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2
Long Range Proximity Effects &
Domain Wall Physics

This is Chapter 2, which gives an overview over some of the fundamental concepts

to be appreciated in the context of this Thesis.
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2. Long Range Proximity Effects & Domain Wall Physics

2.1. Introduction

As was already mentioned in Chapter 1, the major motivation to work on CrO2

and RuO2 nanowires lies in the fact that CrO2 is a half-metallic ferromagnet, a

class of materials that is uniquely suited to studying superconducting long range

proximity effects and spin-polarized supercurrents. Even though this research was

not successful, it is fitting to briefly reiterate the framework of the research ques-

tion on the superconducting side, discuss some basic aspects of superconducting

Josephson junctions, and mention what appeared to be the state of the art when the

research started. This will be the first part of this Chapter. Then, for the final goal

of having supercurrents interact with magnetic structures such as nanomagnets

or domain walls (DWs), this Thesis presents results on the magnetic behavior of

CrO2 nanowires, and on pinning and depinning of DWs from constrictions in such

nanowires. Some basic notions of magnetism and DW formation are therefore

presented in the second part of this Chapter.

2.2. Superconductivity

2.2.1. General concepts

Superconductors are materials that transport electric charge without resistance. It

is a so-called macroscopic quantum phenomenon, displaying, for instance, spon-

taneous flux expulsion and magnetic flux quantization. These quantum phenom-

ena are associated with macroscopic wave functions characteristic of off-diagonal

long-range order (ODLRO), a concept first introduced by Yang [1]. This order is

characterized by a long-range coherence of the quantum mechanical phase which

demonstrates itself in the form of macroscopic quantum phenomena. As a con-

sequence of macroscopic occupation, a simple wave functionΨ can describe the

whole superconducting state :

Ψ(r, t ) =
√

ns (r, t )e iθ(r,t ) (2.1)

where, ns is the density of Cooper pairs and θ is the gauge covariant phase.

ns = ne /2, where ne is the normal electron density. A basic parameter charac-

terizing a superconductor is the Ginzburg-Landau coherence length ξGL , which

determines the distance over which the density of superconducting carriers can

meaningfully change. The size of ξGL can vary from several tens of nm in metal-

lic superconductors down to about 1 nm in the ’high critical temperature (Tc )’

copper-oxide superconductors (HTS). The other important length scale is the Lon-

don penetration depth λL which describes the decay of an external magnetic field

from the edge of a superconductor toward its interior, from which it is ultimately
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2.2. Superconductivity
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Figure 2.1: Schematic representation of the proximity effect between a superconductor (S) and a normal
metal (N). The superconducting order parameter decays over the length scales ξS and ξN as it extends
across the interface. The discontinuity of the order parameter at the interface signifies a non-perfect
interface transparency.

expelled. The ratio (κ=λL/ξGL) between these two lengths bifurcates between two

types of superconductors, type I, where flux expulsion below Tc is complete, and

type II, where flux quanta (vortices) can remain present in the bulk of the mate-

rial. Both ξGL and λL are temperature dependent. According to Ginzburg-Landau

theory, ξGL(T ) = ξGL(0)(1−T /Tc )−1/2, which implies a diverging enhancement of

ξGL(T ) from its minimal value ξGL(0) at T = 0 when Tc is approached. Similarly,

λL(T ) = λL(0)(1− (T /Tc )4)−1/2. For λL , it is important to know that for film thick-

nesses t ≤λL(T ), λL(T ) has to be replaced by an effective penetration depth (also

called Pearl length)Λ(T ) = 2λL(T )2/t .

2.2.2. Proximity effect with normal metals

In a superconductor (S) the electrons are ordered as Cooper pairs whereas in a

normal metal (N), the electron arrangement lacks such pairing and is instead char-

acterized by a continuous distribution of single-electron states that are filled up

to the Fermi surface. When S is placed next to N, the electron ordering in the two

systems does not undergo an instantaneous change at the interface, rather it hap-

pens over a finite distance. The characteristic length scale ξ over which the order

parameter can change its magnitude is called the coherence length, which is a

material property. At the side of N, an often-used picture is that Cooper pairs are

carried over (‘leak’) into the metal and that their density decays over a length ξn (see

Fig. 2.1). In a diffusive system, defined by ξN < le , where le is the electronic mean

free path, ξN is given by

ξN =
√

ħDn

kB T
(2.2)
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2. Long Range Proximity Effects & Domain Wall Physics
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Figure 2.2: (a) Schematic representation of the electronic band structure for a ferromagnet. At S/F
interface singlets have to adjust to Fermi energy EF resulting in finite momentum. (b) Singlet (blue)-
triplet (brown) mixing at S/F interface. Due to Eex the correlations decay over very short distances
resulting in short range proximity effect. The reflections from F layer cause spin-dependent phase shifts
at S-side. Adapted from [2].

where ħ is reduced Planck constant, Dn is the diffusion coefficient of the metal, and

kB is the Boltzmann constant. ξN can be of the order of hundreds of nm. At the

S side : As shown in Fig. 2.1 near the interface, the order parameter is depleted

over a distance defined by ξS (T ), where ξ(0) is the coherence length of S at T = 0 K.

Therefore, the proximity effect is used to describe the induced superconductivity in

a normal metal. Since the total condensate remains conserved, the Cooper pairs

are “drained” from S which results in a suppression of Tc of the superconductor. We

note in passing that there is another way to look at the superconducting correlations

on the N-side of the interface, using the concept of Andreev reflections. In that

language, the coherence on the N-side is rather furnished by an electron with a

certain spin, coupled to a ’retroreflected hole’ of opposite spin. Both pictures allow

to discuss the coupling of two superconductors in an S/N/S geometry.

2.2.3. Proximity effect with ferromagnets

If the non-S metal is a ferromagnet (F) instead of a normal metal, several details

change in the picture of the proximity effect. As previously mentioned in Ch. 1, the
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2.2. Superconductivity

exchange field Eex of F splits the band structure for up and down spins, resulting

in an energy shift of 2Eex . The singlet Cooper pairs consist of two electrons with

equal and opposing momentum (kF , -kF ) and spin (↑,↓) . Eex induces a momentum

shift of ±Q/2 for electrons located at the Fermi level. In the diffusive limit Q =

2Eex /ħvF , where vF is the Fermi velocity. As a result, a finite momentum for |↑↓〉
may be expressed as kF↑ - kF↓ = Q, and for |↓↑〉 is kF↓ - kF↑ = −Q. This results in

singlet Cooper pairs at the Fermi energy EF acquiring a non-zero center-of-mass

momentum. Consequently, a spin-mixed state emerges:

|↑↓ − ↑↓〉 =⇒ |↑↓〉e i Q·R −|↓↑〉e i Q·R = |↑↓ − ↑↓〉cos(Q ·R)+ i |↑↓ + ↑↓〉sin(Q ·R) (2.3)

The first component represents a zero-spin oscillating singlet state (S = 0 while the

second term defines a triplet state (S = 1) with a spin projection (ms = 0) relative to

the spin quantization axis, determined by the Eex . These correlations can only per-

sist in the F layer within a certain length scale from the interface. The decoherence

length ξF over which all pair amplitudes decay exponentially is expressed as

ξF =
√

ħDF

Eex
(2.4)

in a diffusive limit. For a conventional F like Co, Ni ξF is only a few nm. For a 100%

spin polarized material such as CrO2, only one spin band is occupied at EF in which

case the singlets cannot be injected at all. In terms of Andreev reflections, there

is no retroreflected hole with opposite spin available. As a consequence, the S/F

interface is fully reflective and ξF is of the order of atomic distances. At the S side of

the interface, stronger spin polarization of F causes a spin-dependent phase shifts

(±θ), forming a spin triplet mixture (ms = 0) in S which increases with the spin

polarization. Eex results in different scattering phase delay which can be expressed

as

|↑↓〉e iθ−|↓↑〉e iθ = |↑↓ − ↑↓〉cos(θ)+ i |↑↓ + ↑↓〉sin(θ) (2.5)

The oscillating dependence of the order parameter on the distance from S/F inter-

face has an interesting implication: there is the possibility of a 0-π transition by

varying the thickness of F layer [3, 4] or changing the temperature [5]. However,

the short range of a few nm of the spin mixed state in F limits the development of

applications.

2.2.4. Equal spin triplets and the Long-range proximity effect

The proximity effect in S/F hybrids is not restricted to short ranges. The quantization

axis of correlations with zero spin projection can be rotated to produce alternative

(equal spin) triplet correlations with ms = 1( or -1). A ferromagnet does not break
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Figure 2.3: (a) Schematic representation of long range proximity effect in a S/F’/F hybrid. When magne-
tization of F’ is non-collinear with F, the ms = 0 triplet is rotated in the spin space and converted into
equal spin triplet (ms = 1). when MF ′ is ⊥ to MF singlet to triplet conversion is optimized. Equal spin
pairs are not broken by Eex and can exist up to hundreds of nm in F layer.

up equal spin triplets, denoted as |↑↑〉 and |↓↓〉 in Dirac notation. The rotation can

come about by introducing magnetic non-collinearity or inhomogeneity at the S/F

interface. One way to do that is by stacking a thin layer (within length ξF ) of a

magnetic material F’ with a different magnetization direction than F (see Fig. 2.3)

[6, 7]. For instance, we assume MF ′ to align with the x-axis while MF is along z. The

spin mixing in S due to F’ is then a consequence of Eex along x. The magnetization

of spin mixing correlations gets rotated to z. The triplet state (ms = 0) has zero-spin

projection along x but it can have non-zero component |↑↑〉z and |↓↓〉z along z. The

amount of spin polarization of F and the degree of magnetic inhomogeneity defines

the relative amplitude of the two components. In case of half-metals, one of the

two is completely suppressed. Due to their equal spins, the triplets are not affected

by Eex and therefore can stay coherent over large distance, similar to singlets in a

normal metal, resulting in a Long Range Proximity effect. The main limiting factor

here is the spin diffusion length, while the characteristic decay length is given by

ξT
F =

√
ħDF

kB T
(2.6)

In conventional F metals, ξT
F can be tens of nanometers. However for 100% spin

polarized F like CrO2 spin flipping is not an issue and ξT
F can be several hundreds

nanometers. The equal spin triplet supercurrents are by definition spin-polarized.

They offer great potential for the development of superconducting electronics

wherein not only the charge and the superconducting phase, but also the spin

is utilised. The primary focus of our study revolves around two systems, namely

Josephson junctions and triplet spin valves. In the following sections an overview of

the general Josephson effect is given prior to the examination of earlier studies on

proximity effects.
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Figure 2.4: (a) Schematic representation of a Josephson junction : Two superconducting (S) electrodes
(orange) separated by a thin weak link (blue) of length d. The amplitude of two superconducting
wave functions (red) is shown to be overlapping, resulting in a supercurrent through the junction. The
dimensions of the superconductors are : width (w), thickness (ts ), length (l). The magnetic field is applied
along the z-axis and the current flow is along the y-axis. The magnetic field penetrates into S and decays
exponentially over the London penetration depth (λL ,λR ).(b) The Fraunhofer-like interference pattern
of the critical current Ic in a JJ due to the applied field, in units of flux normalized by the flux quantum.
The central peak is two times wider than the side lobes, and the side lobe maxima decay as 1/B.

2.2.5. Josephson junctions

The Josephson effect in general describes the transfer of Cooper pairs and the cou-

pling of the macroscopic wave functions between two superconductors via a weak

link. The nature of the weak link determines the transport through the junction

and can be insulating (I), a normal metal (N) or a ferromagnet (F). A schematic of

such a geometry is given in Fig. 2.4(a) which shows two superconducting electrodes,

each corresponding to a distinct wave function described by ΨL,R = p
nsL,R e iθL,R

separated by a thin N layer such that the two wave functions overlap and main-

tain coherence. We assume that the density of Cooper pairs (ns ) stays the same in

both the electrodes. The phase difference ϕ between the two condensates is given

by θ(L)−θ(R), where θ(L,R) corresponds to the phase of the individual conden-

sates. Supercurrents in the weak link are driven by the phase difference and can be

expressed as

J = Jc sin(ϕ) (2.7)

Jc is the maximum current density the junction can sustain. Above this current,

the junction returns to the normal resistive state and a finite voltage is measured.

The sinusoidal current-phase relation reveals the wave-like nature of the charge

transport in a superconductor. The manifestation of quantum behavior becomes

more apparent when a magnetic field is applied in a direction perpendicular to

the current. Experimentally, it results in a "Fraunhofer"-like diffraction pattern

(see Fig. 2.4(b)) similar to the diffraction pattern observed when a wave passes

through a single slit. It is also called as superconducting quantum interference (SQI)

pattern. When an external field is applied, the vector potential interacts with the
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2. Long Range Proximity Effects & Domain Wall Physics

supercurrent, resulting in the introduction of an additional phase difference that

is proportional to the strength of the field. The critical current exhibits oscillatory

behavior when the field is increased due to the periodicity of the phase, superim-

posed on the decay due to orbital breaking effect. The periodicity of the oscillation

is equal to ∆B =Φ0/A, whereΦ0 is the magnetic flux quantum and A is the effective

junction area, given by (λL +λR +d)w (see Fig. 2.4(a)), penetrated by the flux (Φ).

The SQI is described by

Ic (B)

Ic (0)
=

∣∣∣∣∣sin(πΦΦ0
)

πΦ
Φ0

∣∣∣∣∣ (2.8)

It should be noted that the periodicity of SQI is dependent on the size of the super-

conductor. The above discussion holds true under the condition that the thickness

t of S is larger than the London penetration depth λ. As discussed in the previous

sec. 2.2 (and shown in Fig. 2.4(a)) the magnetic field applied along the z axis decays

in both right and left superconducting electrodes over λ. In particular, junction

physics becomes different when the thickness of the superconducting electrodes

is less than λ. Additionally, when the junction width w becomes smaller than the

Josephson penetration length ℓJ given by

ℓJ = Φ0

4πµ0λ2 Jc (0)
(2.9)

with Jc being the (presumed homogeneous) critical current density of the junction.

The shielding current running along the junction, responsible for the shape and

periodicity of SQI is no longer determined by Meissner effect. In this scenario, as

has been discussed in numerous studies, the electrodynamics becomes non-local,

and Ic (B) becomes independent of λ and is solely determined by the geometry

of the device [8–12]. In particular, when l >> w then ∆B = 1.84Φ0/w2 and when

l << w then ∆B = 2Φ0/(l ·w).

2.2.6. Earlier work on proximity effect in CrO2

A first experimental breakthrough in long-range effects came in 2006, when Keizer

et al. reported a Josephson supercurrent between two singlet superconducting elec-

trodes (NbTiN) separated by (0.3- 1) µm of CrO2 film[13]. The half-metallic nature

of CrO2 completely suppresses the Andreev reflections, hence preventing the pene-

tration of singlet Cooper pairs, and the supercurrent was strong evidence for the

LRP effect. They found a critical current density of the order of 5×109 A/m2 and also

observed SQI when an in-plane transverse field to the current was applied. Their

experiments however, did not provide information about the pairing symmetry of

the correlations. Furthermore, they reported large spread in their critical currents

which suggests that the triplet generator was poorly defined and controlled.
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Figure 2.5: (a) (left) Transmission electron microscopy image of a CrO2 film grown on Al2O3. Visible
are the Cr2O3 seed layer, the CrO2 layer, and the MoGe layer. (right) Layout of the device structure with
four current/voltage contacts. The width of the electrodes is 30 µ m. SEM image of the gap between the
two electrodes of 700 nm, made by liftoff. (b) Critical current Ic versus temperature T for three different
junctions. The inset shows a linear fit to a plot of ln Ic −3/2lnT vs

p
T . Taken from Ref. [14].

In 2010, Anwar et al. were able to successfully replicate the effect using MoGe

electrodes separated by 700 nm on CrO2 film grown on a Al2O3 substrate [14]. They

observed supercurrents of the order of 107 A/m2, lower by two order of magnitude

compared to the previous study. Furthermore, it was estimated that the supper-

currents were limited to a thickness of around 30 nm out of 100 nm of CrO2 film

resulting in a weaker junction. It was argued, supported by TEM images (see Fig.

2.5(a)), that the growth of CrO2 films on Al2O3 leads to significant differences in film

morphology: growth on Al2O3 does not start as CrO2, but rather as Cr2O3 and only

after a few tens of nanometers, the growing film becomes CrO2.

One way to estimate the strength of a junction is by measuring the critical

current Ic as a function of temperature. In a diffusive limit, for a long junction

Ic ∝ T 3/2e
p

(2πKB T )/ET h , with ET h the Thouless energy. Their junction showed good

compliance at low temperatures up to 2 K (see Fig. 2.5(b)) with values of ET h around

72 µV. However, no clear Fraunhofer pattern was observed when an in-plane mag-

netic field is applied parallel to the Ic . Furthermore, Ic showed little sensitivity

to applied fields up to 500 mT which suggested that the non-collinear magnetic

moments responsible for triplet generation are pinned at the CrO2 interface. The

authors also found a high normal state resistance RN of 11Ω instead of expected

value of 4 mΩwhich pointed to a low transparency of the S/F interface. This was due

to the fact that CrO2 is metastable and reduces to Cr2O3 at room temperature. This

forms an insulating layer and has to be Ar-etched away before the superconducting

electrodes are deposited. The Ar etching will not only remove unwanted oxides but

may also damage the surface.

Overall, the complicated fabrication process to get the desired interface trans-

parency and the lack of control over magnetization at the interface with CrO2 films
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Figure 2.6: (a) Scanning electron micrograph (false color) of a Josephson junction on a CrO2 nanowire
(green), Orange contact pads consist of trilayer (Cu or Ag)/Ni/MoGe. (top). Schematic of the device with
CrO2 wire as a weak link. (b) Current I versus voltage V characteristics of J1 at different temperatures. (c)
Critical current density Jc vs T. The inset shows a linear fit to a plot of ln Ic −3/2lnT vs

p
T . Taken from

Ref. [16].

revealed the some of the limitations of these junctions. Consequently, the propor-

tion of fabricated junctions exhibiting supercurrents falls below 30%.

In 2012 Anwar et al. improved on their previous work and reported supercur-

rents on CrO2 films grown on TiO2 substrates by employing a sandwich layer of

Ni/Cu between the CrO2 film and superconducting MoGe [15]. Adding a thin fer-

romagnetic layer of Ni layer provided the necessary magnetic inhomogeneity for

triplet generation similar to the model proposed by Houzet and Budzin[6]. They

observed an Ic of the order of 109 A/m2, comparable to ref. [13] and two order of

magnitude more than junctions on Al2O3 substrates. However, other issues like no

clear Fraunhofer pattern in the presence of an external field, non-zero Ic at fields of

500 mT suggesting that the lack of control of magnetization at the interface and low

interface transparency still remained.

So far, the studies were conducted on ‘full-film’ devices which, as we discussed, suf-

fer from limitations due to presence of grain boundaries, ill-defined current paths

and an lack of control of the magnetization state at the local level. In 2016, Singh et.

al. reported selective area grown CrO2 nanowires based lateral JJs[16]. Similar to the

above studies, artificial magnetic homogeneity was provided by a sandwich layer of

Cu (or Ag)/Ni at the interface of CrO2 and MoGe (see Fig. 2.6(a)). It was observed

that these junctions could also sustain supercurrents of the order of 109 A/m2 below

5 K for a junction length of 500 nm. Furthermore, the junctions which used Ag

(J2) instead of Cu (J1) had a larger critical current density (see Fig. 2.6(c)). It was

postulated that the observed improvement in performance can be attributed to the

increased interface transparency resulting from the use of Ag which, unlike Cu, does

not undergo oxidation at the contact with CrO2. The Thouless energy was estimated

to be around 11 µV from the slope of plot (inset Fig. 2.6(c)), which was in good

agreement with the calculated value of 15 µV using the relationship ET h =ħD/L2
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2.3. Magnets and magnetic domains

where, diffusion constant D = 3.7×10−3 m2/s and junction length L = 400 nm.

It can be concluded from these studies that selective area growth of CrO2

nanowires with a well defined geometry and magnetization allows to overcome

some of the issues of earlier studies on films. The estimated current densities are

large enough to envision devices where such spin-polarized supercurrents could

be used to manipulate the magnetization of a nanomagnet [17]. This forms the

motivation behind the current work.

2.3. Magnets and magnetic domains

2.3.1. A magnetized object: The Landau free energy

Magnetic materials, such as ferromagnets, ferrimagnets, etc., contain regions where

spins cluster to create uniform magnetization. These regions, known as magnetic

domains, were first postulated by Weiss to explain extremely high permeability

in the ferromagnets [18]. The development of the Weiss molecular field, which

is actually a manifestation of the exchange interaction, was part of the solution,

while the other part was the assumption that the sample was divided into multiple

fully magnetized regions, called magnetic domains. The presence of magnetic

domains was first suggested by the experimental work of Barkhausen [19] but it

was confirmed later by Sixtus and Tonks [20] and Bitter [21]. Later, in 1935, Landau

and Lifschitz proposed that the formation of magnetic domains in ferromagnetic

materials helps to minimize the magnetostatic energy [22], along with the domain

wall profile which was an improvement on Bloch [23] and Heisenberg work [24].

The fundamental concepts of magnetic domains were reviewed by Kittel [25], and

later Hubert and Schäfer [26] extended the theory beyond the magnetostatic energy

to include additional energy components.

The competition between the different energy terms that describe a magnetic

object provides the physical foundation for domain formation. The sum of the

individual energy contributions is the Landau free energy (GL), given by the sum of

the exchange energy Eex , the Zeeman energy EZ , the anisotropy energy Eani so and

the magnetostatic energy (also called the magnetostatic self-energy) Ems [27]

GL = Eex +EZ +Eani so +Ems (2.10)

As with all physical systems, the magnetic system seeks to minimize this Landau free

energy. Since the magnitude of the magnetization vector is fixed, its direction must

be changed. To determine the magnetization direction with the lowest total energy,

a compromise must be reached between these energy terms. Consequently, some

spins will no longer be pointing along this optimal direction. Typically, a uniformly
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2. Long Range Proximity Effects & Domain Wall Physics

magnetized state has a high magnetostatic energy (Fig. 2.7(a)) (Fig. 2.7(a)), which

can be reduced by forming a non-uniform or even flux-closed magnetic state (Fig.

2.7(b-d)). The formation of domains continues until the decrease in magnetostatic

energy is balanced by the exchange and anisotropy energy costs, accompanied by

magnetic structure twists and deviations. If an external magnetic field is applied, the

Zeeman energy also plays a role which may be sufficient to eliminate the domain

state and generate a uniform saturated state. [28, 29]. Detailed expressions for these

energy contributions can be written down in terms of volume integrals over local

energies that in turn involve local fields, local magnetic moments m⃗ (⃗r ) and spatial

gradients of m⃗. Parameters involved in determining the size of each contribution

are as follows :

(i) for Eex it is the exchange stiffness which tries to align neighboring spins and is

related to J : A ∝ k JS2/a0, where J is the nearest neighbor exchange constant, S is

the spin magnitude, a0 is the lattice constant, and k is a numerical factor depending

on the lattice symmetry [30];

(ii) for EZ it is the saturation magnetization Ms of the object;

(iii) for Eani it is a general parameter εani (m⃗ (⃗r )). Magnetocrystalline anisotropy

results from the orbital coupling of the crystal structure and the spin moments

via spin-orbit coupling. It depends on the crystal symmetry and any defects in

the crystal lattice would cause a change in anisotropy. A way to handle this is to

express εani in terms of the angles αi between the magnetization and the crystal

axes. For uniaxial anisotropy, that leads to an expression of the form εani (m⃗ (⃗r )) =
K0 +K1 cos2(2α)+ . . . ;

(iv) for Ems there is no parameter that sets the scale. It represents the energy cost

of magnetic poles on the surface due to stray magnetic fields leaving the material

and therefore depends on the shape of the sample (shape anisotropy). The fields

created by the sample also lead to an internal field Hi that is different from the

applied field, but also not simply given by the magnetization. It can be written as

H⃗i = H⃗a + H⃗d , where H⃗d is the so-called demagnetization field, that will depend

on the sample shape. This shape dependence is the reason that the magnetization

becomes non-uniform, meaning that magnetic domains form, for non-ellipsoidal

objects.

This leads to an expression for the Landau free energy that reads:

G(M⃗) =
∫

V

(
A(∇m⃗)2 −µ0Ms (H⃗ (⃗r ) ·m⃗ (⃗r ))+εani (m⃗ (⃗r ))− µ0

2
(H⃗d · M⃗)

)
dV (2.11)

The local minima of the GL can be determined by varying the system’s magnetiza-

tion configuration and satisfying the necessary conditions for the existence of a
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Figure 2.7: Schematic illustration of the breaking up and formation of magnetic domains (a) single
domain state with uniform magnetization, (b) two-domain state with reduced magnetostatic energy, (c)
four-domain state with even lower magnetostatic energy, and (d) a flux-closure domain state with zero
magnetostatic energy (adapted from ref. [31]).

minimum. Stable magnetization configurations should then follow from finding free

energy minima through solving the variational problem δG
δM = 0 with appropriate

boundary conditions.

This works for a uniform magnetization, but does not simply allow to find con-

figurations where different domains of the object have different directions of the

magnetization. Domain theory tries to make this complexity easier to deal with. It

proposes that in a macroscopic sample is subdivided in such domains that are sepa-

rated by planar regions where the magnetization is changing its direction. These

regions are called Domain Walls (DWs). Figure 2.7 illustrates the principle, showing

how domain formation minimizes the stray fields and their energy. One point to

keep in mind is that the gain is in the stray fields, but the loss is in exchange energy.

If the separation between domains would be a single-atom-width plane, the ex-

change energy price is very high, because spins have to be fully flipped. In practice,

the DW therefore will have a finite width. In the next section we look into DWs in

more detail.

2.3.2. Domain Walls

Generally, there is a narrow transition region between magnetic domains where the

direction of the magnetization vector varies continuously. As mentioned above, it is

energetically (much) more favorable to rotate the magnetic moments gradually over

the DW region. In this thesis, we will work with DWs in which the magnetization

vector can rotate in one of the two ways – either in the plane of the wall, or out of

that plane. These two possibilities are referred to as either a Bloch wall [23] or a
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2. Long Range Proximity Effects & Domain Wall Physics

Néel wall [32], respectively. The former is more prevalent in bulk materials such as

thick films, whose magnetization vector rotates parallel to the wall plane, whereas

the latter is preferred for thin films, whose magnetization vector rotates in the wall

plane. They will be discussed in details below.

Bloch Wall : Felix Bloch proposed the Bloch wall. Subsequently, Landau and

Lifshitz analyzed its properties in greater detail. It is found in bulk materials since,

despite the rotation of the magnetization vector, the condition ∇· M⃗ = 0 is satisfied

everywhere including the wall. This means that there is no charge associated with

the wall, hence no stray field, and no magnetostatic energy cost associated with the

creation of the wall. However, the exchange energy term incurs an additional cost

since the neighboring magnetic moments are no longer parallel. To achieve a low

magnetocrystalline energy, the magnetization within the domains prefers to align

along the easy axis direction, so there will be some anisotropy cost to the wall as

well as the magnetisation must rotate through a hard direction. The width of the

DW δw is given by

δw =π
√

A

K
(2.12)

where, A is the exchange stiffness constant and K is the anisotropy constant. The

DW energy per unit area, which is the energy cost of creation of a DW per unit area

in terms of the exchange and anisotropy contributions only is expressed as

σW = 2π
p

AK (2.13)

Néel Wall : Louis Néel proposed that in thin film systems, the energy costs are

different than in the bulk materials. Typically, the magnetization within the domains

lies in the film plane; however, for a Bloch wall to form, the magnetization must

rotate out of the film plane. This will result in surface charges or stray field and extra

cost in magnetostatic energy which increases as the sample thickness decreases.

Therefore, in order to reduce this energy in thin films, the magnetic moments inside

the wall may rotate in the surface plane, as shown in Fig. 2.7. Such a DW is called

Néel wall. Néel walls are only stable in films thinner than the wall width and it can

be approximated by an elliptical cylinder of cross section t ×δw where t is the film

thickness and δw is the width of the DW. The wall profile for the Néel wall is given

by [33]

θ(x) = 2arctan

(
exp

(
x −x0

δw

))
(2.14)

where, θ is the angle of the local magnetization in the wall, x the position along the

nanowire and x0 the central position of the DW. The DW energy is now given by

σw = 4
p

AK (2.15)
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(f)

Figure 2.8: Equilibrium micromagnetic domain wall structures encountered in a Permalloy (Py) nanowire
of a wide range of thicknesses and widths. TW for w = 120 nm and t = 5 nm, b) ATW for w = 160 nm and
t = 10 nm, c) VW for w = 640 nm and t = 15 nm, d) DVW for w = 2560 nm and t = 20 nm, and e) TVW
for w = 5120 nm and t = 25 nm. The color wheel (top left) shows the mapping between magnetization
directions and colors. w,t correspond to the width and thickness of the wire respectively. Simulations
were performed using Mumax3. (f) Phase diagram corresponding to the type of domain wall as a function
of the width and thickness in a Py nanowire. (Image from Ref. [35]).

and the wall width by

δw =
√

A

K
(2.16)

For a bulk sample the demagnetizing factor for the Bloch wall is zero, while that for

the Néel wall is 1 [34].

Other types of walls which are some form of combination of Bloch and/or Néel also

exist that could result in having lower energy than Bloch or Néel walls depending

on thickness, external field value etc. Some of the more common examples, but not

relevant to this thesis, are cross-tie walls, asymmetric walls etc.

2.4. Magnetization Dynamics

In the preceding sec.2.3 we discussed the energy contributions that influence the

equilibrium state of the magnetic moments in a sample. However, it only provides a

static solution for the magnetization distribution and the dynamical behavior of

a system, such as its response to a change in the external field or the injection of

a current, has not yet been included. Landau-Lifshitz-Gilbert equation which de-

scribes magnetization dynamics provides the solution to this problem. Additionally,

some extensions are proposed to describe interactions with spin-polarized electric

currents.
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2. Long Range Proximity Effects & Domain Wall Physics

2.4.1. The Landau-Lifshitz-Gilbert Equation

The Landau-Lifshitz-Gilbert (LLG) equation initially proposed by Landau and Lif-

shitz [22] and later modified by Gilbert [36], mathematically describes the temporal

and spatial evolution of the magnetization under the influence of an effective mag-

netic field. The same equation can be used to understand both the magnetization

reversal of a uniform magnetic domain and the magnetization dynamics inside the

DW.

When an external magnetic field is applied to a magnetic material, the magnetiza-

tion M⃗ starts to precess in a circular orbit around the field axis. The torque that

causes this precession can be written as

∂M⃗

∂t
=−γM⃗ × ⃗He f f (2.17)

Here, γ is the gyromagnetic ratio and is expressed as γ= g eµ0
2me

where, g is the Landé

factor (∼ 2) and ⃗He f f is the effective field that induces a torque due to which the

magnetization will start precessing at Larmor frequency given by ωL = γ ∣∣H⃗e f f
∣∣.

Taking into account only this torque, the magnetization should perpetually precess

around the external field. Experimentally, this is not observed: when an external

field is applied, the magnetization relaxes into an equilibrium state aligned along

H⃗e f f . Consequently, an additional damping torque T⃗d is required to explain the

magnetization dynamics. In the LLG formalization, damping is expressed as

T⃗d = α

Ms
M⃗ × ∂M⃗

∂t
(2.18)

where, α is the damping constant, α> 0. The damping mechanism is associated

with a transfer of energy from the magnetic system to other degrees of freedom such

as the lattice through the spin-orbit coupling. Therefore, the LLG equation for the

net magnetization dynamics can be written as the sum of two terms: a precessional

term and damping term.

∂M⃗

∂t
=−γM⃗ × H⃗e f f + α

Ms
M⃗ × ∂M⃗

∂t
(2.19)

2.4.2. Spin-transfer torque

The Landau-Lifshitz-Gilbert equation presented in eq. 2.19 describes magnetization

dynamics, but no interactions with spin-polarized currents or spin currents. The

microscopic origins of spin transfer torque are still a matter of debate. Present

consensus holds that at least two mechanisms can cause DW motion by current, to

be discussed next:
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Adiabatic spin-transfer Conservation of spin angular momentum provides an

intuitive explanation for the effect of current on domain wall motion. When the

conduction electrons flow through a spin-polarized material, their spin align with

the local magnetization of their environment due to the intratomic (Hund) exchange

field interaction [37]. When such an electron crosses a domain wall, it senses

a change in magnetization and realigns with the local magnetization inside the

domain wall. This means that the system’s total angular momentum has changed

from its initial value. To compensate for this change, the first domain must expand,

which corresponds to a movement of the domain wall in the direction of the electron

flow. The mechanism behind this type of transfer is the s–d exchange force between

the localized 3d-electrons in the domain wall and the delocalized 4s-electrons

carrying the current (S⃗ ∝ M⃗) [38, 39].

Hex =−Jex s⃗ · S⃗ (2.20)

where, Jex is the exchange coupling strength. This interaction generates a torque

τ⃗ that is responsible for the movement of the domain wall along the electron flow

direction.

Li and Zhang [40] and Thiaville and Miltat [41] independently proposed similar

extensions to the Landau–Lifshitz–Gilbert equation to describe the interaction with

an electrical current, the extension differ only in their coefficients. Both groups

proposed a spin–transfer torque term as a function of the generalized velocity u⃗

which can be expressed in terms of the current density J:

u⃗ = gµB P

2eMs
J⃗ (2.21)

where g is the Landé factor, µB the Bohr magneton, P the spin polarization, e the

electron charge and Ms the saturation magnetization. According to the Li-Zhang

model, the spin-transfer torque τ⃗adi abati c is expressed as[40]:

τ⃗adi abati c =− M⃗

M 2
s
× (M⃗ × (u⃗ · ∇⃗))M⃗) (2.22)

According to the Thiaville-Miltat model, the spin-transfer torque is expressed as[41]:

τ⃗adi abati c =−(u⃗ · ∇⃗)M⃗ (2.23)

At low temperatures the magnetization vector M⃗ has a constant length, so then

Eq.2.22 proposed by Li and Zhang is equivalent to the formulation of Thiaville and

Miltat in Eq.2.23. Both models work only above the Walker breakdown field (the

maximum external field at which the DW attains a maximum velocity) and coul

not explain the experimentally observed continuous domain wall propagation for

relatively low currents densities.
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Non-adiabatic spin-transfer Considering only the adiabatic contribution, the pre-

dicted critical current density for domain wall motion is much larger than the exper-

imentally observed value [41, 42]. An additional torque mechanism is required to

correctly describe the experiments which results from the spatial mistracking of the

conduction electron spins and the local moments. When the spin orientation of the

conduction electrons does not match the spin direction of the local moments, the

electrons can be reflected from the local moments, thereby altering their direction of

motion. In turn, this can transfer linear momentum from the conduction electrons

to the local moments, leading to DW motion. This mechanism is commonly referred

to as the non-adiabatic spin transfer process, where non-adiabaticity represents the

misdirection of the conduction electron spins and local moments.

Thiaville and Miltat proposed the following addition to the Landau-Lifshitz-

Gilbert equation to quantify the mistracking between conduction electron spin and

local magnetization [43]:

τ⃗non−adi abati c =
β

Ms
M⃗ × [

(u⃗ · ∇⃗)M⃗
]

(2.24)

where, β is the non-adiabaticity parameter and is identified as the squared ratio of

the exchange length and spin flip length, β= (λex /λs f )2 where λ is the associated

diffusion length.

Zhang and Li provide a similar equation, but a more rigorous derivation from the

semiclassical Bloch equation[38]. Zhang’s version uses a slightly reduced u⃗ and

defines β equal to the ratio of the exchange time and spin flip relaxation time

(β= τex /τs f ), but otherwise the proposed extensions are identical.

The complete LLG equation for the current induced domain wall motion including

both the adiabatic and non-adiabatic torques can be written as

∂M⃗

∂t
=−γM⃗ × H⃗e f f + α

M⃗

Ms
× ∂M⃗

∂t
− (u⃗ · ∇⃗)M⃗ + β

Ms
M⃗ × [

(u⃗ · ∇⃗)M⃗
]

(2.25)

These equations provide experimentalists various quantities to verify the theoretical

descriptions. From the application point of view, the usefulness of the current

induced DW motion depends on two parameters: the current required for the de-

pinning of the DW and the DW velocity. For applications such as the racetrack

memory [44], one is obviously interested in low critical current densities and high

and reproducible domain wall velocities. Typical measured current densities on

Py based structures are relatively high and of the order of 1012 A/m2 [45–47]. By

improving the sample quality (increasing nonadiabaticity), the depinning critical

current could be decreased [48]. Another way could be by increasing spin polar-

ization. When there are no pinning sites, the critical current is proportional to the

hard-axis magnetic anisotropy [49], and depends on the spin polarization of the
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current:

Ic =
(

2e

ħ
)(α

P

)
V Ms (HK +2πMs ) (2.26)

where α is Gibert damping parameter, P is the spin polarization of the current,

V is the volume of the domain, Ms is the saturation magnetization and HK is the

anisotropy field [29, 50, 51]. Regarding the DW velocity, initial studies reported

velocities of the order of 1 m/s [45, 46], but in high quality samples of Py, with the

maximum applicable current density, STT-driven DW velocities were observed up

to 100 m/s [52]. However, experimentally increasing the current density may lead

to Joule heating in the sample and cause damage. Half metals like CrO2 with 100%

spin polarization are a natural choice to consider in the development of reliable

domain wall motion and pinning technology.
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