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Summary

The study of solutions of equations is very prominent in mathematics. An
example of a polynomial equation that one might study is

x2 + y2 = 4

whose solutions are a circle in a x, y-plane over the real numbers R.
Another example may be the equation

y2 − x(x− 1)(x− 2) = 0

which is an equation for a so-called cubic curve: a curve is a one-dimensional
object defined by a polynomial equation. Examples of curves are a line, a
parabola or the above mentioned cubic. A curve is not necessarily one ‘curvy
line’, but it may also consist of multiple parts, formally known as irreducible
components. For example, when solving the equation xy = 0, we obtain both
the line x = 0 as well as the line y = 0, so we may also consider the union of
the x-axis and y-axis as a curve.

Suppose we are interested in solving these equations over the complex num-
bers C, which extends the real numbers with an element i which functions as
the square root of −1, so i2 = −1. Then the study of those zero sets of
such polynomial equations (up to adding in points at infinity) that are smooth
(if drawn then somehow continuous without kinks) is actually the study of
‘compact connected 1-dimensional complex manifolds’, which is known as a
Riemann surface. This string of words is best illustrated in the following sim-
ple example. Consider the Riemann sphere, P1

C, which is obtained by adding
a point at infinity to the complex numbers C, so P1

C = C∪{∞}. Although the
complex numbers C are formally 1-dimensional over C, it is easier to draw C
viewed as a 2-dimensional plane over R, adding a second axis for multiples of
i. Adding one point at infinity to the plane of complex numbers, we obtain
the picture of the Riemann sphere in Figure 1.
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Figure 1: Riemann sphere P1
C = C ∪ {∞}

Similarly to drawing the complex 1-dimensional complex numbers C as a
2-dimensional plane over R, an algebraic curve (a 1-dimensional object over
C) is also a 2-dimensional surface over R, explaining why we call it a ‘surface’
in Riemann surface and draw it as such. Now the word ‘compact’ means that
we do not consider just the plane, where we may walk off into some direction
forever, but we rather connect all these directions somehow (here to a point at
infinity), intuitively remaining closer. The ‘connected’ means that the sphere
is one entity and cannot be split into two separate parts, as would be the case
for two distinct points in a plane. Finally, a 1-dimensional complex manifold
means that if you take a small part of your sphere, like a patch of a football,
you would on small scale have something that looks like a small part of our
1-dimensional C, that is, a part of the plane of complex numbers.

Another example of such a Riemann surface would be a doughnut or a
pretzel, as drawn in Figure 2.

Figure 2: Examples of Riemann surfaces of genus 0,1, and 3

From this point of view, we can explain the genus g as the number of holes
as a topological surface. For example, the doughnut has one hole and so has
genus 0, but the Riemann sphere has no holes, meaning genus 0. The pretzel
would have genus 3. The equation for the cubic above, y2−x(x−1)(x−2) = 0,
would define a Riemann surface of genus 1. Now, as algebraic geometers, we are
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interested in what happens when you alter or deform these algebraic curves
slightly and which properties remain invariant under such changes. This is
called studying curves in families. For example, one may alter the defining
polynomial for the cubic slightly by considering

y2 − x(x− 1)(x− α) = 0

where the variable α ∈ C may be any complex number. The parameter α
means that we view this as a 1-parameter family. However, not all values of
α give nice smooth curves and when we are studying this family, we are not
only interested in Riemann surfaces of genus 1.

To accommodate the study of such families, we use the concept of a mod-
uli space of curves: a certain geometric object itself, whose points somehow
represent or parameterise the curves we study. Note that when we say param-
eterise, we also want to specify when we consider two such algebraic curves
over C (Riemann surfaces) the same, namely when they are biholomorphic
(there is an isomorphism respecting the ‘patches of a football’ complex man-
ifold structure). Then we denote an element in the moduli space as a class
[C] up to biholomorphism. In this instance, we study the moduli space Mg

parameterising smooth Riemann surfaces of genus g. Around 1857, Riemann
already considered such a moduli space of variations of complex structures
which he knew to be essentially a complex manifold itself of dimension 3g− 3.

Sometimes, when asking certain questions in enumerative geometry about
curves, it may be useful to introduce curves with a number of fixed ordered
points. For example, when asking about whether curves exists that pass
though 5 given points in a plane, or that are tangent to a certain line. In
order to study these curves together with their specified points, we use the
moduli space Mg,n parameterising smooth curves C together with n distinct
marked points on C (up to biholomorphisms that respect the ordered mark-
ings):

[C, p1, ..., pn] ∈ Mg,n.

For example, in genus 0 (that is, Riemann surfaces without holes), it may
be proven that the surface up to biholomorphism equals the Riemann sphere,
P1
C, which we saw before in Figure 1. As each curve then looks like P1

C, the
moduli space M0,n parameterises n distinct points on P1

C (up to biholomor-
phism). Suppose we are considering curves in M0,3, so having three distinct
points p1, p2, p3 ∈ P1

C. Then we may choose a (unique) ‘linear fractional’ trans-
formation g : P1

C → P1
C where we move p1 to 0 and p3 to ∞ (by choosing the

zero and pole of g appropriately) and we may scale with elements from C∗ to
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ensure that g(p2) = 1, see Figure 3. Therefore, each curve of genus 0 with

p1

p2

p3

∞

0

1

Figure 3: Biholomorphism on P1
C translating the markings to 0, 1,∞

three marked points we may consider is the ‘same’ as P1
C with points 0, 1,∞.

So the moduli space M0,3 consists of one single class so one single point.
Now suppose we want to give a similar analysis for curves in M0,4. The

genus 0 curve is still the ‘same’ as P1
C, so we consider curves having four dis-

tinct points p1, p2, p3, p4 ∈ P1
C. For the same reason as above, we can move

the first three points to 0, 1,∞ respectively, but after choosing the zero, pole
and scaling of our transformation, we have run out of freedoms to move our
4-th point. Therefore, the fourth marking will end somewhere in P1

C, but be-
cause p4 is distinct from p1, p2, p3 it will not land on 0, 1 or ∞. The moduli
space M0,4 then just parameterises the choosing of the distinct fourth point,
and is therefore itself isomorphic to P1

C \ {0, 1,∞}. So M0,4 is actually itself
a Riemann sphere with certain points removed, and we clearly see that the
moduli space is indeed a certain geometric object itself. Now imagine walk-
ing through your moduli space and correspondingly deforming your Riemann
surface with 4 marked points. That is, while deforming, we let the fourth
marking wander through M0,4 = P1

C \ {0, 1,∞}, see Figure 4. Then while

∞

0

Figure 4: Deforming in M0,4
∼= P1

C \ {0, 1,∞}

approaching 0, 1 or ∞, you can imagine that at these points you would fall
into nothingness or drop into a sinkhole while walking. Therefore intuitively,
we would much prefer to study P1

C itself, in order to do computations, such as
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study invariants, so-called cohomology classes or Chow classes. This enlarging
of your moduli space so that it no longer has sinkholes is what is referred to as
‘compactifying’ the moduli space. In this case this was done by Deligne and
Mumford in 1969 who constructed a bigger moduli space Mg ⊂ Mg by also
parameterising certain nodal curves with only finitely many automorphisms
(also called stable curves). Specifically, nodal means that we consider curves
which may have singularities that locally look like the meeting of the x and
y-axes in a complex 2-dimensional ‘plane’.

Similarly, the moduli space Mg,n of stable curves of genus g with n marked
points (where our markings are not allowed to be at the nodes that the curves
may have) allows us to study invariants of marked Riemann surfaces. Then,
while deforming our Riemann surface, instead of falling into depths of despair
during our ‘walk’ through M0,4, we would, for example at 0, encounter a stable
nodal curve as drawn in Figure 5: two copies of P1

C glued at a node, where one
copy contains the 4-th and 0-th marking, and the other 1 and ∞.

∞

1

0

p4

Figure 5: Example of stable curve in M0,4

(Because both copies of P1
C have three points that an automorphism should

respect, a node and two markings, the curve has only one and so finitely
many automorphisms.) One may show that the ‘compactified’ version of
M0,4

∼= P1
C \ {0, 1,∞} is actually isomorphic to the Riemann sphere P1

C and
so in itself a nice geometric space to study. In general, the moduli space Mg,n

has actually by itself also a good geometric structure; which allows us to use
it to answer certain geometric questions.

In particular, this thesis is concerned with the double ramification cycle on
Mg,n. One may ask the following question: given a certain curve C, is there a
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rational function f on C which has certain specified orders of zeroes and poles?
For example, we may ask for a zero with multiplicity two and two poles with
multiplicity one. These specified orders are given in a vector A = (a1, ..., an)
of n integers satisfying

∑n
i=1 ai = 0 where the positive ai are orders of zeroes

that must occur, and the negative ai are orders of poles. Then the question
translates to: is there a rational function f : C → P1

C with zeroes of orders
specified by the ai satisfying ai > 0, and poles of orders specified by the ai
satisfying ai < 0? Because we specify the ramification profile (orders of zeroes
and poles) A over two points, namely 0 and ∞, we use the term double rami-
fication. The collection of all curves in Mg,n which allow a rational function
with a zero or pole of order ai at the i-th marked point forms the basis of
the double ramification cycle. Only, as mentioned before, one generally prefers
to work with Mg,n and so this intuitive definition has to be extended to give
what we really call the double ramification cycle on Mg,n.

This thesis discusses several questions regarding the double ramification cy-
cle using tools from so-called logarithmic geometry. One question is whether
there is a more universal construction of the double ramification cycle on Mg,n,
that also includes the generalisations that are called twisted double ramifica-
tion cycles. This question is answered in [BHP+23], which is the basis of
chapter 1 in this thesis. Another commonly studied question with regard
to cycles such as the double ramification cycle on Mg,n is whether or not a
class is provably in the ‘tautological’ ring. That is, whether a class lies in
a subring generated by ‘computable and known’ classes. The fact that the
double ramification cycle is tautological is already known from [FP05], and
there is a specific formula to compute it in [JPPZ17]. However, in the arti-
cle [HS22] (which is included in chapter 3 of this thesis) we are able to show
more classes of interest are tautological, via describing or deciding what tauto-
logical should be in logarithmic geometry. Key to describing ‘logarithmically
tautological’ is a logarithmic geometry approach to describing classes, namely
using piecewise-polynomial functions. The purpose of chapter two is to provide
illustrations of piecewise-polynomial functions and their relation to classical
algebraic geometry. It is a chapter explaining some concisely stated content of
[HS22]. One other issue we can answer in chapter 3, is giving a good defini-
tion of a double-double ramification cycle, where we consider two ramification
profiles simultaneously. That is, suppose we have two vectors A,B ∈ Zn,
then the double-double ramification cycle DR(A,B) measures those marked
stable curves where both a rational function f with ramification profile A and
a rational function g with ramification profile B exist. We also show this
double-double ramification cycle is tautological.


