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ABSTRACT

Background
Depression has been associated with metabolic alterations, which adversely 
impact cardiometabolic health. Here, a comprehensive set of metabolic markers, 
predominantly lipids, was compared between depressed and non-depressed 
persons.

Methods
Nine Dutch cohorts were included, comprising 10,145 controls and 5,283 persons 
with depression, established with diagnostic interviews or questionnaires. 
A proton nuclear magnetic resonance metabolomics platform provided 230 
metabolite measures: 51 lipids, fatty acids and low-molecular-weight metabolites, 
98 lipid composition and particle concentration measures of lipoprotein subclasses 
and 81 lipid and fatty acids ratios. For each metabolite measure logistic regression 
analyses adjusted for sex, age, smoking, fasting status and lipid-modifying 
medication were performed within cohort, followed by random-effects meta-
analyses.

Results
Of the 51 lipids, fatty acids and low-molecular-weight metabolites, 21 were 
significantly related to depression (false discovery rate q<0.05). Higher levels 
of apolipoprotein B, very-low density lipoprotein cholesterol, triglycerides, 
diglycerides, total and mono-unsaturated fatty acids, fatty acid chain length, 
glycoprotein acetyls, tyrosine, and isoleucine, and lower levels of high-density 
lipoprotein cholesterol, acetate, and apolipoprotein A1 were associated with 
increased odds of depression. Analyses of lipid composition indicators confirmed 
a shift towards less high-density lipoprotein cholesterol and more very-low density 
lipoprotein cholesterol and triglycerides particles in depression. Associations 
appeared generally consistent across sex, age and body mass index strata, and 
across cohorts with depressive diagnoses versus symptoms.

Conclusions
This large-scale meta-analysis indicates a clear distinctive profile of circulating 
lipid metabolites associated with depression, potentially opening new prevention 
or treatment avenues for depression and its associated cardiometabolic 
comorbidity.
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INTRODUCTION

Depression imposes a huge burden on individuals and society [1]. With a high 
annual (6%) and lifetime (19%) prevalence, depression is among the leading 
contributors to global disease burden [1, 2]. It has been associated with an 
increased risk of somatic disease, including cardiometabolic conditions such 
as metabolic syndrome [3], obesity [4], diabetes mellitus [5], stroke [6], and 
cardiovascular disease [7], as well as an increased risk of all-cause mortality [8].

Depression is correlated with metabolic alterations in peripheral bodily systems 
[1]. A systematic review [9] summarizing metabolomics analyses of urine, 
cerebrospinal fluid, and blood samples of patients with depression highlighted 
a set of altered metabolites implicated in energy metabolism, neuronal integrity 
and transmission. Meta-analyses showed that depression was associated with 
increased blood levels of total cholesterol [10] and triglycerides (TG) [3], and 
decreased low density lipoprotein (LDL) cholesterol [11], high density lipoprotein 
(HDL) cholesterol [3], and omega-3 polyunsaturated fatty acids [12]. However, 
considerable heterogeneity was noted between studies, which was partly 
explained by differential lipid classifications [11].

Alterations in circulating lipid concentrations may be linked to pathophysiological 
pathways related to depression, such as chronic activation of the hypothalamic-
pituitary-adrenal (HPA) axis or chronic low-grade inflammation [1]. Glucocorticoid-
induced hypercortisolemia is known to result in lipolysis, the release of fatty acids 
and synthesis of very-low density lipoprotein (VLDL) [13]. Similarly, activation 
of the pro-inflammatory response leads to a reduction in HDL cholesterol and 
phospholipids, and an increase in TG, caused by the compensatory production 
and accumulation of phospholipid-rich VLDL [14]. In addition, omega-3 fatty 
acids have anti-inflammatory properties, impact HPA-axis functioning, promote 
cell membrane fluidity, and are involved in the regulation of dopaminergic 
and serotonergic neurotransmission, which can be altered in depression [15]. 
Alterations of circulating concentrations of lipids may also represent a consequence 
of depression. Patients with depression are more likely to engage in unhealthy 
behaviors, such as sedentariness, excessive alcohol use and poor nutrition 
(with preference for high palatable food rich in saturated fats), which may lead 
to dyslipidemia [16], that can result in metabolic syndrome and cardiovascular 
disease.

Emerging technologies allow high-throughput profiling of lipids and other 
metabolites, which has led to efforts of determining metabolic signatures 
of various diseases [17, 18]. A few studies have applied this to depression [19, 
20], but the results remain inconsistent [21, 22]; this is partly due to different 
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methodologies used and different metabolites (lipids, amino acids and other small 
molecules) analyzed [23].

This study aims to identify plasma lipids, fatty acids and low-molecular-weight 
metabolites associated with depression by analyzing data from nine Dutch clinical- 
and population-based studies, and to assess consistency of findings across studies. 
A strength of the study is that all metabolites were measured around the same 
time with the same targeted proton nuclear magnetic resonance platform that 
quantifies lipids, fatty acids and low-molecular-weight metabolites, including those 
that have been related to consequences of depression (e.g., insulin resistance [24], 
onset of cardiovascular events [25], and mortality [26]).

METHODS AND MATERIALS

Sample description
Eleven datasets from nine cohorts participating in the Biobanking and 
BioMolecular resources Research Infrastructure-The Netherlands (BBMRI-NL) 
were included: Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) [27], 
The Maastricht Study [28], Erasmus Rucphen Family study (ERF) [29], Leiden 
University Migraine Neuro-Analysis (LUMINA) [30], Netherlands Epidemiology 
of Obesity study (NEO), Netherlands Study of Depression and Anxiety (NESDA), 
Netherlands Twin Register (NTR) [31], the Rotterdam Study (RS), and Lifelines-
DEEP (LLD) [32-34]. Both CODAM and The Maastricht Study contributed two 
datasets stratified by diabetes mellitus status. In total, we included 5,283 persons 
with depression and 10,145 control subjects (see Supplement 1 for detailed cohort 
descriptions). All participants provided written informed consent. Studies were 
approved by local ethics committees.

Measurements

Depression
The presence of depression was measured either before blood sampling or up to 
a maximum of one month after blood sampling. Subjects were defined as cases 
when meeting all the criteria required for a diagnosis of major depressive disorder 
(MDD) in clinical structured interviews in four cohorts, or when scoring above 
validated clinical cut-off score in depression questionnaires in five cohorts (see 
Table S1 in Supplement 1 for all instruments and definitions). In the main analyses, 
cases included subjects with any history of depression in lifetime.

Metabolites
Supplement 1 shows details on blood collection (for each cohort), measurement 
and processing of metabolite measurements. Using targeted high-throughput 
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proton Nuclear Magnetic Resonance metabolomics (Nightingale Health Ltd, 
Helsinki, Finland), 230 metabolites or metabolite ratios were reliably quantified 
from ethylenediamine tetraacetate plasma samples [35]. This metabolomics 
platform has been used in large-scaled epidemiological studies of diabetes [24], 
cardiovascular disease [25], mortality [26] and alcohol intake [36]. To enhance 
interpretation, metabolites were classified into three clusters curated by 
Nightingale Health [37]: 1) lipids, fatty acids and low-molecular-weight metabolites 
(N=51); 2) lipid composition and particle concentration measures of lipoprotein 
subclasses (N=98); 3) metabolite ratios (N=81). Data were processed according to 
a shared protocol applied also in other studies of BBMRI-NL [38]. In each cohort, 
values of metabolites that could not be quantified (≤5 metabolites per cohort) 
were set as missing for all subjects. Furthermore, metabolites values in subjects 
with outlying concentrations (±5 SDs) were additionally set as missing. A value of 
1 was added to all metabolite values (Supplement 1 includes extensive analyses 
indicating that the degree of bias potentially introduced by this transformation is 
likely negligible) that were subsequently natural log-transformed to approximate 
normality. The obtained values were scaled to standard deviations units in each 
cohort to enable comparison.

Statistical analyses
Per-metabolite logistic regression analyses were initially performed in each 
dataset. The dependent variable was depression, and independent variables were 
the 230 metabolite measurements. For the Netherlands Twin Register cohort, 
logistic regression using generalized estimating equations were conducted, 
accounting for family-relatedness. All models were adjusted for age, sex, fasting 
status, use of lipid-modifying drugs listed under ATC (Anatomical Therapeutic 
Chemical Classification System) code C10 and smoking (Supplement 1 for 
measurements). All analyses were based on available data per metabolite (pair-
wise deletion). Dataset-specific estimates were combined using random-effects 
meta-analyses (restricted maximum-likelihood estimator) to obtain pooled odds 
ratios (ORs). Heterogeneity of results between datasets was quantified by I2 [39] 
along with 95% confidence intervals (CI) as recommended [40, 41].

As body mass index (BMI) has been shown to be associated with depression [4] 
and metabolites [42], we reran the main analyses adjusting for BMI. Furthermore, 
to investigate whether metabolic profiles were dependent on recent presence of 
depression, additional analyses were conducted comparing current depressed 
cases (depression present ±1 month around blood sampling) and controls. We 
conducted sensitivity analyses in which we excluded subjects using antidepressant 
medication (ATC code N06A), to study the impact of depression apart from its 
treatment. Here, we a priori expected to find a less distinctive metabolomics 
profile, given that antidepressant medication prescriptions are more likely in 
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individuals with higher depression severity. Correlations between estimates 
obtained from these sensitivity analyses and estimates obtained in the main 
analyses were computed to measure the impact of the factors considered.

Four additional sets of stratified analysis were performed to explore whether 
associations between metabolites and depression were different as a function 
of (1) depression assessment (diagnosis vs. self-report instrument), (2) sex (men 
vs. women), (3) age (<50 years vs. ≥50 years) and (4) BMI (normal (18.50-24.9) 
vs. overweight (25.0-29.9) and vs. obesity (≥30)). A Wald-test was performed to 
test differences in effect sizes across these strata [43], and correlations between 
estimates obtained across strata were estimated.

The False Discovery Rate (FDR) method [44] was applied to address multiple testing 
at the meta-analysis level for 230 metabolites. Meta-analyses were conducted with 
the ‘metafor’ package (version 2.0.0) in R v3.4.2-3.4.3 (R Foundation for Statistical 
Computing, Vienna, Austria).

RESULTS

Overview of cohorts
The study population comprised 15,428 adults from 11 datasets of 9 cohorts. There 
were 10,145 controls, and 5,283 participants with depression. Table 1 shows the 
characteristics of the 11 datasets. Across the cohorts, the average age ranged 
from 40.4-64.8 years, the proportion of women ranged from 32% to 70%, and the 
median prevalence of depression was 29.5%.
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Associations of 51 lipids, fatty acids and low-molecular-weight 
metabolites with depression
Figure 1 shows a polar plot with ORs of meta-analyses investigating associations 
between depression and the 51 metabolites, after adjustment for sex, age, smoking, 
lipid modifying drugs, and fasting status. Of these, 21 metabolites were associated 
with depression at FDR q<0.05 (Table 2; Figure S1 in Supplement 1). Metabolites 
associated with a higher odds for depression were apolipoprotein B; remnant (non-
HDL and non-LDL) cholesterol, VLDL cholesterol, and mean diameter of VLDL; the 
glycerides and phospholipid markers diglycerides; TG in LDL, serum TG, TG in 
HDL, TG in VLDL, the fatty acid measures total fatty acids, monounsaturated fatty 
acid, and estimated fatty acid chain length; the inflammation marker glycoprotein 
acetyls; and the amino acids tyrosine and isoleucine. Higher levels of metabolites 
that were associated with a lower odds for depression were apolipoprotein A1, 
cholesterol content for HDL (in particular HDL2- and HDL3- cholesterol), and mean 
diameter of HDL, and ketone body acetate.

Table 2. Overview of the 21 lipids, fatty acids and various low-molecular-weight 
metabolites that are significantly related to depression in the pooled analysis at FDR q<0.05

Model 1 Model 2*
Metabolite Pooled 

OR
p-value FDR 

q-value
Pooled 

OR
p-value FDR 

q-value
Apolipoproteins

ApolipoproteinA1 0.90 2.71×10-7 2.50×10-6 0.94 0.007 0.021
ApolipoproteinB 1.08 2.40×10-4 6.90×10-4 1.05 0.014 0.040

Cholesterol
Remnant cholesterol 1.07 0.003 0.006 1.05 0.014 0.038
VLDL cholesterol 1.10 1.68×10-4 5.03×10-4 1.07 0.001 0.002
HDL cholesterol 0.86 1.24×10-12 9.47×10-11 0.91 2.03×10-5 2.59×10-4

HDL2 cholesterol 0.89 5.78×10-6 2.79×10-5 0.93 0.001 0.003
HDL3 cholesterol 0.90 2.18×10-5 8.37×10-5 0.93 4.91×10-4 0.002
Mean diameter of 
VLDL

1.13 1.30×10-6 8.82×10-6 1.08 2.39×10-4 0.001

Mean diameter of 
HDL

0.91 2.10×10-4 6.10×10-4 0.96 0.104 0.222

Di- and triglycerides
Diglycerides 1.09 2.56×10-5 9.65×10-5 1.07 0.003 0.008
Serum total TG 1.11 3.29×10-5 1.15×10-4 1.08 1.92×10-4 0.001
VLDL TG 1.11 8.68×10-5 2.77×10-4 1.08 1.76×10-4 0.001
LDL TG 1.05 0.015 0.032 1.04 0.101 0.218
HDL TG 1.09 0.007 0.015 1.07 0.029 0.072
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Table 2. Continued.

Model 1 Model 2*
Metabolite Pooled 

OR
p-value FDR 

q-value
Pooled 

OR
p-value FDR 

q-value
Fatty acids

Mono Unsaturated FA 1.09 7.13×10-6 3.35×10-5 1.06 0.004 0.012
Total FA 1.05 0.013 0.027 1.03 0.102 0.219
Estimated FA chain 
length

1.10 0.020 0.043 1.08 0.060 0.140

Inflammation
Glycoprotein acetyls 1.13 0.003 0.007 1.09 0.028 0.071

Ketone bodies
Acetate 0.91 0.003 0.006 0.93 0.038 0.092

Amino acids
Tyrosine 1.07 0.013 0.028 1.02 0.552 0.760
 Isoleucine 1.14 8.26×10-6 3.71×10-5 1.08 0.001 0.004

Model 1: adjusted for sex, age, smoking, lipid modifying drugs, fasting status; Model 2: 
adjusted for model 1 and body mass index; Abbreviations: FDR=false discovery rate, 
FA=fatty acids, HDL=high-density lipoprotein, LDL=low-density lipoprotein, OR=odds 
ratio, TG=triglycerides, VLDL=very-low-density lipoprotein.

3
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Figure 1. Polar plot illustrating pooled odds ratio and 95% confidence intervals for the 
association of the 51 lipids, fatty acids and various low-molecular-weight metabolites with 
depression
*Significant at false discovery rate q < 0.05. Dotted circle indicates an OR of 1. Density: high-
density lipoprotein (HDL) subfraction 2 (HDL2), 1.063–1.125 g/mL; HDL3, 1.125–1.210 g/mL. 
AcAce, acetoacetate; Ace, acetate; Ala, alanine; Alb, albumin; ApoA1, apolipoprotein A-I; ApoB, 
apolipoprotein B; bOHBut, 3-hydroxybutyrate; C, cholesterol; Cit, citrate; CLA, conjugated 
linoleic acids; Crea, creatinine; D, mean diameter; DAG, diglycerides; DHA, docosahexaenoic acid; 
Est, esterified; FA, fatty acids; FALen, estimated fatty acids chain length; FAw3, ω-3 fatty acids; 
FAw6, ω-6 fatty acids; Glc, glucose; Gln, glutamine; Gp, glycoprotein acetyls, mainly α1-acid 
glycoprotein; His, histidine; IDL, intermediate-density lipoprotein; Ile, isoleucine; LA, linoleic 
acid (18:2); Lac, lactate; Leu, leucine; LDL, low-density lipoprotein; MUFA, monounsaturated 
fatty acids (16:1, 18:1); PC, phosphatidylcholine and other cholines; Phe, phenylalanine; PUFA, 
polyunsaturated fatty acids; Remnant, non-HDL, non-LDL cholesterol; SFA, saturated fatty acids; 
SM, sphingomyelins; TG, triglycerides; TotCho, total cholines; TotFA, total fatty acids; TotPG, 
total phosphoglycerides; Tyr, tyrosine; UnsatDeg, estimated degree of unsaturation; Val, valine; 
VLDL, very-low-density lipoprotein.

Heterogeneity was small (I2<25% for 15 out of 21 metabolites) and statistically 
non-significant in almost all (19 out of 21) analyses. As shown in the related forest 
plots (Figure S1 in Supplement 1) association estimates were quite consistent 
across the different datasets, including those enriched for cardiometabolic risk. 
To confirm this, we reran the analyses after removing two datasets (CODAM 
subgroup with type 2 diabetes mellitus and TMS subgroup with type 2 diabetes 
mellitus) containing approximately 900 participants with established diabetes and 
elevated cardiovascular risk factors. Association estimates were highly concordant 
with those of the original analyses (r=0.99); all the 21 metabolites detected in the 
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original analyses were associated at nominal level with depression (17 at FDR 
q<0.05; Table S3 in Supplement 1).

Additional adjustment for BMI partially reduce the strength of the association 
of these 21 metabolites with depression (regression slope of the 21 beta’s before 
versus after BMI-adjustment=0.65, whereas a beta value of 1 would indicate similar 
average association sizes; correlation r=0.98): of the 21 metabolites associated 
with depression, 16 remained significantly related to depression at p<0.05 and 
13 at FDR q<0.05 (Table 2). Table S2 in Supplement 2 shows the pooled ORs and 
heterogeneity findings for all metabolites.

Associations of 98 detailed lipid composition and particle 
concentration measures of lipoprotein subclasses with depression
Figure 2 shows the ORs of the meta-analyses for the 98 lipid measures of the 14 
lipoprotein subclasses, ordered from large to small particle size. Generally, there 
appeared to be a shift in association with depression by lipoprotein classes: VLDL 
lipoprotein levels were positively related to depression, intermediate-density 
lipoprotein (IDL) and LDL lipid levels were not consistently associated, whereas 
HDL lipoprotein measures were inversely related to depression. Furthermore, 
depression was related to higher TG levels.
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Figure 2.Pooled odds ratios (OR) and 95% confidence intervals for the association of the 
98 lipid measures of lipoprotein subclasses with depression.
*Significant at false discovery rate q < 0.05. Dotted circle indicates an OR of 1. Particle sizes: 
extremely large (XXL) very-low-density lipoprotein (VLDL), >75 nm; very large (XL) VLDL, 64 
nm; large (L) VLDL, 53.6 nm; medium (M) VLDL, 44.5 nm; small (S) VLDL, 36.8 nm; very small 
(XS) VLDL, 31.3 nm; intermediate-density lipoprotein (IDL), 28.6 nm; L low-density lipoprotein 
(LDL), 25.5 nm; M LDL, 23.0 nm; S LDL, 18.7 nm; XL high-density lipoprotein (HDL), 14.3 nm; 
L HDL, 12.1 nm; M HDL, 10.9 nm; S HDL, 8.7 nm. C, total cholesterol; CE, cholesterol ester; FC, 
free cholesterol; L, total lipids; P, particle concentration; PL, phospholipids; TC, triglycerides

Associations of 81 metabolite ratios with depression
Figure S2 in Supplement 1 shows the ORs of the meta-analyses for the 81 metabolite 
ratios, of which 27 were significant at FDR q<0.05. In general, TG to total lipid 
ratios were significantly related to an increased odds of depression. Some of 
the VLDL, IDL, LDL, and HDL lipid measures as percentage of total lipids were 
positively related to depression, whereas others were inversely related. In general, 
associations of the metabolite ratios with depression were less pronounced 
compared to those with absolute metabolite values.
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Sensitivity analyses

Current depression
The original 5,283 depression cases included subjects with any lifetime history of 
depression. In 62% of the cases (3,265 subjects) depression was present between 
one month before and one month after blood draw. We repeated analyses with only 
these 3,265 current cases with depression (vs. 10,145 controls). Of the 51 lipids, 
fatty acids and low-molecular weight metabolites, 22 were associated with current 
depression at FDR q<0.05 (Figure S3 in Supplement 1). Notably, the strength of the 
associations with the 51 metabolites tended to be greater for current depression 
than for the original definition (regression slope of beta’s for current versus 
broadly defined depression=1.22, r=0.95) (Table S2 in Supplement 2). Table S2 in 
Supplements 2 and Figure S4 and S5 in Supplement 1 show associations of the 98 
lipid measures of lipoprotein subclasses, and the 81 metabolite ratios with current 
depression, which were largely in line with those of original analyses.

Antidepressant medication
To study whether associations were independent of concurrent antidepressant 
medication use, we removed 1,597 subjects across cohorts who reported use 
of antidepressants. The majority were depression cases (N=1,305), which was 
expected given that depression is the main indication for receiving antidepressant 
treatment. Additionally, one study (LLD) was removed because of model 
convergence issues. In the remaining 3,966 cases and 8,887 controls - representing 
a 21% decrease in effective sample size compared with the original analyses, 
associations with the 51 lipids, fatty acids and low-molecular-weight metabolites 
were generally in the same direction, but the strength of the associations was 
attenuated (regression slope of betas before and after exclusion of antidepressant 
users=0.60, r=0.88) (Figure S6 in Supplement 1). Among the 21 significantly 
associated metabolites in the overall sample, 8 were still associated at p<0.05, of 
which 2 (HDL3- cholesterol, and acetate) at FDR q<0.05 in the antidepressant-free 
subsample.

Subgroups
Exploration of consistency of associations across subgroups showed that there 
were no significant differences (Wald-test, FDR q>0.05) in the strength of the 
association between metabolites and depression across subgroups with depression 
diagnoses vs. self-reported depression (r=0.75, Figure S7 in Supplement 1), across 
men vs. women (r=0.64, Figure S8 in Supplement 1), across age <50 years vs. >=50 
years (r=0.84, Figure S9 in Supplement 1), and across BMI groups (normal vs. 
overweight r=0.68, normal vs. obese r=0.55, overweight vs. obese r=0.71, Figures 
S10-12 in Supplement 1).
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DISCUSSION

This meta-analysis of metabolomics and depression, is to our knowledge the 
largest of its kind. We analyzed data of more than 15,000 subjects from nine Dutch 
clinical and population-based studies in the Netherlands to identify metabolites 
associated with depression. Our findings showed that depression is associated 
with a metabolic signature towards less HDL and more VLDL and triglycerides 
particles. More specifically, 21 plasma lipids, fatty acids and low-molecular-
weight metabolites were significantly related to depression: higher levels of 
apolipoprotein B, VLDL cholesterol, triglycerides, diglycerides, total and mono-
unsaturated fatty acids, fatty acid chain length, glycoprotein acetyls, tyrosine, 
and isoleucine, and lower levels of HDL cholesterol, acetate, and apolipoprotein A1. 
Associations were generally consistent across sex, age and body mass index strata, 
and across cohorts using depression diagnoses vs. depressive symptoms. These 
metabolic alterations in depression could potentially explain part of the increased 
risk of cardiometabolic disease in individuals with depression.

Our findings that depression is related to higher VLDL, higher TG and lower 
VLDL are in line with previous research [3, 11, 45]. In the present study, we 
predominantly found differences in absolute lipid measures of the VLDL 
subfractions, whereas findings with lipid measures to lipid ratios in VLDL were 
less consistently associated with depression. This suggests that the total amount 
of lipids, rather than the type of lipids, is the main contributor to associations of 
depression with VLDL. For other metabolites, previous studies indicated more 
mixed findings. We did not find associations for LDL cholesterol measures, which 
contrasts with a previous meta-analysis that showed associations between 
depression and increased LDL cholesterol [11]. For measures of fatty acids, we 
observed that higher mono unsaturated fatty acids, total fatty acids and estimated 
fatty acids chain length were associated with an increased odds of depression. 
Most evidence for links with fatty acids in depression stems from research on 
omega-3 fatty acids [12], for which we did not observe a consistent, significant 
association with depression in the present study. The finding of proinflammatory 
glycoprotein acetyls being positively associated with depression is in line with the 
large body of evidence linking inflammation to depression [46]. The short chain 
fatty acid and ketone body acetate was lower in depression. It was hypothesized 
that a Western-style diet alters gut microbiome composition, resulting in lower 
acetate levels, which could subsequently induce depression [4]. Furthermore, a 
smaller study found lower isoleucine levels in depression [47], which contrasts 
our findings. Finally, a review concluded that there was no association between 
tyrosine and depression [48], whereas we observed higher tyrosine in depression. 
Discrepancies could be explained by differences in study characteristics or 

168239_Alshehri_BNW-def.indd   56168239_Alshehri_BNW-def.indd   56 13-10-2023   13:06:1013-10-2023   13:06:10



57

Depression and targeted metabolomics 

variation in analytic approaches, such as selection of potentially confounding 
factors.

We additionally evaluated the impact of the time frame of depression assessment 
on the results. In secondary analyses including cases with current depression 
only, associations tended to become enhanced, suggesting that metabolomics 
alterations represent state markers reflecting current depression. Nevertheless, a 
similar profile of associations was found when analyzing depression cases defined 
in a broader timeframe. The metabolic signature identified may therefore also 
represent a persisting biological scar after remission of depression, or a pre-
existing underlying vulnerability factor for development of depression.

The impact of antidepressant medication use on the results was explored in 
secondary analyses, although this observational study precludes definitive 
conclusions, as depression severity most likely represents the clinical indication 
for antidepressant treatment (confounded by indication) [49]. We reanalyzed 
data after excluding antidepressant users, and found that the strength of 
associations was attenuated. Furthermore, the reduction in effective sample size 
substantially impacted the power to find significant associations. Nevertheless, 
directions of associations were highly consistent with those obtained in the full 
sample. Furthermore, the literature shows that potential detrimental effects of 
antidepressants on dyslipidemia is evident mainly for tricyclic antidepressants 
(TCA) [50, 51]. Data from the NESDA cohort [51], including patients from mental 
health care institutions and with the highest prevalence of antidepressant users 
(27%, Table 1), showed that TCA antidepressant were prescribed only in 3% of 
the participants. As the overall prevalence of antidepressant use in other cohorts 
included in the present meta-analysis was lower than approximately 9%, it could 
be assumed that the number of TCA users may be limited. This observation, 
combined with the results of our sensitivity analyses, suggests that antidepressant 
use is unlikely to be the major driver of the associations between metabolites and 
depression.

Secondary analyses also indicated that results were generally attenuated when BMI 
was taken into account, suggesting that part of the differential metabolite levels 
in depression could be explained by BMI. However, interrelationships between 
BMI, metabolite, depression and antidepressants are particularly complex. A 
significant genetic correlation has been found between depression and BMI [52], 
indicating that they may emerge from partially shared etiological mechanisms; at 
the same time BMI has been shown to influence metabolite concentrations [42]. 
The ability to disentangle different independent effects of this complex network 
in observational data is limited. Nevertheless, the majority of metabolites were 
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associated with depression after taking into account BMI, indicating that this 
factor explains only a limited portion of the depression-metabolites link.

The present findings may be explained by three, non-mutually exclusive, scenarios. 
First, alterations of lipids may be a consequence of depression. Depressed persons 
are more likely to engage in unhealthy behaviors such as sedentariness, excessive 
alcohol use and poor nutrition (e.g., saturated fats), which may lead to dyslipidemia 
[16]. Second, lipid dysregulations may be part of the pathophysiological pathways 
implicated in depression, such as chronic HPA-axis and inflammatory activity, 
resulting in lipolysis, release of fatty acids, synthesis of VLDL, hypertriglyceridemia 
and reduction in HDL cholesterol. Third, metabolomic alterations in depression 
may represent epiphenomena stemming from the same root, such as a common 
genetic factor. A recent genome-wide association study (GWAS) of major 
depression involving >450,000 participants, reported a significant genetic 
correlation (rg=0.14, p=7.8x10-7) with high TG levels, but not with LDL or HDL 
[53]. Furthermore, no genetic correlations emerged with metabolites of the same 
panel that we found to be associated with depression, although the relatively 
smaller sample size (~25,000) of the metabolomics GWAS may substantially limit 
the ability to detect correlation; the only exception was a nominally significant 
correlation with glycoprotein acetyls (rg=0.15, p=0.03), with the same direction 
of the phenotypic association we identified. Further experimental studies and 
genetically informed designs such as Mendelian randomization may disentangle 
whether depression and lipid dysregulations emerge from shared etiology, and 
whether depression causally determines lipid alterations or vice versa.

The present study has some limitations. Owing to limited availability or differences 
in assessment across datasets we cannot rule out confounding by other health-
related or lifestyle factors, such as chronic cardiometabolic conditions, alcohol use 
or specific food intake before sample collection. Nevertheless, the associations 
between depression and metabolites were consistent across datasets, including 
those enriched for traits such as diabetes, cardiovascular risk factors and migraine. 
Furthermore, alcohol use may represent a mediating mechanism rather than a 
confounder in the metabolites-depression association, as recent evidence [54] 
showed that alcohol dependence is to quite some extent caused by depression. 
Analyses were adjusted for fasting status (>94% of subjects were fasting, 
Table 1), but both fasting and non-fasting samples can be reliably analyzed by 
the metabolomics platform used [26, 36]. We could not examine whether the 
associations with metabolites detected vary as a function of specific depression 
clinical characteristics. Strengths of the study (large samples, metabolites data 
generated for all studies with the same platform) have enabled the identification 
of the most reliable metabolic signals associated with depression. These are worth 
further examination in relation to clinically relevant phenotypes (e.g., age of onset, 
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recurrence, duration, symptom profiles) in future studies based on psychiatrically 
well-characterized samples.

This large-scale meta-analysis including more than 15,000 participants identified 
a metabolomics signature associated with depression. This biological signature is 
partially shared with other conditions such as diabetes, obesity and cardiovascular 
diseases [3, 5-7] that commonly co-occur with depression, heavily burdening 
public health resources. Alterations in the lipid spectrum identified in the present 
study may represent a substrate linking depression to cardiometabolic diseases 
and, therefore, a potential target for prevention and treatment of depression and 
its detrimental somatic sequelae.
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https://www.bbmri.nl/bbmri-metabolomics-consortium

Classification of depressed cases and controls
Controls were those with a negative diagnostic interview for lifetime depression, or 
had a score on the depression questionnaires below established cut-off scores (i.e., 
CES-D<16, HADS-D<8 and/or IDS-SR30<14). If multiple self-reports of depressive 
symptoms before blood sampling were available, controls needed to score below 
the established cut-offs during all these assessments. When diagnostic data on 
other psychiatric disorders were available (e.g., anxiety disorders), persons with 
other psychiatric disorders were excluded from the controls.

Metabolomics assessment
A total of 230 metabolites or metabolite ratios were reliably quantified from 
Ethylenediaminetetraacetic acid (EDTA) plasma samples using targeted high-
throughput proton Nuclear Magnetic Resonance (1H-NMR) metabolomics 
(Nightingale Health Ltd, Helsinki, Finland) [19]. This platform provides 
simultaneous quantification of routine lipids, lipoprotein subclass profiling 
with lipid concentrations within 14 subclasses, fatty acid composition, and 
various low-molecular-weight metabolites including amino acids, ketone bodies 
and gluconeogenesis-related metabolites in molar concentration units. This 
metabolomics platform has been extensively used and described in numerous 
studies (see https://nightingalehealth.com/publications for an overview), 
including large-scaled epidemiological studies in the field of type 2 diabetes [20], 
cardiovascular disease [21], mortality [22], and lifestyle factors such as alcohol 
intake [23]. Details of the experimentation and applications of the 1H-NMR 
metabolomics platform have been extensively described previously [19, 24, 25].

The entire process from sample handling to data processing is highly standardized 
and fully automated. Samples were prepared irrespective of depression status, 
because depression cases and controls entered each study at random order (i.e. 
unrelated to depression status), and the laboratory analyzing the samples was 
unaware of depression cases vs. control status when preparing the samples. 
Automated liquid handlers mixed 260 µL buffer (75 mM Na2HPO4 in 80%/20% 
H2O/D2O, pH 7.4; 4.64 mM sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4, and 
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6.15 mM sodium azide) with the plasma in 1:1 ratio and moved the prepared 
samples to 96-format racks of NMR tubes, which were subsequently moved to the 
robotic sample changer, cooled to refrigerator temperature. Each rack contained 2 
quality control samples: 1 serum mimic and a mixture of 2 low-molecular-weight 
metabolites. For the native plasma samples, the lipoprotein (80k data points after 4 
dummy scans using 8 transients, 90° pulse) and low-molecular-weight metabolites 
(64k data points, using 24 (or 16) transients acquired after 4 steady state scans, 
T2-relaxation-filtered pulse sequence) data were automatically collected at 310.1K 
either with the 500 MHz or the 600 MHz Bruker AVANCE IIIHD NMR spectrometer, 
with a relaxation delay of 3.0 seconds [19, 25].

The NMR spectra are converted to absolute concentrations via Bayesian modeling 
performed via advanced proprietary software and integrates quality control 
checks. Several of the metabolic biomarkers have already been ‘validated’ with 
other techniques (i.e. routine clinical chemistry assays, gas chromatography, an 
enzymatic method, and/or mass spectrometry) [21, 24, 26-28]. Furthermore, 
genetic studies [29-31] performed on the same metabolomics platform showed 
that the labels applied to the metabolites are coherent and linked with biologically 
relevant and plausible genes.

The 14 lipoprotein subclass sizes were defined as follows: extremely large 
VLDL with particle diameters from 75 nm upwards and a possible contribution 
of chylomicrons, five VLDL subclasses, IDL, three LDL subclasses and four 
HDL subclasses. The following components of the lipoprotein subclasses were 
quantified: phospholipids (PL), TG, cholesterol (C), free cholesterol (FC), and 
cholesteryl esters (CE). The mean size for VLDL, LDL and HDL particles was 
calculated by weighting the corresponding subclass diameters with their particle 
concentrations.

NMR spectroscopy provides highly consistent biomarker quantification. This is 
due to the inherently reproducible nature of the technology; the samples never 
come into contact with the radiofrequency detector in the NMR spectrometer. 
Biomarker quantification directly from plasma, without any sample extraction 
procedures, further contributes to the high reproducibility [24]. Representative 
coefficients of variations (CVs) for the metabolic biomarkers are published as 
Supplementary Data 3 in Kettunen et al. [30] with the CVs determined for 9,600 
samples. Values ranged between 0.3 and 19.5 (mean 4.5%), and most values are 
comparable to routinely used assays in clinical chemistry.

Covariates
To be largely in line with previous metabolomics meta-analytic studies, [23], we 
adjusted analyses for the following potentially confounding variables: age (in 
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years), sex, fasting status (yes/no), use of lipid modifying medication (yes/no), 
and current smoking (yes/no). The lipid modifying drugs were defined according 
to the related Anatomical Therapeutic Chemical Classification System (ATC) code 
C10 (Lipid modifying agents) in order to capture all the medications falling under 
this category, including the use of single agents (C10A - Lipid modifying agents, 
plain: C10AA HMG CoA reductase inhibitors; C10AB Fibrates; C10AC Bile acid 
sequestrants; C10AD Nicotinic acid and derivatives; C10AX Other lipid modifying 
agents) and all their potential combinations (C10B - Lipid modifying agents, 
combination: C10BA HMG CoA reductase inhibitors in combination with other 
lipid modifying agents; C10BX HMG CoA reductase inhibitors, other combinations). 
The antidepressant medications selected for the sensitivity analyses included 
all classes listed under the ATC code N06A (N06AA Non-selective monoamine 
reuptake inhibitors, N06AB Selective serotonin reuptake inhibitors, N06AF 
Monoamine oxidase inhibitors, non-selective, N06AG Monoamine oxidase A 
inhibitors, N06AX Other antidepressants). Given the bidirectional relationship 
between depression and obesity and their shared biological processes (including 
genes, endocrine and immuno-inflammatory mechanisms) [32], the role of obesity 
was explored in greater detail in sensitivity analysis (see Statistical analyses). 
Body mass index (BMI) was calculated as measured weight (kg)/length (m)2, and 
divided into normal weight (BMI=18.50-24.99), overweight (BMI=25.00-29.99) 
and obesity (BMI≥30).

Assessment of potential bias due to metabolites data transformation
According to the standardized protocol of data processing applied in the present 
study a constant of 1 was added to the metabolite values before log-transformation. 
This common practice, adopted also in several other studies also from the same 
BBMRI-NL Metabolomics Consortium [33], aims to achieve normalization of the 
distribution also for metabolites with initial values equaling zero. Nevertheless, 
it is important to acknowledge that this transformation may have had introduced 
some bias due to the high variability in the normal range of different metabolite. In 
the present analyses we aimed to estimate the potential degree of bias introduced 
by comparing the results of the metabolites-depression associations obtained 
applying three different transformation before log-transformation: A) adding 
a constant of 1; B) adding the value of the 10th percentile of the distribution 
(excluding 0 values) of each metabolite, a value therefore within the normal range 
of the original metabolite; C) excluding all 0 values, a more conservative approach.

Analyses were performed in the NESDA sample (N=2,509), the most representative 
dataset for the trait under study, which involves subjects well phenotyped in 
psychiatric terms including healthy controls and depressed patients from various 
settings and developmental stages of psychopathology. Furthermore, analyses 
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focused on the 51 metabolites classified in the cluster of “lipids, fatty acids and 
various low-molecular-weight metabolites”.

Ridge plots in Figure S13 shows the distribution (per SD increase) of the (log)
values of the metabolites after the three different transformation. The three sets 
of values were used in logistic regression analyses estimating the association 
between metabolites and lifetime depression, adjusting for sex, age, smoking, 
lipid modifying drugs and fasting status. Results were highly similar across the 
three transformations. In Figure S14 the estimates obtained used the original 
transformation A were plotted against estimates obtained with transformation 
B (panel 1), and against those obtained with transformation C (panel 2). In 
both instances the correlation between association effect sizes equaled 1 as the 
estimates were substantially identical across transformation (coefficient from 
regressing estimates of transformation A on those from transformation B = 1.02, 
se=0.01; coefficient from regressing estimates of transformation A on those from 
transformation C = 1.00, se=0.02). Overall, these results suggests that the degree 
of bias potentially introduced by the transformation applied in original analyses 
is minimal and negligible.

3
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