from
analysis. Tumors were delineated while consulting biopsy results
and diagnostic images, following the PI-RADS V2.1 criteria (25).

The IVIM and DCE images were registered separately to the
T2-weighted scan of the first fraction which contained the
delineations using rigid registration allowing rotations and
translations. For IVIM, the b = 0 s/mm2 image was used as
this contains the most anatomical information. For DCE, the
100th dynamic was used as a scan with relatively high
enhancement in the prostate signal. All registrations were
checked visually and corrected manually when needed. After
registration, the delineations were propagated to the IVIM and
DCE scans, where only voxels that were fully inside the
propagated delineation were included for further analysis.
Frontiers in Oncology | www.frontiersin.org 3
IVIM scans were excluded when susceptibility artifacts were
present inside any of the delineations, or when movement
between b-values was present. DCE scans were excluded if
patient movement occurred during the scan.

The volume of the structures was calculated by multiplying
the number of voxels completely inside the delineation by the
voxel size of the T2-weighted scan they were delineated on.

2.4 Image Processing
2.4.1 IVIM
The bi-exponential IVIM model, S(b) / S0 = fe –bD* + (1 - f) e -bD,
was fitted using a segmented approach (26). Using the median
signal intensity values from the delineations, the tissue diffusion
coefficient (D) was determined first using the two highest b-
values (150 and 500 s/mm2). Next the perfusion fraction (f) was
calculated using this D and the b = 0 s/mm2 signal intensity. Both
D and f were then used in combination with the signal intensities
from the lowest two b-value images (0 and 30 s/mm2) to calculate
the pseudo-diffusion coefficient D*. The parameter fD* was
calculated by multiplying f with D*.

2.4.2 DCE
To extract an arterial input function (AIF), external iliac artery
was delineated on all DCE scans of all patients. Due to slight
variations in the B1 field (see Supplementary Figure 1), only the
left external iliac artery was used. Signal intensities were
converted to concentration time curves using the spoiled
gradient echo equation following Schabel and Parker (27)
assuming a T1 value of 1429 ms for blood at 1.5 T (28) and a
contrast agent relaxivity of 3.6 L mM-1 s-1 (29). Following
Georgiou et al. the maximum relative change in concentration
during the DCE scan was determined for all voxels inside this
delineation (30). The voxels between the 50th and 95th percentile
of this relative change were averaged to obtain an AIF for each
treatment fraction. Per patient, the median AIF of all five
measurements, based on peak height, was used for all tracer
kinetic modeling for that patient. Supplementary Figure 2
shows all AIFs of all patients.
TABLE 2 | MRI sequence parameters.

T2-weighted IVIM DCE

Sequence type 3D-TSE ss-EPI 3D-FFE
Field of view (mm3) 400 x 448 x 250 430 x 430 x 60 220 x 251 x 60
Acquired voxel size (mm3) 1.2 x 1.2 x 1.2 3.98 x 3.98 x 4.00 2.62 x 2.62 x 7.00
Reconstructed voxel size (mm3) 0.57 x 0.57 x 1.2 1.92 x 1.92 x 4.00 1.57 x 1.57 x 3.50
Flip angle (°) 90 90 35
TR/TE (ms) 1300/129 2960/82 4.0/1.9
Fat suppression – SPAIR –

Parallel imaging (SENSE) factor 3.5 2.3 2
Acceleration factor 110 47 –

b-values (averages) (s/mm2) – 0 (8), 30 (8), 150 (8), 500 (16) –

Phase encoding bandwidth (Hz/pixel) – 32.9 –

Gradient timings D/d (ms) – 41.1/20.0 –

Dynamic scan time (s) – – 2.8
Number of dynamics – – 110
NSA 2 1 1
Acquisition time (m:ss) 5:48 5:11 5:04
June 2022 | Volume 1
2 | Article 897130

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Kooreman et al. Longitudinal Correlations Between IVIM and DCE
A voxel-wise T1-map was calculated from the VFA series using a
linear implementation (31). The T1 map was used to convert signal
intensity to concentration values using the method of Schabel and
Parker (27). The bolus arrival time was estimated for each voxel
using an automated method (32). The volume transfer constant
(Ktrans) and the rate constant (kep) from the standard Tofts model
(33) were calculated on a voxel-basis following the approach
developed by Murase (34) using and median AIF as input. The
extracellular extravascular space volume fraction (ve) was then
calculated on a voxel basis using (Ktrans/kep).

2.5 Statistics
Baseline values from the IVIM and DCE parameters were taken
from the scans of the first fraction. To check for differences in
parameters between ROIs, a one-way analysis of variance
(ANOVA) was performed for each parameter, with ROI as the
independent variable. ANOVA results are presented with their
F-statistic including within- and between group degrees of
freedom, and p-value. Pearson correlation coefficients were
calculated between IVIM and DCE parameters of the first
fraction for each ROI.

To determine longitudinal correlations between the IVIM and
DCE parameters, the rmcorr package in R was used (35). The
rmcorr package provides a repeated measures correlation (rrm),
which takes into account the non-independence of repeated
measures. To do so, the relationship between two continuous
variables (in this case the IVIM and DCE parameters) is
determined while controlling for between-patient variance.
Specifically, separate parallel lines are fitted to the data of each
patient using a common slope but allowing the intercept to vary
per patient (35). The rrm is then calculated from the sum of squares
values for the measure and the error as follows:

rrm =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSMeasure

SSMeasure + SSError

s

Frontiers in Oncology | www.frontiersin.org 4
The sign of rrm is taken from the sign of the common slope.
The degrees of freedom are calculated using N(k-1)-1, where k is
the (average) number of repeated measures per participant and
N is the total number of participants (35).

As IVIM and DCE measure different biological properties
which are both related to perfusion, it is possible that their
correlation depends on the particular tissue measured. Therefore,
rrm was calculated separately for each ROI. It can be interpreted
as the intra-patient correlation between IVIM and DCE
parameters during radiation treatment for a given ROI.
Repeated measures correlation results are presented as rrm
(error degrees of freedom), p-value, and a 95% confidence
interval calculated using bootstrapping with 10.000 resamples.
Statistical significance was assumed for all tests when p < 0.05.
3 RESULTS

Imaging data was acquired on five fractions for 19/20 patients
and one patient was imaged four times. This resulted in a total of
99 fractions with IVIM and DCE scans. Two DCE scans were
excluded due to movement during acquisition, both from the
same patient. Seven IVIM scans were excluded due to
susceptibility artifacts causing deformations within the
delineations and two IVIM scans were excluded because the
patient moved between the acquisition of images with a different
b-value, leaving 97 DCE acquisitions and 90 IVIM acquisitions
for further analysis.

In two of the patients, no tumor was visible on the diagnostic
scans and therefore not delineated. Of one patient with a TURP
all remaining tissue was treated as tumor. The median (range)
volume of the ROIs were 0.9 (0.1 – 14) cm3 for the tumor, 8.9 (5.0
– 26) cm3 for the PZ, and 20 (7.2 – 66) cm3 for the TZ. An
example of the delineations in two different patients is shown
in Figure 1.
FIGURE 1 | Example of delineations of the different prostate zones of two different patients (A, B). Delineations were made on T2-weighted scans from the first
treatment fraction. The entire prostate is shown in white, the peripheral zone (PZ) in red, and the tumor in yellow. The transition zone (TZ) was extracted in post
processing by subtracting the PZ from the prostate delineation. Tumor voxels were excluded from all other zones during analysis.
June 2022 | Volume 12 | Article 897130
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Baseline mean values with the standard error of the mean
(SEM) are presented in Table 3. These are based on the IVIM
scans acquired before the patients received any radiation and the
DCE scans acquired directly after a single dose of 3 or 3.1 Gy. One-
way ANOVA revealed a statistically significant difference between
the tumor, PZ, and TZ for D (F2,44 = 15, p < 0.001), Ktrans (F2,53 =
4.3, p = 0.02) and ve (F2,53 = 3.9, p = 0.03). No statistically
significant correlations were found between IVIM and DCE
parameters when using values from the first fraction only.

Figure 2 shows the average time trends over all patients
of the IVIM and DCE parameters. All IVIM and DCE
parameters increase in all ROIs over the weeks, except for
A B D

E F G

C

FIGURE 2 | Evolution of intravoxel incoherent motion (IVIM, A–D) and dynamic contrast-enhanced (DCE, E–G) parameters during radiation treatment. The average
value of all patients is shown for the tumor, PZ, and TZ. Error bars indicate the standard error of the mean (SEM).
Frontiers in Oncology | www.frontiersin.org 5
TABLE 3 | Pre-treatment values of the IVIM and DCE parameters.

Tumor PZ TZ

D (10-3 s/mm2) 1.12 ± 0.08 1.56 ± 0.07 1.45 ± 0.02
f 0.07 ± 0.02 0.09 ± 0.01 0.10 ± 0.01
D* (10-3 s/mm2) 35 ± 12 28 ± 3 32 ± 2
fD* (10-3 s/mm2) 3.9 ± 1.3 2.7 ± 0.4 3.2 ± 0.3
Ktrans (min-1) 0.30 ± 0.04 0.14 ± 0.02 0.19 ± 0.02
kep (min-1) 0.58 ± 0.09 0.29 ± 0.07 0.38 ± 0.05
ve 0.45 ± 0.08 0.25 ± 0.08 0.44 ± 0.05
June 20
22 | Volume 12 | Ar
The IVIM parameters were acquired before irradiation, the DCE parameters were acquired
directly after receiving the first treatment fraction. Mean ± standard error of the mean
(SEM) values of all patients are shown.
TABLE 4 | Repeated measures correlations between IVIM and DCE parameters, separately presented for each ROI.

Ktrans kep ve

Tumor D r(60) = 0.04 [-0.13, 0.24], p = 0.74 r(60) = -0.08 [-0.33, 0.19], p = 0.55 r(60) = 0.19 [-0.05, 0.41], p = 0.15
f r(60) = 0.09 [-0.09, 0.32], p = 0.48 r(60) = 0.02 [-0.19, 0.27], p = 0.86 r(60) = -0.12 [-0.43, 0.24], p = 0.34
D* r(54) = -0.02 [-0.33, 0.25], p = 0.89 r(54) = -0.13 [-0.35, 0.13], p = 0.34 r(54) = 0.02 [-0.23, 0.27], p = 0.90
fD* r(54) = 0.03 [-0.24, 0.27], p = 0.82 r(54) = -0.09 [-0.33, 0.19], p = 0.53 r(54) = -0.08 [-0.35, 0.22], p = 0.58

PZ D r(63) = -0.21 [-0.39, -0.02], p = 0.09 r(63) = -0.06 [-0.27, 0.15], p = 0.64 r(63) = -0.33 [-0.54, -0.11], p < 0.01
f r(63) = 0.21 [0.01, 0.47], p = 0.10 r(63) = 0.07 [-0.15, 0.39], p = 0.56 r(63) = 0.33 [0.14, 0.57], p < 0.01
D* r(63) = 0.16 [-0.04, 0.36], p = 0.19 r(63) = 0.12 [-0.06, 0.32], p = 0.34 r(63) = 0.04 [-0.16, 0.27], p = 0.75
fD* r(63) = 0.23 [-0.03, 0.47], p = 0.07 r(63) = 0.13 [-0.12, 0.43], p = 0.29 r(63) = 0.20 [-0.01, 0.40], p = 0.11

TZ D r(63) = -0.01 [-0.17, 0.25], p = 0.94 r(63) = 0.16 [-0.01, 0.35], p = 0.21 r(63) = -0.13 [-0.29, 0.06], p = 0.29
f r(63) = 0.38 [0.28, 0.64], p < 0.01 r(63) = 0.39 [0.19, 0.60], p < 0.01 r(63) = 0.37 [0.28, 0.62], p < 0.01
D* r(63) = 0.21 [0.03, 0.52], p = 0.09 r(63) = 0.35 [0.16, 0.54], p < 0.01 r(63) = 0.19 [0.02, 0.53], p = 0.12
fD* r(63) = 0.39 [0.26, 0.66], p < 0.01 r(63) = 0.48 [0.27, 0.66], p < 0.001 r(63) = 0.37 [0.24, 0.63], p < 0.01
The degrees of freedom are shown between parentheses and the confidence interval of the repeated measures correlation is shown between brackets. Bold values show significant
correlations (p < 0.05).
ticle 897130
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D in the PZ and TZ. The IVIM perfusion parameters increase
steadily over the weeks. The DCE parameters steeply increase
from the first to the second week and stabilize or slightly
increase after that.

The rrm calculated on the longitudinal data are presented in
Table 4. No statistically significant correlations were found
between any IVIM and DCE parameter in the tumor. In the
PZ, statistically significant correlations were found only between
D and ve and between f and ve. In the TZ, statistically significant
correlations were found between f and Ktrans, f and kep, and f and
ve. D* correlated significantly only with kep, while the product
fD* did so with all DCE parameters. Graphs showing the
common slope and the slope per patient of the significant
within-subject longitudinal correlations are presented in
Figure 3 for D, Figure 4 for f, Figure 5 for D*, and Figure 6
for fD*.
4 DISCUSSION

In this study, the longitudinal correlations between IVIM and
DCE parameters in different ROIs of prostate cancer patients
were assessed during radiation treatment. Weekly IVIM and
DCE scans were performed and resulting correlations were tested
Frontiers in Oncology | www.frontiersin.org 6
taking into account the non-independence of repeated
measurements on the same patients.

Baseline f and D* values of the IVIM parameters
corresponded to values found in the literature, although the
reported range is large. The baseline tumor D values found in this
study (1.12 ± 0.08 10-3 mm2/s) were higher than previously
found (reported range: 0.13 – 1.06 10-3 mm2/s) (36). Baseline
Ktrans and ve values were consistent with those found in the
literature, while the kep values were relatively low (37).

When averaging over patients, an increase in all perfusion
parameters over the course of radiation treatment can be seen.
In the DCE parameter values, this increase was the largest
between week 0 and week 1, after which the values seemed to
stabilize. This trend is also visible in the IVIM parameters D*
and fD*. The similar behavior on the group level suggests that
there is an overall biological response to radiation that can be
measured similarly with both techniques. Previous results
comparing DCE parameters before treatment to values
acquired at a minimum of two years after treatment showed
a decrease in Ktrans and kep in the PZ and TZ (38). Taken
together with the current results, this could indicate that
perfusion is increased during treatment, followed by a
decline longer after treatment. The discrepancy between
short-term and long-term differences highlights the
FIGURE 3 | The significant repeated measures correlation of D with the DCE parameters are shown. D only correlated significantly with ve in the PZ. Each line
shows the fit for a single patient and the dashed black line shows the overall common slope.
June 2022 | Volume 12 | Article 897130
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A

B DC

FIGURE 4 | The significant repeated measures correlations of f with the DCE parameters are shown. (A) is the correlation between f and ve in the PZ, (B–D) are
values from the TZ. Each line shows the fit for a single patient and the dashed black line shows the overall common slope.
FIGURE 5 | The significant repeated measures correlations of D* with the DCE parameters are shown. D* only correlated significantly with kep in the TZ. Each line
shows the fit for a single patient and the dashed black line shows the overall common slope.
Frontiers in Oncology | www.frontiersin.org June 2022 | Volume 12 | Article 8971307
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importance of determining the optimal measurement time for
treatment response purposes.

A possible explanation for the early increase of the perfusion
parameters in all prostate zones could be an inflammatory
response to the radiation treatment in the entire prostate,
similar to what was found previously in cervix patients (6).
Such an overall response could limit the predictive value of early
perfusion for treatment response in prostate cancer patients as it
could obscure more subtle changes related to outcome. To
investigate this, early changes in perfusion parameters should
be related to clinical outcome data. However, these data were not
available yet for the current study population.

Although comparison with histology has shown that IVIM
parameters provide perfusion information, the specific
interpretation of IVIM parameters and their relation to DCE
parameters remains unclear (19, 39). Correlations between
IVIM and DCE parameters should be carefully interpreted
based on the context. When the goal is to assess the ability of
both techniques to differentiate between tumor and benign
tissue, as done in Pang et al. for prostate cancer (40), it is
appropriate to use values from both ROIs combined to
determine the correlation. In that case, the correlation reflects
how differences between ROIs in IVIM parameters correlate
with differences between ROIs in DCE parameters. A ROI effect
is clearly visible in the scatterplots presented by Pang et al. (40).
However, when investigating longitudinal data, we are
interested in the correlation of changes within the ROIs over
time. This within-ROI correlation could be different for
different ROIs, and theoretically even have an opposite sign
compared to the between-ROI correlation. This effect is known
as Simpsons paradox (41).

In the current study, the focus is on treatment response
monitoring. To measure the longitudinal correlations the rrm
was used on data from each ROI separately. The rrm can in this
case be interpreted for each ROI as the intra-patient
correlation between IVIM and DCE parameters while
measuring during treatment, indicating the degree to which
Frontiers in Oncology | www.frontiersin.org 8
both parameters reflect the same time trends induced
by irradiation.

No significant correlations were found in the tumors. A
reason for this could be a low precision of the IVIM and DCE
parameters as acquired in the current study. Median values were
calculated per ROI, and the variance of these median values scale
with 1/n, where n is the number of voxels. As prostate tumors are
relatively small, the variance of the median values is relatively
high. We showed previously that the test-retest repeatability
coefficient of IVIM parameters in prostate tumors is high for the
current imaging sequence and analysis: 0.44 10-3 mm2/s, 0.16
and 76.4 mm2/s for D, f, and D* (15). Additionally, DCE
parameters are known to have poor repeatability (42–44).
Within-patient coefficients of variation reported previously in
prostate tumors measured on a 1.5 T system were around 20%
for Ktrans, 15% for ve and 30% for kep (45). Poor repeatability in
both IVIM and DCE parameters can attenuate the correlation
coefficients (46). In the TZ, which is the ROI with the largest
volume, significant positive correlations were found, although all
were low (< 0.5).

In order to test the correlations between IVIM and DCE
parameters in different ROIs, 36 statistical tests were performed
with a significance threshold of a = 0.05. This means that the
chance of finding at least one false positive result is 84%, because
multiple testing inflates the type 1 error rate. However, since this
is the first study to test the longitudinal correlation between
IVIM and DCE parameters in humans undergoing radiation
treatment, type I error rate is less of a concern. These correlations
can be used as a direction for future studies.

In conclusion, when assessing changes in group averages over
time, a clear increase in IVIM perfusion parameters was found.
This increase was also present in all DCE parameters. Although
low, it is encouraging that significant longitudinal correlations
were found between IVIM- and DCE parameters, suggesting that
IVIM could potentially be used as an alternative to DCE for
treatment response monitoring purposes, in particular when
repeated DCE-MRI is not feasible.
A B C

FIGURE 6 | The significant repeated measures correlation of fD* with the DCE parameters are shown. fD* only correlated significantly with DCE parameters in the
(A–C) TZ. Each line shows the fit for a single patient and the dashed black line shows the overall common slope.
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