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Appendices 

Appendix 1: The SPR Instrument 

Cards for the sorting task 

Table A.1: Ideal sorts for the card-sorting task. The columns are the structure aspects each card contains, the 
rows represent the property aspects of each card. The numbers in the cells refer to the specific sample problem 
card. The design is based on the model of Krieter et al. (2016). 

  Structure aspects (deep features) 

  Molecular/atomic 
Bonding 

Molecular/atomic 
Lattice 

Ionic 
Bonding/Lattice 

Metallic 
Bonding/Lattice 

Property 
aspects 
(surface 
features) 

Melting point 8 5 14 3 

Conductivity 11 7 2 12 

Toughness 16 13 4 10 

Solubility 1 6 9 15 

Figure A.1: used card set in the unframed and framed sorting task. 

  

Polyethylene (~C=C-C=C-C~)n is a polymer that 
can conduct electricity. The applications of such 
polymers are numerous, for example wafer-thin 

displays. Explain how it is possible that 
polyethylene can conduct current.

Graphite is composed of carbon atoms and can 
conduct current. Therefore, it is used in 

electrodes in batteries. Explain how graphite can 
conduct current.

Table salt (sodium chloride) can conduct 
electricity in a liquid state only. Solid kitchen salt 
cannot do this. Explain this conductivity of table 

salt.

In smartphones, gold is used as a material for 
contact points on the circuit board. Explain why 

gold is used in these contact points.

Water striders are small insects that can walk 
on water. The water looks like a glass plate to 

these insects. But if you secretly add some soap 
to the water they probably drown. Explain.

A pencil, like a diamond, consists of carbon. 
However, you can cut a pencil with a simple iron 
pencil sharpener and you have to cut a diamond 
with another diamond. Diamond is the hardest 

material in the world. Explain this.

Concrete is created because cement (Ca3SiO5) 
absorbs crystal water. Concrete is non-

combustible, but after a fierce fire, the concrete 
skeleton must still be broken down, because all 

its strength has disappeared. Explain.

Stainless steel contains iron and carbon. Explain 
why stainless steel is harder than pure iron.

Acrylonitrile (C2H3CN) is a liquid and it is used as 
a raw material to make a polymer for toy bricks. 

The melting point of acrylonitrile is 191K. 
Explain why acrylonitrile is a liquid at room 

temperature.

The glass of your smartphone contains 
crystalline silicon dioxide (SiO2). Compared to 

diphosphorus pentaoxide (P2O5), SiO2 has a high 
melting point, namely 1720°C. Explain the high 

melting point of SiO2.

Copper (II) sulphate is a white solid. When it has 
absorbed crystal water, the color has turned 
blue. Blue copper (II) sulphate has a lower 

melting point than white copper (II) sulphate. 
Explain this.

Molten metals are easily miscible. An alloy is 
formed. For example, bronze can be formed by 
mixing copper and tin. However, bronze has a 
lower melting point than pure copper. Explain 

this.

A blotch of crude oil at sea is difficult to remove. 
Oil is not soluble in water. You can burn it or 

finely disperse it and then hope it breaks down 
slowly. Explain why petroleum is not soluble in 

water.

Quartz is a form of silicon dioxide (SiO2) that is 
commonly found in the earth's crust (12% by 

volume). You can find quartz in sand, for 
example. Silicon dioxide is a crystalline powder 
that is virtually insoluble in water. Explain this.

Water can be contaminated with heavy metals. 
These metals are dissolved in water as charged 
particles. You can remove them by precipitating 

them with saline solutions. Explain how this 
works.

Dissolving gold in water is very difficult. You 
can dissolve gold in royal water (a mixture of 
hydrochloric acid and nitric acid). In this way 
George de Hevesy hid two Nobel medals from 
the Nazis. After the war he had the gold 
beaten down again and the Nobel Foundation 
had two new medals beaten from it for the 
original owners. Explain why gold does not 
dissolve in ordinary water.

11 7 2 12

10
41316

8 5 14 3

15961
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Work sheets and instruction 
 

Date:         Code:     
 

Sorting task A 
 

In front of you are 16 problems. Read the problems thoroughly, but do not try to solve them. Arrange 
(sort) these problems in such a way that the problems - which need a similar underlying chemical 
concept to solve the problem – are grouped together. 
An example: you have the following problem - Sugar is made of 12 C atoms, 22 hydrogen atoms and 11 
oxygen atoms. What percentage of the mass consists of carbon atoms? You could sort this problem 
with the chemical concept mole, but also with mass ratios.  

 
Make at least 2 groups and no more than 15 groups. A problem (a card) cannot be part of more than 
one group at the same time. There are different ways to sort these problems.  

 
When you are finished, give the groups formed by you a name that describes the group best for you. 

 
 
Give each group you have created a name. Number the groups. Write down the numbers of the cards 
you put in that group after the group name.  

Example:  
1. Keep in fridge - 3, 5, 7 
2. Store in cupboard - 1, 2, 4, 6 
3. …. 
 

Attention, have you sorted 16 cards?  
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Date:         Code:    
 

Sorting task B 
In front of you are the same 16 problems as in the previous task. I would like to ask you again to sort 
these problems. However, I will now give you the categories in which you can sort these problems: 

- Molecular compounds - bonding 
- Molecular compounds - lattices 
- Salts - ionic bonding / ionic lattice 
- Metals - metallic bonding / metallic lattice 

A problem (one card) cannot be part of more than one group at the same time. Eventually, each 
problem must be placed in one of the four categories. 

 
Write down the numbers of the cards in the boxes. Attention, have you sorted 16 cards? 

 

Molecular 
compounds 

 

Bonding 

Molecular 
compounds 

 

Lattices 

Salts 

 

ionic bonding / 
lattice 

Metals 

 

metallic bonding 
/ lattice 

 

 

 

 

 

 

 

 

   

 

Ready? Now collect all 16 cards and slide them back into the paper clip. 
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Perspective map – task C 
 

In front of you are the questions of the perspective for structure-property reasoning. A perspective is 
a way of looking at, thinking about, and working with problems. An example is the sports perspective. 
You can look at your sport, for example basketball, from a technical perspective (what is the best 
basketball? what are the best shoes?), a tactical perspective (which setup? Which system?) etc. By 
answering the questions from for example the tactical perspective, you can solve a problem within 
basketball. The better you get, the more elaborate your perspective is and the better (and faster) you 
can solve a problem. 

Within chemistry you can also distinguish several perspectives including the perspective for 
structure-property reasoning and the energy perspective. So, you use such a perspective to question 
your chemical problem and consequently solve this problem. 
 
Complete this initial perspective for structure-property reasoning by answering the questions with 
the appropriate chemical concepts. You may give as many answers as necessary. You are also 
allowed to create a hierarchy if necessary.  

 
An example: A question in the tactical perspective is 'with which attack system can we win the 

basketball game' – possible answers are: pass-screen-away; high post; hand-over; etc. 

 
  

Sport perspective - 
basketball

Which technical aspects?

Which tactical aspects?

Which mental aspects?

Which physical aspects?

What is the best basketball?

...

Which line-up?

Which system to attack?

pass screen away

high post

hand off
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Date:          Code:   
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Perspective map – task D 
 

In front of you is the beginning of the perspective for structure-property reasoning. Again, I want to 
ask you to complete this perspective for structure-property reasoning, but this time I want you to use 
the concepts below. You are allowed to create a hierarchy if necessary.  

 

amorph crystal lattice with impurities solubility 

atomic bond mixture melting / boiling point 

atomic lattice metal fast / slow 

dipole-dipole interaction metal atoms conductivity 

hardness metal bond Van der Waals force 

intermolecular interaction metal lattice free / bound 

ionic bond molecular compound hydrogen bond 

ions molecules salt 

ionic lattice molecular lattice pure crystal lattice 

crystal lattice non-metal atoms pure compound 

 
 

This was the last task. Thank you for filling it in. 
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Appendix 2: Demonstration Protocols for Teachers 

In Tables A2–A4, the demonstration protocols for the demonstration experiments are provided. In 
these protocols, for each property, an accompanying demonstration is described. The structure model 
concept which could be modeled by the students is also indicated. These demonstrations fit in the 
“observe” phase in the POE task as described in “3.3. Overview of the Lesson Series”. 
For each demonstration, the properties of several substances of that group are demonstrated. The 
choice of substances depends on what is available at school to properly demonstrate the properties. 
The substances mentioned in the demonstration protocols are therefore only indicative. 

Table A2. Demonstration protocol for metals. 

Property Demonstration Instructions Structure 
Model 

Appearance The teacher shows different metals (sheets, rods, etc.), 
such as iron, copper, lead, zinc. 

The teacher polishes the metal plates and shows the 
results. 

n/a 

Phase at room 
temperature 

The teacher shows the metal plates and asks about the 
phase. 

Metallic lattice 

Strength The teacher works the metal plates with a hammer. Metallic lattice 

Malleability The teacher tries to bend the metal plates. Metallic lattice 

Melting point The teacher holds the metal lead (mp = 327 K) or  
zinc (mp = 420 K) in a blue flame. The metal becomes 
soft. Next, the teacher holds the metals copper (mp = 
1083 K) and/or iron (mp = 1535 K) in the flame. These 
melting points are above the temperature (1273 K) of 
the blue flame and will not soften. 

Metallic bond 

Conductivity of 
electricity 

The teacher builds the setup to measure current 
conductivity: lamp, voltage source, wires and, if 
necessary, adds a conductivity meter. The teacher 
measures the current conductivity of various metals. 

Metallic 
lattice,  
metallic bond 

Behavior when 
heated 

The teacher keeps a ribbon of magnesium in the flame. 

The teacher sprinkles some metal powders (such as iron 
or magnesium) through the flame. 

n/a 
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Table A3. Demonstration protocol for salts. 

Property Demonstration Structure 
Model 

Appearance The teacher shows different salts, such as sodium 
chloride, sodium nitrate, iron (III) nitrate, copper sulfate. 

n/a 

Strength/malleability The teacher hits lump of salt with a hammer. At the 
school of the first author, the assistant found an old 
bottle with big lumps of iron (III) nitrate, which was 
suitable to hit it with a hammer. 

Lattice with 
uneven 
particles 

Phase at room 
temperature 

The teacher shows different salts with attention to the 
phase at room temperature. 

Lattice with 
strong bonds 

Melting point The teacher heats a salt such as sodium chloride and 
iron (III) nitrate. 

Lattice with 
strong bonds 

Conductivity of 
electricity 

The teacher tests a solid salt, a liquid salt and a dissolved 
salt for conductivity. 

The particles 
are charged 
and stuck in a 
grid 
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Table A4. Demonstration protocol for molecular compounds. 

Property Demonstration Structure Model 

Appearance The teacher shows different molecular substances, 
such as sugar, glucose, ethanol, water, methane 
(burning), oil. 

n/a 

Conductivity of 
electricity 

The teacher makes a sugar solution and an ethanol 
solution and tests the current conduction. The teacher 
also tests the conductivity of water and oil. 

No charged 
particles: 
molecules 

Behavior when 
heated (sugar) 

The teacher heats sugar until it caramelizes and burns. The molecules 
consist of atoms 

The atomic bond 
is very strong 

Phase at room 
temperature 

The teacher shows liquid and gaseous molecular 
substances such as water, CO2 in soft drinks, methane 
gas, ethanol, acetone. 

Weak bond 
between the 
molecules 

Boiling point The teacher boils water and ethanol and uses a sensor 
to measure the temperature.  

The students search the boiling points of the liquids 
and search for links. 

Van der Waals 
bond and 
hydrogen bond 

Solubility The teacher tries to dissolve various substances, such 
as sugar, oil in water. Two groups emerge. 

Van der Waals 
bond and 
hydrogen bond 

Behavior when 
heated 

The teacher heats up sugar and carbon in a rustling 
flame. 

Molecular 
lattice/molecular 
bond vs. atomic 
lattice/atomic 
bond 

  


