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Abstract

Embryogenesis in plants is a unique process in the

sense that it can be initiated from a wide range of cells

other than the zygote. Upon stress, microspores or

young pollen grains can be switched from their normal

pollen development towards an embryogenic pathway,

a process called androgenesis. Androgenesis repre-

sents an important tool for research in plant genetics

and breeding, since androgenic embryos can germi-

nate into completely homozygous, double haploid

plants. From a developmental point of view, androgen-

esis is a rewarding system for understanding the

process of embryo formation from single, haploid

microspores. Androgenic development can be divided

into three main characteristic phases: acquisition of

embryogenic potential, initiation of cell divisions, and

pattern formation. The aim of this review is to provide

an overview of the main cellular and molecular events

that characterize these three commitment phases.

Molecular approaches such as differential screening

and cDNA array have been successfully employed in

the characterization of the spatiotemporal changes in

gene expression during androgenesis. These results

suggest that the activation of key regulators of em-

bryogenesis, such as the BABY BOOM transcription

factor, is preceded by the stress-induced reprogram-

ming of cellular metabolism. Reprogramming of cellu-

lar metabolism includes the repression of gene

expression related to starch biosynthesis and the in-

duction of proteolytic genes (e.g. components of the

26S proteasome, metalloprotease, cysteine, and as-

partic proteases) and stress-related proteins (e.g. GST,

HSP, BI-1, ADH ). The combination of cell tracking

systems with biochemical markers has allowed the

key switches in the developmental pathway of micro-

spores to be determined, as well as programmed cell

death to be identified as a feature of successful

androgenic embryo development. The mechanisms of

androgenesis induction and embryo formation are

discussed, in relation to other biological systems, in

special zygotic and somatic embryogenesis.

Key words: Androgenesis, developmental switch, embryogen-

esis, embryogenic potential, gene expression, microspore,

programmed cell death, stress.

Embryogenesis in higher plants

Embryogenesis has evolved as a successful strategy for the
reproduction of higher multicellular organisms. Zygotic
embryogenesis in animals and plants starts with the fusion
of the haploid female and male gametes, giving rise to
a diploid zygote. The zygote possesses the ability to initiate
embryogenesis, a developmental programme that leads to
the establishment of an embryo with the basic features of
the adult body plan. This widely conserved mechanism of
reproduction has, however, major differences between
animal and plant kingdoms, as embryogenesis in flowering
plants starts with two fertilization events. The pollen grain
(male gametophyte) is a three-celled structure composed of
two generative cells encased within the vegetative cell
(McCormick, 1993). During pollination, the vegetative cell
serves as a ‘powerhouse’ to deliver the generative cells to
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the embryo sac (female gametophyte). In the embryo sac,
the double fusion of the generative cells with the egg cell
and the two nuclei of the central cell give rise to the diploid
zygote and the triploid endosperm, respectively (Goldberg
et al., 1994). Another major difference between animal and
plant embryogenesis consists of the ability of plant embryos
to develop in vivo or in vitro from a wide range of cell
types other than the zygote (Mordhorst et al., 1997). The
development of techniques and protocols to produce plant
embryos asexually has had a huge technological and
economical impact on agricultural systems, and nowadays
these biotechnologies represent an integral part in the
breeding programmes of agronomically important crops.
Figure 1 provides an overview of the distinct types of

cells that can undergo embryogenic development in higher
plants. During in vivo development, maternal apomixis
refers to the asexual formation of a seed from the maternal
tissues of the ovule, avoiding the processes of meiosis
and fertilization (Koltunow, 1993). Maternal apomictic
embryos develop from a somatic cell within the ovule
(apospory) or from an unreduced embryo sac derived from
the megaspore mother cell (diplospory). In either case,
apomictic embryo development is independent of pollina-
tion, but in some species this might be required for the
initiation of endosperm development and the production of
viable seeds (Koltunow et al., 1998). Another type of
apomictic development has been reported to occur in the
gymnosperm Cupressus dupreziana, where embryos de-
velop from unreduced pollen grains. This type of apomixis
is referred to as paternal apomixis (Pichot et al., 2001).
Because apomixis offers the possibility of the fixation and
indefinite propagation of a desired genotype, there has been
a great deal of interest in genetically engineering this
ability. Nevertheless, so far it has not been possible to
manipulate the apomictic trait for clonal reproduction via
seeds (Bicknell and Koltunow, 2004). Clonal propagation
is usually achieved via the induction of in vitro somatic
embryogenesis, a process that is defined as the regeneration
of a whole plant from undifferentiated somatic cells in
culture. Induction of somatic embryogenesis is usually

achieved by a stress and/or hormone treatment of somatic
cells. Depending on the donor tissue and the induction
treatment conditions, embryos may develop either directly
from single cells or indirectly through an intermediary
callus phase (Zimmerman, 1993). Additional routes to
in vitro embryogenesis are defined by the ability of male
or female gametophytes to irreversibly switch from their
gametophytic pathway towards an embryogenic route.
While androgenesis refers to the development of embryos
from microspores or immature pollen grains (Touraev
et al., 1997), gynogenesis refers to the development of
embryos from unfertilized ovaries in vitro or in vivo
(Musial et al., 2001; Gémes-Jushász et al., 2002). By
contrast to apomixis and somatic embryogenesis, which
lead to clonal propagation of a specific genotype, andro-
genic and gynogenic plants reflect the product of meiotic
segregation. Thus, they have the remarkable characteristic
of possessing only one set of chromosomes, and therefore
are haploid plants.

Androgenesis as a double haploidization tool for
efficient plant breeding

For breeding purposes, the evaluation of diversity in
genetic pools and the establishment of homozygous lines
are of critical importance. Homozygosity is traditionally
achieved by performing time-consuming and labour-
intensive backcrosses (Morrison and Evans, 1988). Haploid
plants derived from microspores opened a new dimension
for the production of homozygous lines due to the large
amount of microspores that are produced by a single plant.
Due to the colchicine-induced or spontaneous process of
chromosome doubling that takes place during the early
stages of embryo development, fertile double haploid plants
can be easily regenerated within a short period of time
(Wang et al., 2000). The production of double haploids via
androgenesis represents, in this context, a powerful tech-
nique both for the production of hybrid seeds and the
evaluation of genetic diversity. Though androgenesis is
a naturally occurring process in some species, the in vivo
frequency is very low (Rammana, 1974; Rammana and
Hermsen, 1974; Koul and Karihaloo, 1977). Efficient
androgenesis is usually induced by the application of
a stress treatment to whole plants in vivo or tillers, buds,
anthers, and isolated microspores in vitro (Touraev et al.,
1997). Since the first description of androgenesis in in vitro-
cultured anthers ofDatura innoxia by Guha andMaheshwari
(1964), improvement of the conditions for androgenesis
induction and microspore culture have resulted in the
regeneration of double haploids of many plant species.
However, many agronomically important crops are recalci-
trant to androgenesis (Wang et al., 2000). Further use of this
technology is largely hampered by the poor understanding
of the mechanisms that render microspore cells embryo-
genic. In vitro embryogenesis systems, here represented by

Fig. 1. Overview of the different types of cell structures that can
undergo embryogenic development in higher plants. F, fertilization; DH,
double haploid; M, mitosis.
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androgenesis, are excellent model systems to study the de-
velopmental aspects of embryogenesis induction and em-
bryo formation from single, haploid microspores. As shown
by several experiments, embryogenic development during
androgenesis is divided into three main characteristic,
overlapping phases: in phase I, acquisition of embryogenic
potential by stress involves repression of gametophytic
development and leads to the dedifferentiation of the cells;
in phase II, cell divisions lead to the formation of multicel-
lular structures (MCSs) contained by the exine wall; in
phase III, embryo-like structures (ELS) are released out of
the exine wall and pattern formation takes place. A time-
line of the three different phases during androgenic develop-
ment in the model species barley is shown in Fig. 2a.
The aim of this review is to provide an overview of the main
molecular and cellular events that characterize the differ-
ent commitment phases of microspores into embryos, and
to highlight their similarities and differences with the two
most extensively studied model systems, somatic and zy-
gotic embryogenesis. Special emphasis is given to the initial
stages of microspore embryogenic potential acquirement
and the initiation of cell divisions.

Androgenesis induction: the role of stress

Owing to their high regeneration efficiencies, barley
(Hordeum vulgare L.), rapeseed (Brassica napus L.),
tobacco (Nicotiana spp.), and wheat (Triticum aestivum

L.) have been considered model species to study the
mechanisms of stress-induced androgenesis (Touraev
et al., 1997). However, with the recent advances in protocol
design, molecular and morphological studies are now
possible in other plant species, such as maize (Zea mays;
Magnard et al., 2000) and pepper (Capsicum annuum L.;
Bárány et al., 2001). Lessons learned from these advanced
model systems suggest that androgenesis can be efficiently
triggered within a relatively wide developmental window.
During pollen development, the responsive period for
androgenesis is represented by the stages that surround
the asymmetric division of the uninucleate microspores,
resulting in a polarized pollen grain containing a generative
cell embedded in the large vegetative cytoplasm. The
vegetative and generative cells differ markedly, as the
small condensed generative cell will undergo an additional
mitotic division to produce two sperm cells, while the
vegetative cell will start an intense programme of accumu-
lation of storage products, namely starch and lipids to drive
further pollen maturation (Bedinger, 1992; McCormick,
1993). It is widely accepted that when the vegetative
cytoplasm of binucleate pollen starts to accumulate starch,
androgenesis can no longer be triggered (Binarova et al.,
1997; Touraev et al., 1997). Another important postulation
based on practical experience is that the stress treatment,
which is needed to switch efficiently the developmental
fate of microspores, varies greatly depending on the
plant species and the species genotype. In barley, higher

Fig. 2. Cellular and molecular aspects of androgenesis. (a) Time-line of in vitro androgenic development in the model species barley illustrating the
three different phases of embryogenic development. ELS, Embryo-like structure; EM, enlarged microspore; GC, generative cell; MCS, multicellular
structure; ML-L, mid-late to late uninucleate microspore; N, nucleus; PCD, programmed cell death; RM, root meristem; SAM, shoot apical meristem;
SC, scutellum; SM, star-like microspore; V, vacuole; VC, vegetative cell. (b) Based on gene expression data collected from barley androgenesis and
other androgenic model species, the gene expression programmes associated with each phase are displayed underneath the time-line. 1Reynolds
and Crawford (1996); 2Kyo et al. (2000); 3Maraschin et al. (2005b); 4Pechan et al. (1991), Cordewener et al. (1994, 1997), Zarsky et al. (1995), Smykal
and Pechan (2000), Bárány et al. (2001); 5Baudino et al. (2001); 6Perry et al. (1999); 7Magnard et al. (2000); 8Vrienten et al. (1999); 9Maraschin et al.
(2005b); 10Paire et al. (2003), Borderies et al. (2004); 11Boutilier et al. (1994, 2002).
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regeneration efficiencies are obtained when microspores at
the mid-late to late uninucleate stage are subjected to
starvation and osmotic stress, which is achieved by in-
cubating anthers in a mannitol solution (Hoekstra et al.,
1992). In wheat and tobacco, higher induction rates are
achieved by a period of starvation in combination with heat
shock (Touraev et al., 1996a, b), whereas a heat shock
treatment alone is sufficient to induce androgenesis in
rapeseed and pepper (Custers et al., 1994; Bárány et al.,
2001). However, other types of stresses applied within the
responsive developmental window have been demonstrated
to trigger androgenesis at lower rates. They consist of
subjecting cells to colchicine (Barnabás et al., 1991; Zhao
et al., 1996; Obert and Barnabás, 2004), nitrogen starvation
(Kyo and Harada, 1986), auxin (Reynolds and Kitto, 1992;
Hoekstra et al., 1996), chemicals, gamma irradiation
(Pechan and Keller, 1989; Zheng et al., 2001), and cold
treatment (Gaillard et al., 1991; Kasha et al., 2001). Since
so many stress factors can trigger the reprogramming of
microspores into embryos, it is likely that initiation of
androgenesis is induced by converging signalling path-
ways, although, of course, different stress signals may
trigger the same downstream pathways. An analogous
situation may be found during the induction of somatic
embryogenesis, where the transition of somatic cells to an
embryogenic state is regulated by different classes of
hormones, namely auxin, cytokinins, and abscisic acid
(ABA) (de Vries et al., 1988; Filonova et al., 2000;
Nishiwaki et al., 2000), as well as by wounding, osmotic
stress, starvation, and heavy metal ions (Ikeda-Iwai et al.,
2003). During zygotic embryogenesis, however, stress
per se is not directly involved with zygotic embryogenic
competence. The ability of the zygote to initiate embryo-
genesis appears to be related to an increase in ethylene
synthesis and endogenous auxin levels after fertilization
(Ribnicky et al., 2002; Mòl et al., 2004). Interestingly,
reactive oxygen species (ROS) are second messengers
during auxin- and stress-induced embryogenesis (Nagata
et al., 1994). Mitogen-activated protein kinase (MAPK)
cascades may link auxin signalling to oxidative stress
responses and cell cycle regulation (reviewed by Hirt,
2000), and a MAPK has been reported to be activated via
stress-related ABA signalling (Knetsch et al., 1996). Thus,
it is likely that downstream regulatory proteins, such as
MAPKs, play an important role in bridging the gap in
embryogenesis induction in different types of cells.

Morphological changes associated with
embryogenic microspores

Upon mannitol treatment to induce barley androgenesis,
microspores enlarge, and this has been correlated with
embryogenic potential acquisition during induction of
androgenesis in many crop species (Hoekstra et al., 1992;

Touraev et al., 1996a, b). Embryogenic microspores are
characterized by the presence of a large central vacuole, and
a clear cytoplasm (Huang, 1986; Hoekstra et al., 1992;
Maraschin et al., 2003a). In other embryogenic systems,
such as carrot (Daucus carota L.) somatic embryogenesis,
competent cells are present among a subpopulation of
enlarged vacuolated cells (McCabe et al., 1997; Schmidt
et al., 1997), and during zygotic embryogenesis plant egg
cells show a rapid increase in volume after fertilization
(Mansfield and Briarty, 1991; Mòl et al., 1994). However,
after the induction of somatic embryogenesis in Dactylis
glomerata and Norway spruce (Picea abies L. Karst),
enlarged cells are not competent to become embryos. In
these species, it is a subpopulation of small, cytoplasm-rich
cells that become embryogenic (Filonova et al., 2000;
Somleva et al., 2000). This indicates that besides cell size,
other morphological markers are associated with embryo-
genic potential. During androgenesis, one of these markers
is the degree of cytoplasmic dedifferentiation of enlarged
cells. Initiation of cell division from stressed microspores
has been correlated with specific ultrastructural changes,
including organelle-free regions in the cytoplasm, a signif-
icant decrease in the number and size of starch granules and
lipid bodies, and an overall decline in the number of
ribosomes (Rashid et al., 1982; Huang, 1986; Telmer et al.,
1995; Maraschin et al., 2005a). Specifically in barley, these
cytoplasmic changes are associated with the presence of
a thin intine layer, contrasting to the thick intine layer
displayed by pollen cells (Maraschin et al., 2005a). Based
on these morphological observations, it has been proposed
that stress leads to the dedifferentiation of microspores by
the repression of gametophytic development. There are two
known pathways in eukaryotic cells that lead to cytoplas-
mic remodelling: the ubiquitin-26S proteasomal system,
which is the major cellular pathway for the degradation of
short- and long-lived molecules, and autophagy, which is
the primary intracellular mechanism for degrading and
recycling organelles via the lysosomes. Though these
pathways are developmentally regulated, they are also
activated upon stress conditions, e.g. starvation, heat shock,
and low temperatures (Levine and Klionsky, 2004). During
the initial steps of androgenesis induction in tobacco,
cytoplasmic organelles undergo programmed destruction,
a process that has been shown to be mediated by the
lysosomes (Sunderland and Dunwell, 1974). However, not
only autophagy seems to take place in cytoplasm remod-
elling during the dedifferentiation phase of microspores, as
genes coding for enzymes involved in the ubiquitin-26S
proteosomal pathway are induced in stressed enlarged
barley microspores (Maraschin et al., 2005b).

Following cytoplasm dedifferentiation, the nucleus mi-
grates towards the centre of the cell, while the large central
vacuole is divided into fragments, interspersed by radially
oriented cytoplasmic strands. The resulting morphology,
often called star-like structure because of its radial polarity,

1714 Maraschin et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/jxb/article/56/417/1711/484413 by U

niversiteit Leiden - LU
M

C
 user on 25 O

ctober 2023



has been described in several androgenic model systems,
including barley, wheat, rapeseed, and tobacco (Zaki and
Dickinson, 1991; Touraev et al., 1996a, b; Indrianto et al.,
2001; Maraschin et al., 2005a). During pollen develop-
ment, the peripheral nuclear position is maintained by
microtubules and actin filaments (Hause et al., 1992). Since
the treatment of uninucleate microspores using colchicine
or cytochalasin D is sufficient to trigger androgenesis by
displacing the microspore nucleus towards the centre of the
cell, it has been proposed that cytoskeleton rearrangements
are involved in androgenesis induction (Barnabás et al.,
1991; Zaki and Dickinson, 1991; Zhao et al., 1996; Gervais
et al., 2000; Obert and Barnabás, 2004). One of the
proposed models for the role of cytoskeleton rearrange-
ments in androgenesis induction is related to the symmetric
divisions that are observed following central positioning of
the nucleus (Zaki and Dickinson, 1991). According to
Simmonds and Keller (1999), this symmetric division is
important in establishing consolidated cell walls via the
formation of continuous pre-prophase bands, a crucial step
in the formation of a multicellular organism. However,
induction of maize androgenesis by colchicine does not
lead to symmetric divisions of the microspore nucleus
(Barnabás et al., 1999). These results indicate that the role
of cytoskeleton inhibitors in androgenesis induction is not
restricted to the induction of symmetric divisions, but it is
likely to involve the induction of radial polarity in the
microspores. At the early binucleate stage, after the
asymmetric pollen division, androgenesis in rapeseed can
be efficiently triggered by a heat shock treatment at 32 8C
(Custers et al., 1994), and in late binucleate pollen by an
extra heat shock treatment at 41 8C (Binarova et al., 1997).
Interestingly, heat shock leads to cytoskeleton rearrange-
ments and central positioning of the vegetative nucleus
(Zhao and Simmonds, 1995; Binarova et al., 1997), as do
cold (Wallin and Stromberg, 1995; Sopory and Munchi,
1996). Although it is not yet known whether starvation
leads to cytoskeleton rearrangements, starvation does lead
to the displacement of the nucleus towards the centre of the
cell (Touraev et al., 1996a, b; Indrianto et al., 2001;
Maraschin et al., 2005a).

Cell tracking studies on barley and wheat revealed that
star-like morphology represents the transition from a dedif-
ferentiated state to the initiation of cell division, and therefore
corresponds to the first morphological change associated
with microspore embryogenic potential (Indrianto et al.,
2001; Maraschin et al., 2005a). Further ultrastructural
studies of barley star-like structures revealed that the
vegetative nucleus migrates to the middle of the structure,
while the generative cell remains attached to the intine
(Fig. 3). Following the central positioning of the vegetative
nucleus, both generative and vegetative cells start to divide
(Maraschin et al., 2005a). In agreement with the hypothesis
that central nuclear positioning is related to initiation of cell
divisions, a star-like structure represents a characteristic

morphological stage, following hormone or heat treatment to
induce somatic embryogenesis in Cichorium (Dubois et al.,
1991; Blervacq et al., 1995), and have been reported in
isolated egg cells in culture (Kranz et al., 1995). Neverthe-
less, star-like morphology per se does not ensure that a cell
will ultimately commit to the embryogenic pathway. Ac-
cording to Indrianto et al. (2001), the occurrence of star-like
morphology is part of a dynamic process, where the time of
occurrence will depend on the type of stress applied and the
stage of microspore development. In barley androgenesis,
enlarged microspores acquire embryo-like morphology
within the first days after the onset of culture. Successful
embryo formation, however, is restricted to a group of
enlarged microspores that has the tendency to display star-
like structures relatively later than the majority (Maraschin
et al., 2005a). These results suggest that the period of
star-like occurrence after the onset of culture is related to
the embryogenic pathway of microspores.

Gene expression programmes during
acquisition of microspore embryogenic
potential

The analysis of biochemical and molecular changes during
stress treatment to induce androgenesis has been a central
point of research towards understanding the mechanisms
involved in the reprogramming of microspores into em-
bryos (reviewed by Mordhorst et al., 1997; Touraev et al.,
1997). Most of the genes identified to be differentially
expressed during stress treatment to induce androgenesis
are involved with stress hormones, cellular protection from
stress, sucrose–starch metabolism, and proteolysis. These
results indicate that acquisition of androgenic potential
largely relies on dedifferentiation, a process whereby ex-
isting transcriptional and translational profiles are probably

Fig. 3. Formation of star-like structure during initiation of barley andro-
genesis. (a) Asymmetric division of an enlarged microspore showing
a small, condensed generative cell embedded in the cytoplasm of the large
vegetative cell. The cell wall that separates the generative cell from the
vegetative cytoplasm is attached to the intine, while the large vacuole in
the vegetative cell is interspersed by cytoplasmic strands. (b) Evolution of
star-like structure showing central positioning of the vegetative nucleus,
while the generative cell remains attached to the intine. The vegetative
cytoplasm shows numerous cytoplasmic strands radially oriented. c,
Cytoplasmic strands; e, exine wall; gc, generative cell; vn, vegetative
nucleus; w, cell wall. Scale bars = 15 lm.
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erased or altered in order to block pollen development and
trigger the embryogenic route. The gene expression pro-
grammes that are associated with acquisition of embryogenic
competence during androgenesis are highlighted in Fig. 2b.

Hormone-modulated gene expression

It is known that plant cells produce ABA in response to
certain stresses such as osmotic shock, salinity, cold, and
hypoxia (Zeevaart and Creelman, 1988). During androgen-
esis induction in barley by a mannitol stress treatment,
higher regeneration efficiencies have been correlated to
increasing levels of osmotic stress and ABA (Hoekstra
et al., 1997). Upon initiation of wheat androgenesis,
Reynolds and Crawford (1996) isolated a gene encoding
an early cysteine-labelled class II metallothionein protein
(EcMt). The expression of the EcMt gene is detected as
early as 6 h after the onset of induction in auxin-containing
media. The promoter region of the EcMt gene from wheat
contains an ABA-responsive element, and its up-regulation
during androgenesis is closely related to the peak of
endogenous ABA production (Reynolds and Crawford,
1996). Further evidence has indicated that Ca2+ takes part
in the ABA signalling transduction leading to EcMt gene
expression, a process that might involve calmodulin
(Reynolds, 2000). Members of the ALCOHOL DEHYD-
ROGENASE (ADH) family are among the genes whose
expression is modulated by ABA (Macnicol and Jacobsen,
2001). Interestingly, the induction of ADH3 during stress
treatment to induce barley androgenesis is correlated with
high regeneration efficiencies, which in turn are associated
with increased ABA levels (van Bergen et al., 1999;
Maraschin et al., 2005a). Though it is not yet known
whether EcMt and ADH3 play regulatory roles during the
acquisition of embryogenic potential, their relation to ABA
suggests that an ABA signalling cascade may play an
important role in the activation of specific gene expression
programmes during initiation of androgenesis by stress.
Kyo et al. (2000) isolated an embryogenic pollen-abundant
phosphoprotein (NtEPc) from nitrogen-starved tobacco
microspores. NtEPc encodes a protein that shows moderate
homology to several type-1 copper-binding glycoproteins
and to an early nodulin. NtEPc expression is restricted to
the period of microspore stress treatment, and is induced by
low pH and inhibited by cytokinin. These results indicate
that, besides ABA signalling, other hormonal signalling
cascades are likely to take part in the reprogramming of
gene expression during androgenesis induction.

Genes involved in cytoprotection

Members of the heat shock protein (HSP) family have been
reported to be highly expressed during initiation of andro-
genesis by heat and starvation (Pechan et al., 1991;
Cordewener et al., 1994, 1997; Zarsky et al., 1995; Smykal
and Pechan, 2000; Bárány et al., 2001), as well as during

the initiation of somatic embryogenesis by auxin (Kitamiya
et al., 2000). These results have led to the hypothesis that
increased levels of HSPs may be associated with the
acquisition of embryogenic potential. However, androgen-
esis in rapeseed can be induced by colchicine without
altering the levels of HSPs (Zhao et al., 2003), suggesting
that alterations in HSP subcellular localization may be
associated with their regulatory roles. In agreement with
this hypothesis, the phase of the cell cycle (Milarsky and
Morimoto, 1986; Suzuki and Watanabe, 1992), and a heat
shock treatment to induce rapeseed androgenesis (Binarova
et al., 1997; Cordewener et al., 1997) have been reported to
control HSP nuclear shuttling. Due to their chaperone
activity, it is possible that HSPs play indirect roles in
triggering androgenesis via controlling the subcellular
localization of other key regulatory proteins, and/or via
providing a higher level of thermotolerance (Schöffl et al.,
1998). Another major component of stress-induced andro-
genesis appears to be related to the induction of GLUTA-
THIONE S-TRANSFERASE (GST ) genes. GST genes
encode proteins that are involved in several processes,
including the detoxification of xenobiotics and protection
from oxidative stress (Marrs, 1996). Members of the GST
gene family are up-regulated during the initial stages of
androgenic development in barley (Vrienten et al., 1999),
as well as during auxin-induced somatic embryogenesis
(Nagata et al., 1994; Thibaud-Nissen et al., 2003). Nagata
et al. (1994) found that the induction of GST genes during
somatic embryogenesis is auxin-regulated, indicating that
ROS act as signalling molecules involved in inducing
defence-related genes and hormone responses (Desikan
et al., 1998; Pasternak et al., 2002). In agreement with this
hypothesis, increased levels of ROS have been reported to
enhance somatic embryogenesis in many plant species
(Luo et al., 2001; Pasternak et al., 2002; Caliskan et al.,
2004; Ganesan and Jayabalan, 2004). In barley, optimal
androgenesis induction is obtained by a mannitol treatment
of anthers. When mannitol is omitted during stress treat-
ment, suboptimal regeneration efficiencies are achieved
(Hoekstra et al., 1992; van Bergen et al., 1999). The levels
of GST expression in barley microspores subjected to
optimal and suboptimal stress treatments to induce andro-
genesis were found to be independent of the embryogenic
potential associated with each treatment (Maraschin et al.,
2005b). These results suggest that the roles of GST genes
during acquisition of embryogenic potential are likely to be
associated with protecting the cell against the harmful
effects of ROS. However, one cannot exclude the possi-
bility that the redox status of cells and the glutathione
content may have important roles in developmental
processes, especially in triggering cell division.

Genes involved in sucrose–starch metabolism

Gene expression during pollen development is separated
into two phases: transcripts of the ‘early’ phase are detected
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from meiosis until the first pollen mitosis, whereas tran-
scripts from the ‘late’ phase accumulate from the first pollen
mitosis onwards (Mascarenhas, 1990). Genes involved in
starch biosynthesis belong to the class of ‘late’ genes, as
starch accumulation takes place after the first pollen mitosis.
In vivo, the repression of genes involved in starch bio-
synthesis has been reported to block pollen development
(Datta et al., 2001, 2002). A similar mechanism may
contribute to blocking gametophytic development during
androgenesis induction in vitro. An array approach has
shown that key genes involved in starch biosynthesis, such
as sucrose synthase 1, phosphoglucomutase, UDP-glucose
4-epimerase, glucose-1-phosphate adenylystransferase,
UTP-glucose-1-phosphate uridylyltransferase, and gran-
ule-bound starch synthase are down-regulated in micro-
spores following mannitol treatment to induce barley
androgenesis. The down-regulation of starch biosynthetic
genes was shown to be parallel to the induction of a maltase
gene and an invertase gene, which are involved in starch
and sucrose breakdown, respectively (Maraschin et al.,
2005b). These findings provide molecular evidence to
support the hypothesis that the repression of starch bio-
synthesis may play an important role in blocking gameto-
phytic development during androgenesis induction.

Proteolytic genes

Proteomics approaches have demonstrated that microspores
show altered synthesis, phosphorylation, and glycosylation
of proteins upon stress treatment to induce androgenesis
(Kyo and Harada, 1990; Pechan et al., 1991; Garrido et al.,
1993; Cordewener et al., 1994; Řı́hová et al., 1996). Many
of these reports reveal that stressed microspores show an
overall decrease in the protein levels, leading to the
hypothesis that down-regulation of pollen-specific proteins
or increased protein breakdown might play an important
role in the dedifferentiation of microspores. This is in
agreement with the fact that blocking pollen-specific gene
transcription has a beneficial effect in initiating androgen-
esis (Harada et al., 1986).

In plant cells, starvation leads to transcription activation
of the so-called ‘famine genes’, which encode proteins
associated with the degradation of cellular components and
with nutrient remobilization. During starvation, genes in-
volved in carbohydrate remobilization are up-regulated in
concert with enzymes involved in nitrogen recycling (Lee
et al., 2004). Nitrogen recycling involves the degradation
of proteins for nitrogen relocation, a process that comprises
different classes of plant proteases and the ubiquitin-26S
proteasome proteolytic pathway (Beers et al., 2004; Smalle
and Vierstra, 2004). In somatic embryogenesis, cell de-
differentiation is accompanied by an increase in gene
expression of proteases and proteins related to the ubiq-
uitin-26S proteasome proteolytic pathway (Jamet et al.,
1990; Thibaud-Nissen et al., 2003; Mitsushashi et al.,

2004; Stasolla et al., 2004). Interestingly, the expression
levels of genes encoding a ubiquitin-26S regulatory parti-
cle, cysteine protease 1 precursor, phytepsin precursor
(aspartic protease), and the metalloprotease FtsH are
correlated with the androgenic response of barley micro-
spores (Maraschin et al., 2005b). These results indicate that
proteases might be important for nitrogen relocation upon
sugar depletion, a process that might result in the selective
destruction of proteins associated with the previous differ-
entiated state. This is in agreement with the role of the FtsH
metalloprotease in protein turnover, as it is involved in
degrading photosystem II reaction centre D1 protein upon
its irreversible photooxidative damage (Lindahl et al.,
2000). A mutational approach indicated that the FtsH
metalloprotease gene is needed for the formation of normal,
green choloroplasts (Yu et al., 2004). Chloroplast bio-
genesis is an important factor for the production of green
plants from microspores, since in many species micro-
spores often give rise to albino plants, reducing their use in
plant breeding (Jähne and Lörz, 1995). Although it is not
yet known whether the FtsHmetalloprotease plays a role in
chloroplast biogenesis during androgenesis initiation, these
results indicate that protein turnover plays important
regulatory roles during dedifferentiation processes. This is
supported by increasing evidence that links proteolysis to
several aspects of cellular regulation, including hormone
signalling and cell cycle regulation (reviewed by Hellman
and Estelle, 2004). The plant cell cycle is regulated by
changes in the specificity and subcellular localization of
cyclin-dependent kinases (CDKs), which in turn are mod-
ulated by cyclins, CDK-activating and -inhibiting kinases,
and several CDK inhibitors (Criqui and Geschink, 2002).
The half-life of many of these modulators is affected by the
ubiquitin-26S proteasome proteolytic pathway (Geschink
et al; 1998; Catellano et al., 2001; Capron et al., 2003; Lee
et al., 2003; Ahn et al., 2004), linking protein degradation
to cell cycle regulation in plants. Normal pollen develop-
ment is characterized by tightly regulated events in the cell
cycle. After the asymmetric division, the vegetative cell
becomes arrested in the G1 phase of the cell cycle, while the
generative cell progresses into mitosis and divides again to
produce two sperm cells. Induction of androgenesis by
stress is able to overcome this developmentally regulated
cell cycle arrest, as the vegetative cell re-enters S-phase
during stress treatment, and microspores progress into
G2/M transition in culture (Touraev et al., 1996a). In this
sense, the induction of components of the ubiquitin
pathway and protease gene expression (Maraschin et al.,
2005b) may be related to the regulation of mitotic pro-
gression during acquisition of microspore embryogenic
potential. This hypothesis is further supported by the fact
that proteolytic genes are activated prior to cell division-
related genes during acquisition of embryogenic potential
in somatic embryogenesis (Thibaud-Nissen et al., 2003;
Stasolla et al., 2004).
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Gene expression programmes during initiation
of cell division

Master regulators of gene expression

As depicted above, differential screening approaches fol-
lowing stress treatment to induce androgenesis resulted in
the identification of several genes and proteins associated
with sucrose–starch metabolism, stress responses, proteol-
ysis, and cytoprotection. Nevertheless, none of these
approaches resulted in the identification of key regulatory
genes clearly involved in the acquisition of microspore
embryogenic potential, i.e. transcription factors and regu-
latory proteins. It is only when the stress-induced dediffer-
entiation phase is over that such genes are expressed, thus
correlating with the period of MCS formation at the onset of
culture (Fig. 2b). BABY BOOM (BBM ), a member of the
AP2/ERF family of transcription factors, has been isolated
from androgenic rapeseed MCSs and is preferentially
expressed during androgenesis and zygotic embryogenesis.
Functional studies have shown that ectopic expression of
BBM in rapeseed and Arabidopsis can lead to the sponta-
neous formation of somatic embryos on the leaves of young
seedlings (Boutilier et al., 2002). BBM represents, there-
fore, the first androgenic-related gene identified so far to
have a putative role in co-ordinating the phase of initiation
of cell division during androgenesis. Interestingly, Boutilier
et al. (2002) have shown that the ectopic expression of
BBM is only capable of inducing embryogenesis on the
leaves of young seedlings, while older plants do not show
the same response. Taken together, these results suggest
that a relatively undifferentiated cell state is important so
that BBM can trigger embryogenic development, further
supporting the idea that a period of dedifferentiation
precedes cell division during induction of androgenesis
and somatic embryogenesis. Another regulatory protein
thought to play a role in cell division initiation during
embryogenesis is AGAMOUS-like 15 (AGL15), a member
of theMADS-domain family of transcription factors. Though
the developmental role of AGL15 is still unclear, AGL15 has
been shown to be translocated to the nucleus upon initiation
of cell divisions during zygotic and somatic embryogenesis,
apomixis, and androgenesis (Perry et al., 1999).
The LEAFY COTYLEDON genes, LEAFY COTYLE-

DON1 (LEC1), LEAFY COTYLEDON2 (LEC2), and FUS-
CA3 (FUS3), have been isolated from Arabidopsis mutant
screen analysis and encode transcription factors involved in
zygotic embryogenic development (Harada, 2001). Though
mutant analysis indicates that LEC1, LEC2, and FUS3 play
a role in embryo maturation during later stages of embryo-
genesis, over-expression of LEC1 and LEC2 triggers
somatic embryogenesis in vegetative tissues like BBM
does (Bäumlein et al., 1994; Parcy et al., 1997; Lotan et al.,
1998; Nambara et al., 2000; Stone et al., 2001). Therefore,
it has been proposed that LEC transcription factors play key
regulatory roles in co-ordinating the phase of embryogenic

competence acquisition as well as the morphogenesis
and maturation phases of embryogenesis (Harada, 2001).
Similarly, WUSCHEL (WUS), a homeodomain protein that
promotes a vegetative-to-embryonic transition (Zuo et al.,
2002), is also involved in the specification of shoot and
floral meristems during zygotic embryogenesis (Mayer
et al., 1998). This indicates that the acquisition of embryo-
genic competence and embryo development are controlled
by a spatial and temporal reprogramming of regulatory
genes. The PICKLE (PKL) gene encodes a CHD3 protein, a
chromosome remodelling factor which is ubiquitously
expressed in Arabidopsis. During post-embryonic growth,
PKL inhibits embryonic traits via transcriptional repression
of seed storage proteins (Ogas et al., 1997) and LEC genes
(Ogas et al., 1999; Rider et al., 2003), and therefore is
a master regulator of embryogenesis. Though it is not yet
known whether PKL plays a role in androgenesis, tran-
scripts coding for seed storage proteins, such as members of
the napin seed storage protein family, correlate with the
initiation of androgenesis in rapeseed (Boutilier et al.,
1994). This suggests a possible role for chromatin remod-
elling in the co-ordination of transcription during the
context of a stress-induced developmental switch, espe-
cially in the de-repression of gene expression programmes
associated with microspore embryogenic development.

The SOMATIC EMBRYOGENESIS RECEPTOR-LIKE
KINASE (SERK ) gene was first isolated from auxin-in-
duced embryogenic carrot cell cultures and encodes a Leu-
rich repeat transmembrane receptor-like kinase. In somatic
and zygotic embryogenesis, DcSERK is transiently ex-
pressed during initiation of embryogenic development up to
the globular stage (Schmidt et al., 1997). Ectopic expres-
sion of AtSERK1, the Arabidopsis homologue of DcSERK,
has been reported to increase the efficiency of somatic
embryogenesis initiation in Arabidopsis seedlings, indicat-
ing that higher levels of AtSERK1 are sufficient to confer
embryogenesis competence in culture (Hecht et al., 2001).
Interestingly, high levels of ZmSERK1 are detected in
maize microspores at the competent stage for androgenesis
induction and during initiation of MCS formation, indicat-
ing that a SERK-dependent signalling pathway might be
involved in the acquisition of embryogenic competence and
initiation of embryogenic development in microspores
(Baudino et al., 2001). Similarly, initiation of somatic and
zygotic embryogenesis takes place only from cell clusters
expressing the EP2 gene, which encodes a lipid transfer
protein whose homologue ECLTP has also been demon-
strated to accompany the initiation of barley androgenesis
(Sterk et al., 1991; Toonen et al., 1997; Vrienten et al., 1999).

Cell–cell communication and secreted signal
molecules

Differential screening approaches have resulted in the
identification of two endosperm-specific genes, ZmAE1
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and ZmAE3, in maize androgenic MCSs (Magnard et al.,
2000). During in vivo zygotic embryo development,
ZmAE1 and ZmAE3 are both transiently expressed during
initiation of endosperm development in the embryo-
surrounding region. During androgenesis, expression of
ZmAE1 and ZmAE3 is detected only in 5–7-d-old MCSs,
a period that coincides with the differentiation of a large
cellular domain that shows coenocytic organization similar
to that of the endosperm initials (Magnard et al., 2000). The
identification of these genes is of particular interest since it
suggests that androgenic MCS development requires en-
dosperm-like functions which might be needed for the
establishment of interactions that probably exist in planta
between embryo and endosperm. In agreement with this
hypothesis, the development of carrot somatic embryos
relies on the presence of several secreted proteins (de Vries
et al., 1988; van Engelen et al., 1991; van Hengel et al.,
1998). EP3, an endochitinase protein secreted by non-
embryogenic cells during carrot somatic embryogenesis, is
also expressed in the endosperm during zygotic embryo
development (van Hengel et al., 1998). In somatic em-
bryogenesis, chitinase-modified arabinogalactan proteins
present in the extracellular matrix have been demonstrated
to control plant cell fate (van Hengel et al., 2001). Recently,
it has been shown that androgenic MCSs progressively
secrete proteins in culture which can sustain in vitro zygotic
embryo development (Paire et al., 2003). Further charac-
terization of the extracellular proteins secreted during maize
androgenesis revealed that several proteins are glycosyla-
ted, including distinct arabinogalactan proteins. Interest-
ingly, chitinases and other pathogen-related proteins are
also transiently secreted into the media, and these condi-
tioned media were able to rescue embryo development in
tunicamycin-treated MCSs arrested at the multicellular
stage (Borderies et al., 2004). This indicates that pro-
gression of embryogenesis relies on the perception of
external signals which might be crucial for the activation
of specific spatiotemporal developmental programmes
during the making of an embryo.

Pattern formation

During zygotic embryo development, an initial asymmetric
division establishes the apical–basal axis of the embryo via
a reversal of auxin distribution during early embryogenesis
(Jürgens, 2001; Friml et al., 2003). This opposes andro-
genic embryo development, where the establishment of an
apical–basal axis takes place from the globular stage
onwards (Hause et al., 1994; Maraschin et al., 2003a).
During androgenesis, the first signs of pattern formation are
visualized by periclinal divisions of the cells that surround
the ELS, leading to epidermis differentiation (Telmer et al.,
1995; Yeung et al., 1996). Following epidermis differen-
tiation, rapeseed ELS proceed through heart- and torpedo-

shape stages, in a similar way to zygotic embryos (Hause
et al., 1994). An analogous situation is observed during
somatic embryogenesis, where somatic embryo develop-
ment parallels zygotic embryogenesis from the globular
stage onwards (Zimmerman, 1993). The genetic analysis of
zygotic embryonic pattern formation has recently been
reviewed (Laux et al., 2004). The stereotyped sequence of
embryonic developmental stages between different em-
bryogenesis systems suggests that analogous molecular
mechanisms of embryo patterning are shared between them
(Dodeman et al., 1997). Further evidence to support this
hypothesis is the similar spatial and temporal regulation of
members of the 14-3-3 family of regulatory proteins prior to
pattern formation in barley androgenic and zygotic em-
bryos. In barley androgenesis, the expression of 14-3-3A in
the outer layer of ELS precedes epidermis differentiation,
while polarized 14-3-3C expression is correlated with the
establishment of the scutellum during acquisition of bi-
lateral symmetry. In the late embryogenesis stage, 14-3-3C
expression is restricted to the scutellum and to a group of
cells underneath the L1 layer of the shoot apical meristem,
prior to L2 layer specification in both androgenic and
zygotic embryos (Testerink et al., 1999; Maraschin et al.,
2003a).

The gene expression programmes that are associated
with each phase during androgenesis are highlighted in
Fig. 2b, providing a comprehensive overview of the molecu-
lar mechanisms involved in microspore embryo formation.

Is there a role for programmed cell death (PCD)
during androgenesis?

PCD is a genetically controlled mechanism that envisages
the organized destruction of specific cell types and tissues
(Lam, 2004). Zygotic and somatic plant embryogenesis are
intimately associated with PCD, as this process is involved
in the elimination of unneeded structures within the em-
bryos (Mordhorst et al., 1997) and is essential for correct
embryo patterning (Bohzkov et al., 2004; Suarez et al.,
2004). Nevertheless, a role for PCD during androgenesis
has not been explored until very recently. Studies on barley
androgenesis indicate that PCD takes place on at least two
levels: during induction of androgenesis by stress, and
during the transition from MCSs into globular embryos.

PCD during androgenesis induction

One experimental approach to test the reversibility of initial
stages of PCD has shown that agents which promote an
oxidative burst can induce star-like morphology in tobacco
protoplasts. After removal of the PCD-inducing agents,
star-like structures were able to recover from the stress and
start cell divisions (O’Brien et al., 1998). In animal
systems, PCD signals are mediated by pleiotropic signal
transductions, indicating that these pathways also have
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roles in cell proliferation and differentiation (Green and
Beere, 2001). The most common form of animal PCD,
apoptosis, is regulated by a family of cysteine proteases
called caspases. The caspase cascade is triggered by
cytochrome c release from mitochondria, a process that
involves several members of the Bcl-2 family of proteins
(Bad, Bcl-xL, and Bax). Upon PCD stimuli, Bad is trans-
located from the cytoplasm to the mitochondria, where it
associates with Bcl-xL and leads to cytochrome c release.
Bax, in its turn, is a pro-apoptotic factor that is thought to
accelerate this process (Gallaher et al., 2001). Members of
the regulatory family of 14-3-3 proteins have been impli-
cated in apoptosis signalling through their interaction with
Bad, thereby preventing its translocation into the mito-
chondria and interaction with Bcl-xL. Recently, the pro-
teolytic cleavage of the C-terminus of the human 14-3-3e
isoform has been shown to weaken its affinity to Bad,
thereby leading to Bad translocation into the mitochondria
and activation of the PCD pathway (Won et al., 2003).
During androgenesis induction in barley, the proteolytic
cleavage of the C-terminus of the 14-3-3A isoform is
specifically associated with a population of non-enlarged
microspores that dies during stress treatment (Maraschin
et al., 2003a, b). The death of these cells displays
characteristics of PCD, as visualized by the formation
of DNA ladderings (Fig. 4). On the other hand, the popula-
tion composed of enlarged microspores, which have acqu-
ired embryogenic potential, does not display DNA
ladderings or 14-3-3A processing (Fig. 4; Maraschin
et al., 2003a, b). These enlarged microspores are charac-
terized by the expression of the BAX INHIBITOR 1 (BI-1)
gene (Maraschin et al., 2005b), the plant homologue of the
human BI-1 gene capable of suppressing Bax- and stress-
induced PCD in plants (Kawai-Yamada et al., 2001; Chae
et al., 2003). This indicates that a stress treatment to induce
barley androgenesis activates PCD in non-enlarged micro-
spores, while in enlarged ones it leads to the induction of
cell divisions. Since most stress agents used to trigger
androgenesis can induce PCD (Lam, 2004), it is likely that
cell divisions may be induced by signalling pathways that
cross-talk with those activated by PCD (Kuriyama and
Fukuda, 2002). The final result might be related to the
regulatory roles played by proteins like BI-1 and 14-3-3A.
Interestingly, the processed form of 14-3-3A is also asso-
ciated with PCD in barley tapetum upon normal pollen de-
velopment (Wang et al., 1999; Maraschin et al., 2003b).
Since PCD plays important roles that are associated with

the development and function of multicellular organisms
(Lam, 2004), how can single cells such as microspores
benefit from PCD? Answers for this question may arise
from unicellular organisms, such as yeast (Saccharomyces
cerevisiae). Ageing and stress can induce many yeast cells
within a colony to die, a process that displays hallmarks of
PCD and is controlled by molecular mechanisms that
parallel animal and plant PCD (Madeo et al., 2002b).

A rapid, active suicide of these cells would spare metabolic
energy for neighbouring cells, at the same time that it neatly
destroys cells without any damage to the environment
(Madeo et al., 2002a). As in yeast ‘altruism’, stress during
barley androgenesis induction could possibly trigger the
programmed removal of the ‘weakest’ cells, represented by
the population of non-enlarged microspores, thereby con-
tributing to the survival of the fittest, enlarged microspores.
It will be a challenge to explore how the cell fate of
enlarged microspores can be affected by PCD of the
non-enlarged ones during barley androgenesis induction.

PCD during the transition from MCSs to
globular embryos

The formation of MCSs from star-like microspores in-
volves different developmental pathways that are defined
by the symmetry of the first division and the fate of the
daughter cells. The asymmetric division of the microspore
nucleus resulting in a generative and a vegetative cell
characterizes the A-pathway. In the A-pathway, MCSs are

Fig. 4. Conventional DNA gel electrophoresis in enlarged and non-
enlarged microspores after 4 d mannitol treatment to induce barley
androgenesis. Lane 1, PCD in non-enlarged microspores as demonstrated
by the formation of DNA laddering; lane 2, enlarged microspores with
embryogenic competence; M, marker DNA.
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formed from repeated divisions of the vegetative cell
concomitantly to the death of the generative cell. In the B
pathway, it is the symmetric division of the microspore
nucleus that gives rise to MCSs (Sunderland, 1974). An
alternative route to androgenesis is defined by the indepen-
dent divisions of the generative and vegetative cells, giving
rise to heterogeneous MCSs with two distinct cellular
domains. Because heterogeneous MCSs originate from an
initial asymmetric division, this pathway is regarded as
a modification of the A-pathway (Sunderland et al., 1979).
All the above-mentioned developmental pathways occur in
most androgenic species, and the preponderance of one
pathway over the other has been linked to the develop-
mental stage of the cells and the type of stress applied
(Sunderland et al., 1979; Zaki and Dickinson, 1991;
Řı́hová and Tupý, 1999; Kasha et al., 2001; Kim et al.,
2004). In rapeseed, MCSs are usually formed by the A- or
B-pathway, and the early divisions of embryogenic micro-
spores inside the exine wall appear to be random rather than
regular (Hause et al., 1994; Telmer et al., 1995; Yeung
et al., 1996). However, recent evidence shows that em-
bryogenic microspores follow a very controlled pattern of
cell divisions in wheat and maize, leading to the formation
of specific cell domains within the exine: a cellularized
domain composed of small cells, and a large domain
composed of multinucleate cells. These domains have
been compared with meristematic and endosperm initials
during zygotic embryogenesis (Bonet and Olmedilla, 2000;
Magnard et al., 2000). Though the vegetative and gener-
ative origins of these domains have not yet been estab-
lished, small and large cell domains in barley MCSs
developed via the modified A-pathway arise from divisions
of the generative and vegetative cells, respectively
(Maraschin et al., 2005a). The establishment of a cell
tracking system has been crucial in determining that exine
wall rupture in these embryos always takes place at the
generative domain located at the opposite side of the pollen
germ pore. During exine wall rupture, the generative cell
domain is eliminated by PCD, and globular embryos are
originated entirely from the vegetative domain (Maraschin
et al., 2005c). In zygotic embryogenesis, the symmetry of
the first division influences the differentiation and fate of
the daughter cells, as the terminal cell gives rise to most
structures of the embryo proper, while the suspensor is
derived from the basal cell. In most species, the suspensor is
eliminated by PCD in later stages of zygotic embryo
development and it is not present in the mature seed
(Jürgens, 2001). During carrot somatic embryogenesis, an
initial asymmetric division also appears to seal the fate of
the daughter cells, as the cytoplasm-rich cell differentiates
into the embryo, and the vacuolated suspensor cell is
eliminated by PCD (McCabe et al., 1997). These results
highlight the importance of an asymmetric division during
the initial steps of plant embryogenesis in defining different
developmental fates, most probably by a mechanism that

involves differential accumulation of mRNAs and morph-
ogens, and distribution of organelles (Weterings et al.,
2001; Bhalerao and Bennett, 2003; Friml et al., 2003).

During somatic embryogenesis in Norway spruce (Picea
abies L. Karst), PCD is involved in the transition phase
from pro-embryogenic masses to somatic embryo, and in
the elimination of the embryo suspensor (Filonova et al.,
2000). In this plant species, PCD is essential for correct
embryo patterning and involves the activation of a caspase-
6-like and a metacaspase protease (Bozhkov et al., 2004;
Suarez et al., 2004). Despite the fact that canonical caspases
have not yet been identified in plants, dying plant cells
display caspase-like activity and a caspase-related family of
proteins, called metacaspases, has been identified (Lam and
del Pozo, 2000; Uren et al., 2000). During barley andro-
genesis, an increase in caspase-3-like activity has been
correlated to PCD during the elimination of the generative
cell domain in the transition from MCSs to globular
embryos. PCD of the generative domain precedes exine
wall rupture and is a condition for the release of globular
embryos out of the exine wall (Maraschin et al., 2005c). It
is conceivable that PCD might have a role in sculpting
globular embryos by promoting exine wall removal and
therefore allowing further embryonic development. Further
molecular characterization of the events leading to the
elimination of the generative cell domain in barley andro-
genic MCSs will help to elucidate the roles of PCD in exine
wall rupture and in the transition from MCSs to globular
embryos.

Concluding remarks

In recent years, there has been a considerable increase in
the amount of information concerning the cellular and
molecular aspects involved in androgenesis induction and
embryo formation. The establishment of cell tracking
systems has played a crucial role in pointing out the main
morphological characteristics of embryogenic microspores,
as well as in revealing the developmental pathways of
induced microspores. The combination of cell tracking
systems with biochemical and molecular markers has the
potential to reveal more about the role of PCD, both during
androgenesis induction and pattern formation, in micro-
spore embryos. Due to the lack of genetic tools for the
dissection of the signalling pathways leading to androgen-
esis induction, differential screening methods have often
been used. These approaches resulted in the identification
of several genes and proteins, which are markers of
a developmental switch. Though the role of most of these
markers during androgenesis remains to be determined,
some marker genes, like BBM, are capable themselves
of inducing embryogenic development. Such genes are
often expressed after the activation of gene expression
programmes associated with stress-response and cell
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metabolism. This is not altogether surprising, as the activa-
tion of master regulators of embryogenesis, such as tran-
scription and chromatin remodelling factors, is likely to
involve several distinct signalling pathways which may be
regulated by stress-induced proteolysis, oxidative burst, and
changes in cell metabolism. Therefore, holistic approaches
such as the integration of genomics, proteomics, and
metabolomics, from the perspective of systems biology,
have a great potential in revealing the interaction between
different signalling cascades involved in triggering andro-
genesis. In terms of plant breeding, the key for increased
regeneration efficiency during androgenesis will largely
depend on the control of two main developmental switches,
defined as the induction of microspore cell division and
their ultimate commitment to the embryogenic pathway.
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