

Structure-reactivity relationships in glycosylation chemistry Hengst, J.M.A. van

Citation

Hengst, J. M. A. van. (2023, December 7). *Structure-reactivity relationships in glycosylation chemistry*. Retrieved from https://hdl.handle.net/1887/3665922

Version: Publisher's Version

Licence agreement concerning inclusion of doctoral

License: thesis in the Institutional Repository of the University of

Leiden

Downloaded from: https://hdl.handle.net/1887/3665922

Note: To cite this publication please use the final published version (if applicable).

List of Publications

Mapping the reactivity of 2,3-di-N-acetyl glucuronic acid and 2,4-di-*N*-acetyl bacillosamine building blocks in the synthesis of a highly *N*-acetylated Acinetobacter Baumannii LUH5554 tetrasaccharide

<u>van Hengst JMA</u>, Verhoeks V, de Bra D, Vlaming JCG, Schoenmakers J, Overkleeft HS, van der Marel GA, Codée JDC *Manuscript in preparation*

Selective peroxygenase-catalysed oxidation of toluene derivates to benzaldehydes

Wang Y, Teetz N, Holtmann D, Alcalde M, <u>van Hengst JMA</u>, Liu X, Wang M, Qi W, Zhang W, Hollmann F.

ChemCatChem 2023, 15, e202300645

Peroxygenase-Catalysed Selective Oxidation of Silanes to Silanols

<u>van Hengst JMA*, Xu X*, Mao Y, Martinez M, Roda S, Floor M, Guallar V, Paul CE, Alcalde M, Hollmann F.</u>

Angew. Chem. Int. Ed. 2023, 62, e202302844

Mapping the effect of configuration and protecting group pattern on glycosyl acceptor reactivity

<u>van Hengst JMA</u>, Hellemons RJC, Remmerswaal WA, van de Vrande KNA, Hansen T, van der Vorm S, Overkleeft HS, van der Marel GA, Codée JCD. *Chem. Sci.*, 2023, **14**, 1532-1542

Characterization of glycosyl dioxolenium ions and their role in glycosylation reactions.

Hansen T*, Elferink H*, <u>van Hengst JMA</u>, Houthuijs KJ, Remmerswaal WA, Kromm A, Berden G, van der Vorm S, Rijs AM, Overkleeft HS, Filippov DV, Rutjes FPJT, van der Marel GA, Martens J, Oomens J, Codée JDC, Boltje TJ; *Nat Commun* **11**, 2664 (2020).

Structure Kinetics Relationships and Molecular Dynamics Show Crucial Role for Heterocycle Leaving Group in Irreversible Diacylglycerol Lipase Inhibitors

Janssen APA, <u>van Hengst JMA</u>, Béquignon OJM, Deng H, van Westen GJP, van der Stelt M.

J. Med. Chem. 2019, 62, 17, 7910-7922

Acceptor reactivity in glycosylation reactions

van der Vorm S , Hansen T , $\underline{\text{van Hengst JMA}}$, Overkleeft HS , van der Marel GA , Codée JDC.

Chem. Soc. Rev., 2019,48, 4688-4706

Mapping the Relationship between Glycosyl Acceptor Reactivity and Glycosylation Stereoselectivity

van der Vorm S, <u>van Hengst JMA</u>, Bakker M, Overkleeft HS, van der Marel GA, Codée JDC.

Angew. Chem. Int. Ed. 2018, 57, 8240

Surface PEG Grafting Density Determines Magnetic Relaxation Properties of Gd-Loaded Porous Nanoparticles for MR Imaging Applications

Zhang W, Martinelli J, Peters JA, <u>van Hengst JMA</u>, Bouwmeester H, Kramer E, Bonnet CS, Szeremeta F, Tóth É, Djanashvili K.

ACS Appl. Mater. Interfaces 2017, 9, 28, 23458-23465

means equal contribution

Academic CV

Jacob van Hengst was born on 28 July 1993 in Rotterdam, the Netherlands. From 2005 to 2011 he attended the Johan de Witt Gymnasium in Dordrecht, where he obtained his secondary education degree (VWO) cum laude with a specialisation in science and technology (NG/NT). He competed in the National Chemistry Olympiad in 2010 and 2011, were he reached the top 20 and the 1st place respectively. In 2011 Jacob started with his bachelor Molecular Science and Technology at Leiden University and Delft University of Technology. As part of his bachelor, he worked on the PEGylation of Gdloaded zeolite nanoparticles for MRI purposes under supervision of Wuyuan Zhang and Kristina Djanashvili at the TU Delft. In 2014 he obtained his BSc Degree cum laude. In that same year, he started with his master's degree in chemistry at Leiden University with a specialisation in chemical biology. During his master's Jacob worked a year in the molecular physiology group under supervision of Anthe Janssen and Mario van der Stelt. He worked on the synthesis and in vitro evaluation of covalent inhibitors for serine hydrolase DAGLa. A large part of this internship was the optimisation of the synthesis of a key intermediate over 10 steps. His master's degree was obtained in 2017. In the same year Jacob started with his PhD in the group of Jeroen Codée and Gijs van der Marel at Leiden University. His work focussed on mechanistic research and method development within carbohydrate chemistry. Key findings are the way that substituents on the donor influence the S_N1 and S_N2 side of the reaction, how the nucleophilicity of the acceptor influences the glycosylation mechanism, how the reactivity of the acceptor is dependent on configuration and protecting group pattern and how this acquired knowledge can be applied in the total synthesis of complex oligosaccharide. Parts of his work are published in Angewandte Chemie, Chemical Science and Nature communications and presented at the CHAINS 2021 conference. Since September 2022 Jacob works as a postdoc in the group of Frank Hollmann at the TU Delft on enzymatic oxidations using environmentally benign oxidants like oxygen or hydrogen peroxide.

Acknowledgments

Completing this PhD thesis has been a remarkable and challenging endeavour, and I am deeply grateful for the collaborative spirit and invaluable contributions of those who have stood by me throughout this process. Their belief in my abilities and their willingness to lend a helping hand have made all the difference.

First of all, I would like to take the opportunity to thank my supervisors Jeroen and Gijs for giving me the opportunity to work on this project, for their excellent training and their invaluable support throughout the entirety of my doctoral journey.

Next, I would like to thank all of my colleagues. Biosyn is a rather large research group, so it is impossible for me to acknowledge everyone personally, but please know that your support, whether big or small, is deeply appreciated. Your contributions have played a significant role in shaping my academic journey, and I am grateful for your presence and assistance.

With that out of the way Stefan, thank you for training me in carbohydrate chemistry when I started my PhD as someone with a medicinal chemistry background. Also, a special thanks to Koen V, Thomas and Wouter, with whom I collaborated most closely. Together we could shine some light on the still challenging problems regarding stereoselective glycosylation. Thanks to all other people from the EE4 lab: Alex, Andy, Coralie, Dennis, Florian, Jerre, Jurriaan, Koen R, Mark, Tim and all the students. I really enjoyed working together with you on the lab, and without you my PhD wouldn't be the same!

Some other colleagues I would like to acknowledge are Joey and Vincent V, for continuing the work on the beautiful *Acinetobacter Baumannii* oligosaccharide. Hessel, for all our great discussions about our (potential) projects. Hugo, whose shared appreciation for memes and fine German musical art greatly enriched my experience throughout this research endeavour and Ward for introducing me to the wonderful chemistry of the 2-deoxy-2-amino sugars.

I would also like to thank my students: Annabel, for her help with the development of the synthetic routes of the rare carbohydrate donors used in chapter 2 and 3. Daan and Joeri for their work on the total synthesis of the *Acinetobacter Baumannii* tetrasaccharide described in chapter 6 and Rik for his contributions towards the acceptor reactivity study in chapter 4.

I would also like to express my gratitude towards the technicians of Biosyn: Hans, Nico and Rian for supporting the research of the group. A special thanks to Hans for measuring so many HRMS samples in a short timespan at the end of my PhD.

Measuring NMR was a crucial part of my PhD, so I would like to thank the people from the NMR-department, Fons and Karthick. Thank you for keeping the NMR running smoothly, for your help with my VT-NMR experiments and finally for keeping so many of my samples safe and organised for so long when I forgot to pick them up again.

I also want to thank the all the TOAs, whose hard work made teaching practical courses a pleasant experience. A special thanks goes to Trudie for her extraordinary support and her willingness to always help out with everything, to Marco for teaching me how to maintain and repair a rotavap and to Arjan for helping me with the IR measurements.

Last but not least, I would like to thank all my friends and family. And especially my girlfriend Maaike for all the love she gives me. Thanks to my parents and my siblings Lara and Marijn, without whose unconditional support I would never have made it this far. Finally I would like to thank my aunt Desiree, to whom I have dedicated this thesis. Unfortunately you cannot be physically present anymore, but know that you are always in my heart.