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Chapter 3

Logarithmic intersections of
the double ramification cycle

This chapter contains the article written with David Holmes that appeared
in Algebraic Geometry, [HS22]. We describe a theory of logarithmic Chow
rings and tautological subrings for logarithmically smooth algebraic stacks,
via a generalisation of the notion of piecewise-polynomial functions. Using
this machinery we prove that the double-double ramification cycle lies in the
tautological subring of the (classical) Chow ring of the moduli space of curves,
and that the logarithmic double ramification cycle is divisorial (as conjectured
by Molcho, Pandharipande, and Schmitt).

The article has been included as published. Therefore one should take care
that the following notation has changed:

1. The Chow groups are denoted by CH instead of CH.

2. The distinction between CHop and CH is no longer made specific.

3. The operational DR cycle is no longer distinguished as DRop, but now
just denoted as DR.

4. The map AJ has lost its capital letters and is denoted aj.

3.1 Introduction
If C/S is a family of smooth algebraic curves and L on C a line bundle, the
double ramification cycle measures the locus of points s ∈ S where the line
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94 Chapter 3. Logarithmic intersections of the DR-cycle

bundle L becomes trivial upon restriction to the fibre Cs. More formally,
DR(L) is a virtual fundamental class of this locus, living in the Chow group of
codimension g cycles on S. Extending this class in a natural way to families
of (pre)stable curves, and giving a tautological formula, has been the sub-
ject of much recent research, including [FP05, Hai13, GZ14, Dud18, FP16,
Sch18a, JPPZ17, MW20, JPPZ20, HKP18, Hol19, HS21, HPS19]. In particu-
lar, [BHP+23] gives a definition of a double ramification cycle DR(L) for any
line bundle L on any family C/S of prestable curves, and proves a tautological
formula for this cycle.

3.1.1 Double-double ramification cycles are tautological
Suppose now we have two line bundles L1, L2 on a smooth curve C/S. Then
the double-double ramification cycle DR(L1,L2) measures the locus of s ∈ S
such that both L1 and L2 become trivial on the fibre Cs – of course, this is
just the intersection of the corresponding cycles DR(L1) and DR(L2). The key
insight of [HPS19] was that this naive intersection is the ‘wrong’ way to extend
this class to a family of (pre)stable curves. Instead, one should construct a
new virtual class DR(L1,L2) for the product (see Section 3.1.2 below), and in
general it will not equal the product of the virtual classes of the two factors:

DR(L1,L2) ̸= DR(L1) · DR(L2). (3.1.1.1)

Why is this new construction better than simply taking the intersection of
the classes? One way to see this is to consider what happens when one tensors
the line bundles L1 and L2 together. For a family of smooth curves one sees
easily the formula

DR(L1)DR(L2) = DR(L1)DR(L1 ⊗ L2); (3.1.1.2)

this also holds in compact type, which plays a key role in the construction
of quadratic double ramification integrals and the noncommutative KdV hi-
erarchy in [BR21]. However, (3.1.1.2) fails for general families of (pre)stable
curves, obstructing the extension of quadratic double ramification integrals
beyond the compact-type case (see [HPS19, §8] for an explicit example of this
failure). On the other hand, the formula

DR(L1,L2) = DR(L1,L1 ⊗ L2) (3.1.1.3)

does hold for arbitrary families, giving hope of extending the results of [BR21]
beyond compact-type. This is a particular instance of a GL2(Z)-invariance
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property for the double-double ramification cycles, which we generalise in The-
orem 3.5.7 to GLr(Z)-invariance for r-fold products.

While the cycle DR(L1,L2) is in some ways better behaved than the prod-
uct DR(L1)DR(L2), until now the question of whether it is a tautological cycle
has remained open, and is important to address if we hope to study quadratic
double ramification integrals. Our first main theorem resolves this question:

Theorem 3.1.1. Let g, n be non-negative integers, r a positive integer, and
L1, . . . ,Lr be line bundles on the universal curve over Mg,n. Then the r-fold
double ramification cycle

DR(L1, . . . ,Lr) (3.1.1.4)

lies in the tautological subring of the Chow ring of Mg,n.

This theorem opens up the possibility of giving an explicit formula for the
class DR(L1, . . . ,Lr) in terms of the standard generators of the tautological
ring, as was done in [JPPZ17] for the case r = 1 (that DR(L) lies in the
tautological ring was proven earlier by Faber and Pandharipande [FP05], but
no formula was given at that time).
Remark 3.1.2. Ranganathan and Molcho have an independent approach to
Theorem 3.1.1, by studying the virtual strict transforms of the DR cycle; see
[MR21]. ♦

3.1.2 Logarithmic Chow rings
The fundamental reason for the failure of the product formula (3.1.1.2) for
stable curves is that DR(L) should not really be viewed as a cycle on Mg,n,
but rather it lives naturally on a log blowup of Mg,n — essentially an iterated
blowup in boundary strata. To avoid having to make a choice of blowup
we work in LogCH(Mg,n), which is defined to be the colimit of the Chow
rings of all log blowups of Mg,n. This logarithmic Chow ring comes with
a proper pushforward ν∗ : LogCH(Mg,n) → CH(Mg,n) to the usual Chow
ring, which is a group homomorphism but not a ring homomorphism. The
construction of DR(L) can be upgraded (see Definition 3.4.4) to give a cycle
LogDR(L) ∈ LogCH(Mg,n), whose pushforward to CH(Mg,n) is DR(L). The
formula

LogDR(L1)LogDR(L2) = LogDR(L1)LogDR(L1 ⊗ L2) (3.1.2.1)

is not hard to prove in LogCH(Mg,n) (see Theorem 3.5.7). We then define

DR(L1, . . . ,Lr) = ν∗ (LogDR(L1) · · · LogDR(Lr)) , (3.1.2.2)
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from which the product formula (3.1.1.3) is immediate. The fact that equation
(3.1.1.2) fails is then just a symptom of the fact that proper pushforward
ν∗ : LogCH(Mg,n) → CH(Mg,n) is not a ring homomorphism.

3.1.3 Logarithmic tautological rings

Our proof of Theorem 3.1.1 (that double-double ramification cycles are tauto-
logical) will run via showing that LogDR(L) is tautological; but first we have
to decide what it means for a cycle in LogCH(Mg,n) to be tautological.

In fact, we need to do something slightly more general. Our proof that
LogDR(L) is tautological for a line bundle L on the universal curve over Mg,n

proceeds by reduction to the fact that the usual double ramification cycle is
tautological. However, for this reduction step it will be necessary to modify
the universal curve (so that it is no longer stable, only prestable), and also to
modify the line bundle L. This leads us to study double ramification cycles on
the total-degree-zero1 Picard stack Jac of the universal curve over the stack
M of all prestable marked curves, exactly the setting considered in [BHP+23].

It is then necessary to define a tautological subring of LogCH(Jac), which is
slightly delicate as this smooth algebraic stack is neither Deligne-Mumford nor
quasi-compact. For this we develop a theory of piecewise-polynomial functions
on any log algebraic stack, and for log smooth stacks over a field or dedekind
scheme we construct a map from the space of piecewise-polynomial functions
to the log Chow ring. We then define the tautological subring as the ring
generated by image of this map together with pullbacks of classes in the usual
tautological ring on Jac (as described in [BHP+23, definition 4]). This leads
to our main technical result, from which Theorem 3.1.1 follows easily:

Theorem 3.1.3. LogDR lies in the tautological subring of LogCH(Jac).

In fact we prove a stronger result (Corollary 3.4.20); if L is the tautological
line bundle on the universal prestable curve π : C → Jac, we define the class

η = π∗(c1(L)2) ∈ CH(Jac), (3.1.3.1)

and prove that LogDR lies in the subring of LogCH(Jac) generated by boundary
divisors and the class η.

1In [BHP+23] we do not assume total degree zero, but the double ramification cycle is
supported in total degree zero, so this is only a superficial change.



3.1. Introduction 97

3.1.4 LogDR is divisorial
Double ramification cycles in logarithmic Chow rings are also studied in the
recent paper [MPS23], with a particular emphasis on the case where L is the
trivial bundle (corresponding to the top Chern class of the Hodge bundle on the
moduli space of curves). The objective there is to understand the complexity
of DR(OC) in the Chow ring, in particular to understand when it can be
written as a polynomial in divisor classes. It is shown that DR(OC) cannot
be written as polynomial in divisor classes, and conjectured that LogDR(L)
can be written as a polynomial in divisors for all L. As a byproduct of the
proof of Theorem 3.1.3 we obtain something a little more general. The ring
LogCH(Jac) is graded by codimension, and we write divLogCH(Jac) for the
subring generated in degree 1. Since LogDR lies in the ring generated by η and
boundary divisors, we immediately obtain

Theorem 3.1.4.
LogDR ∈ divLogCH(Jac).

By pulling back to Mg,n this proves [MPS23, Conjecture C].

3.1.5 Strategy of proof
As with many things in life, our strategy is best illustrated by carrying it out
over M1,2. We write C for the universal curve with markings p1, p2, and
we let L = O(2p1 − 2p2). Then DR(L) is invariant under various changes to
L; these are listed quite exhaustively in [BHP+23, §0.6]. In particular, let D
be the prime divisor on C given by the rational tails (via the isomorphism
C = M1,3 this is the closure of the locus of curves with a single rational tail
and all markings on the tail). Then Invariance V of [BHP+23, §0.6] states that

DR(L) = DR(L(D)). (3.1.5.1)

Our toehold on LogDR is obtained by realising that it should satisfy a stronger
invariance property, corresponding to twisting by vertical divisors which only
exist after blowing up M1,2. Let x ∈ M1,2 be the 2-marked 2-gon (Figure 3.1),
and let M̃1,2 be the blowup of M1,2 in x (Figure 3.2), with C̃ the pullback
of C. The curve Cx has two irreducible components Y1, Y2 (say Y1 carries
p1), and the pullbacks of these to C̃ are prime divisors supported over the
exceptional locus of the blowup, which we denote Ỹi. We would like to say
that LogDR satisfies the invariance

LogDR(L) = LogDR(L(Ỹ1)), (3.1.5.2)
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p1 p2

Figure 3.1: Curve over M1,2

but this makes no sense because Ỹ1 is only a Weil divisor, not a Cartier divisor
over the ‘danger’ points marked in Figure 3.2. To rectify this we blow up C̃

quite carefully so that the result ˜̃C is still a prestable curve, but now Ỹ1 is a
Cartier divisor on ˜̃C. Then the invariance

LogDR(L) = LogDR(L(Ỹ1)) (3.1.5.3)

makes sense on ˜̃C, and is moreover true.
It is at this point perhaps not clear what we have gained; we have replaced

the rather simple bundle L on C by the rather complicated L(Ỹ1) on ˜̃C. The
magic is that L(Ỹ1) has multidegree 0 — that is, it has degree zero on every
irreducible component of every fibre of ˜̃C (with the exception of the danger
points, which we will sweep under the carpet for now). Now, for a line bundle
of multidegree 0 the cycle LogDR is just the pullback of the corresponding DR
(Lemma 3.4.7), and we know the latter to be tautological by Pixton’s formula
[BHP+23].

3.1.6 Interpretation as a new invariance of LogDR

Dimitri Zvonkine asked us whether the six invariance properties listed in
[BHP+23, §0.6], together with knowledge of DR for families C/S, L of multi-
degree zero, would be enough to determine DR completely. The answer is no,
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danger
M1,2

M̃1,2

= exceptional locus

Figure 3.2: M̃1,2 → M1,2

essentially because the invariances in [BHP+23] do not allow us to twist by
vertical divisors on C coming from non-separating edges. We saw above how
to rectify this in the case of M1,2; here we give a more general statement of
the new invariance satisfied by LogDR.

Let C/S be a log curve with S log regular, and L on C a line bundle. We
say C/S is twistable2 if there exists a Cartier divisor D on C supported over
the boundary of S (i.e. the points of S where the log structure is non-trivial)
and such that L(D) has multidegree 0. We write LogDR(L) for the pullback of
LogDR from Jac along the map S → Jac induced by L, and we write DR(L(D))
for the pullback of DR from Jac along the map S → Jac induced by L(D).
Viewing DR(L(D)) as an element of LogCH(S) by pullback, our new invariance
states

LogDR(L) = DR(L(D)). (3.1.6.1)

That this invariance holds is quite straightforward once the definitions are
set up correctly, see Lemma 3.4.7. However, there are not enough twistable
families that LogDR is determined by DR and the invariance (3.1.6.1); requir-
ing multidegree 0 over every point in S is too restrictive a condition (e.g.
it fails over the ‘danger’ points in M̃1,2 mentioned above). Because of this
we introduce in Definition 3.4.10 a notion of almost twistable families. In
Lemma 3.4.13 we show the analogue of (3.1.6.1) for almost twistable families,

2We thank Rahul Pandharipande for suggesting this terminology
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and in Lemma 3.4.17 we show that there are enough almost-twistable families
to completely determine LogDR from DR.

3.1.7 Notation and conventions

We work with algebraic stacks in the sense of [Sta13], and with log structures
in the sense of Fontaine-Illusie-Kato, for which we find [Ogu18] and [Kat89b]
particularly useful general references. The sheaf of monoids on a log scheme (or
stack) X is denoted MX , and the characteristic (or ghost) sheaf is denoted M̄X ,
with groupifications Mgp

X and M̄gp
X . Occasionally we write X for the underlying

scheme (or algebraic stack) of X.
We work over a field or Dedekind scheme k equipped with trivial log struc-

ture. We work in the category of fine saturated (fs) log schemes (and stacks)
over k. In Theorem 3.5.6 and sections 3.4.6 and 3.4.7 we assume that k has
characteristic zero, so that we can apply the results of [BHP+23]; it is plausible
that the results would become false were this assumption omitted.

A log algebraic stack is an algebraic stack equipped with an (fs) log struc-
ture.

We work almost exclusively with operational Chow groups with rational
coefficients, as defined in [BHP+23, §2], denoted CH.
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3.2 Logarithmic Chow rings

3.2.1 Logarithmic Chow rings of algebraic stacks
In this section we make a slight generalisation of some of the ideas from
[HPS19], see also [MPS23]. We work extensively with log schemes (and stacks)
which are both regular and log regular; equivalently, with log structures that
are induced by normal crossings divisors (see [Niz06]). We make quite some
effort in this and other sections to avoid unnecessary separatedness or quasi-
compactness assumptions, and to work with algebraic stacks in place of (for
example) schemes. This is not (primarily?) due to a particular personal pref-
erence, but rather because the objects we consider (such as the stack of log
curves, or its universal Picard space) make this essential.

Definition 3.2.1 ([ALT18, Example 4.3]). A morphism f : X → Y of log
algebraic stacks is a monoidal alteration if it is proper, log étale, and is an
isomorphism over the locus in Y where the log structure is trivial.

Examples of monoidal alterations are log blowups and root stacks. We
expect that every monoidal alteration can be dominated by a composition of
log blowups and root stacks, but have not written down a proof.

Definition 3.2.2. LetX be an algebraic stack locally of finite type over k. We
define CH(X) to be the operational Chow group ofX with rational coefficients,
using finite-type algebraic spaces as test objects, see [BHP+23, §2] for details.

Remark 3.2.3. If in addition X is smooth and Deligne-Mumford then the
intersection pairing induces an isomorphism from the usual Chow ring of X
(as defined by Vistoli [Vis89]) to the operational Chow ring CH(X). ♦

Definition 3.2.4. Let X be a log smooth stack of finite type over k. We
define the (operational) log Chow ring of X to be

LogCH(X) = colimX̃ CH(X̃), (3.2.1.1)

where the colimit runs over monoidal alterations X̃ → X with X̃ smooth over
k.

Remark 3.2.5. A fibre product of monoidal alterations is again a monoidal
alteration, hence the above colimit is filtered. This implies that the colimit
commutes with the forgetful functor to the category of sets. More concretely,
the colimit can be realised as the disjoint union of the chow rings of monoidal
alterations of X, modulo setting two elements of different chow rings to be
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equivalent if they become equal in some common refinement of their home
monoidal alterations. ♦

Definition 3.2.6. Let z ∈ LogCH(X) and let U ↪→ X be a quasi-compact
open. We say the restriction of z to U is determined on a monoidal alteration
Ũ → U if there exists a cycle z′ ∈ CH(Ũ) in the equivalence class of z as
defined in the above remark; we then call z′ the determination of z on Ũ .

Remark 3.2.7. Because we work with rational coefficients, taking the colimit
over log blowups would yield the same operational Chow ring; in particular,
our Log Chow ring is the same as that in [HPS19, §9]. Throughout the paper
we use the possibility of determining a cycle on a (smooth) log blowup without
further comment. ♦

Remark 3.2.8. The idea of allowing monoidal alterations rather than just log
blowups was suggested to the authors by Leo Herr. It will play little role in
most of the paper, but is absolutely essential in Section 3.4.6, where it allows
us to apply ideas of [ALT18] on canonical resolution of singularities. ♦

Remark 3.2.9. The ring colimX̃ CH(X̃) can be realised concretely as the dis-
joint union of the rings CH(X̃), modulo the equivalence relation where we set
cycles z1 on X̃1 and z2 on X̃2 to be equivalent if there exists a monoidal alter-
ation X̃ dominating both X̃1 and X̃2 and on which the pullbacks of z1 and z2
coincide. ♦

3.2.2 Operations on the logarithmic Chow ring

Throughout this subsection X and Y are log smooth stacks of finite type over
k.

Definition 3.2.10 (LogCH is a CH-algebra). Viewing X as a trivial log
blowup of itself induces a ring homomorphism CH(X) → LogCH(X).

Definition 3.2.11 (Pullback for LogCH). Let f : X → Y be a morphism and
let z ∈ LogCH(Y ). Let Ỹ → Y be a log blowup on which z is determined.
Then X ×Y Ỹ → X is a log blowup, and we write f̃ : X ×Y Ỹ → Ỹ . We
have a pullback f̃∗z ∈ CH(X̃), which is independent of all choices, and the
construction yields a ring homomorphism

f∗ : LogCH(Y ) → LogCH(X). (3.2.2.1)
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Lemma 3.2.12. Let f : X → Y be a morphism, then the following diagram
commutes:

CH(Y ) LogCH(Y )

CH(X) LogCH(X)

f∗ f∗

(3.2.2.2)

Definition 3.2.13 (Pushforward from LogCH to CH). Suppose X is smooth,
and let z ∈ LogCH(X). Let X̃ → X be a log blowup on which z is determined,
with X̃ smooth. Then π : X̃ → X is proper and lci, so we have a proper
pushforward on operational Chow π : CH(X̃) → CH(X). These assemble into
a pushforward

LogCH(X) → CH(X). (3.2.2.3)

3.2.3 Extension to the non-quasi-compact case
Definition 3.2.14. Let X be a log smooth log algebraic stack over k (we no
longer assume X to be quasi-compact). Let qOp(X) denote the category of
open substacks of X which are quasi-compact. We define the (operational) log
Chow ring of X to be

LogCH(X) = limU∈qOp(X) LogCH(U). (3.2.3.1)

Remark 3.2.15. Morally, we can think of an element of LogCH(X) as an (op-
erational) cycle on the valuativisation3 of X, which can be everywhere-locally
represented on some finite log blowup of X. In the absence of a good the-
ory of Chow groups of valuativisations of algebraic stacks, we make the above
definition. ♦

Remark 3.2.16. All of the constructions of Section 3.2.2 carry through to this
setting by restricting to suitable quasi-compact opens. We will make use of
these extensions without further comment. ♦

3.3 Tautological subrings of logarithmic Chow
rings

In this section we develop a fairly general theory of piecewise-polynomial
functions on log algebraic stacks, generalising the theory for toric varieties

3See for example [Kat89a].
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(for which see [Pay06] and the references therein). We use these piecewise-
polynomial functions to build tautological subrings of the log Chow ring. Once
again we need only log blowups in this section, root stacks are unnecessary.

In the toric case one can hope to realise every element of the Chow ring
in terms of piecewise-polynomial functions, which is far from the case in the
our context; for example, all piecewise-polynomial functions are zero on a
scheme equipped with the trivial log structure, but the Chow ring can be
large and interesting. However, in the presence of a non-trivial log structure
the piecewise-polynomial functions can still generate many interesting Chow
elements.

The theory in this section was largely developed before we became aware
of the related work of Molcho, Pandharipande and Schmitt [MPS23], where
‘normally decorated strata classes’ approximately correspond to classes coming
from our piecewise-polynomial functions. Their approach is probably better
for writing formulae for (log) tautological classes, and ours has the advantage
that piecewise-polynomials on opens can be glued (which is very useful when
working on large algebraic stacks as we do in this paper; as far as we are
aware the theory in [MPS23] has so far only been developed for finite-type
Deligne-Mumford stacks).

3.3.1 Strict piecewise polynomial functions
Let (X,OX) be a ringed site and M a sheaf of OX -modules. We write SymM
for the sheafification of the presheaf U 7→ Sym(M(U)); it is a sheaf of OX -
algebras. If X is any site and A a sheaf of abelian groups, then we view A as
a sheaf of modules for the constant sheaf of rings Z, yielding a sheaf SymA of
graded Z-algebras.

Example 3.3.1. If X is a scheme and A is the constant sheaf Zn of abelian
groups, then SymA is the constant sheaf Z[x1, . . . , xn]. ♦

Definition 3.3.2. We define the sheaf of strict piecewise-polynomial functions
on a log algebraic stack S as

sPPS := Sym M̄gp
S . (3.3.1.1)

we write
sPPnS = Symn M̄gp

S , (3.3.1.2)

for the graded pieces, and strict piecewise-linear functions are

sPP1
S = Sym1 M̄gp

S = M̄gp
S . (3.3.1.3)
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Remark 3.3.3.

1. If S is a toric variety, then strict piecewise-linear (piecewise-polynomial)
functions on S correspond exactly to piecewise linear (or piecewise-
polynomial) functions on the fan of S which are linear (or polynomial)
on each cone. Later (Definition 3.3.15) we will generalise this to allow
functions which are linear (polynomial) on some subdivision of the fan.

2. The sheaf M̄gp
S makes sense on the big strict étale site of S, so the same

holds for the sheaf sPPS .

3. There is natural map Symn(M̄gp
S (S)) → sPPnS(S), but is in general not

surjective unless n = 1, see Example 3.3.4; this will play a prominent
role in what follows.

4. Given a map of log algebraic stacks f : S′ → S there is a natural
map f∗M̄S → M̄S′ , inducing a natural map of sheaves of Z-algebras
f∗ sPPS → sPPS′ .

♦

Example 3.3.4. Let S = P2
k, and let E be an irreducible nodal cubic in S,

with complement i : U ↪→ S. We define MS = i∗OU , so that M̄S(S) = N, and
Sym(M̄gp

S (S)) = Z[e], where e corresponds to the divisor E. There is an étale
chart for S at the singular point of E given by k[⟨a, b⟩] where a, b correspond to
the two branches of E through the singular point. The image of Sym2(M̄gp

S (S))
is the free module Z

〈
(a+ b)2

〉
. However, there is another global section of

sPP2
S given by ab, and in fact sPP2

S(S) = Z
〈
(a+ b)2, ab

〉
= Z

〈
a2 + b2, ab

〉
. ♦

3.3.2 Simple log algebraic stacks
Barycentric subdivision

If S is a regular log regular log algebraic stack then by [Niz06, 5.2] there exists
a unique normal crossings divisor Z on S (the boundary divisor of S) with
complement i : U → S and MS = i∗OU . We write the irreducible components
of Z as (Di)i∈I .

If S is a regular log regular atomic4 log scheme then we define the barycen-
tric ideal sheaf to be the product∏

J⊆I

I(
⋂
j∈J

Dj)

4In the sense of [AW18]: S has a unique stratum that is closed and connected, and the
restriction of the characteristic monoid to this stratum is a constant sheaf.
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over non-empty subsets J ⊆ I, and the barycentric subdivision of S to be the
blowup of S along the barycentric ideal sheaf. This blowup is stable under
strict smooth pullback, defining a barycentric subdivision of any log regular
log algebraic stack. A more explicit description can be found in [MPS23, §5.3]

Simple log algebraic stacks

Definition 3.3.5. If S is a regular log regular log algebraic stack with bound-
ary divisor5 Z =

⋃
i∈I Di, we say S is simple if for every J ⊆ I the fibre

product
DJ := ×

j∈J,S
Dj (3.3.2.1)

is regular and in addition the natural map on sets of connected components
π0(DJ) → π0(S) is injective. The closed connected substacksDJ are the closed
strata of S.

This condition is more restrictive than requiring the boundary divisor to
be a strict normal crossings divisor; consider the union of a line and a smooth
conic in P2 meeting at two points, then the intersection is not connected.

Simplifying blowups

Lemma 3.3.6. Let S be a log regular log algebraic stack. Then there exists a
log blowup S̃ → S such that S̃ is simple.

The proof consists of three observations:

1. By [IT14] there exists a functorial resolution algorithm for log regular
log schemes, hence there exists a log blowup of S which is regular and
log regular;

2. If S is regular log regular then the barycentric subdivision has strict nor-
mal crossings boundary (i.e. the substacks DJ of (3.3.2.1) are regular);

3. If S is regular log regular with strict normal crossings boundary then the
barycentric subdivision is simple.

5Here we implicitly mean that the Di are reduced and irreducible substacks of pure
codimension 1.
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Piecewise polynomials as polynomials in boundary divisors

For an algebraic stack X, we write Div(X) for the monoid of isomorphism
classes of pairs (L, ℓ) where L is a line bundle on X and ℓ ∈ L(X) a section,
with monoid operation given by tensor product.

Let S be a log algebraic stack and m ∈ M̄S(S). The preimage OS(−m)×

of m in MS is an O×
S -torsor and the log structure equips it with a map

to OS(−m)× → OS . This map admits a unique O×
S -equivariant extension

to a map of line bundles OS(−m) → OS , where we built OS(−m) from
OS(−m)× by filling in the zero section. Finally, dualising this gives a map
OS → OS(m) := OS(−m)∨, and the image of the section 1 of OS gives a
section of OS(m). This defines a map

OS(−) : M̄S(S) → Div(S). (3.3.2.2)

This can be upgraded to a monoidal functor of fibred symmetric monoidal
categories, see [BV12, §3.1].

If the log structure on S is trivial over a schematically-dense open U ⊆ S
(for example, this holds if S is log regular), then the given section of OS(m) is
non-vanishing over U , and so defines an effective Cartier divisor on S supported
away from U , which we denote divOS(m).

Suppose now that S is a quasi-compact regular log regular log algebraic
stack with boundary divisor Z =

⋃
i∈I Di, and write ⟨Di : i ∈ I⟩ for the free

commutative monoid generated by theDi (so ⟨Di : i ∈ I⟩gp is the group of divi-
sors on S with support contained in Z). Then the effective divisors divOS(m)
are supported on Z, hence naturally lie in ⟨Di : i ∈ I⟩. Using that the rank of
M̄S,s is equal to the number of analytic branches of the Di passing through s
one deduces easily

Lemma 3.3.7. Sending m 7→ divOS(m) gives an isomorphism of monoids

M̄S(S) → ⟨Di : i ∈ I⟩ . (3.3.2.3)

Suppose now in addition that the Di form a divisor with strict normal
crossings (i.e. that all the fibre products in (3.3.2.1) are regular). Given
s ∈ S, let Is = {i ∈ I : s ∈ Di}, so that Di : i ∈ Is is the set of branches of
Z through s. Then (for example by applying the above discussion to a small
Zariski neighbourhood of s) we obtain an isomorphism

M̄S,s
∼−→ ⟨Di : i ∈ Is⟩ . (3.3.2.4)
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The restriction map simply corresponds to the map ⟨Di : i ∈ I⟩ → ⟨Di : i ∈ Is⟩
sending those Di with i /∈ Is to zero; more precisely the square

M̄S(S) ⟨Di : i ∈ I⟩

M̄S,s ⟨Di : i ∈ Is⟩

=

res

=
(3.3.2.5)

commutes.
The isomorphism (3.3.2.3) and the definition of the symmetric algebra

yields an isomorphism

Sym(M̄gp
S (S))

∼−→ Z[Di : i ∈ I] (3.3.2.6)

to the free commutative ring on the Di. Similarly one obtains an isomorphism

sPPS,s = Sym(M̄gp
S,s)

∼−→ Z[Di : i ∈ Is]. (3.3.2.7)

We obtain corresponding commutative diagram

Sym(M̄gp
S (S)) Z[Di : i ∈ I]

Sym(M̄gp
S,s) Z[Di : i ∈ Is],

=

res

=
(3.3.2.8)

where again the right vertical map sends any Di with i /∈ Is to zero.

Global generation on simple log schemes

In this section we prove the key technical result on piecewise-polynomial func-
tions on log stacks.

Theorem 3.3.8. Let S be a quasi-compact simple log algebraic stack. Then
the natural map of Z-algebras

Sym(M̄gp
S (S)) → (Sym M̄gp

S )(S) (3.3.2.9)

is surjective.
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In other words, PPS(S) is a quotient of the symmetric algebra on M̄S(S);
every global piecewise-polynomial function can be written globally as a poly-
nomial in piecewise-linear functions. We thank the referee for suggesting the
following proof, which is much simpler than the one we started with.

Proof. Given n ∈ NI we write Dn ∈ Z[Di : i ∈ Is] for the corresponding
monomial in the Di, and Z(Dn) for the fibre product over S of those Di with
ni ̸= 0; this only depends on whether each ni is 0, and is always either empty
or irreduclbe (by our simplicity assumption).

Now let f ∈ (Sym M̄gp
S )(S); we will construct explicitly a preimage in

Sym(M̄gp
S (S)) by giving a coefficient for each monomial Dn.

First suppose that Z(Dn) is empty; then Dn maps to zero in Sym(M̄gp
S,s)

for every s ∈ S, hence maps to zero in Sym(M̄gp
S ) by the sheaf property. We

set fn = 0 for each such n.
Now take an n ∈ ZI with that Z(Dn) is non-empty, and let η be its generic

point. Then Dn maps to a non-zero element of Z[Di : i ∈ Is] = Sym(M̄gp
S,η),

and we write fn for the coefficient of Dn in the restriction of f to Sym(M̄gp
S,η).

It is easy to check that only finitely many fn can be non-zero. We define

F =
∑
n∈NI

fnD
n ∈ Z[Di : i ∈ I] = Sym(M̄gp

S (S)). (3.3.2.10)

It is easy to see that the image of F equals f , because this can be checked one
stratum at a time, and each stratum appears as some intersection of Di.

3.3.3 Map to the Chow group
Map on divisors

Composing the map M̄S(S) → Div(S) of (3.3.2.2) with the (operational) first
Chern class yields a group homomorphism

Φ1 : M̄gp
S (S) → CH1(S), (3.3.3.1)

with image contained in the subgroup generated by Cartier divisors.

The case of simple finite-type stacks

Let S be a simple log algebraic stack, smooth6 over k. The operational Chow
group CH(S) has a commutative ring structure coming from composition of

6If k is a field of characteristic zero then being smooth is here equivalent to being locally
of finite type (since simple implies regular).
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operations. As such, the map

Φ1 : M̄S(S) → CH1(S) (3.3.3.2)

of (3.3.3.1) extends uniquely to a ring homomorphism

Φ′ : Sym(M̄S(S)) → CH(S). (3.3.3.3)

Lemma 3.3.9. Any element of the kernel of the surjective morphism Symn(M̄gp
S (S)) →

(Symn M̄gp
S )(S) maps to 0 in CH(S).

Proof. Let P be a polynomial in boundary divisors on S which maps to zero in
(Symn M̄gp

S )(S), and let s ∈ S be a point, then P maps to zero in Symn M̄S,s.
Write D1, . . . , Dn for the irreducible components of the boundary divisor of S,
with s ∈ Di if and only if i ≤ r for some 1 ≤ r ≤ n. Then (3.3.2.8) becomes
the commutative diagram of rings

Symn(M̄gp
S (S)) Z[D1, . . . , Dn]

Symn M̄gp
S,s Z[D1, . . . , Dr]

=

=
(3.3.3.4)

where the vertical arrow sends Di to 0 for r < i ≤ n. In particular we see that
every monomial in the Di with non-zero coefficient in P must contain some
Di for r < i ≤ n with non-zero exponent. This implies that the corresponding
set-theoretic intersection of Di does not contain s.

Since this argument holds for every s ∈ S we see that each monomial in P
has the set-theoretic intersection of its divisors being empty, hence it maps to
0 in CH(S).

Hence this map Φ′ descends to a unique ring homomorphism

Φ: (Sym M̄S)(S) = PPS(S) → CH(S), (3.3.3.5)

whose degree 1 part is Φ1.

The case of log smooth finite-type stacks

Let S be a quasi-compact log smooth log algebraic stack over k. By Lemma 3.3.6
there exists a log blowup π : S̃ → S with S̃ simple. We define

ΦS : (Sym M̄S)(S) = sPPS(S) → CH(S) (3.3.3.6)



3.3. Tautological subrings of logarithmic Chow rings 111

as the composite

(Sym M̄S)(S) → Sym M̄S̃(S̃)
ΦS̃−→ CH(S̃)

π∗−→ CH(S). (3.3.3.7)

Lemma 3.3.6 actually yields a canonical choice of log blowup π, but we should
still check that the map ΦS is independent of the choice of π (for example, if S
was already simple, we don’t want to have changed the map by blowing up).

Lemma 3.3.10. Let π : S̃ → S be a log blowup with S and S̃ simple. The
diagram

sPPS̃(S̃) CH(S̃)

sPPS(S) CH(S)

ΦS̃

π∗π∗

ΦS

(3.3.3.8)

commutes.

Proof. Since S is simple it is enough to check this for a monomial in elements
of M̄S(S) corresponding to prime boundary divisors on S, say

∏
a∈ADa. Ap-

plying π∗ corresponds to taking the total transforms of these divisors up to S̃.
We then need to show that

π∗(
∏
a

π∗Da) =
∏
a

Da, (3.3.3.9)

which follows from the projection formula and the fact that π∗π∗ is the identity.

Lemma 3.3.11. For any log regular S, the map ΦS is independent of the
choice of log blowup π : S̃ → S.

Proof. Reduce to one blowup dominating another, then apply Lemma 3.3.10.

Example 3.3.12. Resuming Example 3.3.4, recall sPP2(S) = Z
〈
(a+ b)2, ab

〉
.

Then (a+ b)2 maps to E2 ∈ CH2(S), and ab maps to the class of the singular
point of E in CH2(S). ♦

Remark 3.3.13. If S is simple then we can choose π to be the identity, and
it is clear that ΦS : sPPS(S) → CH(S) is a ring homomorphism. If S is not
simple then we suspect that ΦS is still a ring homomorphism, but we have not
managed to prove it. ♦
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The case of log regular stacks locally of finite type

Let S be an algebraic stack locally of finite type over k, and write qOp(S)
for the category of open substacks of S which are quasi-compact over k, with
maps over S. Then one sees easily that

CH(S) = limU∈qOp(S) CH(U). (3.3.3.10)

Lemma 3.3.14. Let i : S1 ↪→ S2 be a strict open immersion of quasi-compact
log smooth log algebraic stacks over k. The diagram

sPPS2
(S2) CH(S2)

sPPS1
(S1) CH(S1)

Φ2

i∗ i∗

Φ1

(3.3.3.11)

commutes.

Proof. A simplifying blowup for S2 pulls back to one for S1, so we may as-
sume both Si simple. Then it is enough to check the result for divisors, since
both maps i∗ are ring homomorphisms as are Φ1 and Φ2 (by our simplicity
assumption), and PS2

(S2) is generated in degree 1. But the result for divisors
is easy.

Now let S be a log smooth log algebraic stack over k. Given p ∈ PPS(S)
and any U ↪→ S quasi-compact, we restrict p to pU ∈ sPPU (U), yielding an
element ΦU (pU ) ∈ CH(U). By Lemma 3.3.14 these glue, yielding a map

ΦS : sPPS(S) → CH(S). (3.3.3.12)

3.3.4 General piecewise-polynomials and the log-tautological
ring

Definition 3.3.15. For a log algebraic stack S we define the group of piecewise-
polynomial functions as

PP′(S) = colimS̃→S sPP(S̃), (3.3.4.1)

where S̃ → S runs over all log blowups of S.

Lemma 3.3.16. The pullback sPP(S) → sPP(S̃) is injective for S̃ → S any
log blowup, so the natural maps to the colimit are injective.
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Proof. It suffices to show this locally, so we reduce to the atomic case. It is
then enough to check that the natural map M̄S(S) → M̄S̃(S̃) is injective. This
is clear from the construction of the blowup in the toric case, but any log
blowup is locally a strict base-change of a toric blowup.

We define the sheaf of piecewise-polynomials PP on the small strict étale
site of S as the sheafification of the presheaf of rings PP′ : U 7→ PP′(U). This
sheaf property then immediately yields

PP(S) = limU∈qOp(S) PP(U). (3.3.4.2)

The natural maps

Φlog
i : PP(Ui) → colimŨi

CH(Ũi) (3.3.4.3)

then assemble into a ring homomorphism

Φlog : PP(S) → LogCH(S). (3.3.4.4)

Remark 3.3.17. The presheaf PP′ is always separated, and is a sheaf if S is
quasi-compact and quasi-separated; we make the above construction to avoid
having to worry about finding common refinements of blowups of very large
stacks. ♦

The log-tautological ring

Definition 3.3.18. Let S be a smooth log smooth log algebraic stack over
k and let T ⊆ CH(S) be a subring. We define T log ⊆ LogCH(S) to be the
sub-T -algebra of LogCH(S) generated by the image of

Φlog : PP(S) → LogCH(S). (3.3.4.5)

A natural application is to take S = Mg,n and T to be the usual tauto-
logical subring of the Chow ring. We want to ensure that after carrying out
our logarithmic constructions and pushing back down to Mg,n we still have
tautological classes.

Definition 3.3.19. We say a subring T ⊆ CH(S) is tectonic7 if the pushfor-
ward of T log from LogCH(S) to CH(S) is equal to T .

7It contains many strata, which are formed by overlaps of other strata, perhaps after
some things blow up...
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Giving criteria for when a subring T ⊆ CH(S) is tectonic is somewhat
subtle. Certainly if a subring is tectonic then it must contain all boundary
strata, and the converse holds if S is simple, but not in general. Fortunately
for us a precise criterion has been worked out in [MPS23] for the case where
S is Deligne-Mumford and quasi-compact, which will be enough for our appli-
cations8. Their criterion goes by way of defining certain normally decorated
strata class in CH(S); the definition is somewhat lengthy, and the details will
not be so important for us. We need only the following lemma, and the fact
that the usual tautological ring of Mg,n contains these normally decorated
strata classes.

Lemma 3.3.20. Suppose S is Deligne-Mumford and quasi-compact. Then a
subring T ⊆ CH(S) is tectonic if and only if it contains all normally decorated
strata class.

Proof. Let ν : S̃ → S be a log blowup. We denote by R⋆(S) the ring of
normally decorated strata classes on S, and similarly for S̃. By definition
R⋆(S̃) contains9 all boundary strata of S̃, and ν∗(R⋆(S̃)) ⊆ R⋆(S) by [MPS23,
Theorem 13]. This implies that every T containing R⋆(S) is tectonic (which
is the direction we will use). We deduce the converse from [MPS23, Theorem
11] and the fact that (on a simple log blowup) T log contains all boundary
divisors.

3.3.5 Constructing a class
In this section we present a construction, formulated in a general setting, that
will be used in Section 3.4.2 to define logarithmic double ramification cycles.

Suppose we are given the following data:

1. a quasi-separated log smooth log algebraic stack S/k which is stratified
by global quotients10;

2. f : X → S a birational representable log étale morphism;

3. J/k an algebraic stack and i : e↣ J a regularly embedded closed substack
(or more generally an lci morphism);

8It seems likely that their results (perhaps with slight modification) will also hold in the
setting of smooth log smooth algebraic stacks, but we have not verified the details.

9If we take S̃ simple then R⋆(S̃) is in fact generated by strata, but this is not needed for
our argument.

10In practise this last condition means we must be exclude M1,0 from our results; but
this is fairly harmless since we can just consider the corresponding cycle on M1,1 with zero
weighting on the new marking.
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4. σ : X → J a morphism over k.

Suppose also that the base-change X×J e is proper over S. Then we construct
a class [σ∗e]f,log ∈ LogCH(S) — we often omit the f from the notation when
it is clear from context.

The simplest case of our construction is when X is smooth and f : X → S
is a log blowup (then X×J e→ S is automatically proper). Then σ!e is a well-
defined class on X, and automatically gives an element of LogCH(S), which
we denote [σ∗e]f,log.

In the general case a little more care is needed. Because LogCH(S) is
defined as a limit over quasi-compact opens, we may assume that S is quasi-
compact. Then by Lemma 3.3.25 there exist log blowups S̃ → S and X̃ → X
and a strict open immersion f̃ : X̃ ↪→ S̃ over f ; after further log blowup we
may also assume S̃ (and hence X̃) to be smooth.

Definition 3.3.21. We call such an S̃ → S a sufficiently fine log blowup (for
f : X → S), and X̃ ↪→ S̃ the lift of X.

Set Z = X̃ ×σ,J,i e, and consider the diagram

Z e

X̃ J

S̃

j

i

σ

f̃

(3.3.5.1)

We then define
[σ∗e]f,log = j∗i

![X̃]. (3.3.5.2)

To unravel this formula, recall that i is lci so we have a gysin morphism
i! : A∗(X̃) → A∗Z. The composite j : Z → S̃ is a closed immersion, in par-
ticular projective, so we have a pushforward j∗ : A

∗Z → A∗S̃. Finally, S̃ is
smooth, so the intersection product furnishes a map A∗(S) → CH(S̃), and we
have a natural inclusion CH(S̃) ↪→ LogCH(S).

Remark 3.3.22. In place of the above construction it might be tempting to
take the operational class on J defined by the regular embedding i, then pull it
back to X̃. However, f̃ : X̃ → S̃ is not necessarily proper, so we can’t push the
result forward to define a class on S̃. The essential feature of our construction
is that we only assume that j is proper, not f̃ . ♦



116 Chapter 3. Logarithmic intersections of the DR-cycle

To see that the above construction is independent of the choice of S̃ we
use that gysin pullbacks along lci maps commute with each other and with
projective pushforward [Kre99, Theorem 2.1.12 (xi)]

Remark 3.3.23. Let S̃ → S be a sufficiently fine log blowup. Then [σ∗e]f,log is
determined on S̃ (in the sense of Definition 3.2.6). ♦

Lemma 3.3.24. Let φ : X ′ → X be another birational representable log étale
morphism, and write f ′ : X ′ → S, σ′ : X ′ → J for the obvious composites.
Then

[σ∗e]f,log = [σ′∗e]f ′,log ∈ LogCH(S). (3.3.5.3)

Proof. Let T → S be a blowup that is sufficiently fine for X ′ → S, and which
dominates a sufficiently fine blowup for X → S. Unravelling the definitions
one sees that the classes agree already in CH(T ).

The key to the above construction is the following lemma, whose proof is
essentially the same as that of Lemma 6.1 of [Hol19].

Lemma 3.3.25. Let S be a regular log regular qcqs stack and f : X → S
birational separated log étale representable. Then there exist log blowups S̃ → S
and X̃ → X and a strict open immersion X̃ → S̃ over S.

Probably this lemma is false if one drops either the quasi-compactness or
quasi-separatedness assumptions, but we have not managed to write down an
example, and would be interested to see one.

Proof. Consider first the case where S is an affine toric variety, given by some
cone c ∼−→ Nr. Then X is given by a fan F consisting of a collection of cones
contained in c. Let F̄ be a complete fan in c such that every cone in F is
a union of cones in c; after further refinement of F̄ we can assume that it
corresponds to a log blowup S̃ → S. The restriction of F̄ to F gives a log
blowup X̃ → X, and a strict open immersion X̃ → S̃.

In the case where S is an atomic log scheme we can follow essentially the
same procedure, where the cone c ∼−→ Nr is replaced by the stalk of the ghost
sheaf over the closed stratum of S.

In the general case we can find a smooth cover S by finitely many atomic
patches (by quasi-compactness), and each intersection can be covered by finitely
many atomic patches (by quasi-separatedness). A strict map of atomic patches
corresponds to some inclusion of a cone as a face of another cone: Nr ↪→ Ns.

Given a face inclusion Nr ↪→ Ns and a subdivision of Ns, we can pull the
subdivision back to a (unique) subdivision of Nr. But also, given a subdivision
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of Nr we can turn it into a subdivision of Ns in a canonical way, by taking
the product. Hence if Nr ↪→ Ns is a face map (where we allow r = s) and
we have subdivisions of Nr and Ns, then we can find ‘common refinements’ to
subdivisions of Nr and Ns which agree along the face map. Moreover if both
starting subdivisions were log blowups then so are these common refinements.

To conclude the proof, we just need to extend this ‘common refinement’
procedure from a single face map to any diagram D of face maps with finitely
many objects. Such a diagram necessarily also has finitely many morphisms
(since there are only finitely many face maps between any two cones), hence
the same is true for the category D′ obtained by formally inverting all the
maps in D. By the discussion in the previous paragraph we can pull back a
log blowup along any map in D′.

We are given a log blowup of each cone in D. For a fixed cone c there
are only finitely many pairs d, f where d is another cone and f : d → c is a
morphism in D′. We then give c the log blowup which is the superposition
over all these pairs (f, d) of the pullback along f of the given log blowup of d.
In this way we equip every object of D with a log blowup, in such a way that
these are compatible along all the face maps in D. These then glue to a global
log blowup of S, which pulls back to a global log blowup of X.

3.4 Logarithmic double ramification cycles

3.4.1 Notation
Here we introduce notation needed for applying the machinery developed in
the previous two sections to moduli of curves and to double ramification cycles.

1. Mg,n denotes the (smooth, algebraic) stack of prestable curves of genus
g with n ordered disjoint smooth markings. This has a normal crossings
boundary, inducing a log smooth log structure. Equivalently, this is
the stack of log curves of genus g and n markings, with a choice of
total ordering on the markings (see [Kat00], [GS13, Appendix A]; the
underlying algebraic stack is then given by the machinery of minimal log
structures [Gil12]).

2. Mg,n is the open substack of Mg,n consisting of Deligne-Mumford-Knudsen
stable curves.

3. M =
⊔
g,nMg,n denotes the stack of all log curves with a choice of total

ordering on their markings. Often the genus and markings will not be
so important to us, so we can use this more compact notation.
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4. C is the universal curve over M. We will abusively use the same notation
for the tautological curve over any stack over M (so for example, for the
universal curve over Mg,n).

5. Pic is the relative Picard stack of C over M; objects are pairs of a curve
and a line bundle on the curve. This is smooth over M with relative
inertia Gm; we equip it with the strict (pullback) log structure over M.

6. Jac denotes the connected component of Pic corresponding to line bun-
dles of (total) degree 0 on every fibre.

7. J is the relative coarse moduli space over M of the fibrewise connected
component of identity in Jac (or equivalently in Pic). Over the locus
of smooth curves in M this is an abelian variety, the classical jacobian.
In general it is a semiabelian variety over M which parametrises iso-
morphism classes of line bundles on C/M which have degree 0 on every
irreducible component of every geometric fibre (sometimes we refer to
this condition as having multidegree 0). The morphism J → M is sep-
arated, quasi-compact, and relatively representable by algebraic spaces
(none of which hold for Pic or Jac).

8. J̄ is the relative coarse moduli space of Jac over M; it can be defined
analogously to J except that we require total degree 0 instead of multi-
degree 0. In particular we have an open immersion J ↪→ J̄, which is an
isomorphism over the locus of irreducible curves.

Lemma 3.4.1. Jac is quasi-separated.

Proof. First we check that M is quasi-separated; equivalently, that the diago-
nal is qcqs. In other words, if C/S is a prestable curve, then IsomS(C) is qcqs
over S - but this is well-known.

Now we show that Jac is quasi-separated over M. In other words, we fix a
prestable curve C/S and a line bundle L on C, and look at the automorphisms
of L over C; but this is just Gm.

Piecewise linear functions

If C/S is a log curve and α ∈ M̄gp
C (C), the outgoing slope at a marked section

c of C/S is the image of α in the stalk of the relative characteristic monoid
M̄C/S,s = N.
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Definition 3.4.2. A piecewise-linear (PL) function on a log curve C/S is an
element α ∈ M̄gp

C (C) (cf. (3.3.1.3)) with all outgoing slopes vanishing11.

The preimage of α in the exact sequence

1 → O×
C → Mgp

C → M̄gp
C → 1 (3.4.1.1)

defines an associated Gm-torsor O×(α), which we compactify to a line bundle
O(α) by glueing in the ∞ section (this is just a choice of sign; it corresponds
to O(−p) being an ideal sheaf, rather than its dual).

The bundle O(α) always has total degree zero, but rarely multidegree 0;
more precisely, it has multidegree 0 if and only if O(α) is a pullback from S,
if and only if α is constant on geometric fibres.

3.4.2 Defining LogDR

Before defining the logarithmic double ramification cycle it seems useful to
summarise the construction of the ‘usual’ double ramification cycle (in this
thesis to be found in chapter 1) from [BHP+23]. Various constructions of
double ramification cycles are given in various places in the literature in var-
ious levels of generality (e.g. [Hol19, MW20, HKP18, BHP+23]). They are
mostly12 equivalent, but descriptions of the relations between the construc-
tions are scattered across various sketches in various papers at various levels
of generality13, making it troublesome to assemble a complete picture. Here
we attempt to rectify this by giving a precise and general statement of the
relation between the two most widely-used definitions, that of the first-named
author by resolving rational maps, and that of Marcus and Wise via tropical
divisors (in the form used in [BHP+23]).

Tropical divisors

If C/S is a log curve and α a PL function on C, then the line bundle OC(α)
determines a map S → Jac. In this way we have an Abel-Jacobi map from
the stack of pairs (C/S, α) to Jac. We can see this Abel-Jacobi map as a
first approximation of the double ramification cycle, but the map has relative

11It would be cleaner to work with vertical (‘unmarked’) log curves, but we will make use
of smooth sections of C/S in other places in our arguments, so we do not wish to impose
verticality.

12With the exception of classes given by the closure of the double ramification locus
on the moduli space of smooth curves, as for example in the theory of admissible cover
compactifications.

13This is in fairly large part the responsibility of the first-named author.
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dimension 1 (a section α admits no non-trivial automorphisms, whereas the
line bundle OC(α) has a Gm worth of automorphisms), and hence will not
induce a good Chow class on Jac. To fix this we need a little more setup.
Given a log scheme S = (S,MS), we write

Gtrop
m (S) = Γ(S, M̄gp

S ),

which we call the tropical multiplicative group; it can naturally be extended
to a presheaf on the category LSchS of log schemes over S. A tropical line on
S is a Gtrop

m torsor on S for the strict étale topology. Then a point of Div is a
triple

(C/S, α,M) (3.4.2.1)

where C/S is a log curve, α : C → Gtrop
M a morphism over S with zero outgoing

slopes, and M is a line bundle on S. An isomorphism

(π : C → S, α,M) → (π : C → S, α′,M′) (3.4.2.2)

in Div is an isomorphism M → M′, and the Abel-Jacobi map aj : Div → Jac
sends (π : C → S, α,M) to π∗M(α).

In [BHP+23] we defined DR ∈ CH(Jac) to be the fundamental class of
the proper log monomorphism Div → Jac (we describe this in more detail in
Definition 3.4.3. )

Universal σ-extending morphisms

Over the locus of irreducible curves in Jac the notions of total degree and
multidegree coincide, so that J comes with a tautological map from Jac. We
can think of this as a rational map

σ : Jac 99K J (3.4.2.3)

(rational because it is only defined on the open locus of irreducible curves).
Let t : T → Jac be a map of algebraic stacks over M. We say t is σ-extending

if14

14The analogous definition in [Hol19] had the additional assumption that T be normal.
At the time this was needed in order to be able to apply [BHdJ17, Theorem 4.1] at a certain
critical step in the arguments, but since then Marcus and Wise have proven the analogue
of [BHdJ17, Theorem 4.1] with no regularity assumptions, see [MW20, Corollary 3.6.3].
This can then be use to modify they theory of [Hol19] without a normality assumption.
Alternatively one can reinstate the condition that T be normal, and all of the subsequent
discussion will go through unchanged except that we will have to insert normalisations in
various places. By Costello’s Theorem [HW22] this will have no effect on the resulting cycles,
but will make things much less readable, which is why we prefer to omit the condition.
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1. The pullback along t of the locus of line bundles on smooth curves is
schematically dense in T ;

2. The rational map T 99K J induced by σ extends to a morphism (neces-
sarily unique if exists, by separatedness of J over M).

One can then show just as in [Hol19] that the category of σ-extending
stacks over Jac has a terminal object, which we denote Jac♢. The natural
map

f : Jac♢ → Jac (3.4.2.4)

is separated, relatively representable by algebraic spaces, of finite presentation,
and an isomorphism over the locus of smooth (even treelike) curves, but it is
not in general proper. The construction equips it with a map

σ : Jac♢ → J. (3.4.2.5)

The functor of points of Jac♢

One can describe the functor of points (on the category of log schemes) of Jac♢

in a manner very similar to the definition of Div. Namely, a point of Jac♢ is
a triple

(C/S, α,L) (3.4.2.6)

where C/S is a log curve, α : C → Gtrop
M a morphism over S with zero outgoing

slopes, and L a line bundle on C such that the line bundle L(α) has multidegree
0 on every fibre of C/S.

Given such (C/S, α,L), the map S → J given by L(α) is an extension of σ,
so by the universal property of Jac♢ we obtain a map from the stack of such
quadruples to Jac♢. To show this is an isomorphism, we may work locally (so
assume C/S to be nuclear in the sense of [HMOP23], and smooth over a dense
open of S), then it is enough to show that the extension of σ is given by a PL
function; but this follows from [MW20, Corollary 3.6.3].

Comparison

The key actor in Section 3.3.5 is the fibre product of the diagram

M

Jac♢ J.

e

σ

(3.4.2.7)
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From the functor-of-points description of Jac this fibre product is exactly given
by tuples (C/S, α,L) ∈ Jac♢ such that L(−α) is the pullback of some line
bundle on S, say L(−α) = π∗M. Giving the data of L or of M is exactly
equivalent, and the tuple (C/S, α,M) is exactly a point of Div; in other words
we have a pullback square

Div M

Jac♢ J.

e

σ

(3.4.2.8)

Marcus and Wise show that the composite Div → Jac is proper, and in
[BHP+23] we define DR to be the associated cycle on Jac. The full construction
of the operational class is a little subtle (see [BHP+23, §2] for details), but is
easy to describe for a smooth stack S mapping to Jac.

Definition 3.4.3. Let S be a smooth stack and φ : S → Jac a morphism.
Then φ is lci, so we have a gysin pullback φ! : A∗(Div) → A∗(Div×JacS), and
following [Sko12] a proper pushforward i∗ : A

∗(Div ×Jac S) → A∗(S). Since
S is smooth the intersection pairing furnishes a map ∩ : A∗(S) → CH(S), and
we define

φ∗DR = ∩(i∗φ![Div]) ∈ CH(S), (3.4.2.9)

where [Div] denotes the fundamental class of Div as a cycle on itself.

Defining LogDR

We construct the cycle LogDR in LogCH(Jac) as hinted at in [BHP+23, §3.8].
We apply the construction of Section 3.3.5, taking S = Jac, X = Jac♢, J = J,
and σ = σ. We need the natural map

Jac♢ ×J M → Jac (3.4.2.10)

to be proper; this can be proven in the same way as in [Hol19, §5], or follows
by the comparison to the construction of Marcus-Wise in Section 3.4.2.

Definition 3.4.4. The construction specified in Section 3.3.5 yields a class
LogDR := [σ∗e]f,log ∈ LogCH(Jac), the log double ramification cycle.

Comparing the constructions yields

Lemma 3.4.5. Applying the pushforward ν∗ : LogCH(Jac) → CH(Jac) of Def-
inition 3.2.13 to LogDR ∈ LogCH(Jac) recovers the double ramification cycle
DR ∈ CH(Jac) of [BHP+23].
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Proof. The class DR ∈ CH(Jac) can be obtained by applying Definition 3.4.3
to the smooth stack S = Jac (with the map φ : Jac → Jac being the identity),
so we need to compare this to the construction in Section 3.3.5. We will begin
by making a slight simplifying assumption, namely that X = Jac♢ can be
embedded in a smooth log blowup S̃ = Jac♦ of S (in other words, that we can
take X̃ = X). Then we have a commutative diagram with cartesian square:

Div M

Jac♢ J

Jac♦

Jac.

e

σ

(3.4.2.11)

Now ν∗LogDR is by definition the pushforward to Jac of the class e![Jac♢] on
Div, so it suffices to show that e![Jac♢] is equal to the fundamental class of
Div. But e! takes the fundamental class to the fundamental class, so this is
clear.

What if we cannot embed Jac♢ in a smooth log blowup Jac♦ of Jac? Then
we must first replace Jac♢ by some log blowup of itself. The argument then
proceeds as above, with the additional input that replacing Div by a log
blowup does not change the class of the final pushforward to Jac.

3.4.3 Invariance of LogDR in twistable families

Throughout this subsection, C/S is a log curve over a smooth log smooth base,
and L is a line bundle on C.

Definition 3.4.6. We say the pair (C/S,L) is twistable if there exists a PL
function α on C such that L(α) has multidegree 0; we call such an α a twisting
function.

Being twistable is equivalent to the existence of a Cartier divisor on D on
C supported over the boundary of S and such that L(D) has multidegree 0;
see [BHdJ17, Theorem 4.1] or [MW20, Corollary 3.6.3].
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Lemma 3.4.7. Let (C/S,L) be twistable with α a twisting function. Write
φL : S → Jac for the map induced by L, and φL(α) : S → Jac for the map
induced by L(α). Then

φ∗
LLogDR = φ∗

L(α)DR (3.4.3.1)

in LogCH(S) (where we view φ∗
L(α)DR in LogCH(S) by pullback, cf. Sec-

tion 3.2.2).

Proof. Write σ : S 99K J for the rational map induced by L. Then the identity
on S is the universal σ-extending morphism! More precisely, the extension is
given by L(α) : S → J, and it is easily seen to be universal among extensions
(see Remark 3.4.8). We have a pullback diagram

S ×J e e

S J,

j i

σ

(3.4.3.2)

and the definitions of φ∗
LLogDR and φ∗

L(α)DR simplify to

φ∗
LLogDR = j∗i

![S] and φ∗
L(α)DR = j∗σ

![e], (3.4.3.3)

which are equal since σ![e] = i![s] (commutativity of the intersection pairing).

Remark 3.4.8. If (C/S,L) is twistable then α is not unique, but the line bundle
L(α) is uniquely determined up to pullback from S. Hence φ∗

L(α)DR does not
depend on the choice of α. ♦

Remark 3.4.9. Unfortunately the notion of twistable families seems a little
too restrictive; not enough of them seem to exist to determine LogDR from DR
(though we have not written down a proof). Because of this we now introduce
a weaker notion. ♦

Definition 3.4.10. We say (C/S,L) is almost twistable if there exist a PL
function α on C and a dense open i : U ↪→ S such that:

1. the restriction of α to U is a twisting function;

2. The map U
i×φL(α)−−−−−→ S×MJ is a closed immersion (equivalently, its image

is closed).

We give some alternative formulations of the second condition in Defini-
tion 3.4.10, which will be used in the proof of Lemma 3.4.17.
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Lemma 3.4.11. Suppose we are given (C/S,L), a PL function α on C and a
dense open i : U ↪→ S such that the restriction of α to U is a twisting function.
Then the following are equivalent:

1. The map U
i×φL(α)−−−−−→ S ×M J is a closed immersion (i.e. (C/S,L) is

almost twistable);

2. for any trait15 T with generic point η and any map T → S sending η to a
point in U , if the map η → S×M J induced by L(α) can be extended to a

map T → S×MJ then the map T → S×MJ factors via U
i×φL(α)−−−−−→ S×MJ

3. for any trait T with generic point η and any map T → S sending η to a
point in U , if the map η → J induced by L(α) can be extended to a map
T → J then the map T → S factors via U .

Proof. Condition (2) is exactly the valuative criterion for properness for the

map U
i×φL(α)−−−−−→ S ×M J, hence (1) and (2) are equivalent.

The difference between conditions (2) and (3) is about whether we allow
the underlying curve to change when we construct an extension of the line
bundle, but in fact this makes no difference, by Lemma 3.4.12.

Lemma 3.4.12. Let T be a trait with generic point η and let C, C ′ be prestable
curves over T . Let φ : Cη → C ′

η be an isomorphism over η. Write J for the
multidegree-0 jacobian of C/T (so J is the pullback of J along the classifying
map T → M of C), and similarly define J ′ from C ′. Then the isomorphism
Jη

∼−→ J ′
η induced by φ extends uniquely to a T -isomorphism J

∼−→ J ′.

It is easy to see that the fibres of J and J ′ over the closed point t of T
are isomorphic, since Ct and C ′

t just differ by inserting some chains of rational
curves at nodes, and adding some rational tails (see the explicit description of
Jt in [BLR90, Example 9.2.8]. However, this is not enough; we need a (unique)
global isomorphism compatible with φ.

Proof. This follows from the uniqueness of semiabelian prolongations over nor-
mal noetherian bases in [Ray70, XI, 1.15]. The result is stated there in the
case where the generic fibre Cη is of compact type (so Jη is abelian, but the
proof goes through unchanged if one allows arbitrary prestable curves and re-
places Néron models of abelian schemes by Néron aft-models of semiabelian
schemes.

15A trait is the spectrum of a discrete valuation ring.
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Lemma 3.4.13. Let (C/S,L) be almost twistable with α a twisting function.
Write φL : S → Jac for the map induced by L, and φL(α) : S → Jac for the
map induced by L(α). Then

φ∗
LLogDR = φ∗

L(α)DR (3.4.3.4)

in LogCH(S).

Proof. Write σ : S 99K J for the rational map induced by L. Then the inclusion
U ↪→ S is the universal σ-extending morphism. More precisely, the extension
is given by L(α) : U → J, and the second property of Definition 3.4.10 shows
it to be universal among extensions. Since L(α) is of total degree 0 over the
whole of S, it defines a map σ̄ : S → J̄ over the whole of S. Consider the
diagram

U ×J e e

U J

S J̄

j

i

σ

σ̄

(3.4.3.5)

where both squares are pullbacks (the top by construction, the bottom by
the defining property of U), so that U ×J e = S ×J̄ e. In the notation of
Section 3.3.5 we take S = S̃ and X = X̃ = U . Then the definitions of
φ∗
LLogDR and φ∗

L(α)DR simplify to

φ∗
LLogDR = j∗i

![U ] and φ∗
L(α)DR = j∗σ̄

![e] = j∗σ
![e], (3.4.3.6)

which are equal by the commutativity of the intersection pairing.

The hard work remaining in this paper is to show that there are ‘enough’
almost-twistable families for Lemma 3.4.13 to determine LogDR from DR.

3.4.4 Extending piecewise-linear functions

Let C/S be a log curve. The key to showing the existence of enough almost-
twistable families will be to extend PL functions over open subsets of S to PL
functions over the whole of S, perhaps after some monoidal alteration.

Lemma 3.4.14. Let C/S be a log curve with S a smooth log smooth log
algebraic stack. Then there exist
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1. a monoidal alteration S̃ → S;

2. a subdivision C̃ → C ×S S̃

with C̃/S̃ a log curve and C̃ regular.

Proof. This follows from [ALT18]. More precisely, their Theorem 4.4 gives a
canonical monoidal resolution over schemes, which therefore applies to stacks.
The argument in the proof of their Theorem 4.5 then shows that this monoidal
resolution has C̃ regular.

After applying the above lemma we will show that PL functions always ex-
tend. We start by considering the case where the base S is very small (nuclear
in the sense of [HMOP23]), after which we will glue to a global solution.

Lemma 3.4.15. Let C/S be a regular log curve over a (regular) log regular
base, with C/S nuclear. Let U ↪→ S be strict dense open and let α be a PL
function on CU/U . Then we construct an extension ᾱ to a PL function on
C/S, and this construction is compatible with strict open base-change.

Proof. Let s be the generic point of the closed stratum of S. Let r be the
rank of M̄S,s, and let D1, . . . , Dr be the divisorial strata of the boundary of S.
Let Γ be the graph of C/S over the closed stratum, and let Γi be the graph
over the generic point of Di (obtained by contracting those edges of Γ whose
lengths differ from Di). Our assumption that C/S be nuclear implies that S
is simple (equivalently every intersection of Dis is regular and connected), and
moreover that the intersection of all of the Dis is non-empty.

On each Di with non-empty intersection with U we equip Γi with the PL
function from α, and for the other Di we put the zero PL function.

Now let z be a stratum of S, with graph Γz, and let Nz ⊆ {1, . . . , r} be
such that {z} =

⋂
i∈Nz

Di. Then by (3.3.2.4) we have M̄S,z =
⊕

i∈Nz
N ·Di;

write fi : N ·Di → M̄S,z for the natural inclusion. Let v be a vertex of Γz, and
for each i ∈ Nz let vi be its image in Γi under specialisation. Then we define

ᾱ(v) =
∑
i∈Nz

fi(α(vi)). (3.4.4.1)

To check that ᾱ is a PL function on Γz, suppose that e is an edge of Γz between
vertices u and v. By regularity of C we know that the length of e is Di for
some i ∈ Nz; suppose it is D1. Then fi(u) = fi(v) for every i ̸= 1, and
D1 | α(f1(u))− α(f1(v)). It is easy to see that ᾱ restricts to α over U .

Suppose that S′ → S is a strict open map such that CS′/S′ is also nuclear
and CS′ is regular. Let s′ be the generic points of the closed stratum of S′; it is
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enough to check the result for the restriction of ᾱ to Γs′ . Let N ′ ⊆ {1, . . . , r}
be the set of those Di meeting the image of s′. Then each of those Di meet
the image of S′, and their pullbacks are exactly the divisorial strata on S′

(so in particular the rank of M̄S′,s′ is #N ′). Then ᾱ on Γs′ is constructed by
interpolating the values of α on the Di for i ∈ N ′, regardless of whether we
compute this on S or on S′; in particular, these give the same result.

Lemma 3.4.16. Let C/S be a log curve with C (and hence S) regular log
regular, S a log algebraic stack. Let U ↪→ S be a strict dense open immersion
and α a PL function on CU . Then there exists a PL function ᾱ on S restricting
to α.

Proof. By [HMOP23, lemma 3.40] we know that S admits a strict étale cover
{Si}i → S with each C×S Si/Si nuclear. In Lemma 3.4.15 we give a canonical
choice of extension for each C×S Si/Si, and these are compatible with smooth
base-change, so descend to algebraic stacks.

3.4.5 LogDR from DR

We wish to compute LogDR in LogCH(Jac). Let i : S ↪→ Jac be a strict open
immersion with S quasi-compact, and write C/S for the universal curve and
L on C for the universal line bundle.

Lemma 3.4.17. There exist

1. a monoidal alteration ψ : S̃ → S;

2. a subdivision C̃ of C ×S S̃;

such that the pair (C̃/S̃, ψ∗L) is almost twistable.

Proof. Write σ : S 99K J for the rational map induced by the line bundle L,
and let ψ1 : S

♢ → S be the universal σ-extending morphism.
Claim: there exists a representable monoidal alteration S♢♢ of S♢ over

which the map σ : S♢ → J can be represented as ψ∗
1L(α) for some PL function

α over S♢♢.
The claim is clear from Section 3.4.2 locally on S♢, but these PL functions

are only unique up to addition of a PL function from the base, and so need not
glue. We define S♢♢ to be the subfunctor of S♢ where the maps α : C → P
(in the notation of Section 3.4.2) can be chosen such that their set of values
is totally ordered (in the ordering on P induced by the monoid structure on
M̄gp). That this subfunctor is a representable monoidal alteration of S♢ is
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proven exactly as in [MW20, Theorem 5.3.4] for the map Rub → Div, to
which it is closely analogous.

Now we can construct these α locally on S♢♢ just as before, but with
P = Gtrop

M and the additional requirement that the smallest value taken by α
on any vertex is zero. This makes the α unique, hence they glue to a global
PL function, proving the claim.

Now let S♦ → S be a sufficiently fine log blowup for S♢♢ → S, and let
U ↪→ S♦ be the lift of S♢♢.

Writing C♦/S♦ for the pullback of C/S, we apply Lemma 3.4.14 to the
C♦/S♦ to construct a monoidal alteration S̃ → S♦ and a subdivision C̃ of
C♦ ×S♦ S̃ = C ×S S̃ with C̃ (and hence S̃) regular. Writing ψ : S̃ → S for the
composite, we claim that the pair (C̃/S̃, ψ∗L) is almost twistable.

Let Ũ be the pullback of U to S̃ (a twistable open), and let α be a twisting
function over Ũ . Then Lemma 3.4.16 implies that this α can be extended to
a PL function over the whole of S̃.

Now let T → S be a trait with generic point η landing in Ũ . Suppose
that the map η → J given by (ψ∗

1L)(α), then it is proven in [Hol19, Lemma
4.3] that this cannot be extended to a map T → J unless it can already be
extended to a map T → U . By Lemma 3.4.11 this shows that (C̃/S̃, ψ∗L) is
almost twistable, with Ũ ↪→ S̃ the largest twistable open.

Let (C̃/S̃, ψ∗L) be as in the statement of Lemma 3.4.17, with twisting
function α over S̃. Then we have maps

φL : S̃ → Jac and φL(α) : S̃ → Jac (3.4.5.1)

induced by ψ∗L and ψ∗L(α) respectively. Then

Theorem 3.4.18. We have an equality of cycles

φ∗
LLogDR = φ∗

L(α)DR (3.4.5.2)

in LogCH(S).

Proof. Immediate from Lemmas 3.4.13 and 3.4.17.

3.4.6 LogDR is tautological

If L is the universal line bundle on the universal curve π : C → Jac, we define
the class

η = π∗(c1(L)2) ∈ CH(Jac). (3.4.6.1)
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In [BHP+23, Definition 4] we defined a tautological subring of CH(Jac); it is
the Q-span of certain decorated prestable graphs of degree 0, as described in
[BHP+23, Section 0.3.3]; in particular, it includes the class η from (3.4.6.1).
Here we prove that LogDR is contained in the corresponding tautological sub-
ring of LogCH(Jac). In fact, we can prove something stronger16. We write
Q[η] ⊆ CH(Jac) for the sub-Q-algebra of the Chow ring generated by the
class η of (3.4.6.1), and recall from Definition 3.3.18 that Q[η]log denotes the
corresponding subring of LogCH(Jac); we show that LogDR lies in Q[η]log.

Continuing in the notation of the previous subsection, we can pull back
Q[η]log along φL : S → Jac to give a subring of LogCH(S). Since φL is strict
this is equivalent to pulling back Q[η] ⊆ CH(Jac) to CH(S), then taking
the corresponding subring of LogCH(S). We denote the resulting subring
Q[η]logS ⊆ LogCH(S).

Lemma 3.4.19. Suppose k has characteristic zero. In the notation of Theo-
rem 3.4.18, the cycle φ∗

L(α)DR lies in Q[η]logS ⊆ LogCH(S).

We are grateful to Johannes Schmitt for pointing out an omission in an
earlier version of the proof (as well as the strengthening mentioned above).

Proof. This is an easy consequence of Pixton’s formula for DR on Jac♢, as
stated in equation (56) of [BHP+23, §0.7]. The formula expresses DR as a
polynomial in the following classes:

1. The class π∗(c1(ψ∗L(α̃))2);

2. Classes ψh + ψh′ where h, h′ are the two half-edges forming an edge of
a graph of C/S̃.

It hence suffices to show that the above classes lie in Q[η]logS ; we treat them in
order:

1. The class π∗(c1(ψ∗L(α̃))2) can be expanded as a sum

π∗(c1(ψ
∗L)2) + 2π∗(c1(ψ

∗L)c1(OC(α̃)) + π∗(c1(OC(α̃))
2).

The first summand is the pullback of the tautological class η = π∗(c1(L)2)
from CH(Jac), hence is in Q[η]logS . For the second summand, we can re-
duce to computing π∗(c1(ψ∗L)D) where D is some vertical prime divisor
on C/S̃, say with image a prime divisor Z on S̃. Then for dimension

16This improvement was suggested to us by Johannes Schmitt, to whom we are very
grateful for permission to include it.
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reasons we see that π∗(c1(ψ∗L)D) is an integer multiple of the class of
the boundary divisor Z, in particular is in Q[η]logS .

Finally, the class c1(OC(α̃)) can be written as a sum of vertical boundary
divisors on C/S̃. If D and E are distinct vertical prime divisors then D
and E meet properly, and their locus of intersection is a union of vertical
codimension 2 loci in C (which push down to zero on S̃ for dimension
reasons) and horizontal boundary strata which push forward to boundary
classes on S̃.

It remains to show that π∗(D2) is tautological. For this, let Z be the
prime divisor in S̃ which is the image of D, and let E be the vertical
divisor lying over Z such that π∗Z = D + E. Then we reduce to the
previous case by noting π∗(D2) = π∗(D · (π∗Z − E)) = π∗(D · E).

2. These are exactly the first Chern classes of conormal bundles to bound-
ary divisors on S̃. As such they can be realised as self-intersections of
these boundary divisors (perhaps after a harmless further blowup we
may assume S̃ simple), hence are in Q[η]logS .

Putting together Theorem 3.4.18 and Lemma 3.4.19 we obtain

Corollary 3.4.20. Suppose k has characteristic zero. Write T ⊆ CH(Jac) for
the tautological ring as in [BHP+23, Definition 4], and Q[η] ⊆ T for the sub-
ring generated by the class η from (3.4.6.1). Then the log double ramification
cycle LogDR ∈ LogCH(Jac) lies in Q[η]log ⊆ T log.

3.4.7 Conjecture C

In this section we prove Conjecture C of [MPS23]; we thank Johannes Schmitt
and the anonymous referee for corrections and improvements to this argument.
Given non-negative integers g, n satisfying 2g−2+n > 0, we write Mg,n for the
corresponding stack of stable marked curves, with log structure given by the
boundary divisor. We write Rg,n for the subring of LogCH(Mg,n) generated
by the classes ψ1, . . . , ψn and the boundary divisors of logarithmic blowups of
Mg,n.

Let a1, . . . , an be integers summing to 0, where p1, . . . , pn are the markings
on the universal curve Cg,n/Mg,n. Write φa : Mg,n → Jac for the map induced
by OCg,n(

∑
i aipi).

Theorem 3.4.21 ([MPS23, Conjecture C]). Suppose k is a field of character-
istic zero. Then φ∗

aLogDR lies in Rg,n ⊆ LogCH(Mg,n).
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Proof. We know LogDR ∈ Q[η]log, and one easily computes φ∗
aη =

∑
i a

2
iψi.

By definition there exists a simple log blowup M̃g,n on which φ∗
aLogDR is

determined; write t ∈ CH(M̃g,n) for the determination. By Theorem 3.3.8
there exists a polynomial p in piecewise-linear functions on M̃g,n such that
ΦM̃g,n

(p) = t, where ΦM̃g,n
is the map as in (3.3.3.12). Now ΦM̃g,n

is a ring
homomorphism and piecewise-linear functions map to linear combinations of
logarithmic boundary divisors, so the result follows.

3.5 The double-double ramification cycle

3.5.1 Iterated double ramification cycles
Let r be a positive integer, and let Jacr be the fibre product of r copies of Jac
over M. This is smooth and log smooth, and comes with r projection maps
to Jac. According to Definition 3.2.11 we can pull back LogDR along each of
the projection maps, yielding r elements of LogCH(Jacr). We define LogDRr
to be the product of these elements in the ring LogCH(Jacr).

We can also give a more direct construction of LogDRr. Write Jr for the
r-fold fibre product of J with itself over M, with er the unit section. Then over
the locus of smooth curves we have a tautological morphism σr : Jac

r → Jr, we
view it as a rational map σr : Jac

r 99K Jr, and let Jacr♢ be the universal σr-
extending stack over Jacr. The pullback σ∗

rer is proper over M, so we can apply
the construction in Section 3.3.5 to obtain a class [σ∗

rer]log ∈ LogCH(Jacr).

Lemma 3.5.1. These two constructions of LogDRr coincide, i.e.

LogDRr = [σ∗
rer]log. (3.5.1.1)

Proof. We begin by comparing Jacr♢ with (Jac♢)r, where the latter denotes
the r-fold fibre product over M in the category of fs log algebraic stacks. The
composites Jacr♢ → Jr → J are σ-extending, hence the universal property
furnishes r maps Jacr♢ → Jac♢, hence a map

Jacr♢ → (Jac♢)r (3.5.1.2)

to the fibre product. On the other hand, the fibre product (Jac♢)r is σr-
extending, yielding an inverse to (3.5.1.2).

The claimed equality of cycles is then immediate from the construction in
Section 3.3.5 and an application of [Ful84, example 6.5.2] (whose proof carries
over to this setting essentially unchanged).
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Write L1, . . . ,Lr for the tautological line bundles on the universal curve
over Jacr, with corresponding classes

ηi = π∗(c1(L)2) ∈ CH(Jac), (3.5.1.3)

and let Q[ηr] denote the sub-Q-algebra of CH(Jacr) generated by these classes.
From Corollary 3.4.20 and the first construction of LogDRr we obtain

Lemma 3.5.2.
LogDRr ∈ Q[ηr]log ⊆ LogCH(Jacr). (3.5.1.4)

3.5.2 GLr(Z)-invariance

Let G/S be a commutative group scheme and M an r× r matrix with integer
coefficients. Writing G×r

S for the fibre product of G with itself r times over S,
we write

[M ] : G×r
S → G×r

S (3.5.2.1)

for the endomorphism induced by M . If M ∈ GLr(Z) then this is an auto-
morphism.

Applying this to Jac over M with M ∈ GLr(Z) yields an automorphism

[M ] : Jacr → Jacr, (3.5.2.2)

and pulling back along the map yields an automorphism

[M ]∗ : LogCH(Jacr) → LogCH(Jacr). (3.5.2.3)

Theorem 3.5.3. The map [M ]∗ of (3.5.2.3) takes LogDRr to itself.

Proof. For this we use the second construction of LogDRr, going via Jacr♢.
We write σr : Jacr 99K Jr, and we write e for the unit section of Jr. We define
JacM♢ to be the limit (in the fs category) of the solid diagram

Jacr♢ Jacr

JacM♢

Jacr♢ Jacr

ν

[M ]

s

t

ν

(3.5.2.4)
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(we can think of JacM♢ as the common refinement of Jacr♢ with its translation
along [M ]). Now the composite ν ◦ s is σr-extending, as is the composite ν ◦ t,
so we obtain a commutative diagram

Jacr Jr

JacM♢

Jacr Jr.

[M ] [M ]

ν◦s

ν◦t

σs

σt

(3.5.2.5)

Now σ∗
se is a cycle on JacM♢, which can induce (following Section 3.3.5) a

logarithmic cycle on Jacr in two ways; either via the map ν ◦ s or via the map
ν◦t. Our notation is [σ∗

se]ν◦s,log for the former and [σ∗
se]ν◦t,log for the latter, and

we define analogously [σ∗
t e]ν◦s,log and [σ∗

t e]ν◦t,log, all elements of LogCH(Jacr).
Applying lemma Lemma 3.5.1 and commutativity of the diagram yields the
relations

LogDRr = [σ∗
se]ν◦s,log = [σ∗

t e]ν◦t,log, (3.5.2.6)
[M−1]∗LogDRr = [σ∗

se]ν◦t,log and [M ]∗LogDRr = [σ∗
t e]ν◦s,log. (3.5.2.7)

Finally, we note that [M ]∗e = e and σt = [M ] ◦ σs, so that

[M ]∗LogDRr = [σ∗
t e]ν◦s,log = [σ∗

sM
∗e]ν◦s,log = [σ∗

se]ν◦s,log = LogDRr.
(3.5.2.8)

Remark 3.5.4. One can alternatively prove this theorem by appealing to the
invariance of Div (see Section 3.4.2) under the action of M . ♦

3.5.3 On the moduli space of curves
Here we translate the above results into the setting of [HPS19]. We fix non-
negative integers g, n and a positive integer r. We choose r line bundles
L1, . . . ,Lr of total degree zero on the universal curve π : C → Mg,n, for ex-
ample of the form

Li = ωki(−
n∑
j=1

ai,jxj) (3.5.3.1)
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where ai,1, . . . , ai,n are integers summing to ki(2g − 2). The tuple L1, . . . ,Lr
defines a morphism

Ψ: Mg,n → Jacr, (3.5.3.2)

and we denote

LogDR(L1, . . . ,Lr) = Ψ∗LogDRr ∈ LogCH(Mg,n), (3.5.3.3)

and

DR(L1, . . . ,Lr) = ν∗LogDR(L1, . . . ,Lr) ∈ CH(Mg,n). (3.5.3.4)

Remark 3.5.5. Note that LogDR(L1, . . . ,Lr) is just the product of the classes
LogDR(Li) for 1 ≤ i ≤ r; this is not in general the case with DR in place of
LogDR. ♦

Theorem 3.5.6 (DDR is tautological). Suppose k has characteristic zero.
The cycle DR(L1, . . . ,Lr) lies in the tautological subring of CH(Mg,n).

Proof. For 1 ≤ i ≤ r define a codimension 1 class

ηi := π∗(c1(Li)2) ∈ CH(Mg,n); (3.5.3.5)

these are of codimension 1 and hence tautological, so that Q[η1, . . . , ηr] is a
subring of the tautological ring T of Mg,n.

Pulling back Lemma 3.5.2 implies that the class LogDR(L1, . . . ,Lr) lies in
Q[η1, . . . , ηr]

log ⊆ T log. Now T is tectonic by Lemma 3.3.20, and therefore
DR(L1, . . . ,Lr) ∈ T by Definition 3.3.19.

Theorem 3.5.7 (GL(Z)-invariance of DDR). If M ∈ GLr(Z) and

M [L1, . . . ,Lr] = [F1, . . . ,Fr],

then
DR(L1, . . . ,Lr) = DR(F1, . . . ,Fr). (3.5.3.6)

Proof. Immediate from Theorem 3.5.3.

In the case r = 2 this recovers [HPS19, Theorem 1.2].




