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Objectives: To investigate how ANP32A, previously linked to the antioxidant response, regulates Wnt
signaling as unraveled by transcriptome analysis of Anp32a-deficient mouse articular cartilage, and its
implications for osteoarthritis (OA) and diseases beyond the joint.
Methods: Anp32a knockdown chondrogenic ATDC5 cells were cultured in micromasses. Wnt target
genes, differentiation markers and matrix deposition were quantified. Wnt target genes were deter-
mined in articular cartilage from Anp32a-deficient mice and primary human articular chondrocytes upon
ANP32A silencing, using qPCR, luciferase assays and immunohistochemistry. Co-immunoprecipitation,
immunofluorescence and chromatin-immunoprecipitation quantitative PCR probed the molecular
mechanism via which ANP32A regulates Wnt signaling. Anp32a-deficient mice were subjected to the
destabilization of the medial meniscus (DMM) OA model and treated with a Wnt inhibitor and an
antioxidant. Severity of OA was assessed by cartilage damage and osteophyte formation. Human Protein
Atlas data analysis identified additional organs where ANP32A may regulate Wnt signaling. Wnt target
genes were determined in heart and hippocampus from Anp32a-deficient mice, and cardiac hypertrophy
and fibrosis quantified.
Results: Anp32a loss triggered Wnt signaling hyper-activation in articular cartilage. Mechanistically,
ANP32A inhibited target gene expression via histone acetylation masking. Wnt antagonist treatment
reduced OA severity in Anp32a-deficient mice by preventing osteophyte formation but not cartilage
degradation, contrasting with antioxidant treatment. Dual therapy ameliorated more OA features than
individual treatments. Anp32a-deficient mice also showed Wnt hyper-activation in the heart, potentially
explaining the cardiac hypertrophy phenotype found.
Conclusions: ANP32A is a novel translationally relevant repressor of Wnt signaling impacting osteoar-
thritis and cardiac disease.

© 2022 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
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Introduction

Tissue homeostasis requires orchestrated activation and re-
striction of gene expression programs. How specific genes are
switched on and off at the correct time and in the right place is a
central question in biology. Furthermore, understanding how gene
regulatory processes might be perturbed by disease or by factors
such as genetic variants is key to establish the rationale for the
Ltd. All rights reserved.
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development of effective targeted therapies and personalized
medicine.

We reported that acidic leucine rich nuclear phosphoprotein-
32A (ANP32A) protein switches on transcription of the ataxia tel-
angiectasia mutated serine threonine kinase (ATM) gene to tightly
control a central regulatory network that prevents oxidative pro-
cesses in cartilage, cerebellum and bone1. In cartilage, absence of
ANP32A leads to severe osteoarthritis and oxidative stress1. Earlier,
genetic variants in ANP32A were associated with this disease2.
Current treatments for osteoarthritis are limited to symptom relief
and in advanced cases joint replacement surgery may be the only
option. Thus, developing an effective therapy that arrests or re-
verses disease progression is urgently needed. As osteoarthritis is a
disease of the whole joint affecting different tissues, distinct
pathways with varying downstream pathological effects are likely
involved and effective treatment may require combination
therapies.

ANP32A is a pleiotropic protein, influencing several phenotypic
traits. Pleiotropic proteins are central in protein-protein interaction
networks and may control multiple biological pathways3. Key
unanswered questions are whether ANP32A has a role in multiple
molecular mechanisms of homeostasis and disease, in particular in
the joint, and whether there are yet undiscovered phenotypic traits
critically influenced by ANP32A.

Here, we identify that ANP32A adjusts the transcriptional
response of Wnt signaling, a central network in tissue homeostasis
and disease with a key role in osteoarthritis4e6. We unravel that
ANP32A performs this regulatory role via histone acetylation
masking. From a translational perspective, we evaluate disease-
modifying effects of targeting Wnt hyper-activation in a model of
osteoarthritis in Anp32a-deficient mice, and benefits of a combi-
nation with antioxidant treatment in this setting. Additionally, we
explorewhether ANP32A regulatesWnt signaling in tissues beyond
cartilage. Our findings unveil that ANP32A is a regulatory molecule
of Wnt signaling across multiple tissues, with links to osteoar-
thritis, and with potential roles in cardiac hypertrophy and Alz-
heimer's disease.

Materials and methods

Additional information is found in supplementary data

Study design
Our aim was to determine how ANP32A protects against oste-

oarthritis by regulating pathways beyond oxidative stress and
whether such mechanisms also affect other tissues and organs.
Human cartilage and genetically engineered mice were used in ex
vivo and in vivo studies using unchallenged ageing mice and a
model of joint disease, combined with in vitro assays. Mouse
models are reported following the ARRIVE guidelines (https://
www.nc3rs.org.uk/arrive-guidelines) (Supplementary Table 1).

Patient materials
Human articular chondrocytes were isolated from hips of pa-

tients undergoing hip replacement surgery after informed consent.
The University Hospitals Leuven Ethics Committee and Biobank
Committee (Leuven, Belgium) approved the study (S56271).

Mice
Anp32a�/� (Anp32atm1Hzo) mice were a gift from Dr. P. Opal

(Northwestern University Medical School, Chicago, USA)7 and
backcrossed onto the C57Bl/6J background. In the experiments re-
ported, mice were between the 11th and 21st generation of back-
crossing. Wild-type C57Bl/6J, purchased from Janvier (Le Genest St
Isle, France), were used as controls. All studies were approved by
the Ethics Committee for Animal Research (P114-2008, P198-2012,
P159-2016; KU Leuven, Belgium) (License LA1210189). Genotypes
of animals were confirmed by polymerase chain reaction (PCR)1.

Statistics
Data analysis and graphical presentation were performed with

R-Studio (version 1.1.463) and GraphPad Prism version 8. Power
analysis was performed with G*Power (version 3.1.9.4). Data are
presented as mean and SD or as individual data points, represent-
ing the mean of technical replicates as indicated in figure legends.
Raw data are available in Supplementary File 1. R code is available
in Supplementary File 2. Gene expression data and image quanti-
fications were log-transformed for statistical analysis. All tests
performed were two-tailed. Further information is found in Sup-
plementary methods.

Results

Articular cartilage transcriptome analysis suggests dysregulation of
Wnt signaling in Anp32a-deficient mice

To investigate which central networks are potentially regulated
by ANP32A in joint biology, we sought to identify signaling cas-
cades driving differences in gene expression in articular cartilage
from Anp32a�/e mice (mice with global deletion of ANP32A)
compared to wild-type mice. We took advantage of our earlier
microarray transcriptome study (geonr: GSE108036)1, and applied
the Upstream Regulator Analysis approach from Ingenuity Pathway
Analysis software. Strikingly, pathway analysis of identified genes
classified as “transcriptional regulators” indicated that Wnt
signaling drives gene expression changes resulting from loss of
ANP32A [Fig. 1(A)]. Our earlier observations1 were also confirmed
as P53 signaling, directly linked to ATM, appeared as main enriched
pathway mediating loss of ANP32A's effects on gene expression
[Fig. 1(A)].

Anp32a deficiency impairs chondrogenic differentiation via Wnt
hyper-activation

Combined genetic and experimental evidence strongly supports
that a fine-tuned balance of Wnt activity is key for cartilage health,
and excessive activation of Wnt signaling contributes to osteoar-
thritis4,8. To explore whether ANP32A has a regulatory effect on
Wnt signaling in cartilage, we first used an in vitro cartilage dif-
ferentiation model in which Wnt signaling plays a key role. The
chondrogenic ATDC5 cell line exhibits a multistep differentiation
process towards cartilage when seeded in micromasses9. In this
model, Wnt signaling activation in the early phase blocks the dif-
ferentiation program10. We generated stable Anp32a siRNA knock-
down (KD) ATDC5 cell lines [Supplementary Fig. 1(A)] and found
that gene expression levels of direct Wnt target genes were up-
regulated in Anp32a-deficient cells compared to controls
(Pillai ¼ 0.964, F2,3 ¼ 40.34, P ¼ 0.0068 by MANOVA) [Fig. 1(B)].
Upon micromass differentiation culture, mRNA expression of early
cartilage differentiation markers collagen 2 (Col2a1) and
aggrecan (Acan), and terminal differentiation marker collagen 10
(Col10a1) were strongly down-regulated in Anp32a KD cells
compared to controls [F3,12 ¼ 25.321, P < 0.0001 (Col2a1),
F1.05,4.21 ¼ 24.378 P ¼ 0.007 (Acan), F3,12 ¼ 42.775 P < 0.0001
(Col10a1) by 2-way ANOVA] [Fig. 1(C)]. To evaluate proteoglycan
and collagen content, we performed alcian blue, safranin O and
picrosirius red staining. We observed a reduction in proteoglycans
and collagen amounts in Anp32a KD micromasses compared with
controls [Fig. 1(D)]. Mineralization, assessed by alizarin red stain-
ing, was also reduced [Fig. 1(D)]. Although expression of Atm was
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Fig. 1 Osteoarthritis and Cartilage

Anp32a deficiency impairs chondrogenic differentiation via Wnt hyper-activation. (A) PANTHER pathway analysis of upstream tran-
scriptional regulators identified in microarray data comparing articular cartilage of 8-week old male Anp32a-deficient to wild-type mice (n ¼ 4 per
group) using Ingenuity Pathway Analysis. (B) Real-time PCR analysis of direct Wnt target genes Tcf1, Ccnd1, cMyc and Axin2 in control and
Anp32a knockdown (KD) ATDC5 cells (P ¼ 0.0068 by MANOVA; Ccnd1 and Axin2 showed�0.9 correlation with Tcf1 and were not included in the
model, mean ± SD of three replicates). (C) Real-time PCR analysis of chondrogenic differentiation markers collagen 2 (Col2a1), aggrecan (Acan)
and collagen 10 (Col10a1) in control and Anp32a KD ATDC5 cells [P < 0.0001 (Col2a1), P ¼ 0.007 (Acan), P < 0.0001 (Col10a1) by 2-way ANOVA
for interaction between silencing and time, mean ± SD of three replicates]. (D) Alcian blue (AB), safranin O (SO), picrosirius red (SR) at day 14
(D14) and alizarin red (AR) staining at day 21 (D21) showing reduced proteoglycan deposition (AB, SO), collagen content (SR) and mineralization
(AR) in Anp32a KD ATDC5 cells during chondrogenesis. (E) AB staining demonstrating rescue of chondrogenic differentiation in Anp32a KD
ATDC5 cells by treatment with Wnt inhibitor XAV939 (XAV).
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partially suppressed in Anp32a KD micromasses compared with
controls (F1,4 ¼ 24.841 P¼ 0.009 by 2-way ANOVA for control vs KD
cells) [Supplementary Fig. 1(B)], treatment of Anp32a KD micro-
masses with antioxidant N-acetylcysteine (NAC) did not rescue
chondrogenic marker expression [Supplementary Fig. 2(A)]. How-
ever, blockade of ß-catenin dependent Wnt signaling with XAV939
(XAV)11 showed rescue effects on chondrogenic differentiation in
Anp32a KD cells [Fig. 1(E), Supplementary Fig. 2(B)]. XAV is a
tankyrase inhibitor that stimulates ß-catenin degradation by sta-
bilizing axin, the concentration-limiting component of the
destruction complex. Collectively, these results indicate that active
Wnt signaling contributes to detrimental effects Anp32a loss in this
cartilage differentiation model.
Anp32a deficiency leads to hyper-activation of Wnt signaling in
articular cartilage

We then investigated whether Wnt signaling is similarly dys-
regulated in articular cartilage of Anp32a�/e mice, both at the gene
and protein levels. Messenger RNA amounts of direct Wnt target
genes were up-regulated in Anp32a�/e mice compared to wild-
types (Pillai ¼ 0.788, F3,11 ¼ 13.61, P ¼ 0.0005 by MANOVA)
[Fig. 2(A)]. Furthermore, protein reactivity of Wnt target gene TCF1
in immunohistochemistry was increased in articular cartilage from
Anp32a�/e mice, in healthy young mice at 8 weeks [2.4 fold (95%
CI:2.11e3.67; P < 0.001 by t-test], after induction of osteoarthritis
using the destabilization of the medial meniscus (DMM) model
(DMM) [3.8 fold (95%CI:2.51e5.69; P ¼ 0.008 by t-test] and upon
ageing (12 months) [2.1 fold (95%CI:1.34e3.17; P ¼ 0.01 by t-test]
[Fig. 2(B)]. In human articular chondrocytes, expression of Wnt
target genes was up-regulated upon siRNA-mediated Anp32a
silencing [Fig. 2(C)]. Anp32a-silenced human articular chondrocytes
showed stronger induction of the Wnt/b-catenin pathway reporter
TOP-FLASH than control cells, upon recombinant WNT3A stimula-
tion [Fig. 2(D)]. All these findings indicate that ANP32A negatively
regulates Wnt signaling in articular cartilage.

In patients with knee and hip osteoarthritis, ANP32A expression
was down-regulated in damaged compared to preserved areas of
articular cartilage1. Conversely, expression of Wnt direct target
genes was up-regulated in damaged areas (P < 0.0001, Benjamini-
Hochberg adjusted paired t-test) [Fig. 2(E) and Supplementary
Fig. 3(A)]. Expression of ANP32A and several Wnt target genes
negatively correlated in human osteoarthritis cartilage (Spearman
correlation r ¼ �0.36, P ¼ 0.0173) [Fig. 2(F) and Supplementary
Fig. 3(B)]. These data suggest that the link between ANP32A and
Wnt signaling may be clinically relevant in osteoarthritis.
Active Wnt signaling triggers ANP32A nuclear translocation

We next sought to investigate the molecular mechanism via
which ANP32A negatively regulates Wnt signaling. The core of the
canonical or Wnt/b-catenin cascade is the regulation of ß-catenin



Fig. 2 Osteoarthritis and Cartilage

Anp32a-deficiency leads to Wnt signaling hyper-activation in articular cartilage. (A) Real-time PCR analysis of Wnt target gene expression
in articular cartilage from 8-week old male wild-type (WT) and Anp32a-deficient (Anp32a�/�) mice (P ¼ 0.0005 by MANOVA e cMyc showed �0.9
correlation with Tcf1 and was not included in the model, n ¼ 8 and 7 per group). (B) Immunohistochemical staining and quantification for TCF1
protein in male 8-week old, osteoarthritic and female ageing WT and Anp32a�/� mice (representative images of three different mice per group)
(P < 0.001, P ¼ 0.008, P ¼ 0.01 by t-test). Scale bar 50 mm. (C) Real-time PCR analysis of Wnt target gene expression in human articular
chondrocytes transfected with siRNA targeting ANP32A (siANP32A) or scrambled siRNA (siSCR) (n ¼ 2 donors emean ± SD of three replicates).
(D) TOP/FOP-reporter assay in human articular chondrocytes transfected with siANP32A, siRNA targeting ß-catenin (sibCAT) or siSCR, treated
with recombinant WNT3A (n ¼ 2 biologically independent experiments, mean ± SD of three replicates). (EeF) TCF1 expression (E) and correlation
with ANP32A expression (F) by RNA sequencing in paired preserved and damaged cartilage from hips (B) and knees (D) from osteoarthritis
patients [log2-fold change (Log2FC) of damaged (D) vs preserved (P)) (n ¼ 21, P < 0.0001, Benjamini-Hochberg adjusted paired t-test (E),
Spearman correlation r ¼ �0.36, P ¼ 0.0173 (F)].
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protein levels by a cytoplasmic destruction complex. In the absence
of Wnt signaling, the destruction complex captures cytosolic
ß-catenin, leading to its phosphorylation and subsequent degra-
dation by the proteasome. Wnt receptor activation leads to func-
tional inactivation of the destruction complex, resulting in
ß-catenin accumulation and nuclear entry, where it binds to TCF/
LEF transcription factors and regulates transcription of Wnt target
genes12. A yeast two-hybrid screening demonstrated interactions
between ANP32A and AXIN1, a central scaffold for the destruction
complex13. We investigated whether ANP32A interacts with AXIN1
at the protein level in articular chondrocytes. We carried out co-
immunoprecipitations of endogenous ANP32A from extracts of
cells treated with recombinant WNT3A or vehicle control. This
revealed that ANP32A bound AXIN1 in baseline conditions, and this
association was abolished upon Wnt signaling activation by
WNT3A [Fig. 3(A)].

These observations prompted us to investigate the functional
relevance of the interaction of ANP32A with AXIN1 for the cyto-
plasmic stabilization of ß-catenin. Silencing of ANP32A did not
affect ß-catenin protein levels (active nor total) in human articular
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Fig. 3 Osteoarthritis and Cartilage
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chondrocytes [Fig. (3(B)]. This suggests that ANP32A may regulate
Wnt signaling downstream of ß-catenin stabilization. Remarkably,
the dissociation of ANP32A from AXIN1 upon Wnt activation par-
alleled enhanced association of ANP32A with ß-catenin [Fig. 3(A)].
Then, we investigated whether Wnt activation triggers nuclear
translocation of ANP32A, as it occurs for ß-catenin. We examined
the effect of recombinant WNT3A on the subcellular localization of
endogenous ANP32A by immunofluorescence in human articular
chondrocytes. ANP32A was mostly cytoplasmic in untreated cells
[Fig. 3(C)], in agreement with our previous data1. In contrast,
ANP32A also localized in the nucleus after WNT3A treatment
[Fig. 3(C)].

ANP32A represses Wnt target gene expression through histone
acetylation masking

Next, we investigated how ANP32A represses Wnt target genes.
ANP32A is a member of the inhibitor of histone acetyltransferase
(INHAT) complex14, which limits transcription by binding to his-
tones,preferentiallyhistone3, andstericallyhinderingacetylation15.
Hypoacetylation of histones is linked to condensed chromatin and
transcriptional repression16. Wnt-induced ANP32A nuclear accu-
mulation in human articular chondrocytes [Fig. 3(C)] was paralleled
by increased interaction of ANP32A with histone 3 [Fig. 3(A)], indi-
cating that ANP32A may repress Wnt target gene expression via its
inhibitory role on histone acetylation. Chromatin-immunoprecipi-
tation (ChIP)-qPCR analysis showed that ANP32A bound the chro-
matin at Wnt target gene promoters in human articular
chondrocytes [Fig. 3(D)]. In these cells, ANP32A silencing resulted in
increasedH3K9 acetylation atWnt target gene promoters [Fig. 3(E)].
Collectively, these results indicate thatWnt inducesANP32Anuclear
internalization and chromatin binding to Wnt target gene pro-
moters, with inhibition of histone acetylation, and thus, transcrip-
tional repression of Wnt target genes [see Fig. 3(F)]. Of note, in
Anp32a-silenced cells, we did not find increased H3K9 acetylation
marksat thepromoterofAtm [Fig.3(E)], agenepositivelyregulatedat
the transcriptional level by ANP32A1.

Targeting Wnt hyper-activation and oxidative stress downstream of
ANP32A deficiency protects against different features of
osteoarthritis

Next, we investigated therapeutic implications of our findings
for osteoarthritis. Anp32a deficiency results in hyper-activation
of Wnt signaling in articular cartilage [Fig. 2(B)], concomitantly
with an increase in oxidative stress1. We evaluated the effects of
treatment with a Wnt inhibitor and an antioxidant, individually
or in combination, on osteoarthritis, using the DMM mouse
model of the disease17 that mimics mechanisms and features of
posttraumatic osteoarthritis in humans18. In this model, we
previously showed that Anp32a�/e mice have more severe
ANP32A represses Wnt target genes by histone acetylation masking

IP) with anti-ANP32A antibody showing ANP32A-AXIN1 binding in untreate
activation increases ANP32A-b-catenin and -histone-3 binding. ANP32A s
Immunoblot of ANP32A, active and total ß-catenin (with actin as loading
scrambled siRNA (siSCR). (C) Immunofluorescent staining of ANP32A (gree
WNT3A treatment. Representative images are shown (n ¼ 3 (A), n ¼ 2 (B))
PCR (ChIP-qPCR) analysis of ANP32A Wnt target (Tcf1, Cnnd1, cMyc, A

endogenous Wnt signaling, and (E) of acetylated H3K9 (H3K9Ac) on Wnt tar
total Histone-3 (H3) in siANP32A normalized to siSCR cells (n ¼ 2 biologic
response regulation by ANP32A. In basal conditions, ANP32A interacts w
dissociates from AXIN1, associates with ß-catenin, translocates to the nuc
cartilage damage and oxidative stress compared to wild-type
and sham-operated Anp32a�/e mice1. In a new experiment, we
demonstrate Wnt hyper-activation in the articular cartilage of
DMM-operated Anp32a�/e mice [Fig. 2(B)]. After DMM surgery,
Anp32a�/e mice were intra-articularly injected with Wnt inhib-
itor XAV and given NAC via the drinking water [Fig. 4(A)]. XAV
treatment did not provide cartilage protection [OARSI score
difference between means �0.344 (95%CI:-0.735e0.048)]
[Fig. 4(B)], although it effectively inhibited Wnt hyper-activation
in articular cartilage [TCF1 5.36-fold decreased between XAV and
vehicle (V) (95%CI:3.86e7.46) by two-way ANOVA] [Fig. 4(C)]. Of
note, decreased severity of OA in the NAC group also decreased
Wnt activation [TCF1 2.47-fold decreased NAC vs V (95%
CI:1.78e3.43)] and combination treatment decreased TCF1 6.98
fold (95%CI:5.03e9.72). Combination therapy was not considered
different from XAV treatment alone [TCF1 1.30-fold decreased
XAV/NAC vs XAV (95%CI:0.94e1.81)] whereas combination was
more effective than NAC alone [TCF1 2.9-fold decreased XAV/
NAC vs NAC (95%CI:2.03e3.93)]. However, Wnt inhibition pre-
vented osteophyte formation in the osteoarthritis model in
Anp32a�/e mice [osteophyte score difference between the means
0.336 (95%CI:0.089e0.585), F1,28 ¼ 7.69 P ¼ 0.0098 by two-way
ANOVA] [(Fig. 4(D)]. In contrast, NAC protected the Anp32a�/e

mice against cartilage damage [OARSI score difference between
means 0.806 (95%CI:0.415e1.20), F1,28 ¼ 8.48 P ¼ 0.007 by two-
way ANOVA] but had no effect on osteophyte formation
[osteophyte score difference between the means 0.163 (95%CI:-
0.086e0.411)] [Fig. 4(B-D)]. Combination of XAV and NAC
improved both cartilage damage and osteophyte formation
[Fig. 4(B-D)]. Image analysis showed that XAV treatment effec-
tively inhibited Wnt hyper-activation in osteophytes [AXIN2
4.28-fold decreased XAV vs V (95%CI:3.08e5.96) by two-way
ANOVA] [Fig. 4(E)]. Of note, decreased severity of OA in the NAC
group also decreased Wnt activation in osteophytes [AXIN2 1.50-
fold decreased NAC vs V (95%CI:1.08e2.08)] and combination
treatment decreased AXIN2 3.57-fold (95%CI:2.57e4.50). Combi-
nation therapy was not different from XAV treatment alone
[AXIN2 staining 1.20-fold increased XAV/NAC vs XAV (95%
CI:0.86e1.70)] but combination was more effective than NAC
alone [AXIN2 2.39-fold decreased XAV/NAC vs NAC (95%
CI:1.72e3.32)]. These observations suggest that pathological
consequences of ANP32A deficiency may hinge on different
pathways depending on the tissue involved, oxidative stress in
articular cartilage and hyper-activation of Wnt signaling in
osteophyte formation.
ANP32A negatively regulates Wnt signaling in heart and
hippocampus

As demonstrated above, ANP32A interacts with distinct com-
ponents of the Wnt signaling pathway. Highly-connected nodes
in human articular chondrocytes. (A) Co-immunoprecipitation (Co-
d cells, abolished upon Wnt activation by recombinant WNT3A. Wnt
ilencing (siANP32A) shows specificity of anti-ANP32A antibody. (B)
control) in chondrocytes transfected with ANP32A (siANP32A) or
n) and Hoechst nuclear counterstaining (blue) in chondrocytes upon
. Scale bar ¼ 10 mm. (D) Chromatin-immunoprecipitation quantitative
xin2) gene promoter chromatin binding in chondrocytes with high
get and Atm gene promoters. Data expressed as ratio of H3K9Ac and
ally independent experiments (DeE)). (F) Scheme Wnt transcriptional
ith AXIN1 in the destruction complex. Upon Wnt activation, ANP32A
leus and represses Wnt targets via blocking histone acetylation.
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within a signaling pathway, which moreover are ubiquitously
expressed like ANP32A19,20 (Human Protein Atlas - http://www.
proteinatlas.org), may regulate such cascade in multiple tissues21.
Thus, we investigated whether ANP32A's regulatory role on Wnt
signaling is relevant beyond the joint. We analyzed data from the
Human Protein Atlas to identify tissues and organs with inverse
relationship between expression of ANP32A and Wnt target gene
TCF1, which may indicate an underlying regulatory link. Although
there was no ubiquitous relationship between these factors, our
analysis identified brain and muscle including the heart, as organs
of interest [Fig. 5(A)].

In heart tissue, Wnt signaling was enhanced in Anp32a�/e mice
compared to controls, at the gene expression (Pillai ¼ 0.492,
F3,12 ¼ 3.877, P ¼ 0.038 by MANOVA) and protein levels [TCF1 5.7
fold increased (95%CI:3.58e9.91; P ¼ 0.0005 by t-test] [Fig. 5(B and
C)]. Anp32a was down-regulated in a study exploring key deregu-
lated genes and pathways involved in cardiac hypertrophy22.
Conversely, Wnt signaling is activated during heart failure and
cardiac hypertrophy23,24. Hearts from 20-week-old male Anp32a�/e

mice were enlarged compared to controls [Fig. 5(D)]. In Anp32a�/e

animals, total heart weight as well as heart weight expressed
relative to body weight were higher than in wild-types [heart
weight/body weight ratio difference between means 2.313 (95%
CI:1.859e2.767), P < 0.0001 by t-test] [Fig. 5(D) and Supplementary
Table 2). The expression of hypertrophymarkers natriuretic peptide
precursor A (Nppa) and skeletal muscle a-actin (Acta1) was up-
regulated in Anp32a�/e compared to control mice [Fig. 5(E)] [fold
change difference between means 2.85 (95%CI:1.64e4.92),
t15 ¼ 4.10 P < 0.0011 and 2.19 (95%CI:1.22e3.95), P < 0.0124 by t-
test] and histology showed increased amounts of fibrotic tissue [%
fibrosis difference between means 2.145 (95%CI:1.548e3.282),
P¼ 0.0005 by t-test] [Fig. 5(F)]. Collectively, our data show that lack
of ANP32A potentially triggers the development of spontaneous
cardiac hypertrophy, which may result from an excessive activation
of Wnt signaling.

As suggested by the Protein Atlas data, Wnt target gene
expression was up-regulated in brain from Anp32a�/e mice
compared to controls (Pillai ¼ 0.666, F4,10 ¼ 4.978, P ¼ 0.018 by
MANOVA) [Supplementary Fig. 4(A)], demonstrating that ANP32A
also negatively regulates Wnt signaling in this organ. ANP32A
dysregulation has been linked to Alzheimer's disease with ANP32A
increased in human brains from Alzheimer's disease patients25,26.
In a mouse model of this disease, ANP32A elevation in the hippo-
campus correlates with learning deficits, and downregulating
ANP32A rescues synaptic plasticity and memory loss27,28. Over-
expression of ANP32A in hippocampus induced memory deficits in
mice29. Conversely, loss of Wnt signaling plays a critical role in
Alzheimer's disease and emerging studies suggest that restoring
Wnt signaling may be a promising therapeutic strategy30e32. We
found that Wnt signaling was enhanced in the hippocampus of
Anp32a�/e mice [TCF1 3.60 fold increased (95%CI:2.59e5.23;
P ¼ 0.0007 by t-test] [Supplementary Fig. 4(B)]. Therefore, our in-
sights suggest that ANP32A's detrimental role in the pathogenesis
of Alzheimer's disease may be linked to a decline in the activation
of Wnt signaling.

Discussion

Our findings reveal that ANP32A is a converging node regulating
the transcriptional responses of two central cascades in cell
biology: Wnt signaling as identified here, and oxidative stress as
previously shown1. Thus, ANP32A is proposed as a key regulator of
a complex network of pathways that protect against osteoarthritis.
We provide evidence that the regulatory role of ANP32A on the
Wnt transcriptional response is likely not restricted to the joint, but
also seems to function in tissues where dysregulation of ANP32A
expression has been linked to disease, namely heart and
hippocampus.

The Wnt/b-catenin pathway has been extensively implicated in
osteoarthritis4e6. In humans, polymorphisms in genes involved in
Wnt signaling, particularly in extracellular inhibitor SFRP3 and
epigenetic modulator DOT1L, are associated with increased sus-
ceptibility to osteoarthritis33,34. In rodent models, loss of molecules
that suppress Wnt signaling triggers osteoarthritis35e38. Further-
more, mechanical injury and inflammation are potent inducers of
Wnt signaling in cartilage39.

Mechanistically, we show that ANP32A regulates Wnt signaling
by interacting with chromatin and inhibiting histone acetylation at
Wnt target gene promoters, thereby resulting in gene repression.
This repressive function is in linewith its earlier defined role as part
of the INHAT complex, a multiprotein complex that sterically in-
hibits histone acetyltransferases by binding to histone tails14,40,41.
Notably, this molecular mechanism contrasts with our previous
findings for the role for ANP32A as positive transcriptional regu-
lator of the Atm gene and a report indicating that ANP32A enhances
gene transcription of interferon-stimulated genes1,42. Collectively,
these observations indicate that ANP32A can either activate or
repress gene expression programs.

Our preclinical data in the Anp32a-deficient mouse model show
that combinatorial treatment with a Wnt inhibitor and an antiox-
idant leads to increased therapeutic efficacy in osteoarthritis. We
did not perform these dual therapy experiments in wild-type ani-
mals as our previous study indicated that NAC had no significant
impact in the DMM model, in contrast to XAV-939 treatment43,44.
Hence, we did not anticipate beneficial effects of adding NAC to
XAV-939 intra-articular treatment in wild-type animals. Cartilage
damage in the absence of ANP32A is linked to oxidative stress, yet
joint remodeling with osteophyte formation appears to be Wnt
dependent. Antioxidants provide protection for cartilage in trans-
lationally relevant pre-clinical settings45,46. In our previous study,
NAC treatment showed protective effects for osteoarthritis in
Anp32a-deficient mice1. However, combination of antioxidants and
Wnt inhibitors for this disease has never been explored. The
additional effects of the dual therapy strategy are translationally
relevant for disease management as it demonstrates potential of
combination therapies for osteoarthritis with different in-
terventions simultaneously targeting distinct disease-associated
networks and disease manifestations. Given the complexity of
osteoarthritis, single target therapies will likely not halt all disease
features. Yet, the specific effect of this combination therapy inwild-
type animals remains unknown, and further translation to humans
will require additional approaches, in particular seeking for situa-
tions where dual targeting could be relevant.

We combined oral antioxidant administration with intra-artic-
ular administration of a Wnt inhibitor in Anp32a-deficient mice.
The risk of systemic toxicity has prompted a paradigm shift in
osteoarthritis drug development with redirection of attention to
benefits of localized vs systemic treatment47. However, locally-
administered pharmacological agents in the synovial joint might
not easily reach cartilage regions closer to the subchondral bone, as
dense extracellular matrix in articular cartilage restricts penetra-
tion and diffusion of solutes48. Systemic administration of well
tolerated pharmacological agents such as NAC might add benefits
to local administration within the joint, as therapeutic effects
would not be only dependent on diffusion into the cartilage from
the synovial fluid. Once in the bloodstream, small molecules can
diffuse from the blood vessels in the subchondral bone into calci-
fied and non-calcified articular cartilage48,49.

We show thatWnt signaling is enhanced in the heart of Anp32a-
deficient mice. We examined heart tissue as Wnt target gene TCF1
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Fig. 4 Osteoarthritis and Cartilage

ANP32A protects against different features of osteoarthritis by controlling distinct pathways. (A) Outline of in vivo interventions against
osteoarthritis in 8-week-old Anp32a-deficient (Anp32a�/�) male mice subjected to destabilization of the medial meniscus (DMM) surgery. One
week after injury, mice were injected intra-articularly with vehicle or Wnt inhibitor XAV939 (XAV) every 10 days for a total of 7 times. Mice were
treated orally with vehicle, XAV or NAC alone or in combination. Knee joints were collected 12 weeks after surgery. (B) Hematoxylin-safranin-O-
stained sections and quantification by OARSI severity grade demonstrating NAC protects against articular cartilage damage: [P ¼ 0.007 for main
effect NAC by two-way ANOVA, n ¼ 8 per group]. (C) Immunohistochemical staining and quantification for TCF1 in articular cartilage of Anp32a�/

� mice in the DMM model treated or not with XAV or NAC (representative images of n ¼ 5 mice per group) [P ¼ 0.0010 for interaction between
treatments and control by two-way ANOVA, n ¼ 5 per group]. (D) Hematoxylin-safranin-O-stained sections and quantification of osteophytes
demonstrating that Wnt inhibition protects against osteophyte formation [P ¼ 0.0098 for main effect XAV by two-way ANOVA, n ¼ 8 per group].
(E) Immunohistochemical staining and quantification for AXIN2 in developing osteophytes in Anp32a�/� mice in the DMM model treated or not
with XAV or NAC (representative images of n ¼ 5 mice per group) [P ¼ 0.002 for interaction between treatments and control by two-way ANOVA,
n ¼ 5 per group]. Scale bar: 200 mm (BeD) 50 (CeE) mm.
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Fig. 5 Osteoarthritis and Cartilage

Regulation of Wnt signaling by ANP32A in tissues beyond cartilage. (A) Selected Protein Atlas data showing the inverse relationship between
ANP32A and Wnt target gene TCF1 in brain and muscle tissues compared to other systems. Data are presented as scaled variables. (B) Real-
time PCR analysis of Wnt target gene expression (n ¼ 8) in heart from 20-week-old male WT and Anp32a�/� mice (P ¼ 0.038 by MANOVA - Axin2
data did not show homogeneity of variance and were not included in the model). (C) Immunohistochemical staining and quantification for TCF1 in
20-week-old male WT and Anp32a�/� mice hearts (P ¼ 0.0005 by t-test). Scale bar 50 mm. (D) Macroscopic and Hematoxylin-Eosin stained
hearts demonstrating cardiac hypertrophy in Anp32a�/� compared to WT mice and heart weight/body weight ratio in 20-week old male WT and
Anp32a�/� mice (P < 0.0001 by t-test). Scale bar 2 mm. (E) Real-time PCR analysis of hypertrophy markers natriuretic peptide precursor A (Nppa)

and skeletal muscle a-actin (Acta1) (n ¼ 8) in heart from 20-week old male WT and Anp32a�/� mice (P ¼ 0.0011 (Nppa), P ¼ 0.0125 (Acta1) by t-
test). (F) Picrosirius red staining showing increased amounts of fibrotic tissue in hearts from 20-week-old Anp32a�/� mice compared to WT
(P ¼ 0.0005 by t-test). Scale bar 50 mm.
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and ANP32A expression showed an inverse relationship, and
Anp32a expression was reported to be downregulated in cardiac
hypertrophy22. Besides increased Wnt target gene expression, loss
of Anp32a resulted in an increased heart/body weight ratio in mice
andmore fibrosis. Wnt signaling is activated in cardiac hypertrophy
and several studies have reported anti-hypertrophic effects forWnt
inhibitors23. Our findings suggest that ANP32A may protect against
the development of cardiac hypertrophy via limitingWnt signaling.
Thus, increasing ANP32A expression may be beneficial in this
context.
We further show that Wnt signaling is enhanced in hippocam-
pus of Anp32a-deficient mice. In a genetic mouse model of Alz-
heimer's disease, downregulating ANP32A restored synaptic
plasticity and memory loss27,28. The pathological role of ANP32A in
Alzheimer's disease contrasts with its protective role in cerebellar
ataxia1, suggesting that ANP32A has tissue-specific functions
within different brain regions. In line with ANP32A's pathological
involvement in Alzheimer's disease, ANP32A is reported to be
increased in brain of Alzheimer's disease patients and in disease
mouse models25,26. Overexpression of ANP32A in hippocampus
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induced memory impairments in mice29. ANP32A's pathological
roles were not previously linked to a deficit inWnt signaling, which
has been extensively demonstrated to contribute to cognitive
decline in Alzheimer's disease30,31. Thus, our study potentially
sheds light on the molecular mechanism underlying ANP32A's link
to Alzheimer's disease, and supports that targeting ANP32A may
prevent memory deficits by restoring the Wnt signaling balance,
often lost in the ageing brain43.

This study has limitations worth mentioning. In vivo experi-
ments were performed with mice with a global deletion of the
Anp32a gene as a conditional Anp32a allele is currently unavailable.
Although unlikely, features reported here may not primarily be
caused by the absence of ANP32A in the particular explored tissue,
but secondary to other events occurring in other tissues. Thus, this
study stimulates research to corroborate the mechanisms reported
here in a more tissue-specific manner. Of note, despite the impor-
tant role of Wnt signaling during development, we did not see
striking phenotypic abnormalities in the genetic model. We hy-
pothesize that during development, loss of Anp32a can be
compensated by other molecules that regulate Wnt signaling, or
that there is some degree of functional redundancy with related
family members ANP32B and ANP32D. In addition, translation of
preclinical interventions in mouse models, in particular of osteo-
arthritis, has been challenging. Many factors may play a role in this.
Among these the existence of multiple human osteoarthritis
endophenotypes is not well represented in the post-traumatic
DMM model, and the impact of ageing on the chondrocyte's iden-
tity and molecular program is challenging to mimic in mice.

In conclusion, our study identifies that ANP32A controls the
transcriptional response of Wnt signaling in cartilage, heart and
hippocampus, suggesting ANP32A as a therapeutic target for
osteoarthritis and other diseases associated with dysregulation in
this central signaling cascade. This insight, together with our pre-
vious report discovering ANP32A as regulator of the antioxidant
defense, position ANP32A as a critical node regulating diverse key
signaling networks in the cell. As ANP32A expression is dysregu-
lated in several diseases, further research should focus on factors
that control ANP32A expression. Notably, our study provides pre-
clinical evidence for augmented therapeutic efficacy of a combi-
natorial treatment with Wnt inhibitors and antioxidants in
osteoarthritis. Future studies could explore this combination
in large animal models for osteoarthritis, and in other pathologies
in which Wnt hyper-activation and oxidative stress simultaneously
occur.
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