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Chapter 2

Piecewise-polynomial
functions and divisors

This chapter is based on the presentation ‘There and back again: an example
session on translating between piecewise-polynomial functions and divisors’
given on the 23rd of March 2022 at the conference ‘Recent advances in moduli
of curves’ in Leysin. It is meant as a more detailed explanation with extra
examples for the sections concerning piecewise-polynomial functions and the
map to Chow group from the article [HS22], which is included in the next
chapter of this thesis.

2.1 Notation and conventions

This chapter is meant to be independently understandable yet based on the
article [HS22] (which is included in this thesis as chapter 3), and therefore all
definitions and theorems that are necessary will be included here, along with
the reference to the original in [HS22].

In the article [HS22], we work with log structures in the sense of Fontaine–
Illusie–Kato, in particular working with the small étale site. That is, a log
scheme (X,MX , α) is a scheme X with sheaf of monoids with respect to the
étale topology denoted by MX and a morphism α : MX → OX (where OX is
seen as a sheaf of monoids with the multiplication of functions) such that α
identifies the units, i.e. α : α−1(O∗

X) → O∗
X is an isomorphism.

The characteristic monoid sheaf on a log scheme (X,MX) is denoted M̄X ,
which is sometimes referred to as the ghost sheaf and is obtained as the quo-
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36 Chapter 2. Piecewise-polynomial functions and divisors

tient MX/O∗
X . The groupifications of these sheaves are denoted Mgp

X and M̄gp
X

respectively. The first two examples arise simply from toric varieties: the no-
tation for these toric varieties is the same as in [Ful93]. Each toric variety
naturally gives rise to a log structure, as illustrated in the examples. Note
that for toric varieties, a translation between piecewise-polynomial functions
and divisors has been known for a longer period of time, for example by work
of Payne [Pay06].

Most examples in this chapter will be log schemes, until Section 2.5, in
which we explicitly describe a DM-stack and its log structure. A log algebraic
stack is an algebraic stack equipped with an (fs) log structure. In [HS22], we
mostly work with regular log regular log algebraic stacks. The stacks that
we are interested in, including Mg,n,Mg,n,Picg,n, are of this form. This
assumption allows us to use that, by [Niz06, 5.2], for a regular log regular
log algebraic stack S there exists a unique normal crossings divisor Z on S
(the boundary divisor of S) with complement i : U → S and MS = i∗OU .
Therefore, we may consider the log structure as the log structure associated
to a certain divisor, making our discussion more explicit. These divisors shall
be clearly described in all examples. Also, as the examples discussed in this
chapter range over some possible boundary phenomena, these examples give
a reasonable intuition for all possible log structures one may encounter while
studying regular log regular log algebraic stacks.

In [HS22], we work over a field or Dedekind scheme k equipped with trivial
log structure. In the examples, we work over a field k of characteristic zero,
mostly for simplicity but also so that we can apply the results of [BHP+23]
and the previous chapter directly. The theory is developed in the (2-)category
of fine saturated (fs) log schemes (and stacks) over k with trivial log structure;
in each of the examples the log structure is made explicit.

In [HS22], we work almost exclusively with operational Chow groups with
rational coefficients, as defined in [BHP+23, §2], denoted CHop. All examples
given here satisfy the properties of Lemma 1.2.6, and therefore, as well as for
illustrational purposes, we use usual Chow groups in these examples.
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2.2 Strict piecewise-polynomial functions
To start with, we consider the strict piecewise-polynomial functions, as dis-
cussed in [HS22, section 3.1-3.3] also found in this thesis at Section 3.3.1.
Then, Section 2.3 discusses the maps to the Chow ring, after which we men-
tion general piecewise-polynomial functions when assembling the defined maps
to Chow. As we will see in example 3, to sensibly consider all piecewise-
polynomial functions one may need to allow for strict piecewise-polynomial
functions of a log blowup or subdivision.

Firstly, the definition contains a sheaf of symmetric algebras, which we
will briefly introduce, for more detail see eg. [Sta13, 17.21]. In general, let
(X,OX) be a ringed site and M a sheaf of OX -modules. We write SymM
for the sheafification of the presheaf U 7→ Sym(M(U)); it is a sheaf of OX -
algebras. Note that this involves a sheafification and this may change possible
global sections, e.g. as shown in Example 2.3.7.

If X is any site and A a sheaf of abelian groups, then we view A as a sheaf
of modules for the constant sheaf of rings Z, yielding a sheaf SymA of graded
Z-algebras. In our case, we will apply the Sym construction to the sheaf of
groupified characteristic monoids M̄gp.

Example 2.2.1. Consider the log scheme An = Spec(k[Nn]) with the log
structure induced by this monoid ring structure. This example will be impor-
tant in Section 2.3 and will be explained more thoroughly in Example 2.3.1.
For now, we just describe what happens to the groupified characteristic monoid
sheaf when we apply the symmetric algebra construction. Writing x1, ..., xn
for each of the generators of k[Nn], the log structure map

α : MAn → OAn

is given on global sections by k∗ ⊕ Nn → MAn(An), (u, v) 7→ uxv. The global
sections of the sheaf of characteristic monoids, i.e. quotienting the units,
is given by M̄An(An) = Nn. Applying the groupification then yields the
scheme An with global sections M̄gp

An(An) = Zn as abelian groups and then
Sym(M̄gp

An(An)) = Z[X1, . . . , Xn]. ♦

Definition 2.2.2. We define the sheaf of strict piecewise-polynomial functions
on a log algebraic stack S as

sPPS := Sym M̄gp
S .

We write
sPPnS = Symn M̄gp

S ,
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for the graded pieces, and strict piecewise-linear functions are

sPP1
S = Sym1 M̄gp

S = M̄gp
S .

2.2.1 Example 1: Projective plane with toric boundary
log structure

To study strict piecewise-polynomial functions, we firstly need to be clear on
what the sheaf M̄gp

S is. There are two ways to describe the log structure on
a projective plane P2

k that we refer to as the toric boundary log structure;
either from the construction as toric variety, or via the log structure given by
a certain boundary divisor.

Toric log structure

For the first perspective, construct P2
k from the fan in Q⊗ZZ2 as illustrated in

Figure 2.1; that is, consider the fan containing the trivial cone τ = {0}, the rays
τ0 = ⟨−e1 − e2⟩ , τ1 = ⟨e1⟩ , τ2 = ⟨e2⟩, and finally the cones σ0 = ⟨e1, e2⟩ , σ1 =
⟨−e1 − e2, e2⟩ , σ2 = ⟨e1,−e1 − e2⟩ (taking the convex polyhedral cone formed
by these generators in the vector space, see [Ful93] for the notation).

σ2

σ0

σ1 τ1

τ2

τ0

τ

Figure 2.1: Fan for P2
k

This yields a toric variety as fol-
lows: firstly to each cone σ one as-
sociates the dual cone σ∨ and then
the dual lattice points in the dual
cone form the monoids Sσ. Then
each cone specifies an affine variety
Uσ = Spec(k[Sσ]). In this case, writ-
ing e′i for the dual generators, we ob-
tain

Sσ0
= N ⟨e′1, e′2⟩ ,

Sσ1 = N ⟨−e′1,−e′1 + e′2⟩ ,

Sσ2
= N ⟨e′1 − e′2,−e′2⟩ ,

Sτ0 = N ⟨e′1 − e′2,−e′1 + e′2,−e′1⟩ ,

Sτ1 = N ⟨e′1, e′2,−e′2⟩ ,

Sτ2 = N ⟨e′1,−e′1, e′2⟩ ,

Sτ = N ⟨e′1,−e′1, e′2,−e′2⟩ .
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Thus we can associate to σ0 the variety Spec(k[X,Y ]), and similarly to σ1 the
variety Spec(k[X−1, X−1Y ]). As cones, σ0 and σ1 meet in the ray τ2 and thus
glue as varieties over Spec(k[Sτ2 ]) = Spec(k[X,X−1, Y ]). Rewriting to

Spec(k[Sσ0
]) = Spec(k[t1/t0, t2/t0]), and

Spec(k[Sσ1
]) = Spec(k[t0/t1, t2/t1])

by strategically renaming the variables, we can observe this forms the projec-
tive plane with coordinates (t0 : t1 : t2); we may identify Spec(k[Sσ0

]) with the
affine open where t0 ̸= 0, and Spec(k[Sσ1

]) with the affine open where t1 ̸= 0,
which glue in the usual way over Spec(k[Sτ2 ]) = Spec(k[t1/t0, t0/t1, t2/t0]).

More importantly, this procedure to construct the toric variety also specifies
the log structure associated to the toric structure. The monoids Sσ on the
affine open Uσ give us the sheaf of characteristic monoids we are interested in.
That is, in this case, the sheaf M̄ = M̄P2 is defined by the Sσ quotiented by
the units, e.g.

M̄(Uσ1) = Sσ1
= N ⟨−e′1,−e′1 + e′2⟩ = N ⟨−e′1,−e′1 + e′2⟩ ,

M̄(Uτ1) = Sτ1 = N ⟨e1, e2,−e2⟩ = N ⟨e1⟩ ,
etc.
Remark 2.2.3. We are describing the sheaf of monoids as a sheaf on the Zariski
site, while as convention we use log structures on the étale site. However, in
the case of toric varieties, and so in our example 1 and 2, we have that the log
structure is Zariski (terminology e.g. in [Niz06]). Therefore the log structure
may be defined on the Zariski site, and for illustrational purposes we will do
so. In example 3, we will work with an étale cover to compute the global
sections instead. ♦

Boundary log structure

Recall, the log structure associated to a normal crossings divisor Z on S with
complement i : U → S is given by MS = i∗OU . We use the following more
explicit description.

Definition 2.2.4. For a smooth scheme X and D a normal crossings divisor,
the log structure associated to the divisor is given by

MD(U) = {f ∈ OX(U) | f|U\D ∈ O∗(U \D)} ⊂ O∗
X(U),

which is a subsheaf of O∗
X . The log structure map αD : MD → OX is the

natural inclusion.
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Define D0 := {(0 : t1 : t2)} ⊂ P2
k, D1 := {(t0 : 0 : t2)} ⊂ P2

k, and
D2 := {(t0 : t1 : 0)} ⊂ P2

k, then consider the log structure associated to
D0, D1, D2 as boundary divisors. Writing D for the union of the divisors,
these define the structure

MP2
k,D

(U) = {f ∈ OP2
k
(U) | f invertible outside D0, D1, D2}.

For example on the affine patch Ut0 ̸=0, the monoid contains those functions in
k[t1/t0, t2/t0] that are invertible outside where t1 = 0 or t2 = 0. Thus, also the
multiples of the functions t1/t0 or t2/t0 are examples of invertible functions in
MP2

k,D
.

Lemma 2.2.5. The log structure associated to the boundary divisors D0, D1, D2

is the same as (uniquely isomorphic to) the log structure described above com-
ing from the toric fan.

Proof. The first log structure map αD : MD → OP2
k

is the natural inclusion,
so the sheaf of monoids lies injectively in the structure sheaf. The toric log
structure map α : M → OP2

k
is induced by the maps Sσ → k[Sσ] (followed by

the appropriate renaming of coordinates), again injectively in the structure
sheaf.

We sketch the proof on the level of characteristic monoids sheaves on Uσ0
.

The first log structure

MD(Uσ0
) = {f ∈ OP2(Uσ0

) | f invertible outside D0, D1, D2}
= {f ∈ OP2(Ut0 ̸=0) | f invertible outside D0, D1, D2}
= {f ∈ k[t1/t0, t2/t0] | f invertible outside t0 = 0, t1 = 0, t2 = 0},

and after quotienting by the invertible functions, we obtain for the charac-
teristic monoid M̄D(Uσ0

) = N ⟨t1/t0, t2/t0⟩ with the natural inclusion map
N ⟨t1/t0, t2/t0⟩ ↪→ k[t1/t0, t2/t0]. Regarding the toric description, the monoid
is given by

M̄(Uσ0) = Sσ0 = N ⟨e′1, e′2⟩

and the log structure map α induces

N ⟨e′1, e′2⟩ → k[X,Y ] ∼= k[t1/t0, t2/t0]

simply sending to each generator to the associated variable. Hence the log
structures are the same on the level of characteristic monoids.
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Drawing stalks of the log structure

By computing the stalks of the characteristic monoid, we may obtain the usual
sketch of the log structure. Consider a point p = (p0 : p1 : 1) in Uσ2 , then if
both p0 ̸= 0 and p1 ̸= 0, all coordinates are invertible and we have p ∈ U{0}.
Therefore the stalk of the characteristic monoid is given by

M̄p = M̄(U{0}) = N ⟨e1, e2,−e1,−e2⟩ = 0.

If however p0 ̸= 0 but p1 = 0, then p ∈ Uτ1 but p /∈ U{0}, yielding

M̄p = M̄(Uτ1) = N ⟨e1, e2,−e2⟩ = N ⟨e1⟩ .

Finally, if both p0 = 0 and p1 = 0, then p /∈ Uτ0 and p /∈ Uτ1 so

M̄p = M̄(Uσ2) = N ⟨e1 − e2,−e2⟩ = N ⟨a, b⟩ .

Therefore, we may draw an overview of the log structure via the stalks of the
characteristic monoid sheaf as in Figure 2.2.

L0

L∞

L1

M̄p
∼= N2

M̄p
∼= N

M̄p
∼= 0

Figure 2.2: Stalks of the characteristic monoids for P2
k

Remark 2.2.6. It is also not a coincidence that the log structure associated
to divisors D0, D1, D2 yields Figure 2.2. When a normal crossings divisor D
locally at a p ∈ D with a set of local coordinates gi, is given by the vanishing
of g1 · · · ge (that is, locally the intersection of e coordinate hyperplanes), then
we have an étale chart Ne → M̄, ei 7→ gi giving M̄p

∼= Ne. Hence, we indeed



42 Chapter 2. Piecewise-polynomial functions and divisors

see a N generator at the stalk of M̄ for each branch of the boundary divisor
through that point. See [Kat96] for the formal explicit description of such log
structures. ♦

Gluing maps

To describe the strict piecewise-polynomial functions

sPPP2
k
= Sym M̄gp

P2
k
,

we view the global sections as functions on the stalks, or on small enough
opens, that glue appropriately. Therefore, we will make the gluing maps for
the sheaf of characteristic monoids more explicit, describing them from explicit
restriction maps for the open cover and the toric log structure perspective.
Rename the generators of Sσ0

= N ⟨a, b⟩, Sσ1
= N ⟨x, y⟩, Sσ2

= N ⟨u, v⟩; that
is a = e′1, b = e′2, x = −e′1, y = e′2 − e′1, u = e′1 − e′2, v = −e′2. These integer
generators in the dual space are drawn in Figure 2.3, and this figure will also
help to see what the specific restriction maps do.

τ∨1

τ∨2

τ∨0 σ∨
2

σ∨
0

σ∨
1

a

b

uv

x

y

Figure 2.3: Monoids σ∨
i in relation to the τ∨i .

Explicitly, to deduce what the restriction maps induce on the level of
monoids, firstly observe that for an inclusion τ2 ⊂ σ0, the natural inclusion
σ∨
0 ↪→ τ∨2 gives the map

Sσ0
∼= N ⟨a, b⟩ ↪→ N ⟨a,−a, b⟩ ∼= Sτ2 ,
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which after quotienting by units yields M̄(Uσ0) → M̄(Uτ2) explicitly given by
N ⟨a, b⟩ → N ⟨t⟩ , a 7→ 0, b 7→ t.

By similar reasoning, we obtain all other restriction maps:

Sσ0
∼= N ⟨a, b⟩ ↪→ N ⟨a, b,−b⟩ ∼= Sτ1

Sσ1
∼= N ⟨x, y⟩ ↪→ N ⟨x,−x, y⟩ ∼= Sτ2

Sσ1
∼= N ⟨x, y⟩ ↪→ N ⟨x, y,−y⟩ ∼= Sτ0

Sσ2
∼= N ⟨u, v⟩ ↪→ N ⟨u,−u, v⟩ ∼= Sτ0

Sσ2
∼= N ⟨u, v⟩ ↪→ N ⟨u, v,−v⟩ ∼= Sτ1

Then quotienting by the units, and subsequently taking the groupification,
yields the following diagram of restriction maps for the groupified characteristic
monoid sheaf.

M̄gp(Uσ0)
∼= Z ⟨a, b⟩ M̄gp(Uτ2)

∼= Z ⟨t⟩

M̄gp(Uσ1)
∼= Z ⟨x, y⟩ M̄gp(Uτ1)

∼= Z ⟨p⟩

M̄gp(Uσ2)
∼= Z ⟨u, v⟩ M̄gp(Uτ0)

∼= Z ⟨q⟩

a 7→0

b7→0

x 7→0

y 7→0

v 7→0

u 7→0

Note that in order to visualise the interactions between the characteristic
monoids, it is easier to consider the geometry of the cones in the fan than the
dual cones. An attempt to draw the gluing rules is shown in Figure 2.4; note
that here the a = 0 side of the triangle automatically coincides with the line
corresponding to τ2, and indeed a 7→ 0 maps to M̄gp(Uτ2) generated by one
element.

Strict piecewise-polynomial functions

A strict piecewise-linear function in sPP1
P2(P2

k) = Sym1 M̄gp
P2
k
(P2
k) = M̄gp

P2
k
(P2
k)

can be computed by the equaliser diagram

sPPP2
k
(P2
k) → sPPP2

k
(U) ⇒ sPPP2

k
(U ×P2

k
U)

for the cover U consisting of Uσ0 , Uσ1 , Uσ2 . Therefore a strict piecewise-linear
function is given by αa + βb

γx + δy
ϵu + ζv


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M̄(Uσ0
)

a = 0

b = 0

M̄(Uσ1)

x = 0

y = 0

M̄(Uσ2
)

u = 0

v = 0

(a, b) 7→ (a, b)

(x, y) 7→ (−x, y − x)

(u, v) 7→ (u− v,−v)
σ2

σ0

σ1 τ1

τ2

τ0

Figure 2.4: Visualisation of the interactions of the characteristic monoid
sheaves in P2

k.

with α, β, γ, δ, ϵ, ζ ∈ Z, which define local sections of the characteristic monoid
sheaf, explicitly elements in M̄gp

P2
k
(Uσ0), M̄

gp
P2
k
(Uσ1) and M̄gp

P2
k
(Uσ2). In order to

glue to a global section, the images in M̄gp
P2
k
(Uτi) along the restriction maps

must coincide, as for the Zariski cover we have Uσ0
×P2 Uσ1

= Uτ2 , etc. Hence
the coefficients must satisfy β = δ, α = ϵ, ζ = γ, and so we have 3 coefficients
generated by the rays through the τi that together define a global section of
the sheaf of strict piecewise-linear functions.

A simple way to construct a strict piecewise-polynomial function of for ex-
ample degree 2 is to take a product of piecewise-linear functions. For example
one might considera + b

y
u


 b
x + y

v

 =

ab+ b2

xy + y2

uv


as element in Sym2(M̄gp

P2
k
(P2
k)). Essentially this approach is similar to simply

taking elements of Sym2(M̄gp
P2
k
(Uσi)) and ensuring the images along restriction

maps for the sheaf of groupified characteristic monoids coincide, which defines
a global section of the sheafification sPPP2

k
.
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2.2.2 Example 2: Blowup of a projective plane in a point
with toric log structure

Similarly to the approach in the previous example, we start this section by
explicitly describing the sheaf M̄gp

S̃
for the blowup S̃ := Bl(1:0:0)(P2

k) of a pro-
jective plane S := P2

k in a point, see Figure 2.5. The log structure can be
realised from toric geometry with the subdivision of the fan from the previous
example as shown in Figure 2.6, or taking the log structure associated to the
boundary divisors D̄0, D̄1, D̄2 (the strict transforms of the boundary divisors
Di in the previous example) and the exceptional divisor E. As discussed in
the previous example, these yield the same log structure on S̃. Here we work
out the toric perspective due to importance of the intuition attached to the
concept of subdivision.

D̄1

D̄0E

D1

D0

Figure 2.5: The blowup map Bl(1:0:0) P2
k → P2

k on affine patch t2 ̸= 0

This example will serve to illustrate that blowing up or subdividing yields
more strict piecewise-polynomial (in particular strict piecewise-linear) func-
tions, which we will use to define our map to the Chow group in the next
section.

Toric log structure

Subdividing the correct cone in the fan for P2
k yields the fan for the blowup

S̃ as shown in Figure 2.6. Again, to each cone σ in the fan, we associate
the affine variety Uσ and on these affine opens we define the sheaf of monoids
M̄S̃(Uσ) = Sσ. We make the gluing maps more explicit in order to describe the
strict piecewise-polynomial functions. Rename the generators of Sσ̄ = N ⟨c, d⟩,
Sσ′ = N ⟨e, f⟩, Sσ1

= N ⟨x, y⟩, Sσ0
= N ⟨u, v⟩. Explicitly, the reader may draw

all dual cones similarly as done in the previous example Figure 2.3, and take
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σ2

σ′

σ̄

σ1 τ1

τ2

τ0

τ ′

Figure 2.6: Fan for S̃ = Bl(1:0:0)(P2
k)

our integer generators (expressed in standard dual basis vectors) to be c = e′1,
d = e′2 − e′1, e = e′1 − e′2, f = e′2, x = −e′1, y = e′2 − e′1, u = e′1 − e′2, v = −e′2.

We can write down the restriction maps on the monoids Sσ via the inclu-
sions of cones, giving:

Sσ̄ ∼= N ⟨c, d⟩ ↪→ N ⟨c, d,−d⟩ ∼= Sτ ′

Sσ̄ ∼= N ⟨c, d⟩ ↪→ N ⟨c,−c, d⟩ ∼= Sτ2
Sσ′ ∼= N ⟨e, f⟩ ↪→ N ⟨e,−e, f⟩ ∼= Sτ ′

Sσ′ ∼= N ⟨e, f⟩ ↪→ N ⟨e, f,−f⟩ ∼= Sτ1
Sσ1

∼= N ⟨x, y⟩ ↪→ N ⟨x,−x, y⟩ ∼= Sτ2
Sσ1

∼= N ⟨x, y⟩ ↪→ N ⟨x, y,−y⟩ ∼= Sτ0
Sσ2

∼= N ⟨u, v⟩ ↪→ N ⟨u,−u, v⟩ ∼= Sτ0
Sσ2

∼= N ⟨u, v⟩ ↪→ N ⟨u, v,−v⟩ ∼= Sτ1

Subsequently quotienting by the units and groupifying yields the following
diagram of restriction maps for the characteristic monoid sheaf.
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M̄gp(Uσ̄) ∼= Z ⟨c, d⟩ M̄gp(Uτ ′) ∼= Z ⟨r⟩

M̄gp(Uσ′) ∼= Z ⟨e, f⟩ M̄gp(Uτ2)
∼= Z ⟨t⟩

M̄gp(Uσ1)
∼= Z ⟨x, y⟩ M̄gp(Uτ1)

∼= Z ⟨p⟩

M̄gp(Uσ2)
∼= Z ⟨u, v⟩ M̄gp(Uτ0)

∼= Z ⟨q⟩

d7→0

c7→0

e 7→0

f 7→0

x 7→0

y 7→0

v 7→0

u 7→0

Note that in order to visualise the interactions between the characteristic
monoids, we can (similarly to previous example Figure 2.4) draw a visualisation
as follows in Figure 2.7.

M̄(Uσ̄)

c = 0

d = 0

M̄(Uσ′)

e = 0

f = 0

M̄(Uσ1
)

x = 0

y = 0

M̄(Uσ2)

u = 0

v = 0

(c, d) 7→ (c, c+ d)

(e, f) 7→ (e+ f, f)

(x, y) 7→ (−x, y − x)

(u, v) 7→ (u− v,−v) σ2

σ′

σ̄

σ1 τ1

τ2

τ0

τ ′

Figure 2.7: Visualisation of the interactions of the characteristic monoid
sheaves in Bl(1:0:0) P2

k.
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Blowup morphism on log structures

Also useful for later discussion is the morphism f∗MS → MS̃ that belongs to
the blowup morphism f : S̃ → S. The map f∗M̄S → M̄S̃ is defined via the
inclusions σ̃ → σ0 and σ′ → σ0, which dually give σ∨

0 → σ̄∨ and σ∨
0 → σ′∨,

which yield M̄S(f(Uσ̄)) → M̄S̃(Uσ̄), and M̄S(f(Uσ′)) → M̄S̃(Uσ′).
The inclusions σ′ ↪→ σ0, σ̄ ↪→ σ0 on the level of cones yield on the level of

monoids Sσ the maps

Sσ0 → Sσ′

e′i 7→ e′i.

Using the relations between the generators (recall that a = e′1, b = e′2, c = e′1,
d = e′2 − e′1, e = e′1 − e′2, f = e′2, x = −e′1, y = e′2 − e′1, u = e′1 − e′2, v = −e′2),
we obtain

M̄S(Uσ0
) ∼= N ⟨a, b⟩ → N ⟨c, d⟩ ∼= M̄S̃(Uσ′)

a 7→ c

b 7→ c+ d, and

M̄S(Uσ0
) ∼= N ⟨a, b⟩ → N ⟨e, f⟩ ∼= M̄S̃(Uσ̄)

a 7→ e+ f

b 7→ f.

Together with the identity maps on Uσ2 and Uσ1 , these maps define the map
f∗M̄S → M̄S̃ .

Strict piecewise-polynomial functions

A strict piecewise-linear function in sPP1
S̃
(S̃) = Sym1 M̄gp

S̃
(S̃) = M̄gp

S̃
(S̃) is, by

similar reasoning as in the last example, given by sections of each M̄gp
P2(Uσ)

whose images in the M̄gp
P2(Uτ ) coincide, that is

αc + βd
γe + αf
δx + βy
γu + δv

 (2.2.2.1)

with α, β, γ, δ ∈ Z. Hence we have 4 coefficients, one for each ray τ0, τ1, τ2, τ ′
that together define a global section of the sheaf of strict piecewise-linear
functions. The subdivision has given us more rays, and thus more coefficients
to work with.
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2.2.3 Example 3: Nodal cubic in a plane with divisorial
log structure

To give a non-toric example, we consider D an irreducible nodal cubic in
S = P2

k. Also important is that this example will illustrate that the strict
piecewise-polynomial functions are not generated by the strict piecewise-linear
functions. Let X = Spec(k[x, y]) = A2

k a standard affine open of S, then
D|X is given by the equation y2 − x3 − x2 in X. We equip S with the log
structure associated to the normal crossings boundary D, or equivalently ι∗O
for ι : S \D → S. Note that this is not a toric example as before, so we will
explicitly describe the log structure associated to the boundary divisor. To
describe M̄gp

S on the étale site, we firstly describe an étale cover U , describe
the characteristic monoid sheaves, after which we compute sPPS(S) using the
gluing maps and the equaliser diagram

sPPS(S) → sPPS(U) ⇒ sPPS(U ×S U).

D

P

Figure 2.8: A nodal cubic in P2
k

Divisorial log structure on an étale cover

Let P be the node of the cubic and let V = S \ {P} with i : V → S a strict
open immersion. Then the log structure on V is given by the log structure
associated to i−1D. That means M̄(V ) ∼= N ⟨r⟩ for we have one branch of a
smooth boundary divisor remaining when disregarding P .

Remark 2.2.7. In general, we can deduce that the characterictic monoid sheaf
associated to a smooth irreducible divisor D can be given by Nn for n the
number of components.
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In this case that would be argued as follows. Consider the map

N → M̄S(V )

1 7→ [y2 − x3 − x2] = F

where [y2 − x3 − x2] is the function in O(V ) that on affine open X is given by
y2 − x3 − x2. Consider also for q ∈ V the composite

N → M̄S(V ) → M̄q.

For all q ∈ V \ i−1(D) this composite map is injective, and for all q ∈ V
(which does not include P ) the composite map is surjective; for a small enough
neighbourhood the order of sheafification and taking the quotient by units
in M does not matter, so we may simply conclude all functions invertible
outside i−1(D) are multiples of F and these form the whole stalk. Then,
writing φ : i−1D ↪→ V , we have that the sheaf M̄|V and the pushforward of
the constant sheaf φ∗N are equal on the level of stalks. Therefore M̄|V = φ∗N
and this equality implies

M̄|V (V ) = H0(V, M̄|V ) = H0(i−1(D),N) = N

as i−1(D) is connected. ♦

Secondly, we construct an étale open neighbourhood around P denoted
by U in the cover U as follows. Write R = k[x, y] so that X = SpecR, and
consider

A =
(
R[t]/(t2 − (x+ 1))

)
(x+1)

and
B = A(t−1)

and the maps R→ A→ B inclusion and localisation; that is, we are formally
adjoining a square root of x + 1 which is now a unit, which will allow us to
decompose y2−x3−x2 = y2−x2(x+1) = (y− tx)(y+ tx). Then consider the
cover given by the composition of strict étale maps j′ : U = SpecA→ X → S.
By strictness, or by defining the log structure on U as such, the log structure on
U is the log structure arising from the divisor j′−1

D. However, this boundary
divisor has two nodes

j′
−1

(P ) = (y − tx, y + tx) = (y, x) = {(x, y, t+ 1), (x, y, t− 1)}.
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In order to simplify calculations, and in particular obtain an atomic cover1,
or even just and étale neighbourhood in which the divisor resembles the union
of the coordinate axes in A2, we then localise at one of the two points, say
t − 1. We consider the cover given by the composition of strict étale maps
j : U = SpecB → X → S.

We may then visualise our étale cover as taking 2 copies of the normali-
sation, and drawing them as 2 parabolae intersecting in two points, and then
localising to delete one of the intersection points. A sketch of SpecB → SpecR
is given in Figure 2.9.

The log structure on U defined by j−1D is

MS(U) = {f ∈ OS(U) | f invertible outside j−1(D)}
= {f ∈ B | f invertible outside Z(y2 − x3 − x2)}
= {f ∈ B | f invertible outside Z((y + tx)(y − tx))}

and so for the characteristic monoids we obtain

M̄S(U) ∼= N
〈
y + tx, y − tx

〉
.

Indeed there is one generator for each branch through the boundary node
in U , by similar reasoning as discussed in previous example. (Namely, we are
in a similar situation as considering functions are invertible outside the union
of the coordinate axes in the proof of Lemma 2.2.5).

The data of log schemes U, V and strict étale maps U → S, V → S specify
the étale cover sketched in Figure 2.10.

Gluing maps

The restriction maps in our étale covering may be described as follows. Firstly,
the fibre product V ×S V simply equals V and so both maps V ×S V → V are
the identity. Therefore the gluing maps induced on M̄S(V ) are trivial.

Secondly, consider the pullback diagram

U ×S V V

U S

i

j

1For our purposes we may think of this as a small enough neighbourhood for which the
characteristic monoid sheaf is uncomplicated enough. Formally this is meant in the sense
of [AW18]: S has a unique stratum that is closed and connected, and the restriction of the
characteristic monoid to this stratum is a constant sheaf.
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X

P

U

Figure 2.9: Étale neighbourhood U of intersection point P of the nodal cubic.
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i−1DV

D

S

P

U

Figure 2.10: Cover of S defined by {U, V }.

where all maps are strict. Then the fibre product equals U minus the
maximal ideal j−1(P ) = (x, y, t + 1), which is equipped with the divisorial
log structure. Then we are again in the situation of Remark 2.2.7 where we
consider, in this case two smooth irreducible divisors, and we obtain that
the global sections in M̄S(U ×S V ) are given by N ⟨m,n⟩, where generator m
corresponds to the branch of the divisor given by y + tx and n to the branch
given by y − tx.

The gluing maps are then given by

M̄S(V ) → M̄S(U ×S V ), i.e.
N ⟨r⟩ → N ⟨m,n⟩

r 7→ m+ n

for the morphism U ×S V → V induced by j : U → S, and

M̄S(U) → M̄S(U ×S V ), i.e.

N
〈
y + tx, y − tx

〉
→ N ⟨m,n⟩ ,

y + tx 7→ m,

y − tx 7→ n,

for the morphism U ×S V → U .
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Finally, consider the pullback diagram

U ×S U U

U S

i

j

where all maps are strict. Note that because we have defined U as com-
position U → X → S over the standard affine open X, we may also compute
the fibre product as U ×X U . Therefore, note that the fibre product

B ×R B =

(
R[t]

t2 − x− 1

)
(t),(t−1)

×R
(

R[t′]

t′2 − x− 1

)
(t′),(t′−1)

∼=
(

R[t, t′]

t2 − x− 1, t′2 − x− 1

)
(t),(t′),(t−1),(t′−1)

=

(
R[t, t′]

t2 − x− 1, t2 − t′2

)
(t),(t′),(t−1),(t′−1)

=

(
R[t, t′]

t2 − x− 1, (t− t′)(t+ t′)

)
(t),(t′),(t−1),(t′−1)

∼=
(

R[t]

t2 − x− 1

)
(t),(t−1)

×
(

R[t]

t2 − x− 1

)
(t),(t−1),(t+1)

= B ×B(t+1),

where we use the Chinese remainder theorem, setting t = t′ on one factor and
t = −t′ on the other. The composition of these maps is given by t⊗ 1 7→ (t, t)
and 1⊗ t′ 7→ (t,−t). The two restriction maps U ×S U → U are then induced
by B → B ×R B → B ×B(t+1), t 7→ (t, t) and t 7→ (t,−t) respectively.

We may conclude that U ×X U ∼= U ⊔ (U \ Z(t+ 1)), and we know both
M̄S(U) ∼= N

〈
y + tx, y − tx

〉
and M̄S(U \ Z(t+ 1)) ∼= N

〈
y + tx, y − tx

〉
.

Then the induced gluing maps are given by

M̄S(U) → M̄S(U)× M̄S(U \ Z(t+ 1)),

y + tx 7→ (y + tx, y + tx)

y − tx 7→ (y − tx, y − tx),

to which we may refer as (id, id) and

M̄S(U) → M̄S(U)× M̄S(U \ Z(t+ 1)),

y + tx 7→ (y + tx, y − tx)

y − tx 7→ (y − tx, y + tx),
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to which we may refer as (id,flip).
Thus we obtain the following diagram of gluing maps for the sheaf M̄S :

N
〈
y + tx, y − tx

〉
M̄S(U) M̄S(U)× M̄S(U \ Z(t+ 1))

M̄S(U ×S V ) N ⟨m,n⟩

N ⟨r⟩ M̄S(V ) M̄S(V ×S V ) M̄S(V ).

y+tx 7→(y+tx,y+tx)

y−tx7→(y−tx,y−tx)

y+tx7→(y+tx,y−tx)
y−tx 7→(y−tx,y+tx)y+tx 7→m

y−tx7→n

r 7→m+n

id

id

If we strive to give a visualisation of the characteristic monoids, remember
that the plane with log structure from the coordinate axes as divisors simply
comes from the fan with {0}, 2 rays and the plane they span. Removing
the intersection point of the coordinate axes from considerations, means we
remove the plane from the fan. Hence we may try to visualise the characteristic
monoids for S now either as the colimit of the diagram on the left2 or as the
ice cream horn in Figure 2.11.

⊔

id, id

id,flip

(a) Colimit diagram (b) Sketch of M̄S

Figure 2.11: Visualisations of the characteristic monoids for S = P2
k with

respect to D.

2The colimit here is formally taken in the category of cone stacks, but may be thought
of as the category of rational polyhedral cone complexes or sharp fine saturated monoids.
See [CCUW20] for the details, however the figures here serve merely as a visualisation.
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Strict piecewise-polynomial functions

Studying the diagram of restriction maps, the global sections of the sheaf of
characteristic monoids are M̄gp

S (U) = Z ⟨a, b⟩ = Z
〈
y + tx, y − tx

〉
, writing a, b

for its generators. Then those functions that are compatible with the maps to
M̄S(U ×S U), are invariant under the map that flips the coordinates, and so
the strict piecewise-linear functions on S are then of the form {αa + αb} for
α ∈ Z. Therefore all strict piecewise-linear functions on S are symmetric in a
and b. However, there will be strict piecewise-polynomial functions that are
not products of strictly piecewise-linear ones.

To study all strict piecewise-polynomial functions, firstly note that the sym-
metric algebra associated to the Z-algebra Z ⟨x1, . . . , xn⟩ is equal to the poly-
nomial ring Sym(Z ⟨x1, . . . , xn⟩) = Z[x1, . . . , xn] as graded Z-algebra. (Here
the inclusion map Z ⟨x1, ..., xn⟩ → Z[x1, . . . , xn], x1 · x2 7→ x1 + x2 into the
1-graded part (the linear polynomials), maps the unit in Z ⟨x1, . . . , xn⟩ as Z-
module to the additive unit 0 ∈ Z[x1, . . . , xn].)

Hence we know that sPPS(U) = Z[a, b]. For U \ Z(t + 1), we may either
guess the appropriate Z-algebra from Figure 2.11, or more formally take the
cover V+, V− of U \Z(t+1) where we remove the branch y+ tx or the branch
y − tx respectively. Then we obtain the equalizer diagram

sPP(U \ Z(t+ 1)) → sPP(V+)× sPP(V−) ⇒ sPPS(V+ ∩ V−)

which, as V+ ∩ V− is empty and for both V+ and V− we are in the case of one
smooth irreducible boundary divisor with one component, is equal to

sPP(U \ Z(t+ 1)) → Z[A]× Z[B] ⇒ Z

where both maps are given by A,B 7→ 0. Then we may conclude that

sPP(U \ Z(t+ 1)) = {(f, g) ∈ Z[A]× Z[B] | f(0) = g(0)} ∼= Z[A,B]/(AB).

To compute the strict piecewise-polynomial functions, we consider the di-
agram
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Z[a, b] Z[e, f ]× Z[A,B]/(AB)

Z[r] Z[m,n].

a7→(a,A)
b7→(b,B)

a7→(a,B)
b7→(b,A)

a 7→m
b7→n

r 7→m+n

Then the degree 2 function ab ∈ Z[a, b] maps to

(a,A)(b, B) = (ab,AB) = (ab, 0)

via one map and
(a,B)(b, A) = (ab,AB) = (ab, 0)

via the other. Hence this is an allowed strict piecewise-polynomial function,
but it is not a product of strict piecewise-linear functions, as the product
{α(a+ b)}{β(a+ b)} for α, β ∈ Z will never yield {ab}. Therefore, in the next
section, we will not be able to define a map to Chow by solely defining the
image on piecewise-linear functions.

Note that higher degree strict piecewise-polynomial functions need not be
symmetric: the degree 3 function a2b ∈ Z[a, b] maps to

(a,A)2(b, B) = (a2b, A2B) = (a2b, 0)

via one map and

(a,B)2(b, A) = (a2b, AB2) = (a2b, 0)

via the other which is equal, so indeed gives an element of sPPS(S).
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2.3 Map to the Chow group

2.3.1 Map from characteristic monoid sheaf to divisor
classes

The formal procedure to construct a Chow class from a given strict piecewise
polynomial function is given in Section 3.3.3 or [HS22, Section 3.3]. The first
step to construct this map is via a map M̄S(S) → Div(S) to line bundles
and sections up to isomorphism; we will give a detailed description of this
map to Div as described in Section 3.3.2 or [HS22, Section 3.2]. Then we
describe a practical procedure associating a Chow class to a global section of
the characteristic monoid, i.e. for strict piecewise-linear functions. For log
stacks where we may write all strict piecewise-polynomial functions as prod-
ucts of strict piecewise-linear ones (that is, for simple log algebraic stacks,
see Definition 2.3.5), we then have defined the map from the ring of strict
piecewise-polynomial functions to the Chow group.

For a log algebraic stack S, we write Div(S) for the monoid of isomorphism
classes of pairs (L, ℓ) where L is a line bundle on S and ℓ ∈ L(S) a section,
with monoid operation given by tensor product. Then the map

OS(−) : M̄S(S) → Div(S). (2.3.1.1)

is defined via the following three steps.

Step 1: Building an O∗-torsor

Consider the exact sequence of monoid sheaves

1 → O×
S → MS → M̄S → 1. (2.3.1.2)

Let m ∈ M̄S(S), then the preimage OS(−m)× of m in MS is an O×
S -torsor.

The log structure, in particular the map α : MS → OS , equips this preimage
with a map OS(−m)× → OS .

Example 2.3.1. As a guiding example throughout this section, consider the
example An = Spec(k[Nn]) with the log structure induced by this monoid
ring structure, which we have briefly seen in Example 2.2.1. That is, writ-
ing x1, ..., xn for each of the generators of k[Nn], we take the log structure
associated to the pre-log structure defined by Nn → k[Nn], v 7→ xv and so

α : MAn → OAn
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is given on global sections by k∗ ⊕ Nn → OAn(An), (u, v) 7→ uxv.
Again, we can view this as the same log structure as the log structure

associated to a boundary divisor, namely the divisor
∏
xi = 0 (the intersection

of the coordinate hyperplanes). Explicitly, let Di = V (xi) be the coordinate
planes for i = 1, ..., n, then the associated log structure is given by

MAn,D(U) = {f ∈ OAn(U) | f invertible outside D1, . . . , Dn}.

Functions in OAn(An) = k[x1, ..., xn] that are invertible outside the coordinate
hyperplanes include integer powers of the xi.

D1

D2

M̄p
∼= N2 M̄p

∼= N

M̄p
∼= N M̄p

∼= 0

Figure 2.12: Sketch with stalks of the characteristic monoid sheaf for guiding
example Spec(k[Nn]) for n = 2

Let m ∈ M̄An(An) = Nn, and in order to study the preimage along the
map q : M → M̄, note that

M(An) → Nn

is given by f 7→ (ordxi
f)i=1,...,n. Assuming ordxi

m = mi ∈ N, the preimage
OAn(−m)× of m in M̄An under q is given by

q−1m(U) =

{
f ∈ OAn(U) | div f =

n∑
i=1

miDi

}
,

which you can think of as the O×
An -torsor

O×
An · xm = O×

An · xm1
1 · · ·xmn

n .

Note that this O×
An -torsor is isomorphic to the familiar torsor

O×
An

(
−

n∑
i=1

miDi

)
(U) =

{
f ∈ OAn(U) | div f =

n∑
i=1

miDi

}
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obtained by removing the zero section from the line bundle

OAn

(
−

n∑
i=1

miDi

)
(U) =

{
f ∈ OAn(U) | div f −

n∑
i=1

miDi ≥ 0

}
.

The map to OAn (which is induced by the log structure and is used in
further constructions) is in this example simply the inclusion. ♦

Remark 2.3.2. To explain why we consider this a guiding example, recall that
in the case where we have a log structure induced by a strict normal crossings
divisor, étale locally this situation applies: when a normal crossings divisor D
is, locally at a p ∈ D with a set of local coordinates gi, given by the vanishing
of g1 · · · ge (that is, locally the intersection of e coordinate planes), then we
have an étale chart Ne → M̄, ei 7→ gi. ♦

Step 2: Associating a line bundle

From the restriction of the log structure map OS(−m)× → OS , we build the
following diagram

OS

OS(−m) OS(−m)×.

The map on the O×
S -torsor admits a unique O×

S -equivariant extension to a
map of line bundles OS(−m) → OS , where we built OS(−m) from OS(−m)×

by filling in the zero section. Formally, this means we consider a O∗
S-action

on the product T × OS for a torsor T , (act on OS via multiplication by the
inverse) and consider the line bundle resulting from quotienting by that action.
The procedure is also given in [Sch18b, Prop. 1.29].

Example 2.3.2 (continued). In the guiding example of An = Spec(k[Nn]),
we can view the O×-torsor as

O×
An · xm = O×

An · xm1
1 · · ·xmn

n .

Then filling in the zero-section yields OAn(−m) which is the ideal generated
by xm. That is, we allow multiplication by other functions, allowing greater
orders of vanishing.
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We also showed that O×
An(−m) equals the torsor O×

An (−
∑n
i=1miDi) writ-

ing Di for the divisor defined by xi = 0 for i = 1, ..., n. Then filling in the
zero-section results in OAn(−m) ∼= OAn(−

∑n
i=0miDi). The map of line bun-

dles OAn(−m) → OAn is simply the inclusion. ♦

Step 3: Taking the dual line bundle with a section

Dualising gives a map OS → OS(m) := OS(−m)∨, and the image ℓm of the
section 1 of OS defines a section of OS(m). This concludes the construction
of the map

OS(−) : M̄S(S) → Div(S).

Example 2.3.2 (continued). Because filling in the zero-section results in
OAn(−m) ∼= OAn(−

∑n
i=0miDi), we quickly see that the dualising yields the

line bundle OAn(
∑n
i=0miDi) = OAn(m). The morphism OAn → OAn(m) is

also simply an inclusion: the functions in OAn(m) are allowed poles but need
not have them. Therefore the image ℓm of the section 1 is simply the canoni-
cal section sD (notation as in [Ful84, Appendix B.4]) corresponding to 1 when
viewing our line bundle OAn(m) as sub-OAn-sheaf of KAn . In that perspective,
OAn(m) is the subsheaf generated by 1/f for f = x1 · · ·xn ∈ OAn(An) and
thus our line bundle also corresponds to the effective Cartier divisor defined
by {(An, f)} and its associated divisor class equals

divOAn(m) =
∑

ordDi
(f)[Di] =

∑
mi[Di].

♦

Remark 2.3.3. Note that both maps OAn(−m) → OAn and OAn → OAn(m)
are injective maps of sheaves, but these are not universally injective. If we
base change the resulting morphism might not be injective and so the image
ℓm of 1 need not always non-zero. For example, starting with the affine plane
Spec(k[N2]) and mapping a point to the origin (or any point with non-trivial
log structure), then one can verify that for the base change the image ℓm is
0. ♦

Expressing the characteristic monoid in terms of boundary divisors

In the above we described the resulting line bundle and section very explicitly
in terms of the boundary divisors. In general in the cases we study, as suggested
by the heading ‘Piecewise polynomials as polynomials in boundary divisors’ in
the Section 3.3.2 or [HS22, Section 3.2], there is a relation between the global
sections of the characteristic monoid sheaf and the boundary divisors.
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If the log structure on the log algebraic stack S is trivial over a schematically-
dense open U ⊆ S (for example, this holds if S is log regular), then the given
section of OS(m) is trivial over U . Because U is schematically dense, it de-
fines an effective Cartier divisor on S supported away from U , which we denote
divOS(m). If S is a quasi-compact regular log regular log algebraic stack, then
the given section of OS(m) is non-vanishing outside a certain boundary divisor
Z =

⋃
i∈I Di, and so defines an effective Cartier divisor on S supported at Z,

which we denote divOS(m) and which naturally lies in ⟨Di : i ∈ I⟩. This is
formulated in this thesis in Lemma 3.3.7 or [HS22, Lemma 3.7], restated here.

Lemma 2.3.4. Sending m 7→ divOS(m) gives an isomorphism of monoids

M̄S(S) → ⟨Di : i ∈ I⟩ .

For example, if the Di form a divisor with strict normal crossings, then we
may even prove that there is an isomorphism

Sym(M̄gp
S (S))

∼−→ Z[Di : i ∈ I] (2.3.1.3)

to the free commutative ring on the Di.

2.3.2 Map from strict piecewise-polynomial functions to
Chow in the simple case

Now we compose map (2.3.1.1) with the (operational) first Chern class to
construct the group homomorphism

Φ1 : M̄gp
S (S) → CH1

op(S), (2.3.2.1)

with image contained in the subgroup generated by Cartier divisors.
For example, taking the first Chern class for a line bundle O(D) defined by

a Cartier divisor D is simply given by the associated Weil divisor, see [Ful84,
Section 2.5], and so in our guiding example we have:

c1(O(m)) = c1(O(
∑

miDi)) =
∑

mi[Di] ∈ CH(S).

(The guiding example is a log scheme, and so we may again simply consider
the Chow group instead of the operational Chow with which we did all formal
constructions.)

To extend this to a map on the strict piecewise-polynomial functions, so
on the sheafification of the symmetric algebra of M̄gp

S (S), we firstly define an
extension of Φ1 for simple log stacks.
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Simple log algebraic stacks

We restate the definition [HS22, Definition 3.5] or in this thesis Definition 3.3.5.

Definition 2.3.5. If S is a regular log regular log algebraic stack with bound-
ary divisor3 Z =

⋃
i∈I Di, we say S is simple if for every J ⊆ I the fibre

product
DJ := ×

j∈J,S
Dj

is regular and in addition the natural map on sets of connected components
π0(DJ) → π0(S) is injective. The closed connected substacksDJ are the closed
strata of S.

Example 1, the projective plane with toric boundary structure, is an ex-
ample of a simple log stack: the divisors D0, D1, D2 are closed subschemes so
the fibre product is simply the intersection which is a regular point which is
connected. By similar reasoning for the boundary divisors D̄0, D̄1, D̄2, E, the
blowup in example 2 is also a simple log stack. In fact, the fans of all regular
toric varieties yield simple log structures. However, example 3 does not satisfy
the conditions of a simple log stack. The boundary nodal cubic D is not a
strict normal crossings divisor, and the nodal point of D yields a double point
which is not-regular. Note that this simple condition is more restrictive than
requiring the boundary divisor to be a strict normal crossings divisor; consider
the union of a line and a smooth conic in P2 meeting at two points, then the
intersection is not connected.

Important is also the subsequent lemma, [HS22, Lemma 3.6] or in this
thesis Lemma 3.3.6, which can be interpreted as saying that doing enough
subdivisions will yield a simple case.

Lemma 2.3.6. Let S be a log regular log algebraic stack. Then there exists a
log blowup S̃ → S such that S̃ is simple.

From Φ1 on piecewise-linear to piecewise-polynomial

Let S be a simple log algebraic stack, smooth4 over k. The operational Chow
group CHop(S) has a commutative ring structure coming from composition of
operations. As such, the map (2.3.2.1)

Φ1 : M̄S(S) → CH1
op(S)

3Here we implicitly mean that the Di are reduced and irreducible substacks of pure
codimension 1.

4If k is a field of characteristic zero then being smooth is here equivalent to being locally
of finite type (since simple implies regular).



64 Chapter 2. Piecewise-polynomial functions and divisors

extends uniquely to a ring homomorphism

Φ′ : Sym(M̄S(S)) → CHop(S). (2.3.2.2)

This defines a map on Sym(M̄S(S)), however not on the global sections
(Sym M̄S)(S) = PPS(S). The difference between these two may seem confus-
ing. The natural map of Z-algebras

Sym(M̄gp
S (S)) → (Sym M̄gp

S )(S)

need not be surjective or injective. We have seen a similar warning while
discussing the log structure on P2

k given by the nodal cubic, but this example
is not simple. However, the following easy example illustrates the difference
between Sym(M̄S(S)) and (Sym M̄S)(S) = PPS(S) for a simple log scheme.

Example 2.3.7. Consider P1
k with the log structure given by the divisor

consisting of two points 0 = (0 : 1) and ∞ = (1 : 0). This is an example of a
regular toric variety, so we know it is simple, but also the intersection of D0

and D∞ being empty makes the conditions trivially easy to check.

0
∞

U

V

(a) Opens U and V around 0 and ∞ in P1
k

σ0 σ1

(b) Toric fan for P1
k

Figure 2.13: Log structure P1
k

Let U be an open neighbourhood of 0 not containing ∞, say the standard
open Ut1 ̸=0 which equals Uσ1 , and let V be an open neighbourhood of ∞ not
containing 0, say the standard open Ut0 ̸=0 which equals Uσ0

, so that U and
V cover P1

k. Then we have the following diagram of monoids and restriction
maps

M̄gp
P1
k
(U) ∼= Z ⟨a⟩

M̄gp
P1
k
(U ∩ V ) ∼= 0.

M̄gp
P1
k
(V ) ∼= Z ⟨b⟩

Hence a piecewise-linear function on P1
k is given by sections of M̄gp

P1
k
(U) and

M̄gp
P1
k
(V ), that is αa and βb for α, β ∈ Z. Because the log structure can be
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described as

MP1
k
(U) = {f ∈ OP1

k
(U) | f invertible outside 0,∞},

we may view generator a of the groupified characteristic monoid at U as a
function in k[t0/t1] that takes value 0 at point 0 = (0 : 1) and is invertible
elsewhere (e.g. just t0/t1), and similarly b as a function in k[t1/t0] that takes
value 0 at point ∞ = (1 : 0) and is invertible elsewhere.

The piecewise-linear functions p = {1·a, 0·b} and q = {0·a, 1·b} ∈ M̄gp
P1
k
(P1)

generate all possible strict piecewise-linear functions. Their (non-zero) product
pq ∈ Sym2(M̄gp

P1
k
(P1)) maps under the morphism

Sym(M̄gp
P1
k
(P1
k)) → (Sym M̄gp

P1
k
)(P1

k),

to 0, however, as it is equal 0 on both the opens U and V . Hence here the
sheafification of Sym(M̄gp

S (U)) to form Sym M̄gp
S = sPPS matters: the sheaf

gluing conditions now make the function equal 0 as element of (Sym M̄gp
P1
k
)(P1

k).
♦

The crux to the solution to navigating between global sections Sym(M̄S(S))
and (Sym M̄S)(S) = PPS(S) can be found in the following two results in [HS22,
Theorems 3.8 and lemma 3.9] or in this thesis Theorem 3.3.8 and Lemma 3.3.9,
for quasi-compact simple log algebraic stacks.

Theorem 2.3.8. Let S be a quasi-compact simple log algebraic stack. Then
the natural map of Z-algebras

Sym(M̄gp
S (S)) → (Sym M̄gp

S )(S)

is surjective.

In other words, sPPS(S) is a quotient of the symmetric algebra on M̄S(S);
every global piecewise-polynomial function can be written globally as a poly-
nomial in piecewise-linear functions.

Lemma 2.3.9. Any element of the kernel of the surjective morphism
Symn(M̄gp

S (S)) → (Symn M̄gp
S )(S) maps to 0 in CHop(S).

Hence this map Φ′ descends to a unique ring homomorphism

Φ: (Sym M̄S)(S) = sPPS(S) → CHop(S),

whose degree 1 part is Φ1.
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Remark 2.3.10. The map Φ is in general not injective or surjective. For exam-
ple, if S has trivial log structure but a non-trivial Chow group (e.g. Pn with
trivial log structure), the map is not surjective as (Sym M̄S)(S) is trivial. For
an example of the failure of injectivity, we can observe that for a log scheme
S the Chow group vanishes in degree higher that the dimension, whereas the
strict piecewise-polynomial functions generally do not. Also example 1 below
is not injective as all lines D0, D1, D2 are linearly equivalent in P2

k. ♦

Practical procedure for applying Φ

In the guiding example of An = Spec(k[Nn]), we observed that m ∈ M̄An(An)
yielded OS(m) which mapped to

∑
mi[Di] ∈ CH(An). The reason for calling

this example guiding, and studying it in so much detail, is that we can now see
that the map Φ in practical situations reduces to ‘the procedure of reading off
the coefficients of the strict piecewise-linear function at the boundary divisors’:

Starting with any section in (Sym M̄S)(S), so any strict piecewise poly-
nomial function, we write it as image of an element in Sym(M̄S(S)) by The-
orem 2.3.8, and then we write it as a polynomial in strict piecewise-linear
functions. If we have a log structure induced by a strict normal crossings
divisor, we étale locally consider Ne with e generators for the characteristic
monoid, one for each branch Di of the boundary divisor in that neighbour-
hood. Hence, étale locally the situation of our guiding example An with the log
structure from the coordinate planes as divisors applies. Then an m ∈ M̄gp

S (S)
is mapped to

∑n
i=1mi[Di] where each mi is the order of vanishing at branches

Di, meaning we only need to read the multiplicity of the strict piecewise-linear
function with respect to the generator of M̄gp

S (S) associated to the boundary
divisors Di that appear in the log structure. We illustrate this procedure in
our simple examples.

Example (Example 1). The Chow ring of the projective plane from example
1 equals CH(P2

k)
∼= Z[H]/H3; in codimension 1 classes are Z-multiples of [H]

the class of any line, and in codimension 2 these are Z-multiples of [pt] = [H2]
as 2 general lines intersect in a point.

Given a strict piecewise-linear function, we use the procedure to compute
which divisors appear with non-zero coefficient in the image under Φ. For
each divisor D outside the boundary we associate the coefficient 0, that is
0·[D] ∈ CH1(P2

k), and for each divisor in the boundary we evaluate the function
at that divisor. In this case, the lines D0, D1, D2 as codimension 1 divisors are
contained in the boundary, and other lines are not. For a point p ∈ D1 with
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p = (p0 : 0 : 1) where p0 ̸= 0, we have seen the computation of

M̄gp
p = M̄gp(Uτ1)

∼= Z ⟨p⟩ .

Then evaluating at D1 means we are interested in the coefficient in Z ⟨p⟩ which
is α = ϵ. Similarly we see that to the functionαa + βb

γx + βy
αu + γv


we associate β[D0] + α[D1] + γ[D2] ∈ CH1(P2

k).
Returning to the example of a strict piecewise-polynomial function of de-

gree 2 given by a + b
y

u


 b
x + y

v

 =

ab+ b2

xy + y2

uv


as element in Sym2(M̄gp

P2(P2)), the procedure is to first write it as a product of
global strict piecewise-linear function. Conveniently, we already constructed
the example this way. The images of both piecewise-linear functions under Φ
are [D0]+[D1] and [D0]+[D2] in CH1(P2

k). Then as Φ is a ring homomorphism,
we may compute the image of the degree 2 piecewise-polynomial as the cap
product

([D0] + [D1]) ∩ ([D0] + [D2]),

which is equal to 4[pt] ∈ CH2(P2
k). ♦

Example (Example 2). In the example of S̃ = Bl(1:0:0) P2
k the codimension 1

Chow classes of S̃ are generated by the exceptional divisor and the transform
of any line in P2

k not through (1 : 0 : 0), so

CH1(S̃) = Z ⟨E⟩+ Z
〈
D̄2

〉
.

Applying the above procedure to the strict piecewise-linear function
αc + βd
γe + αf
βx + δy
δu + γv

 ,

we know to check the coefficients for the boundary divisors E, D̄0, D̄1, D̄2.
Similarly to the example P2

k, we get that the coefficient α in front of c or f
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corresponds to the image in M̄(Uτ ′) via the restriction maps, and so it corre-
sponds to the coefficient in front of the class [E]. The coefficient β corresponds
to τ2 and D̄2, the coefficient γ corresponds to τ1 and D̄1, and the coefficient δ
corresponds to τ0 and D̄0.

Thus, we obtain the class of divisors

α[E] + β[D̄2] + γ[D̄1] + δ[D̄0] ∈ CH1(S̃).

Note that there are relations in the Chow group, such as [D̄2] = [E] + [D̄0],
and therefore the expression could have been further simplified.

We may now also consider the map sPPS(S) → sPPS̃(S̃) induced by
f : S̃ → S in terms of the Chow classes. When introducing example 2, we de-
scribed the map f∗M̄S → M̄S̃ explicitly. On strict piecewise-linear functions,
this induces the map sPPS(S) → sPPS̃(S̃) given byαa + βb

γx + βy
αu + γv

 7→


(α+ β)c + βd
αe + (α+ β)f
γx + βy
αu + γv

 .

Consider for example the piecewise-linear functiona0
u


(which is given by just the coefficient 1 for the ray corresponding to τ1) which
we know to map to the divisor class [D1], and note that the map induced by
the blowup sends it to 

c
e+ f
0
u


(which has the coefficient 1 for the rays corresponding to τ1 and τ ′) which in
turn gets mapped to [E] + [D̄1] in Chow.

♦

2.3.3 Map from strict piecewise-polynomial functions to
Chow in the non-simple case

We have yet to discuss what happens if S is not simple in order to study
the example with the divisorial log structure from the nodal cubic in P2

k. Let
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S be a quasi-compact log smooth log algebraic stack over k. As restated in
Lemma 2.3.6, there exists a log blowup π : S̃ → S with S̃ simple. We define

ΦS : (Sym M̄S)(S) = sPPS(S) → CHop(S) (2.3.3.1)

as the composite

(Sym M̄S)(S) → Sym M̄S̃(S̃)
ΦS̃−→ CHop(S̃)

π∗−→ CHop(S). (2.3.3.2)

For any log regular S, this map ΦS is independent of the choice of log blowup
π : S̃ → S.

Example (Example 3). Recall that in the example of the log structure on
S = P2

k given by the nodal cubic, the strict piecewise-polynomial function
ab ∈ sPPS(S) was not a product of strict piecewise-linear functions, as the
product {α(a + b)}{β(a + b)} for α, β ∈ Z will never yield {ab}. (Again,
this demonstrates the above-emphasized difference between Sym(M̄S(S)) and
(Sym M̄S)(S) = PPS(S).) Then the first step (writing as product of strict
piecewise-linear functions) in the procedure would fail, something that is only
possible as this log algebraic stack is not simple. How to compute the Chow
class in CHop(S) for this piecewise-polynomial function then?

The idea above is to blowup until the strict piecewise-polynomial function
can be written as product of piecewise-linear functions. The theory tells us
that for a blowup π : S̃ → S that is simple, there will definitely be enough strict
piecewise-linear functions to generate all strict piecewise-polynomial functions.
However, we want to express {ab} and we may not need to blowup to a simple
stack, simply use the composition in (2.3.3.2) for a blowup S̃ where we have
enough strict piecewise-linear functions to write {ab} as a product of those.
Consider the blowup S̃ = BlP (S) as sketched in Figure 2.14. This blowup S̃
is not yet simple as the intersection of E and D̄ is not connected. If you want
to do the computation via a blowup that is simple (for example, if you want
to compute the image of {a2b}), you need only do one more blowup in either
of the singular points of the boundary of S̃. However, we will illustrate that
this blowup S̃ is sufficient to compute the Chow class associated to the strict
piecewise-polynomial function {ab}.

Log structure on the blowup

We now consider the log structure associated to the divisor formed by both
the exceptional divisor E as well as the strict transform D̄ ⊂ S̃ of D. We may
visualise the effect on the characteristic monoids as the subdivision of the ice
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D̄E

W

V

Figure 2.14: The blowup S̃ = BlP (S).

⊔

id, id

id,flip

(a) Colimit diagram (b) Subdivision in ice cream cone

Figure 2.15: Visualising the subdivision that yields the characteristic monoid
structure for S̃.

cream horn, as in Figure 2.15. Name the two intersection points of D̄ and E
respectively P1, P2. Consider W = S̃ \ P1 and the open immersion W → S̃
defining an open neighbourhood around P2, and V = S̃ \ P1 and the open
immersion W → S̃ defining an open neighbourhood around P2. Since these
are both open immersions, we have an étale cover that is simply a Zariski cover.
The log structure on W and V is given by two smooth divisors meeting at one
point. By the Remark 2.2.7 or for example recalling the discussion of P2

k with
divisors for example D0 and D1, we obtain that the characteristic monoids on
both covers are given by N2. Write M̄gp

S̃
(W ) ∼= Z ⟨x, y⟩ and M̄gp

S̃
(V ) ∼= Z ⟨u, v⟩.

Again, the morphism S̃ → S contains the data of the map π∗MS → MS̃

on the log structures. On the level of the characteristic monoid sheaves, we
may simply describe it via the inclusion of the cones, as in the example of
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the blowup of the projective plane. Explicitly, on neighbourhood U ⊂ S and
W,V ⊂ S̃, the maps are

M̄gp
S (U) ∼= Z ⟨a, b⟩ → M̄gp

S̃
(W ) ∼= Z ⟨x, y⟩

a 7→ x

b 7→ x+ y

M̄gp
S (U) ∼= Z ⟨a, b⟩ → M̄gp

S̃
(V ) ∼= Z ⟨u, v⟩

a 7→ u+ v

b 7→ v.

Gluing maps

Because we simply have open neighbourhoods, we may describe the diagram
of monoid restrictions as follows:

M̄gp

S̃
(W \ D̄) ∼= Z ⟨t⟩

M̄gp

S̃
(W ) ∼= Z ⟨x, y⟩ M̄gp

S̃
(S̃ \ D̄) ∼= Z ⟨t⟩

M̄gp

S̃
(S̃) M̄gp

S̃
(W \ E) ∼= Z ⟨t⟩

M̄gp

S̃
(V \ D̄) ∼= Z ⟨t⟩

M̄gp

S̃
(V ) ∼= Z ⟨u, v⟩ M̄gp

S̃
(S̃ \ E) ∼= Z ⟨t⟩

M̄gp

S̃
(V \ E) ∼= Z ⟨t⟩ .

y 7→0

x 7→0

u7→0

v 7→0

Strict piecewise-polynomial functions

By the above diagram of gluing relations, when we define a strict piecewise-
linear function via sections in M̄gp

S̃
(W ) ∼= Z ⟨x, y⟩ and M̄gp

S̃
(V ) ∼= Z ⟨u, v⟩, the

coefficient in the strict piecewise-linear function corresponding to x must be
equal to that of v and similarly y and u. Therefore strict piecewise-linear
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polynomials in sPPS̃ are of the form{
αx + βy
βu + αv

}
with α, β ∈ Z. To analyse what happened to strict piecewise-linear functions
on S in the blowup S̃, consider the map π∗M̄S → M̄S̃ on characteristic monoid
sheaves described above. The function ab ∈ sPPS(S) corresponds to{

x
u + v

}{
x + y

v

}
=

{
x(x+ y)
(u+ v)v

}
in sPPS̃(S̃). Note that this is a product of two strict piecewise-linear functions
(in contrast to ab), namely {

x + y
u + v

}{
x
v

}
.

To each of these strict piecewise-linear functions we may apply our procedure
to establish the image under sPPS̃(S̃) → CH(S̃).

Map to Chow

Firstly consider the strict piecewise-polynomial function{
x
v

}
on S̃. Following the diagram of restrictions of monoids, we see that this func-
tion is 1 on M̄gp

S̃
(S̃ \ D̄) and 0 on M̄gp

S̃
(S̃ \ E). Therefore this corresponds to

the divisor [E]. (Other codimension 1 divisors do not appear in the boundary
of this log structure so are automatically given coefficient 0.)

Then consider {
x + y
u + v

}
,

which is 1 on M̄gp

S̃
(S̃ \ D̄) and 1 on M̄gp

S̃
(S̃ \E). Therefore this corresponds to

the divisor [E] + [D̄].
Finally, taking composition of maps yields

(Sym M̄S)(S) → Sym M̄S̃(S̃) → CH(S̃) → CH(S)

ab 7→
{
x + y
u + v

}{
x
v

}
7→ [E] ∩ ([D̄] + [E]) 7→ [P ].
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The final step follows from the Chow intersection theory on S̃: we know
that [E]2 = −[pt] and [E] ∩ [D̄] = 2[pt], so the push of the sum equals to [P ].

Therefore, the 2-graded element ab ∈ sPPS(S) corresponds to the divisor
[P ] in CH(S). One may find it a relief that this results matches what one might
intuitively think: if we view a as the variable corresponding to one branch of
the boundary divisor D through the node, and b as the other branch, then
indeed their intersection yields the class of the node [P ].

♦
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2.4 Piecewise-polynomial functions

So far we have only discussed what we mean by strict piecewise-polynomial
functions. In [HS22], we work not just with the operational Chow group with
rational coefficients, but with the log Chow group, see Definition 3.2.14 or
[HS22, Definition 2.14], generalising an insight of [HPS19].

Definition 2.4.1. Let X be a log smooth stack of finite type over k. We
define the (operational) log Chow ring of X to be

LogCH(X) = colimX̃ CHop(X̃),

where the colimit runs over monoidal alterations X̃ → X with X̃ smooth over
k.

Examples of monoidal alterations are log blowups, which we have already
seen: the blowup of the projective plane with toric boundary log structure
in the intersection of divisors D1, D2, and the blowup of the projective plane
with log structure from nodal cubic D in the node of D.

Similarly to looking at Chow groups of all possible log blowups, for piecewise-
polynomial functions we look at strict piecewise-polynomial functions on all
log blowups as follows, see Definition 3.3.15 or [HS22, Definition 3.15 and
Lemma 3.16].

Definition 2.4.2. For a log algebraic stack S we define the group of piecewise-
polynomial functions as

PP′(S) = colimS̃→S sPP(S̃),

where S̃ → S runs over all log blowups of S.

Lemma 2.4.3. The pullback sPP(S) → sPP(S̃) is injective for S̃ → S any
log blowup, so the natural maps to the colimit are injective.

We define the sheaf of piecewise-polynomials PP on the small strict étale
site of S as the sheafification of the presheaf of rings PP′ : U 7→ PP′(U).

Example (Example 1 and 2). In the example of the projective plane with
toric boundary log structure, we saw that log-blowups could be realised by
subdividing the fan. That yielded more strict piecewise-polynomial functions,
as we added variables for each ray. Also, we described in example 2 how the
blowup map S̃ → S gives a map sPP(S) → sPP(S̃) which is injective. ♦
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Example (Example 3). In the example the projective plane with log structure
from nodal cubic D, the strict piecewise-polynomial functions on the blowup
S̃ in the node of D, such as{

x
u + v

}
,

{
x + y

v

}
,

{
x(x+ y)
(u+ v)v

}
also determine a piecewise-polynomial function on S itself. ♦

Proposition 2.4.4. The maps Φ assemble into a ring homomorphism

Φlog : PP(S) → LogCH(S). (2.4.0.1)

The maps to the Chow groups that we have carefully illustrated in the
last section, also lift to the level of piecewise-polynomial functions. The image
of the above map Φlog plays a fundamental role in the definition of the log
tautological ring in [HS22, Definition 3.18] (see Definition 3.3.18).
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2.5 Example of M1,2

The purpose of this section is to illustrate that we can use the above construc-
tions and examples to understand piecewise-polynomial functions on actual
moduli spaces of interest such as Mg,n, in particular the case of M1,2.

2.5.1 Log stack M1,2

Consider M1,2, the stack of stable 2-marked genus 1 curves. A visualisa-
tion of M1,2 is drawn in Figure 2.17, along with its universal curve and its
boundary divisors D1 and D2 that mark the locus of singular curves inside
the 2-dimensional space M1,2. That is, above the point in M1,2, the type of
stable 2-marked genus 1 curve is drawn that such a point represents. The log
structure on M1,2 will be the log structure associated to the boundary divisor.

Now, this is an example that is not simply a scheme: it is a DM-stack,
so we also have to consider the role of automorphisms. The most important
example of a non-trivial automorphism is the automorphism i of the stable
curve (corresponding to the node of D1) shown in Figure 2.16.

21 i

Figure 2.16: Automorphism i

Log structure

Again, there are two perspectives to describe the log structure on M1,2 (that
we want to consider here and which is in the literature the most common
log structure on Mg,n): either via what is called the basic log structure on
log curves, or via considering the log structure with respect to the boundary
divisors D1, D2 forming ∂M1,2.

To understand this log structure on the DM-stack M1,2, or on any DM-
stack, we refer to [Kat00]. As discussed in section 2 of that article, there exists
a nice log structure on an n-pointed stable curve making it into a basic stable
log curve. This log structure defined on the curve and the log structure it
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M1,2

C

D1D2

g = 1 g = 1

Figure 2.17: The universal curve C over M1,2 and the boundary divisors D1

and D2.
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defines on its base is analysed; these results we use in particular for the case of
M1,2 as the base with respect to the universal curve C over M1,2. Then the
basic log structure on the base is defined by the étale local expressions around
the boundary divisors (that is, associated to the locus of singular curves in the
universal curve). Hence, this basic log structure on curves ensures that M1,2

is equipped with the log structure with respect to its boundary ∂M1,2.

Remark 2.5.1. During the rest of the section, it may be confusing that we
quickly switch perspectives between basic log structures on curves (which will
be helpful in visualisations of the log structure) and the log structure only on
the base M1,2 with respect to its boundary divisors (which will allow us to
use computations of (strict) piecewise-polynomial functions done in previous
examples). The construction in section 2 of [Kat00] allows us to do this, but
intuitively we can also explain this as follows. Remember that giving a map
from a scheme X to M1,2 already contains the data of a genus 1 curve over
base X with 2 markings. So for a point q : Spec(k) → M1,2 we have a curve
C, and letting the horizontal maps in the diagram

C C

Spec(k) M1,2
q

be strict, we may describe the log structure at a point q in M1,2 using prop-
erties of the curve C → Spec(k). ♦

In section 3, Kato defines the meaning of giving a log structure on a stack:
a log structure on M1,2 → Sch is a factorisation M1,2 → LSch such that for
any two stable curves c, c′ and morphism c→ c′ the image is a strict morphism
of log schemes. In section 4 it is then concluded that the basic log structure
gives a log structure on M1,2 that is natural in the sense that M1,2 with that
log structure represents the stack of stable log curves of type (g, n). This is
the reason this is the most commonly used log structure on M1,2.

Visualisation in terms of dual graphs

One visualisation of the characteristic monoid sheaf for the log structure on
M1,2 is giving lengths to edges of the dual graphs. Recall that the dual graph
Γ of a (stable) curve over an algebraically closed field has

• a vertex for each irreducible component of the curve, with a function
g : V → Z≥0 associating to each vertex the genus of that component,
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• a leg for each marking, with a vertex assignment L → V for which
component the marking belongs,

• an edge for each node between the components that meet.

(Sometimes an edge is described using half-edges: then the set of half-edges
H comes with an involution ι : H → H where an edge is a 2-cycle of ι and
a leg is a fixed point of ι). The genus of the original curve can be retrieved
via

∑
v∈V g(v) + h1(Γ) = g. By the classification of the basic log structure of

a stable curve as in [Kat00], we know that for q : Spec(k) → M1,2 given by
curve C, there is a natural isomorphism M̄M1,2,q

= Ne for e the number of
edges. Then the length of an edge is the corresponding generator of Ne, and
these edge lengths built up the stalk of the characteristic monoid.

We briefly discuss all possible dual graphs in M1,2. On the smooth locus,
we have dual graphs consisting of one node (of genus 1) and 2 legs, but no
edges, and so we have no edge lengths and indeed the smooth locus has the
expected trivial log structure. However, for points in the boundary, there are
edges. Firstly for q : Spec(k) → M1,2 the intersection point of D1 and D2,
the curve has dual graph given by Figure 2.18.

s t

Figure 2.18: Dual graph of the curve represented by the intersection point of
D1 and D2

Using the perspective of giving edge lengths (which we can later formally
verify when we describe the characteristic monoid sheaf with respect to an
étale cover), the local picture is

M̄gp

M1,2,q
∼= Z ⟨s, t⟩ .

For q : Spec(k) → M1,2 a point on D2 unequal to the intersection with
D2, the curves have the dual graph shown in Figure 2.19. The stalk of the
groupified characteristic monoid sheaf equals

M̄gp

M1,2,q
∼= Z ⟨s⟩ .

For q : Spec(k) → M1,2 a point on D1 unequal to the node of D1, the
curves have the dual graph shown in Figure 2.20. The stalk of the groupified
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s 1

Figure 2.19: Dual graph of the curve represented by a point on D2 not on D1

t

Figure 2.20: Dual graph of the curve represented by a point on D1 not also in
D2 and not the nodal point of D1

characteristic monoid sheaf equals

M̄gp

M1,2,q
∼= Z ⟨t⟩ .

Finally, for p : Spec(k) → M1,2 the node of D1, the curve corresponds to
the dual graph shown in Figure 2.21.

v

u

Figure 2.21: Dual graph of the curve represented by the nodal point of D1

The stalk of the groupified characteristic monoid sheaf equals

M̄gp

M1,2,p
∼= M̄gp

U,p′
∼= Z ⟨u, v⟩ .

The data of all possible dual graphs of curves in M1,2 with edge lengths
yield a visualisation as shown in Figure 2.23 of the characteristic monoids as
follows. Note that this visualisation is mostly a combination of pictures we
have seen before: locally the intersection of D1 and D2 is like an affine patch
of the first example, P2

k with toric boundary structure, or as in the case of the
guiding example Spec(k[N2]).

Also, locally the nodal point of the boundary divisor D1 gives a compara-
ble characteristic monoid structure as the example of the nodal cubic in P2

k.
However, it is important to note that in this case there are automorphisms
involved. Formally, to give a sheaf on a stack, or to give a log structure on a
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stack, means you also have to specify what happens in case of the non-trivial
automorphism i. In other words, locally at the node of D1, we need to specify
a sheaf not just on the point itself but on the quotient stack [pt /(Z/2Z)]: that
is, a sheaf with a Z/2Z-action.

For the picture we are making, we note that automorphism i shown in
Figure 2.16 corresponds to swapping the nodes, and therefore can be naturally
associated to interchanging the variables of the characteristic monoid, yielding
‘switching of edges’. So on the level of dual graphs, the automorphism i would
correspond to the swapping

v

u

u

v

and therefore we are considering the colimit of the diagram Figure 2.22, where i
denotes (u, v) 7→ (v, u) (and again formally the colimit is taken in the category
of cone stacks, see [CCUW20]). We will see this swapping map i again in the
subsection describing the gluing maps on an étale cover.

N2

id

i

N2

Figure 2.22: Colimit diagram for visualising characteristic monoid around node
of D1

Combining this automorphism with the lengths-on-the dual-graphs per-
spective, we obtain the visualisation in Figure 2.23 for the characteristic monoids
of M1,2. Be careful to note that this is simply a visualisation; one should for-
mally take a colimit diagram and not think that the cones, such as the upper
triangular cone and the lower cone actually embed in the same vector spaces.

2.5.2 Piecewise-polynomial functions on M1,2

As in previous examples, we want to view piecewise-polynomial functions as
functions on the stalks of the characteristic monoids (or sections of small
enough opens) that glue appropriately. Hence, we describe M̄gp

M1,2
on an ap-

propriate étale cover.
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1

u

u

u

v

t

s ts 1

D1

D2

u = 0 ∧ v = 0

s = 0

t = 0

Figure 2.23: Visualisation of the characteristic monoids for M1,2 by lengths-
on-the-dual-graphs perspective.
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Firstly, outside of p : Spec(k) → M1,2 the nodal point of D1, we are in
the case of two smooth irreducible divisors specifying an easy log structure
(as discussed in previous examples). Hence we can find some étale neighbour-
hood V (which need not be a scheme, simply M1,2 without point p) of M1,2

not covering p, on which we know the strict piecewise-polynomial functions
by previous computations and theory. On this V the strict piecewise-linear
functions are given by M̄M1,2

(V) ∼= N ⟨s, t⟩ with generator s corresponding
to the boundary divisor D1 and generator t to D2. (The reader may verify
that this corresponds to the descriptions of the stalks in terms of edge lengths
above.) This cover V is a simple stack, and so these strict piecewise-linear
functions generate the strict piecewise-polynomial functions. Because étale
locally around the intersection of D1 and D2 the strict piecewise-polynomial
functions are given by a polynomial ring in two variables with no relations, as
explained in (3.3.2.7), we also know that sPPM1,2

(V) ∼= Z[s, t].

Secondly, we need to describe an étale cover around p : Spec(k) → M1,2

the nodal point of D1. Note that describing an étale open neighbourhood
j : U → M1,2 also specifies the data of a curve over U , and we can describe
the map j via the curve over U . We want to give a neighbourhood of p with
which we (étale locally) describe the log structure from boundary D1 as an
affine plane with log structure given by the intersection of the coordinate axes.
Therefore, consider U ⊂ A2

u,v an open in the affine plane with coordinates
u, v containing the origin, and let the map j : U → M1,2 be given by the
curve defined by y2 − ((x− 1)2 − u)((x+ 1)2 − v) ∈ k[u, v][x, y] over U . Note
that we may possibly need to remove some points from U , as we did in the
cover in example 3, but we remain with a neighbourhood around the origin
which corresponds to y2 − (x− 1)2(x+ 1)2 = y2 − (x2 − 1)2 a curve with two
components y = ±(x2−1) and two nodes. (One may verify this yields an étale
map, for example via asking SAGE for the j-invariant of this curve in terms of
u, v and concluding it is unramified in a neighbourhood of u = v = 0. ) This
gives a genus one curve and we have two sections at infinity, which are for the
weighted homogeneous equation y2− ((x− z)2−uz2)((x+ z)2− vz2) given by
z = 0, x = 1, y = ±1, of which we choose an ordering so that we indeed have
a morphism j : U → M1,2.

Gluing maps

On the cover V, we are in the situation of a log scheme as computed in pre-
vious examples, and therefore all restriction maps are what is to be expected.
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However, for covering U , note that if we form the fiber product

U ×M1,2
U

we are dealing with a fiber product for stacks.
That is, over a point q : Spec(k) → M1,2, the fiber product contains a point

q1 : Spec(k) → U over q, a point q2 : Spec(k) → U over q, and an isomorphism
f between j(q1) and j(q2). In M1,2, over the point p that is the nodal point
of the boundary divisor D1, there is a non trivial automorphism i described
above. On the level of U and the curve

y2 − ((x− 1)2 − u)((x+ 1)2 − v)

over U , the automorphism i corresponds to u ↔ v and x + 1 ↔ x − 1. Let
q1 : Spec(k) → U be a point given by coordinates (u0, v0), and write for the
swapped point q2 : Spec(k) → U , that is, the point given by (v0, u0). We know
that U ×M1,2

U contains at least the points

(q1, q1, id), (q1, q2, i), (q2, q1, i), (q2, q2, id)

(of which if u0 = v0 some may be the same). But over each projection map
U ×M1,2

U → U , say the first projection, we have at least two distinct points
in the fiber, namely

(q1, q1, id), (q1, q2, i).

Therefore, we have an étale cover with two points over every fiber, and this
leads to the claim that U ×M1,2

U ∼= U ⊔ U . Consider the diagram

U ⊔ U

U ×M1,2
U U

U M1,2.

(id,id)

(id,i)

j

j

The map j is étale and of degree 2: this is an open property and may be
checked over u = v = 0. Counting the automorphisms of y2 − (x2 − 1)2 that
preserve the markings yields there are only 2 such automorphisms (there is a
non-trivial automorphism on each component which results in swapping the
nodes). Hence, the maps U ×M1,2

U → U and U ⊔ U → U are both étale
degree 2, and the induced map U ⊔U → U ×M1,2

U is injective. Then we may
conclude that indeed U ×M1,2

U ∼= U ⊔ U and the restriction maps are given
by (id, id) and (id, i).
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Strict piecewise-polynomial functions

To give a strict piecewise-linear function on M1,2 means specifying a section
in M̄gp

M1,2
(V) which is given by {αs+βt} ∈ Z ⟨s, t⟩, and a section in M̄gp

M1,2
(U)

which is of the form {γu+ δv} for γ, δ ∈ Z. By invariance under gluing maps
on U we know γu + δv = γv + δu, giving that a section in M̄gp

M1,2
(U) is more

specifically of the form {γ(u + v)} for γ ∈ Z. By gluing U and V (which is
similar to the log scheme scenario as we exclude node p), we obtain that a
strict piecewise-linear function on M1,2 is given by{

αs + βt
α(u + v)

}
with α, β ∈ Z.

In this case, in contrast to to example 3 of the nodal cubic, we will see that
all strict piecewise-polynomial functions in U are symmetric in u and v. The
description of the fiber product U ×M1,2

U ∼= U ⊔ U means we can decompose
sPPM1,2

(U ⊔ U) ∼= sPPM1,2
(U) × sPPM1,2

(U), and sPPM1,2
(U) ∼= Z[u, v] is

the polynomial ring in 2 variables. Then the restriction maps on U are given
by

Z[u, v] Z[a, b]× Z[c, d].

u 7→(a,c)
v 7→(b,d)

u7→(a,d)
v 7→(b,c)

The degree 2 function uv ∈ Z[u, v] maps to

(a, c)(b, d) = (ab, cd)

via one map and
(a, d)(b, c) = (ab, cd)

via the other. Hence, an example of a degree 2 strict piecewise-polynomial
function may be {

s2

uv

}
which is again not a product of strict piecewise-linear functions. Therefore, in
the next section, we will need to blowup M1,2 to determine its image in Chow.
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Note that higher degree strict piecewise-polynomial functions are required
to be symmetric: for example the degree 3 function u2v ∈ Z[u, v] maps to

(a, c)2(b, d) = (a2b, c2d)

via one map and
(a, d)2(b, c) = (a2b, cd2)

via the other which are not equal. Similar reasoning yields that indeed strict
piecewise-polynomial functions are required to be symmetric.

2.5.3 Map to Chow for strict piecewise-polynomial func-
tions on M1,2

Once again, as in Example 3, we are not dealing with a simple log stack. In
that case there may be a strict piecewise-polynomial function that is not the
product of strict piecewise-linear functions, and we again have to apply an
appropriate log blowup to M1,2 to describe what the map to Chow for that
strict piecewise-polynomial functions looks like. Again, we want to blowup
at some ideal I corresponding to the blowup in the node of D1, obtaining the
situation sketched in Figure 2.24. In particular, because blowing up commutes
with flat (and so also étale) base change, we may visualise the blowup via the
blowup Ũ of U in the origin (in A2

u,v);

Ũ U

M∼
1,2 M1,2

Blj−1I

j

BlI

(2.5.3.1)

We study the blowup M∼
1,2 via the cover Ũ , leaving V unchanged. (That

is, we translate our cover V around D2 to a cover in the neighbourhood D̄2.
Its strict piecewise-polynomial functions remain essentially unchanged.) Now
Ũ is the blowup of U in the origin, and so it has three boundary divisors Dv,
originally the v-axis, Du originally the u-axis, and the exceptional divisor E.
There are the two intersection points: one of Dv and E which we denote P1

and one of Du and E which we denote P2. On open neighbourhoods U1 and
U2 around P1 and P2 respectively, the log structure is given by two smooth
divisors (see Remark 2.2.7) so the characteristic monoid around each are given
by N2 with a generator for each boundary divisor. Say

M̄gp

Ũ (U1) = Z ⟨x, y⟩
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D̄1ED̄2

Figure 2.24: Blowup M∼
1,2 of M1,2.

where x corresponds to Dv and y to E, and

M̄gp

Ũ (U2) = Z ⟨X,Y ⟩

where X corresponds to Du and Y to E.
For the gluing maps on Ũ we extend diagram (2.5.3.1) to

Ũ ⊔ Ũ U ⊔ U

Ũ ×M∼
1,2

Ũ U ×M1,2
U

Ũ U

M∼
1,2 M1,2

Bl(j−1I,j−1I)

∼

(id,i)

(id,id) ∼

(id,i)

(id,id)

Bl
pr

−1
i

j−1I

pr1
pr2 pr1pr2

Blj−1I

j

BlI

where the horizontal blowup maps are constructed by base change with étale
maps. Because of the identities pr−1

1 j−1I = pr−1
1 j−1I as j ◦pr1 = j ◦pr2 and

j ◦ (id, i) = j ◦ (id, id), we choose the simplest map to describe which ideal we
blowup. The commutative diagram then yields that also for Ũ the restriction
maps are given by

(id, i), (id, id) : Ũ ⊔ Ũ → Ũ .
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Figure 2.25: Visualisation of the subdivision of characteristic monoids for
M∼

1,2.

On U the map i swapped u ↔ v, and so on Ũ the map i swaps Du and Dv

and flips E onto itself. The map M∼
1,2 → M1,2 on the level of characteristic

monoids may be visualised as subdividing the upper triangle, regaining two
triangles glued at edges, see Figure 2.25.

Strict piecewise-polynomial functions on the blowup

A strict piecewise-linear function on the blowup Ũ is defined by giving sections
in M̄gp

Ũ (U1) ∼= Z ⟨x, y⟩ and M̄gp

Ũ (U2) ∼= Z ⟨X,Y ⟩, where the coefficient of the
strict piecewise-linear function corresponding to y must be equal to that of Y
as both correspond to the divisor E, and the coefficient in front of x must be
equal to that of X by invariance under the swapping map. Therefore strict
piecewise-linear polynomials in sPPŨ are of the form

{
αx + βy
αX + βY

}

with α, β ∈ Z.

To analyse what happened to strict piecewise-linear functions on M1,2 in
the blowup M∼

1,2, recall that the map π∗M̄M1,2
→ M̄M∼

1,2
is simply induced

by the inclusion of cones. Explicitly, on the neighbourhood U ⊂ M1,2 and



2.5. Example of M1,2 89

U1,U2 ⊂ M∼
1,2, the maps are

M̄gp
S (U) ∼= Z ⟨u, v⟩ → M̄gp

S̃
(U1) ∼= Z ⟨x, y⟩

u 7→ x

v 7→ x+ y

M̄gp
S (U) ∼= Z ⟨u, v⟩ → M̄gp

S̃
(U2) ∼= Z ⟨X,Y ⟩

u 7→ X + Y

v 7→ Y.

Map to Chow

Via composing the induced map on strict piecewise-polynomial functions with
the practical procedure for the map to Chow, we obtain the map to Chow

(Sym M̄M1,2
)(M1,2) → Sym M̄M∼

1,2
(M∼

1,2)
ΦM∼

1,2−→ CHop(M
∼
1,2)

π∗−→ CHop(M1,2).

For the example {
s2

uv

}
,

we first consider uv and its image under the described map on strict piecewise-
linear functions to the blowup. There uv corresponds to{

x
X + Y

}{
x + y

Y

}
=

{
x(x+ y)
(X + Y )Y

}
.

So our example is the product of two strict piecewise-linear functions in the
blowup;  s

x + y
X + Y


 s
x
Y

 .

To each of these strict piecewise-linear functions we may apply our procedure
to establish the image under sPPM∼

1,2
(M∼

1,2) → CH(M∼
1,2).

Now, consider the strict piecewise-polynomial function s
x
Y

 .
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Following the diagram of restrictions of monoids, we see that this function is
0 at the coefficient corresponding to D̄1, 1 at the coefficient corresponding to
E, and, as the the coefficient in front of t is zero, also 0 on D̄2. Therefore this
corresponds to the divisor [E]. (Other codimension 1 divisors do not appear
in the boundary giving the log structure so are automatically given coefficient
0.)

Consider  s
x + y
X + Y

 ,

which is 1 on D̄1, 1 on E, and 0 on D̄2. Therefore this corresponds to the
divisor [E] + [D̄1].

Finally, taking composition of maps yields

(Sym M̄S)(S) → Sym M̄S̃(S̃) → CH(S̃) → CH(S){
s2

uv

}
7→

 s
x + y
X + Y


 s
x
Y

 7→ [E] ∩ ([D̄1] + [E]) 7→ [p].

The final step follows from the Chow intersection theory on the blowup
M∼

1,2: we know that [E]2 = −[pt] and [E] ∩ [D̄] = 2[pt], so the push of
the sum equals to the class [p] of the point p which is the nodal point point
of boundary divisor D1. Therefore, we have combined our computations in
previous examples to give a strict piecewise-polynomial that maps to the class
of the node p.

Determining a preimage for a divisor

Note that the map to the Chow group as constructed, or the map to the log
Chow group, is not necessarily injective or surjective. However, one might
wonder whether a certain divisor, or a certain multiple of a divisor, is the
image of a piecewise-polynomial function. When a divisor is easily expressed
in boundary divisors, then the original piecewise-polynomial might be derived
or guessed from the structure of the boundary divisors, but in general there is
no algorithm to decide whether a class is an image of a piecewise-polynomial
function.

An example of a question that we can answer with our computations of
this section is: for which λ ∈ Z does the class λA for the stratum A depicted
in Figure 2.26 lie in the image of the map Φ from piecewise-polynomials to
Chow.
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21A =

Figure 2.26: Example of a Chow class of a boundary stratum

By our computations, we know that a piecewise-polynomial function with
the expression uv is a good candidate to have this image. Indeed the above
described function {

s2

uv

}
maps to λ = 1 times the boundary stratum.

As a final remark, it is good to know that piecewise-polynomial functions
may appear in different forms in the literature. Also it is possible to write
piecewise-polynomial functions in a form that is more recognisable as relating
to the tautological ring with its κ and ψ-classes. When we view a piecewise-
polynomial function is a polynomial in boundary divisors or branches of bound-
ary divisors as above, and then relate these to ψ classes, we would get such
a form. For this, and also results such as giving a Pixton’s formula as in
[JPPZ20] in terms of piecewise-polynomial functions, we refer to [HMP+22].




