Universiteit

w4 Leiden
The Netherlands

Disentangling the relationship between depression, obesity

and cardiometabolic disease
Alshehri, T.

Citation

Alshehri, T. (2023, November 30). Disentangling the relationship between
depression, obesity and cardiometabolic disease. Retrieved from
https://hdl.handle.net/1887/3665477

Version: Publisher's Version
Licence agreement concerning inclusion of doctoral
License: thesis in the Institutional Repository of the University
of Leiden

Downloaded from: https://hdl.handle.net/1887/3665477

Note: To cite this publication please use the final published version (if
applicable).


https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/license:5
https://hdl.handle.net/1887/3665477

Tahani Alshehri







DISENTANGLING THE RELATIONSHIP
BETWEEN DEPRESSION, OBESITY AND
CARDIOMETABOLIC DISEASE

Tahani Alshehri



Colophon
The research described in this thesis was performed at the Department of Clinical
Epidemiology, Leiden University Medical Center, Leiden, The Netherlands.

Cover idea: Tahani Alshehri

Cover design: Eduard Boxem, persoonlijkproefschrift.nl
Design and layout: = Eduard Boxem, persoonlijkproefschrift.nl
Provided by thesis specialist Ridderprint, ridderprint.nl

Print: Ridderprint

ISBN: 978-94-6483-518-2

Copyright © 2023 Tahani Alshehri. All rights reserved. No part of this thesis may
be reproduced, stored or transmitted in any form or by any means without prior
written permission of the copyright owner.

The research described in this thesis was performed at the Department of Clinical
Epidemiology, Leiden University Medical Center, Leiden, The Netherlands. The
publication of this thesis was supported by the King Saud University scholarship
program.



Disentangling the relationship between depression, obesity
and cardiometabolic disease

Proefschrift

ter verkrijging van
de graad van doctor aan de Universiteit Leiden,
op gezag van rector magnificus prof.dr.ir. H. Bijl,
volgens besluit van het college voor promoties
te verdedigen op donderdag 30 November 2023
klokke 10:00 uur

door

Tahani Alshehri

geboren te Riaad, Saudi-Arabié

in 1984



Promotor
Prof.dr. F.R. Rosendaal

Co-promotor
Dr. D.O. Mook-Kanamori
Dr. Y. Milaneschi (Amsterdam UMC/Vrije Universiteit, Amsterdam, The Netherlands)

Leden promotiecommissie

Prof.dr. R.H.H. Groenwold

Prof.dr. B.M. Elzinga

Dr.Ir. F. Lamers (Amsterdam UMC/Vrije Universiteit, Amsterdam, The Netherlands)
Prof.dr. ].C. Kiefte-de Jong



CONTENTS

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

Chapter 8

Appendices

Introduction

The association between overall and abdominal adiposity
and depressive mood: a cross-sectional analysis in 6459
participants

Metabolomics profile in depression: a pooled analysis of
230 metabolic markers in 5,283 cases with depression
and 10,145 controls

Circulating metabolites modulated by diet are causally
associated with depression

Metabolomics dissection of depression heterogeneity and
related cardiometabolic risk

The association between adiposity and atypical energy-
related symptoms of depression: a role for metabolic
dysregulations

Symptomatology of depression and onset of
cardiometabolic diseases - A 7-year follow-up study

Discussion

Nederlandse samenvatting
List of publication in this thesis
Portfolio

Acknowledgment

Curriculum vitae

23

43

71

101

125

149

173

188
193
194
196
198






Introduction



Chapter 1

INTRODUCTION

Obesity, depression, and cardiometabolic diseases are known as “diseases of
modernity” due to the alarmingly increased prevalence since the last century
[1, 2]. The first notion of the link between obesity and depression was made by
Mary E. Moore in 1962 [3]. This was followed by epidemiological studies, which
confirmed [4] the presence of this association. Simultaneously, epidemiological
studies also reported on the link between obesity and cardiometabolic diseases
[5], and depression and cardiometabolic diseases [6-9]. However, the links between
these conditions appear complex and not fully understood. The comprehensive
aim of this thesis is to elucidate the nature of the relationship between depression,
obesity, and cardiometabolic diseases by investigating the heterogeneity of the
three conditions.

Depression, obesity and cardiometabolic diseases: a complex
relationship

Depression is the state of low mood and/or persistent inability to feel pleasure
or reword accompanied by emotional, cognitive and somatic symptoms [10] and
has been shown to be linked to obesity and cardiometabolic diseases (Table 1).
The “Global burden of diseases” between 1999-2019 showed that depression,
obesity and cardiometabolic diseases were among the ten leading causes of the
highest absolute number of days lost for disability and premature death [11, 12].
Individuals with depression are at 58% increased risk of developing obesity
[13] and 40% increased risk of premature death due to other comorbid diseases
such as cardiometabolic diseases [14, 15]. To be diagnosed with depression,
according to the Diagnostic and Statistical Manual of Mental Disorders (DSM)
criteria, a person should report having substantial functional impairment with
five out of nine symptoms for more than two weeks; two of them should be
fundamental symptoms of depressed mood and anhedonia [10]. DSM contains
four emotional symptoms (depressed mood, anhedonia, feeling of worthlessness
or guilt, and suicidal ideation), three neurovegetative symptoms (low energy level,
increased or decreased sleep, and increased or decreased weight), and finally,
two neurocognitive symptoms (ability to think or concentrate or indecisiveness,
and psychomotor retardation or agitation) [10, 16]. Depression can be assessed
via structured clinical diagnostic interview such as the Composite International
Diagnostic Interview (CIDI, version 2.1)) (then labelled as clinical depression
or major depressive disorder (MDD) or a validated self-report questionnaires
with specific cut-offs used to defined participants with depressed mood.
Many instruments have been developed to extensively assess depressive
symptomatology [17]. For example, the Inventory of Depressive Symptomatology
(IDS-SR30) assesses (via a 4-points likert scale) the presence during the last week
and the severity of the core symptoms of a major depressive episodes, melancholic
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(e.g., anhedonia, non-reactive mood, psychomotor retardation/agitation, appetite
or weight decrease, early morning awakening and self-outlook) and atypical (e.g.,
mood reactivity, leaden paralysis, weight gain or increased appetite, hypersomnia,
and interpersonal sensitivity) features, and commonly associated symptoms (e.g.,
irritability, anxiety, somatic complaints) [18].

Table 1. The association between depression and cardiometabolic diseases

Obesity is characterized by a shift in energy balance toward excessive storing of
fat droplets in adipose tissue, which is associated with low-grade inflammation
and impairment of metabolic flexibility (i.e., impairment of sensing and trafficking
essential substances for cellular energy homeostasis) [19]. Obesity is defined based
on body mass index, which is calculated as weight (kg) divided by squared height
(m?). The World Health Organization (WHO) standard measure for defining obesity
is BMI 2 30) [20]. Globally, the prevalence of overweight and obesity has been
continuously increasing since the 1980s, and if trends do not level off or reverse,
more than half of the world’s adult population could be overweight or obese by
2030 [2]. Moreover, obesity is a complex condition and is also comorbid with other
complex diseases such as depression, type 2 diabetes, heart disease, and stroke
(Table 1) [21].

There is compelling epidemiological evidence that confirms that obesity and
depression are associated [4, 13, 22, 23] in cross-sectional (Table 1; pooled
odds ratios from 6 meta-analyses ranged from 1.14-1.41) and bi-directionally in
longitudinal settings (Table 1; pooled odds ratios for depression as an outcome
ranged from 1.19 to 2.15, and for obesity as an outcome from 1.37 to 1.71). This
association between obesity and depression is only partially explained by distal
factors such as lifestyle, medication, and comorbidity [4, 13, 22]. Hence the
hypothesis is that there is a high potential for an underlying biological link.



Chapter 1

Heterogeneity of depression and obesity

Depression is a heterogeneous condition [24], as the depression diagnosis,
by definition, allows for many ways for the DSM criteria to be met [25, 26]. To
understand depression heterogeneity, various subtypes of depression have been
described [27]. Two clinical depression subtypes, the atypical depression and
the melancholic depression [28, 29], have traditionally received more attention.
Atypical depression is characterized by mood reactivity (i.e., mood brightens
in response to positive events), fatiguability, excessive sleepiness, hyperphagia,
weight gain, and interpersonal rejection sensitivity [28]. Melancholic depressive
symptoms reflect a state of the hyperarousal stress response, characterized by the
inability to have pleasure or reward, pronounced feelings of worthlessness, non-
reactive mood, psychomotor disturbances (agitation or retardation), insomnia,
loss of appetite and weight, having the worse mood early in the morning [29].
However, this concept of distinct binary depression subtypes has been criticized
as itis almost impossible for the subtypes not to overlap [27]. More recently, data-
driven approaches have been used in an attempt to perform cluster analysis for
depressive symptoms in relation to biomarkers and clinical features. In the top-
down approach, studies [30, 31] investigators performed depressive symptom-
based clustering as a first step and subsequently evaluated the clustering results
via association with biomarker levels. These studies reported that a cluster of
atypical energy-related depressive symptoms, such as increased weight and
fatigue, were associated with metabolic and inflammatory dysregulations [30, 31].
In contrast, in bottom-up approach studies [32, 33], biomarker-based clustering
was done as a first step, and subsequently, the clustering results were evaluated
via association with clinical features. These studies led to reports of a cluster of
participants with higher metabolic and inflammatory markers who tended to be
more vulnerable to depression [32, 33].

Regardless of the differences in the definitions of the different subtypes,
accumulated scientific evidence highlighted that individuals who express
behavioural symptoms related to energy homeostasis (as a dimension or
continuous score of symptoms and not as a binary subtype) are most likely to
have increased: BM], total body fat, proinflammatory markers, acute phase
proteins (i.e., IL-6, and CRP), fasting glucose, triglycerides, blood pressure, waist
circumference, insulin resistance, leptin resistance and inflammation-related
tryptophan catabolites (i.e., kynurenine and quinolinic acid), and decreased HDL-
cholesterol [22, 34-40]. Milaneschi et al. [24] conceptualized these findings in the
“immuno-metabolic depression” hypothesis, where they postulated the existence
of an “immune-metabolic depression” (IMD) dimension characterized by the
clustering of depressive symptoms, namely atypical energy-related symptoms
(i.e., increased sleepiness, increased appetite, increased weight, low energy level
and leaden paralysis) with immuno-metabolic dysregulations such as adiposity,
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hyperglycaemia, dyslipidaemia, and inflammation. This model is characterized by
the presence of immuno-metabolic dysregulation linked to behavioural symptoms
that favour a homeostatic shift toward positive energy balance (increased intake
and decreased expenditure) [24].

Obesity too is a heterogenous condition, which can be defined and characterized
in different ways. As stated, body mass index (BMI) is the WHO standard measure
for measuring obesity (BMI = 30) [20]. Studies that investigated the association
between obesity and depression mainly define obesity based on BMI [41-43]. BMI
has a high correlation with the amount of fat stored in the body as adipose tissue,
butitis also a proxy for high fat-free mass (i.e., muscle mass). Therefore, when BMI
is used alone it can be problematic, for instance for interethnic comparison [20, 44]
because it has been shown that total body fat storage and distribution varies among
ethnic groups. For example, people from the Asian population have lower BMI and
a higher tendency for abdominal fat accumulation than the European population.
Therefore, the prevalence of type 2 diabetes and cardiovascular disease in the
Asian population was reported in the BMI cut-off <25 [45]. The amount of total
body fat can be directly measured and reported utilizing bioelectrical impedance
analysis [46]. The term “adiposity” is used when referring to body fat. Even when
total body fat is measured accurately, the location of fat accumulation (i.e., fat
distribution) in the peripheral parts of the body or in between organs in the
abdominal cavity (i.e., abdominal adiposity) particularly has an additive value
for understanding the link between obesity and depression. Abdominal adiposity
can be measured as waist circumference; furthermore, by exploiting magnetic
resonance imaging, we can more accurately assess the amount of visceral adiposity
[46]. A stronger association between depression and abdominal adiposity, as
compared to overall adiposity, has been confirmed in previous studies [47, 48].
Previous work has indicated that obesity can affect health and disease differently
[49, 50] by showing different and sometimes opposing relationship with metabolic
dysregulations. [51-53]. These opposing forms of obesity have also been described
as a) metabolically unhealthy obesity, which is associated with excess body fat with
the presence of inflammation and metabolic dysregulation, and b) metabolically
healthy obesity with excess body fat and healthy metabolic profile (favourable
metabolic profile) [49, 50].

The comorbidity of obesity and depression with cardiometabolic
diseases

Besides obesity and depression, this thesis will also examine how “cardiometabolic
diseases” fits into this relationship. Twenty years ago, Linda Pescatello introduced
the name “cardiometabolic diseases” to include all metabolic dysregulation
resulting from insulin resistance (i.e., metabolic syndrome and cardiovascular
disease, stroke and type 2 diabetes) [54]. Currently, the term cardiometabolic
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diseases has no clear definition. Instead, it is used to describe type 2 diabetes
and cardiovascular disease and their risk factors, such as insulin resistance,
hypertension, hyperglycaemia, and dyslipidaemia, without clear criteria. This
implies a heterogeneous nature of cardiometabolic diseases, especially with the
notion that factors that predict diabetes, such as components of metabolic syndrome
(high waist circumference, triglyceride, and fasting glucose, hypertension, and
low HDL cholesterol), do not (or weakly) predict cardiovascular disease [55].
Following the literature in this field, we define cardiometabolic diseases as all
insulin resistance related dysregulation unless we specify a subgroup of this
constellation. Large meta-analyses of longitudinal studies [56-58] indicate that
depression is associated with an increased risk of cardiometabolic diseases (i.e.,
myocardial infarction, type 2 diabetes, and stroke). Moreover, there is evidence
that diabetes, heart disease, and stroke also increase the risk of depression) [56,
58, 59]. However, the link between depression and cardiometabolic diseases is
not fully understood.

Using -omics to disentangle the relationship between obesity and
depression

An overlap between obesity and depression has been reported on metabolomic
and genetic levels, which may indicate a shared biological mechanism between
the two conditions [22, 60]. The advancement in the targeted proton nuclear
magnetic resonance platform (*H-NMR) spectroscopy and mass spectrometry-
based (GC-MS) technologies is opening new opportunities to study obesity and
depression based on their metabolic (phenotypic) signature. Metabolomics; is
defined as “the study of the unique chemical fingerprints that specific cellular
processes leave behind” [61]. The role of metabolic dysregulation was previously
investigated in patients with depression and an animal model of depression in a
few studies [62-64]. Shao et al. [63] used gas chromatography-mass spectrometry
(GC-MS) to study cerebellar metabolomics in a chronic mild stress rodent model
of depression. This study showed evidence that the depression model in the
rodent is associated with metabolic dysregulation in glucose, lipid, and energy
biosynthesis pathways. Similarly, Zheng et al. [62] found that glucose and lipid
dysregulation such as polyunsaturated fatty acids, very low density lipoprotein
and low density lipoprotein signalling could be potential predictors for depression.
In a small sample size study (N=30), Paige et al. [64] used GC-MS to study the
metabolic signature in over 60 years old patients with depression and healthy
controls. They found a metabolic signature of declined gamma-aminobutyric acid
(GABA), glycerol, and short-chain fatty acids such as palmitate and oleate to be
linked to depression. Despite the existence of small scales of metabolomics analysis
in depression, the heterogeneity of different metabolomics technologies and the
heterogeneity of the depression phenotype make it hard to draw a valid conclusion
about depression metabolic signature [65].

12



Introduction

One important genetic study explored the role of metabolic dysregulation in the
relationship between adiposity and depression using a Mendelian Randomization
(MR) analysis [66]. Mendelian Randomization uses genetic variants for modifiable
risk factors as an unconfounded instrument variable (e.g., genetic variants for
obesity), leveraging the random assortment of genes from parents to offspring
during gamete formation and conception [67]. Two genetic risk scores, which
reflects an individual’s genetic liability for a given phenotype, were created [66].
A genetic risk score is calculated as sum of number of risk alleles across all single
nucleotide polymorphisms (SNPs) related to a certain trait, weighted for the SNPs’
estimates derived from an independent GWAS [68]. The first genetic risk score was
built to index adiposity associated with favourable metabolic profile [51], while
the second was associated with adiposity associated with an unhealthy metabolic
profile [66]. Results indicated that both genetic risk scores were associated with
depression, leading the authors to conclude that both favorable and unfavorable
adiposity are associated with depression. This study is a clear example of how
treating depression as a unity and not considering its heterogenous nature might
hinder our effort to understand its biological underpinning in relation to obesity.
Other genetics studies reported specific and different profiles of overlap between
obesity, immuno-metabolic dysregulations and depression when considering
depression heterogeneity. These studies showed that depression expressing
atypical energy-related symptoms was associated with the genetic risk scores
(GRS) that related to a higher risk of adiposity (i.e., genetic risk scores of BMI)
and its related immuno-metabolic dysregulations (e.g., GRS of C reactive protein
CRP and GRS of leptin) [69]. Two large scale studies by the UK Biobank [70] and
in Psychiatric Genomics Consortium (PGC) [71] found a genetic overlap between
adiposity related traits such as BMI, leptin and CRP levels and MDD with atypical
energy-related symptoms such as increased appetite, weight and sleep). Moreover,
these metabolic dysregulations have been hypothesized to be the link between
depression and cardiovascular disease. For example, genetic instruments for
immuno-metabolic dysregulations traits commonly linked to CVD, such as
triglyceride, IL-6, and CRP, were associated with higher risk of depression [72].
Particularly, genetic variants that predict increased IL-6 were associated with
fatigue and sleep alterations [73].

Thesis objectives

In the present thesis, we aimed to disentangle the nature of the relationship
between obesity, depression and cardiometabolic diseases. We characterized
the association of different measures of obesity and commonly related metabolic
dysregulations with depression. Furthermore, we investigated whether this
association varied across different depressive symptoms profiles. We also
examined the role of metabolic dysregulation as potential linking mechanism
between obesity and a depressive profile characterized by atypical symptoms

13
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reflecting energy homeostasis. Finally, we intended to study further the effect
of overall depression and specific depressive symptoms profiles on the risk of
developing the cardiometabolic diseases.

OUTLINE OF THIS THESIS

Figure 1 illustrates the outline of this thesis. In chapter two of this thesis, we
aspired to gain more knowledge about the previously reported relationship
between obesity and depression by studying the association of four adiposity
measures (BMI and total body fat reflecting overall adiposity, and waist
circumference and visceral adipose tissue reflecting the abdominal adiposity)
with overall depression scores and individual symptoms of depression measured
by IDS-SR30 in participants from a population-based cohort (Netherlands
Epidemiology of Obesity (NEO) study). In chapters three and four, we aimed
to identify plasma metabolites associated with depression. We did this in two
large-scale studies with two different metabolomics platforms measuring more
than 1000 metabolites with a limited overlap (N=18 metabolites) in nine and
five Dutch and European cohorts, respectively, from the general population and
clinical settings. In chapter five, we considered to identify depression dimensions
associated with increased risk of adverse metabolic profile by combining data on
metabolomics and depressive symptoms. We performed data-driven clustering
based on both symptoms and metabolomics in participants diagnosed with
clinical depression. In order to replicate our findings, we examined the association
between the identified dimensions and the same metabolomics panel and
individual cardiometabolic risk markers (e.g., fasting glucose, insulin resistance,
total body fat, and visceral adipose tissue) in an independent population-based
cohort. In chapter six, we use genetics to separate the effect of adiposity from
that of metabolic dysregulations to examine whether the link between obesity
and atypical energy-related depressive symptoms is dependent on the presence
of metabolic dysregulations. Finally, in chapter seven, we examined the effect
of overall depression and specific depressive symptoms profiles on the risk of
eveloping the cardiometabolic diseases. We performed a time to event analysis to
disentangle the risk of overall depression and atypical energy-related symptom
profile and cardiometabolic diseases and their components (type 2 diabetes and
cardiovascular disease) in a median follow-up of 7 years. In chapter eight, we
discussed the results of this thesis, methodological considerations, suggestions
for future work, and the clinical implication of the thesis findings.

14
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Figure 1. Outline of the thesis

Overview of the used data sources

The Netherlands Epidemiology of Obesity (NEO) study

In chapters two to seven we analysed data from The Netherlands Epidemiology
of Obesity (NEO) study, a population-based cohort study including 6671 men
and women aged 45 to 65 years [45]. All inhabitants with a self-reported body
mass index (BMI) of 27 kg/m? or higher and living in the greater area of Leiden,
the Netherlands were eligible to participate in the NEO study. In addition, all
inhabitants aged between 45 and 65 years from one adjacent municipality
(Leiderdorp, the Netherlands) were invited to participate irrespective of their BMI,
allowing for a reference distribution of BMI. Prior to the study visit, participants
completed questionnaires at home with respect to demographic, lifestyle, and
clinical information. Participants visited the NEO study center after an overnight
fast for an extensive physical examination including anthropometry. The present
analyses are cross-sectional analyses (i.e., chapter two to six) of the baseline
measurements of the NEO study and longitudinal analysis (chapter seven) of
the baseline measurement of NEO study and the developing of cardiometabolic
diseases extracted from GP registration in 2018. The NEO study was approved by
the medical ethics committee of Leiden University Medical Center (LUMC) and all
participants gave written informed consent.

Netherlands Study of Depression and Anxiety

In chapters, three, five, and six, we analysed data from Netherlands Study of
Depression and Anxiety (NESDA), which is an ongoing longitudinal cohort study
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that aims to describe the long-term course and consequences of depression and to
examine its interaction with biological and psychosocial factors [82]. At baseline
(n=2981) individuals aged 18 through 65 years with depressive and/or anxiety
disorders and healthy controls were included from the community, primary care,
and secondary care settings between 2004 and 2007. The assessment included a
diagnostic interview to assess the presence of depressive and anxiety disorders,
a medical exam, and several questionnaires on symptom severity, other clinical
characteristics and lifestyle. Participants were followed-up during four biannual
assessments. The research protocol of NESDA was approved by the medical ethical
committees of the following participating universities: Leiden University Medical
Center (LUMC), Vrije University Medical Center (VUMC), and University Medical
Center Groningen (UMCG).

BBMRI-NL Metabolomics Consortium

In chapter three, we analysed data from Biobanking and BioMolecular resources
Research Infrastructure-The Netherlands (BBMRI-NL) with data on depression
and metabolites for over 25,000 people. In addition to the described above NEO
study and NESDA, data from Cohort on Diabetes and Atherosclerosis Maastricht
(CODAM) [74], The Maastricht Study [84], Erasmus Rotterdam Family study (ERF)
[75], Leiden University Migraine Neuro-Analysis (LUMINA) [76], Netherlands Twin
Register (NTR) [77], the Rotterdam Study (RS) [78], and Lifelines Deep (LLD)
[79-81] was also included. Detailed information on these cohorts is provided in
the Supplementary Materials of chapter three. All participants provided written
informed consent. Studies were approved by local ethics committees.

Additional study cohorts

In chapter four, the association analysis of metabolite levels with depression was
estimated in more than 13000 participants separately recruited in five different
cohort studies. The following cohort studies were included: the Rotterdam Study
(RS) [82], the Study of Health in Pomerania (SHIP-TREND) [83], the Cooperative
Health Research in the Region of Augsburg (KORA) study [84], the European
Prospective Investigation into Cancer (EPIC)-Norfolk Study [85], in addition to
the Netherlands Epidemiology of Obesity (NEO) study described above. Detailed
information on these cohorts is provided in the Supplementary Materials of
chapter four. All participants provided written informed consent, studies were
approved by their local ethics committees and conformed to the principles of the
declaration of Helsinki.
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ABSTRACT

Objective
We aimed to evaluate the association between measures of adiposity with
depressive mood and specific depressive symptoms.

Methods

This study was performed in the Netherlands Epidemiology of Obesity (NEO)
study, a population-based study that consists of 6671 middle-aged individuals.
We examined the association between measures of overall adiposity (BMI and
total body fat), and abdominal adiposity (waist circumference and visceral adipose
tissue), with depressive mood severity subgroups and 30 depressive symptoms.
Multinomial logistic regression was performed adjusting for potential confounding.

Results

Measures of adiposity were associated with depressive mood in a graded fashion.
Total body fat showed the strongest association with mild (Odds Ratio (OR):
1.59 per standard deviation, 95% Confidence Interval (95% CI): 1.41-1.80) and
moderate to very severe (OR: 1.97,95% CI: 1.59-2.44) depressive mood. Regarding
individual symptoms of depressive mood, total body fat was associated with most
depressive symptoms (strongest associations for hyperphagia and fatigability).

Conclusions

In the general population, overall and abdominal adiposity measures were
associated with depressive mood. This association encompasses most of the
depressive symptoms and appeared to be the strongest with specific “atypical”
neurovegetative symptoms, which may be an indication of an alteration in the
energy homeostasis.
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INTRODUCTION

Obesity and depression are serious health conditions that both constitute major
economic and social burdens worldwide [1]. Although there is an abundance of
research that examined the complex association between both conditions, the
conclusions are inconsistent [2]. Where the larger body of evidence is leaning
toward the presence of a link between obesity and major depressive disorder
(MDD) [3], there are studies that reported that both conditions are unrelated [4] or
only reported the presence of an association in sub-groups, for example in women

[5].

Arecentreview [3] summarized the epidemiological evidence of the interconnection
between obesity and MDD from large meta-analyses: overall, evidence suggests
that obesity and depression are bidirectionally associated, with the presence of
one increasing the risk of developing the other. Nevertheless, several important
aspects of the relationship between obesity and depression need to be clarified.
First of all, the majority of previous work in this field define obesity according to
body mass index (BMI=body weight in kg/(height in m?)) [6]. However, BMI is an
approximation of total body fat and does not distinguish between high muscle or
fat mass [7]. Furthermore, BMI value does not inform us about the distribution
of the fat in the body [7, 8]. This could be of importance, because it is known that
especially abdominal adiposity is associated with inflammation, insulin resistance
and metabolic syndrome [9].

Depression is also a heterogeneous condition: patients with a diagnosis of the same
depressive disorder may endorse very different symptoms. This heterogeneity may
have contributed to the inconsistency and variability observed in the reported
association between adiposity and depression. This association appears to be
stronger in certain subgroups of patients. Emerging evidence suggests that
the MDD link with obesity measures, and related metabolic and inflammatory
dysregulations (i.e. high lipid and glucose levels, low HDL-cholesterol and high
inflammation markers), is stronger for patients with a symptom profile often
labeled as “atypical”, including neurovegetative symptoms related to energy
metabolism such as hyperphagia, hypersomnia, fatigability and physical
exhaustion [10]. Results from the Netherlands Study of Depression and Anxiety
(NESDA) cohort showed for instance that among patients with Major Depressive
Disorder (MDD) appetite upregulation and 'leaden paralysis’ (described as the
feeling of being physically weighted down) during an active depressive episode
were the symptoms most strongly associated with BMI and obesity-related
inflammatory (high C-reactive protein (CRP) and tumor necrosis-a (TN-a)) [11]
and endocrine (high leptin) alterations [12]. Whether this link between obesity
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correlates and specific depressive symptoms exists also in the general population
is unknown.

We set out to coherently interrogate the relationship between overall and
abdominal adiposity and depressive mood and its individual symptoms in 6459
participants from a population-based cohort (Netherlands Epidemiology of
Obesity (NEO) study). Several measures of adiposity were examined, including
overall (BMI and total body fat) and abdominal or central (waist circumference
and visceral adipose tissue) adiposity. Among these measures, total body fat and
visceral adipose tissue are accurate measures for overall and abdominal adiposity,
respectively. Furthermore, we examined the specific associations between
the measures of adiposity with 30 depression-related symptoms (assessed by
Inventory of Depressive Symptomatology-Self Report 30 questionnaire (IDS-
SR30)).

METHODS

Study design and population

The Netherlands Epidemiology of Obesity (NEO) study is a population-based cohort
study including 6671 men and women aged 45 to 65 years [13]. All inhabitants
with a self-reported body mass index (BMI) of 27 kg/m? or higher and living in
the greater area of Leiden, the Netherlands were eligible to participate in the
NEO study. In addition, all inhabitants aged between 45 and 65 years from one
adjacent municipality (Leiderdorp, the Netherlands) were invited to participate
irrespective of their BMI, allowing for a reference distribution of BMI. Prior to
the study visit, participants completed questionnaires at home with respect to
demographic, lifestyle, and clinical information. Participants visited the NEO study
center after an overnight fast for an extensive physical examination including
anthropometry. In a random subgroup of participants without contraindications
(i.e., body circumference = 170 cm, implanted metallic devices, or claustrophobia)
magnetic resonance imaging (MRI) of abdominal fat was performed. The present
analysis is a cross-sectional analysis of the baseline measurements of the NEO
study. The NEO study was approved by the medical ethics committee of Leiden
University Medical Center (LUMC) and all participants gave written informed
consent. We selected 6459 participants with complete measures of body mass
index (BMI), depressive symptoms via IDS-SR30 and relevant covariates. Among
these participants, 6428 were available for analyses based on total body fat, 6420
for waist circumference and 2475 for visceral adipose tissue.

Measures of adiposity

For this analysis, we assessed four adiposity measures: body mass index (BMI),
total body fat, waist circumference and visceral adipose tissue. We used BMI
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and the percent of total body fat as measures of overall adiposity; and waist
circumference and visceral adipose tissue as measures of abdominal adiposity.
Body height was measured with a vertically fixed, calibrated tape measure. Body
weight and total body fat were measured by Tanita bioelectrical impedance balance
(TBF-310, Tanita International Division, UK). BMI was calculated by dividing the
weight by the height squared (kg/m?). For abdominal fat, waist circumference
was measured with a measuring tape placed midway horizontally between the
lower costal margin and the iliac crest. For visceral adipose tissue, analyses were
performed in a random subgroup of participants without contraindications.
Visceral adipose tissue was assessed by a turbo spin echo imaging protocol
using MRI. Imaging was performed on a 1.5 Tesla MR system (Philips Medical
Systems, Best, The Netherlands). At the level of the fifth lumbar vertebra, three
transverse images each with a slice thickness of 10 mm were obtained during a
breath hold. The fat depots were converted from the number of pixels to squared
centimeters for all three slides, using in-house-developed software (MASS, Medis,
the Netherlands). In the analysis, the average of the three slices was used [14].

Assessment of depressive mood

We asked all participants to complete the Dutch translation of the IDS-SR30
questionnaire, which assesses specific depressive symptoms during the last
week and their severity. The IDS-SR30 rates (via a 4-level response system) the
presence of a wide array of depressive symptoms, including core symptoms
of major depressive episodes, melancholic (e.g., anhedonia, nonreactive mood,
psychomotor retardation/agitation, appetite or weight decrease, early morning
awakening, and self-outlook) and atypical (e.g., mood reactivity, leaden paralysis
(physical exhaustion), weight gain or increased appetite, hypersomnia, and
interpersonal sensitivity) features, and commonly associated symptoms (e.g.,
irritability, anxiety, somatic complaints). The total score ranges from 0 to 84, with
higher scores indicating higher severity.

We regarded the participants as having clinically relevant depressive mood when
their IDS-SR30 total score was = 14. Furthermore, we grouped the participant
according to the clinically predefined severity cut-offs as follow: score < 13 as
“no depressive mood” status (n=4540, reference), 14-25 as “mild depressive
mood” (n=1397), 26-38 as “moderate depressive mood” (n=428), 39-48 is “severe
depressive mood” (n=68) and 49-84 is “very severe depressive mood” (n=26) [15].
For analysis purposes and due to the relatively small sample size in moderate,
severe and very severe sub-categories, they have been merged into “moderate to
very severe”.
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Covariates

By a self-reported questionnaire, participants were asked to report their date
of birth, ethnicity, educational level (as a proxy for the socioeconomic status),
tobacco smoking status and alcohol consumption. Participants reported the
frequency, duration and intensity of their physical activity during leisure time,
which was expressed in metabolic equivalents of tasks in hours per week [16].
Caloric intake (KJ/day) was estimated by a food frequency questionnaire [17]. For
the antidepressants NO6AA and NO6A, participants were asked to bring all the
medications that they have been using for the last month to the NEO study centre.
Then, all prescribed and self-medication were recorded by research nurses based
on Anatomical Therapeutic Chemical Classification System (ATC).

Statistical analysis

In the NEO study, individuals with a BMI of 27 kg/m? or higher were oversampled.
To correctly represent associations in the general population adjustments for
the oversampling of individuals with high BMI were made [18]. This was done
by weighting individuals towards the BMI distribution of participants from the
Leiderdorp municipality [19], whose BMI distribution was similar to the BMI
distribution of the general Dutch population. All results are based on weighted
analyses. Consequently, the results apply to a population-based study without
oversampling of individuals with a BMI = 27 kg/m?. Characteristics of the study
population were expressed as a mean with standard deviation (SD), a median
(25" and 75") or as percentages (%). We standardized all measures of adiposity
to a mean of zero and a standard deviation of one to allow comparison across
different measures.

First, we examined the association between each measure of adiposity with the
IDS-SR30 clinical groups using multinomial logistic regression models; the “no
depressive mood” groups was set as the reference group. The first model was
adjusted for age and sex; the second model was adjusted for age, sex, education
level, tobacco smoking, alcohol consumption, physical activity, caloric intake, and
ethnicity. Additionally, since abdominal adiposity is strongly related to overall
adiposity (Table S 1), all abdominal adiposity analyses were adjusted for total body
fat [20]. Subsequently, we repeated these analyses after excluding participants
who were using NO6AA and NO6A antidepressants. Finally, we stratified our main
analysis (i.e., the multinomial logistic regression between adiposity measures and
depressive mood) by sex.

Second, we used logistic regression to examine the relationship between the
overall and abdominal adiposity measurements and the 30 individual items from
the IDS-SR30. For each item, the four-level answer system was dichotomized to
code for low (reference: levels 0) versus medium-high (levels 1,2,3) symptoms.
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Likewise, this analyses were adjusted for age and sex in the first model, and the
confounding factors in model 2. Additionally, in order to account for the average
depressive symptoms severity, adjustment for the IDS-SR30 total score was done
(model 3 and 4). Analyses that included abdominal adiposity were additionally
adjusted for total body fat. All statistical analysis were performed with STATA
statistical software (StataCorp, College Stations, Texas, USA), version 14.0).

RESULTS

Baseline characteristics for all 6459 participants included in this analysis of NEO
cohort are shown in Table 1. The mean age in the NEO population was 55.7 years
(standard deviation (SD)): 6.0 years), 56.4% of participants were women and
95.0% were of Caucasian ethnicity. There are large differences in the total body
fat and visceral adipose tissue between men and women. Out of the total NEO
population 24.3% participants had depressive mood problems. Finally, in the IDS-
SR30 questionnaire women reported more depressive symptoms than men (9
points (25%-75% percentiles): 6-15)) versus (6 points (25™-75" percentiles): 3-11)).

Measures of adiposity and depressive mood

The percentage of participants with depressive mood in each quartile of adiposity
measures are illustrated in Figure 1. For all adiposity measures the proportion
of individuals with mild and moderate to very severe depressive mood is largest
in the highest adiposity measure quartile. Odds ratios (OR) and 95% confidence
intervals from adjusted multinomial logistic regression for the association between
overall and abdominal adiposity measures and the severity of the depressive mood
are shown in Table 2. Overall and abdominal adiposity measures were positively
associated with mild and moderate to very severe depressive mood in a graded
fashion, with higher ORs for the moderate to very severe depressive mood than
mild depressive mood. In general, ORs of total body fat were relatively higher than
those obtained from other adiposity measures. For example, increased total body
fat was associated with mild and moderate to very severe depressive mood (OR:
1.59 (95% CI: 1.41-1.80)), (OR: 1.97 (95% CI: 1.59-2.44)) respectively. In covariate-
adjusted models, measures of abdominal adiposity were also associated with
depressed mood (waist circumference: mild depressed mood (OR: 1.45 (95% CI:
1.33 -1.59)) and moderate to very severe depressive mood (OR: 1.82 (95% CI:
1.59-2.08)); visceral adipose tissue, mild depressed mood (OR: 1.36 (95% CI: 1.19-
1.54)) and moderate to very severe depressive mood (OR: 1.57 (95% CI: 1.25-1.97)).
Nevertheless, further adjustment for total body fat substantially reduced the
magnitude of these estimates (Table 2), suggesting that the association between
abdominal adiposity and depression may largely explained by total body fat (i.e.,
the association between visceral adipose tissue and mild and moderate to very
severe depressive mood was (OR: 1.08 (95% CI: 0.90-1.29)), (OR: 1.23 (95% CI:
0.87-1.73)) respectively).
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Table 1. Baseline characteristics for 6459 men and women aged 45 to 65 years included
in the analysis from Netherlands Epidemiology of Obesity study.

Characteristics Total population Men (43.6%) Women (56.4%)
Age (years) 55.7 (6.0) 56.1 (6.1) 55.5 (6.0)
Educational level (% high) 459 48.0 44.3
Tobacco smoking (%)

Never 38.5 34.4 41.7

Former 45.4 47.0 44.1

Current 16.1 18.6 14.2
Alcohol consumption (g/day) 14.7 (16.3) 20.5 (19.2) 10.3 (11.9)
Physical activity (metabolic 120.1 (59.5) 118.3 (62.4) 121.5 (57.1)

equivalent of task (MET)-
hours per week)

Ethnicity (% Caucasian) 949 95.1 94.8
Depressive mood characterization

Current depressive mood (%) 24.3 16.6 30.2

IDS-SR30 total score 8 (4,13) 6(3,11) 9 (6, 15)
None (%) 75.7 83.4 69.7
Mild (%) 18.5 12.4 23.3
Moderate to very severe (%) 5.8 4.2 7.0

Use of antidepressants (%) 6.6 4.5 8.2

Measures of adiposity

Overall adiposity

BMI (Kg/m?) 26.3 (4.5) 26.9 (3.7) 25.9 (4.9)

Total body fat (%) 31.6 (24.8,38.3) 24.5(21.2,28.1) 37.0(32.3,41.4)
Abdominal adiposity

Waist circumference (cm) 92.2 (13.4) 98.5 (10.9) 87.3(13.1)

Visceral adipose tissue (cm?) 89.8 (56.1) 115.8 (57.7) 66.7 (42.9)

Normally distributed data shown as mean and standard deviation (SD), skewed
distributed data shown as median (25th ,75th percentiles) and categorical data are
shown as percentage. High education level: university or college education, while other
education level: none, primary school or lower vocational education. IDS-SR30: Inventory
of Depressive Symptomatology (self-report). BMI: body mass index. Number of individual
with available data for each adiposity measures (BMI=6459, total body fat n=6428, waist
circumference=6420, visceral adipose tissue n=2475).
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Figure 1. The percentage of participants with depressive in each quartile of adiposity
measures

When we repeated the analyses of multinomial logistic regression between
overall and abdominal adiposity and depressive mood categories after exclusion of
participants who were using antidepressants (6.6%) for any reason, results did not
materially change (Table S 2). We also excluded individuals with type 2 diabetes,
cardiovascular disease and hypertension and the effect estimates again did not
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materially change (Table S 3). The sex-stratified analyses are shown in Table S 4.
Overall, direction and strength of effect sizes were similar between sexes.

Table 2. Results of the multinomial logistic regression analysis of the association between
overall and abdominal adiposity measures and the severity of depressive mood.

1SD OR Model 1 Model 2 Model 1 Model 2
(95% CI) OR OR OR OR
(95% CI)  (95%CI) (95%CI)  (95% CI)
Overall adiposity
None Mild Moderate to very severe
(75.7%) (18.5%) (5.8%)
BMI (kg/m?) 4.5 Reference 1.36 1.35 1.63 1.58
(1.27-1.47) (1.25-1.46) (1.48-1.81) (1.42-1.75)
Total body fat (%) 8.7 Reference 1.61 1.59 2.06 1.97
(1.43-1.81) (1.41-1.80) (1.66-2.56) (1.59-2.44)
Abdominal adiposity
Waist 13.4 Reference 1.28 1.25 1.90 1.82
circumference (1.08-1.52) (1.05-1.49) (1.44-2.51) (1.37-2.43)
(cm)
Visceral adipose 56.1 Reference 1.09 1.08 1.27 1.23
tissue (cm?) (0.92-1.30) (0.90-1.29) (0.89-1.81) (0.87-1.73)

OR: odds ratio per standard deviation. IDS-SR30: Inventory of depressive symptomatology
(self-report). None: score (0-13). Mild: score (14-25). Moderate to very severe: (26-84). BMI:
body mass index. For analysis purposes moderate, severe and very severe IDS-SR30 groups
have been merged into (moderate to very severe). Model 1: adjusted for age and sex. Model
2: adjusted for age, sex, educational level, smoking, alcohol consumption, physical activity,
caloric intake and ethnicity. Models for waist circumference and visceral adipose tissue
were additionally adjusted for total body fat. Number of individual with available data for
each adiposity measures (BMI=6459, total body fat n=6428, waist circumference=6420,
visceral adipose tissue n=2475).

Body fat measurements and depressive mood symptoms

The logistic regression analysis results of overall and abdominal adiposity
measures and the individual 30 items of IDS-SR30 are shown in Figure 2
and fully reported Table S 5. We found that overall and abdominal adiposity
measurements were significantly associated with 27 (BMI), 26 (total body fat),
14 (waist circumference), and 2 (visceral adipose tissue) of the 30 depressive
mood symptoms. We ranked the ORs of the fully adjusted model (i.e., model2) of
logistic regression of overall and abdominal measures and the individual items
of IDS-SR30 from high to low (Table S 6). “Atypical” neurovegetative symptoms,
such as hyperphagia, low energy level and physical exhaustion were consistently
among top ranked symptoms across different measures of adiposity. Symptoms
of problems falling asleep and early morning awakening showed no association
with adiposity measures.
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Chapter 2

DISCUSSION

This study examined the nature of the association between accurate measures
of adiposity (i.e., total body fat and visceral adipose tissue) and depressive mood
in a population-based study that consisted of 6459 middle-aged individuals. We
found that especially total body fat, and to a lesser extent other measures of overall
and abdominal adiposity, was positively associated with the depressive mood in
a graded fashion; as the severity of obesity increases, the severity of depressive
mood increases.

In this study, we were able to replicate the previously reported positive association
between BMI and depressive mood [2, 3, 21]. However, the question remained
whether this positive association is due to high body fat or high muscle mass. To
answer this question, we investigated the association between total body fat as
estimated by bio-impedance analysis and depressive mood. Previous studies that
investigated the association between total body fat and depression were small.
The presence of a positive association between total body fat and depression was
observed only in women in a previous work that aimed to determine the sex-
specific relationship between obesity and depression (n=67) [22]. In the current
study, we were able to detect a positive association between total body fat and
depressive mood both in men and women, which may imply that total body fat
specifically plays a crucial role in relation to depression.

We also set out to examine whether abdominal adiposity contributes to the
previously reported association between adiposity and depressive mood.
Compiled evidence has indicated that waist circumference, which has been used
as a proxy for visceral adiposity, is positively associated with depression [23].
Nonetheless, waist circumference does not discriminate between visceral adipose
tissue and abdominal subcutaneous fat [23, 24]. A population-based study of well-
functioning older participants [25] showed that depressive mood at baseline
predicted an elevation of the visceral adipose tissue measured by the computed
tomographic (CT) scanning after five years follow-up. In our analysis, we found
a positive association between the measures of abdominal adiposity (both waist
circumference and visceral adipose tissue) and depressive mood. Nonetheless,
since abdominal adiposity can be an indicator for overall adiposity we adjusted the
analysis for total body fat to estimate the specific association of abdominal fat. As it
has been reported previously [24], we found that the association between visceral
adipose tissue and depressive mood attenuated after taking into account the total
body fat adjustment, which may indicate that total body fat is a large contributor
to the association between adiposity and depression. Interestingly, we found that
the pattern of the main results were similar when stratifying the analyses by sex.
This suggests that, despite the established differences in adiposity and depression
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prevalence across sex, the association between adiposity and depressive mood is
consistent in men and women.

Depressive mood is a heterogeneous condition [26]. It has previously been
suggested [10, 27] that adiposity related immune-metabolic dysregulations such
as abnormal glucose, triglyceride, C-reactive protein (CRP), interleukin-6 (IL-6)
and tumor necrosis-a (TN-a) concentrations are mainly associated with “atypical”
neurovegetative symptoms of depression [28]. Using data from the NESDA cohort
[12], it has been shown that among patients with a current diagnosis of MDD, higher
leptin concentration in the blood (which directly associated with the adiposity
level in the body) is associated with symptoms related to energy metabolism
like hyperphagia, fatigability and physical exhaustion, independently from BMI.
More recent evidence confirmed that the association between this phenotypic
constellation, and adiposity and immuno-metabolic dysregulation markers (i.e.,
C-reactive protein (CRP) and leptin) extended down to the genetic level. Large
collaborative genetic studies [29, 30] reported that subjects with a MDD diagnosis
reporting hyperphagia or weight gain during the most severe depressive episode in
their lifetime, carried a higher number of risk variants for immuno-metabolic traits
such as obesity, C-reactive protein (CRP), leptin, and triglycerides dysregulation.
In the present study, we demonstrated that both overall and abdominal adiposity
were most strongly associated with the same cluster of depressive mood symptoms
thatrelate to energy metabolism (i.e. hyperphagia, low energy level, and increased
physical exhaustion) in addition to the more typical symptoms of depressive mood.

Biologically, depression is associated with imbalances in either the hypothalamic-
pituitary-adrenal (HPA) axis, the immune system (inflammation), or the regulation
of the metabolic pathways. Since these physiological systems are also highly
interconnected, it is a challenging process to look at each one of them individually
[3, 31]. Accumulation of adipose tissue above the normal levels is associated
with low-grade inflammation, insulin resistance [32], leptin resistance [33],
and imbalanced activity of the hypothalamic-pituitary-adrenal (HPA) axis [34]
which are known to be directly or indirectly associated with depressive mood
[35]. Previous studies suggested that the neuroendocrine signaling processes
that regulate both mood and energy metabolism are strongly interconnected
[36]. Leptin hormone stimulates the proopiomelanocortin (POMC) neuron in the
nucleus of the hypothalamus that activates the transcription of the melanocortin
peptides (i.e. o, B, and y MSH, and Mc3r and Mc4r) [37]. These peptides have been
suggested to be responsible for regulating energy intake and energy expenditure
[38]. Common forms of obesity are thought to be associated with leptin resistance
in the brain, blunting its anorexigenic effect and consequently disinhibiting
feeding and energy storage despite increasing circulating leptin [39]. An impact
of leptin on depression has been suggested by research on animal models [40,
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41] indicating antidepressant-like effects of leptin, although exact underlying
mechanisms remain unknown. It has been proposed [42] that alterations of
the leptin-melanocortin pathway may impair not only its anorexigenic effect,
leading to obesity, but also its effect on mood regulation, potentially leading to
the development of depression. Furthermore, genome-wide association studies
for both obesity and depression show an intersectional association between
genes that show strong hits in both conditions, such as neural growth regulator
1 (NEGR1) and olfactomedin 4 (OLFM4). Noteworthy, these genes play a role in
energy regulating mechanism by modulating the synaptic plasticity in brain
areas essential for regulating both mood and appetite [3]. We could hypothesize
that the impairment of energy homeostasis systems may represent the link that
mechanistically connect adiposity with depressive mood. This mechanism may act
in two, non-mutually exclusive, ways: as common underlying factor influencing
the liability to both depression and obesity, or as mediating mechanisms in causal
relationships between the two conditions.

Several additional mechanisms may explain the association between adiposity and
depressive mood, including social and behavioral factors such as social rejection,
exclusion and/or stigma [43]. An agent-based approach to study the effect of social
rejection on depression found that individuals with obesity are more vulnerable
to develop depression when obesity is less common in their social networks [44].
Itis also possible that behavioral factors that define depressive mood such as low
motivation, low energy level, physical inactivity and overconsumption of energy-
dense food disturb the body homeostasis and lead to an accumulation of adiposity
[36].

Some methodological aspects should be considered. The NEO study is a population-
based study in which adiposity measures and depressive mood along with potential
confounding factors where thoroughly phenotyped. However, the cross-sectional
design of this study does not allow us to draw a conclusion about the directionality
of associations. Second, although we adjusted for a large number of covariates in
the models, based on the nature of observational studies, residual confounding
may still be present. Third, the question of whether total body fat or abdominal
fatis more important cannot be answered from this data. Fourth, the depressive
mood was assessed only via the self-report IDS-SR30 that may introduce a
misclassification of the participants with depressive mood. Nevertheless, this
instruments has been extensively validated and used in previous research and
the proportion of identified patients with depressive mood in the present study
(~30%) is similar to the previous report in populations with obesity [45].

In conclusion, in this study we showed that in the general population overall and
abdominal adiposity measures were positively associated with the depressive
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mood. This association encompasses almost all depressive symptoms but was
strongest for a specific cluster of “atypical” neurovegetative depressive symptoms
that indicate a deformity in the energy metabolism and homeostasis pathways.
Our results suggests that the energy homeostasis dysfunction could connect the
mechanisms responsible for developing both adiposity and depressive mood, either
as a common cause or in a mediating role. Future longitudinal and experimental
studies that exploit the available -omics’ technologies, such as metabolomics and
proteomics, are needed to fully elucidate the pathophysiological links that may
connect adiposity and depression.
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Table S 5. Results of logistic regression between the adiposity measures and the individual
items from the IDS-SR30 ranked based on their ORs from high to low. (Model 2)

BMI

Total body fat

Waist
circumference

Visceral adipose
tissue

1 12.Increase
in appetite
(Hyperphagia)

2 20.Low energy
level (Fatigability)

3 30. Physical
exhaustion

4 14.Increased

weight (Within the

last two weeks)

5 25.Having Aches
and pains

6 13.Decreased

weight (Within the

last two weeks)

7 21.Diminished
capacity of
pleasure or
enjoyment

8 19.Diminished
interest in people
and activity

9 26.Having other
bodily symptoms

10 10.Diminished
quality of mood

12. Increase
in appetite
(Hyperphagia)
30. Physical
exhaustion

20. Low energy
level (Fatigability)

14. Increased
weight (Within the
last two weeks)

25. Having Aches
and pains

13. Decreased
weight (Within the
last two weeks)

21.Diminished
capacity of
pleasure or
enjoyment

19. Diminished
interest in people
and activity

26. Having other
bodily symptoms

10. Diminished
quality of mood

18. Thought of
death or suicide

23. Psychomotor
retardation
(Feeling slowed
down)

20. Low energy
level (Fatigability)

12. Increase

in appetite
(Hyperphagia)
10. Diminished
quality of mood

30. Physical
exhaustion

08. Diminished
reactivity of mood

16. Self-criticism or
blame

05. Feeling sad

19. Diminished
interest in people
and activity

20. Low energy
level (Fatigability)

30. Physical
exhaustion

18. Thought of
death or suicide

10. Diminished
quality of mood

16. Self-criticism or
blame

23. Psychomotor
retardation
(Feeling slowed
down)

15. Concentration
/ decision-making
problems

17.Future
pessimism

12. Increase

in appetite
(Hyperphagia)
19. Diminished
interest in people
and activity

41






Metabolomics profile in depression: a
pooled analysis of 230 metabolic markers
in 5,283 cases with depression and 10,145
controls

Mariska Bot, Yuri Milaneschi, Tahani Alshehri, Najaf Amin, Sanzhima
Garmaeva, Gerrit L.J. Onderwater, Rene Pool, Carisha S. Thesing, Lisanne
S. Vijfhuizen, Nicole Vogelzangs, Ilja C.W. Arts, Ayse Demirkan, Cornelia
van Duijn, Marleen van Greevenbroek, Carla J.H. van der Kallen, Sebastian
Kohler, Lannie Ligthart, Arn M.J.M. van den Maagdenberg, Dennis O.
Mook-Kanamori, Renée de Mutsert, Henning Tiemeier, Miranda T. Schram,
Coen D.A. Stehouwer, Gisela M. Terwindt, Ko Willems van Dijk, Jingyuan
Fu, Alexandra Zhernakova, Marian Beekman, P. Eline Slagbhoom, Dorret
I. Boomsma, Brenda W.J.H. Penninx, for the BBMRI-NL Metabolomics

Consortium

Biol Psychiatry, 2020. 87(5): p. 409-418



Chapter 3

ABSTRACT

Background

Depression has been associated with metabolic alterations, which adversely
impact cardiometabolic health. Here, a comprehensive set of metabolic markers,
predominantly lipids, was compared between depressed and non-depressed
persons.

Methods

Nine Dutch cohorts were included, comprising 10,145 controls and 5,283 persons
with depression, established with diagnostic interviews or questionnaires.
A proton nuclear magnetic resonance metabolomics platform provided 230
metabolite measures: 51 lipids, fatty acids and low-molecular-weight metabolites,
98 lipid composition and particle concentration measures of lipoprotein subclasses
and 81 lipid and fatty acids ratios. For each metabolite measure logistic regression
analyses adjusted for sex, age, smoking, fasting status and lipid-modifying
medication were performed within cohort, followed by random-effects meta-
analyses.

Results

Of the 51 lipids, fatty acids and low-molecular-weight metabolites, 21 were
significantly related to depression (false discovery rate q<0.05). Higher levels
of apolipoprotein B, very-low density lipoprotein cholesterol, triglycerides,
diglycerides, total and mono-unsaturated fatty acids, fatty acid chain length,
glycoprotein acetyls, tyrosine, and isoleucine, and lower levels of high-density
lipoprotein cholesterol, acetate, and apolipoprotein A1 were associated with
increased odds of depression. Analyses of lipid composition indicators confirmed
a shift towards less high-density lipoprotein cholesterol and more very-low density
lipoprotein cholesterol and triglycerides particles in depression. Associations
appeared generally consistent across sex, age and body mass index strata, and
across cohorts with depressive diagnoses versus symptoms.

Conclusions

This large-scale meta-analysis indicates a clear distinctive profile of circulating
lipid metabolites associated with depression, potentially opening new prevention
or treatment avenues for depression and its associated cardiometabolic
comorbidity.
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INTRODUCTION

Depression imposes a huge burden on individuals and society [1]. With a high
annual (6%) and lifetime (19%) prevalence, depression is among the leading
contributors to global disease burden [1, 2]. It has been associated with an
increased risk of somatic disease, including cardiometabolic conditions such
as metabolic syndrome [3], obesity [4], diabetes mellitus [5], stroke [6], and
cardiovascular disease [7], as well as an increased risk of all-cause mortality [8].

Depression is correlated with metabolic alterations in peripheral bodily systems
[1]. A systematic review [9] summarizing metabolomics analyses of urine,
cerebrospinal fluid, and blood samples of patients with depression highlighted
a set of altered metabolites implicated in energy metabolism, neuronal integrity
and transmission. Meta-analyses showed that depression was associated with
increased blood levels of total cholesterol [10] and triglycerides (TG) [3], and
decreased low density lipoprotein (LDL) cholesterol [11], high density lipoprotein
(HDL) cholesterol [3], and omega-3 polyunsaturated fatty acids [12]. However,
considerable heterogeneity was noted between studies, which was partly
explained by differential lipid classifications [11].

Alterations in circulating lipid concentrations may be linked to pathophysiological
pathways related to depression, such as chronic activation of the hypothalamic-
pituitary-adrenal (HPA) axis or chronic low-grade inflammation [1]. Glucocorticoid-
induced hypercortisolemia is known to resultin lipolysis, the release of fatty acids
and synthesis of very-low density lipoprotein (VLDL) [13]. Similarly, activation
of the pro-inflammatory response leads to a reduction in HDL cholesterol and
phospholipids, and an increase in TG, caused by the compensatory production
and accumulation of phospholipid-rich VLDL [14]. In addition, omega-3 fatty
acids have anti-inflammatory properties, impact HPA-axis functioning, promote
cell membrane fluidity, and are involved in the regulation of dopaminergic
and serotonergic neurotransmission, which can be altered in depression [15].
Alterations of circulating concentrations of lipids may also represent a consequence
of depression. Patients with depression are more likely to engage in unhealthy
behaviors, such as sedentariness, excessive alcohol use and poor nutrition
(with preference for high palatable food rich in saturated fats), which may lead
to dyslipidemia [16], that can result in metabolic syndrome and cardiovascular
disease.

Emerging technologies allow high-throughput profiling of lipids and other
metabolites, which has led to efforts of determining metabolic signatures
of various diseases [17, 18]. A few studies have applied this to depression [19,
20], but the results remain inconsistent [21, 22]; this is partly due to different
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methodologies used and different metabolites (lipids, amino acids and other small
molecules) analyzed [23].

This study aims to identify plasma lipids, fatty acids and low-molecular-weight
metabolites associated with depression by analyzing data from nine Dutch clinical-
and population-based studies, and to assess consistency of findings across studies.
A strength of the study is that all metabolites were measured around the same
time with the same targeted proton nuclear magnetic resonance platform that
quantifies lipids, fatty acids and low-molecular-weight metabolites, including those
that have been related to consequences of depression (e.g., insulin resistance [24],
onset of cardiovascular events [25], and mortality [26]).

METHODS AND MATERIALS

Sample description

Eleven datasets from nine cohorts participating in the Biobanking and
BioMolecular resources Research Infrastructure-The Netherlands (BBMRI-NL)
were included: Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) [27],
The Maastricht Study [28], Erasmus Rucphen Family study (ERF) [29], Leiden
University Migraine Neuro-Analysis (LUMINA) [30], Netherlands Epidemiology
of Obesity study (NEO), Netherlands Study of Depression and Anxiety (NESDA),
Netherlands Twin Register (NTR) [31], the Rotterdam Study (RS), and Lifelines-
DEEP (LLD) [32-34]. Both CODAM and The Maastricht Study contributed two
datasets stratified by diabetes mellitus status. In total, we included 5,283 persons
with depression and 10,145 control subjects (see Supplement 1 for detailed cohort
descriptions). All participants provided written informed consent. Studies were
approved by local ethics committees.

Measurements

Depression

The presence of depression was measured either before blood sampling or up to
a maximum of one month after blood sampling. Subjects were defined as cases
when meeting all the criteria required for a diagnosis of major depressive disorder
(MDD) in clinical structured interviews in four cohorts, or when scoring above
validated clinical cut-off score in depression questionnaires in five cohorts (see
Table S1 in Supplement 1 for all instruments and definitions). In the main analyses,
cases included subjects with any history of depression in lifetime.

Metabolites

Supplement 1 shows details on blood collection (for each cohort), measurement
and processing of metabolite measurements. Using targeted high-throughput
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proton Nuclear Magnetic Resonance metabolomics (Nightingale Health Ltd,
Helsinki, Finland), 230 metabolites or metabolite ratios were reliably quantified
from ethylenediamine tetraacetate plasma samples [35]. This metabolomics
platform has been used in large-scaled epidemiological studies of diabetes [24],
cardiovascular disease [25], mortality [26] and alcohol intake [36]. To enhance
interpretation, metabolites were classified into three clusters curated by
Nightingale Health [37]: 1) lipids, fatty acids and low-molecular-weight metabolites
(N=51); 2) lipid composition and particle concentration measures of lipoprotein
subclasses (N=98); 3) metabolite ratios (N=81). Data were processed according to
a shared protocol applied also in other studies of BBMRI-NL [38]. In each cohort,
values of metabolites that could not be quantified (<5 metabolites per cohort)
were set as missing for all subjects. Furthermore, metabolites values in subjects
with outlying concentrations (+5 SDs) were additionally set as missing. A value of
1 was added to all metabolite values (Supplement 1 includes extensive analyses
indicating that the degree of bias potentially introduced by this transformation is
likely negligible) that were subsequently natural log-transformed to approximate
normality. The obtained values were scaled to standard deviations units in each
cohort to enable comparison.

Statistical analyses

Per-metabolite logistic regression analyses were initially performed in each
dataset. The dependent variable was depression, and independent variables were
the 230 metabolite measurements. For the Netherlands Twin Register cohort,
logistic regression using generalized estimating equations were conducted,
accounting for family-relatedness. All models were adjusted for age, sex, fasting
status, use of lipid-modifying drugs listed under ATC (Anatomical Therapeutic
Chemical Classification System) code C10 and smoking (Supplement 1 for
measurements). All analyses were based on available data per metabolite (pair-
wise deletion). Dataset-specific estimates were combined using random-effects
meta-analyses (restricted maximume-likelihood estimator) to obtain pooled odds
ratios (ORs). Heterogeneity of results between datasets was quantified by 12 [39]
along with 95% confidence intervals (CI) as recommended [40, 41].

As body mass index (BMI) has been shown to be associated with depression [4]
and metabolites [42], we reran the main analyses adjusting for BMI. Furthermore,
to investigate whether metabolic profiles were dependent on recent presence of
depression, additional analyses were conducted comparing current depressed
cases (depression present +1 month around blood sampling) and controls. We
conducted sensitivity analyses in which we excluded subjects using antidepressant
medication (ATC code NO6A), to study the impact of depression apart from its
treatment. Here, we a priori expected to find a less distinctive metabolomics
profile, given that antidepressant medication prescriptions are more likely in

47



Chapter 3

individuals with higher depression severity. Correlations between estimates
obtained from these sensitivity analyses and estimates obtained in the main
analyses were computed to measure the impact of the factors considered.

Four additional sets of stratified analysis were performed to explore whether
associations between metabolites and depression were different as a function
of (1) depression assessment (diagnosis vs. self-report instrument), (2) sex (men
vs. women), (3) age (<50 years vs. 250 years) and (4) BMI (normal (18.50-24.9)
vs. overweight (25.0-29.9) and vs. obesity (230)). A Wald-test was performed to
test differences in effect sizes across these strata [43], and correlations between
estimates obtained across strata were estimated.

The False Discovery Rate (FDR) method [44] was applied to address multiple testing
at the meta-analysis level for 230 metabolites. Meta-analyses were conducted with
the ‘metafor’ package (version 2.0.0) in Rv3.4.2-3.4.3 (R Foundation for Statistical
Computing, Vienna, Austria).

RESULTS

Overview of cohorts

The study population comprised 15,428 adults from 11 datasets of 9 cohorts. There
were 10,145 controls, and 5,283 participants with depression. Table 1 shows the
characteristics of the 11 datasets. Across the cohorts, the average age ranged
from 40.4-64.8 years, the proportion of women ranged from 32% to 70%, and the
median prevalence of depression was 29.5%.
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Associations of 51 lipids, fatty acids and low-molecular-weight
metabolites with depression

Figure 1 shows a polar plot with ORs of meta-analyses investigating associations
between depression and the 51 metabolites, after adjustment for sex, age, smoking,
lipid modifying drugs, and fasting status. Of these, 21 metabolites were associated
with depression at FDR <0.05 (Table 2; Figure S1 in Supplement 1). Metabolites
associated with a higher odds for depression were apolipoprotein B; remnant (non-
HDL and non-LDL) cholesterol, VLDL cholesterol, and mean diameter of VLDL; the
glycerides and phospholipid markers diglycerides; TG in LDL, serum TG, TG in
HDL, TG in VLDL, the fatty acid measures total fatty acids, monounsaturated fatty
acid, and estimated fatty acid chain length; the inflammation marker glycoprotein
acetyls; and the amino acids tyrosine and isoleucine. Higher levels of metabolites
that were associated with a lower odds for depression were apolipoprotein Al,
cholesterol content for HDL (in particular HDL,- and HDL,- cholesterol), and mean
diameter of HDL, and ketone body acetate.

Table 2. Overview of the 21 lipids, fatty acids and various low-molecular-weight
metabolites that are significantly related to depression in the pooled analysis at FDR q<0.05

Model 1 Model 2*
Metabolite Pooled p-value FDR Pooled p-value FDR
OR g-value OR g-value
Apolipoproteins
ApolipoproteinAl 090 2.71x107 2.50x10°¢  0.94 0.007 0.021
ApolipoproteinB 1.08 2.40x10* 6.90x10* 1.05 0.014 0.040
Cholesterol
Remnant cholesterol 1.07 0.003 0.006 1.05 0.014 0.038
VLDL cholesterol 1.10 1.68x10* 5.03x10* 1.07 0.001 0.002
HDL cholesterol 0.86 1.24x10"? 9.47x10 091 2.03x10° 2.59x10*
HDL, cholesterol 0.89 5.78x10° 2.79x10° 0.93 0.001 0.003
HDL, cholesterol 090 2.18x10° 8.37x10° 093 491x10* 0.002
Mean diameter of 1.13  1.30x10° 8.82x10° 1.08 2.39x10* 0.001
VLDL
Mean diameter of 091 2.10x10* 6.10x10* 0.96 0.104 0.222
HDL
Di- and triglycerides
Diglycerides 1.09 2.56x10° 9.65x10° 1.07 0.003 0.008
Serum total TG 111 3.29x10° 1.15x10* 1.08 1.92x10* 0.001
VLDL TG 1.11  8.68x10° 2.77x10* 1.08 1.76x10* 0.001
LDL TG 1.05 0.015 0.032 1.04 0.101 0.218
HDL TG 1.09 0.007 0.015 1.07 0.029 0.072
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Table 2. Continued.

Model 1 Model 2*
Metabolite Pooled p-value FDR Pooled p-value FDR
OR g-value OR g-value
Fatty acids
Mono Unsaturated FA  1.09  7.13x10® 3.35x10° 1.06 0.004 0.012
Total FA 1.05 0.013 0.027 1.03 0.102 0.219

Estimated FA chain 1.10 0.020 0.043 1.08 0.060 0.140
length

Inflammation
Glycoprotein acetyls 1.13 0.003 0.007 1.09 0.028 0.071

Ketone bodies

Acetate 091 0.003 0.006 0.93 0.038 0.092
Amino acids

Tyrosine 1.07 0.013 0.028 1.02 0.552 0.760

Isoleucine 114 8.26x10° 3.71x10° 1.08 0.001 0.004

Model 1: adjusted for sex, age, smoking, lipid modifying drugs, fasting status; Model 2:
adjusted for model 1 and body mass index; Abbreviations: FDR=false discovery rate,
FA=fatty acids, HDL=high-density lipoprotein, LDL=low-density lipoprotein, OR=o0dds
ratio, TG=triglycerides, VLDL=very-low-density lipoprotein.
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Figure 1. Polar plot illustrating pooled odds ratio and 95% confidence intervals for the
association of the 51 lipids, fatty acids and various low-molecular-weight metabolites with
depression

*Significant at false discovery rate q < 0.05. Dotted circle indicates an OR of 1. Density: high-
density lipoprotein (HDL) subfraction 2 (HDL,), 1.063-1.125 g/mL; HDL,, 1.125-1.210 g/mL.
AcAce, acetoacetate; Ace, acetate; Ala, alanine; Alb, albumin; ApoA1, apolipoprotein A-I; ApoB,
apolipoprotein B; bOHBut, 3-hydroxybutyrate; C, cholesterol; Cit, citrate; CLA, conjugated
linoleic acids; Crea, creatinine; D, mean diameter; DAG, diglycerides; DHA, docosahexaenoic acid;
Est, esterified; FA, fatty acids; FALen, estimated fatty acids chain length; FAw3, w-3 fatty acids;
FAw6, w-6 fatty acids; Glc, glucose; Gln, glutamine; Gp, glycoprotein acetyls, mainly al-acid
glycoprotein; His, histidine; IDL, intermediate-density lipoprotein; Ile, isoleucine; LA, linoleic
acid (18:2); Lac, lactate; Leu, leucine; LDL, low-density lipoprotein; MUFA, monounsaturated
fatty acids (16:1, 18:1); PC, phosphatidylcholine and other cholines; Phe, phenylalanine; PUFA,
polyunsaturated fatty acids; Remnant, non-HDL, non-LDL cholesterol; SFA, saturated fatty acids;
SM, sphingomyelins; TG, triglycerides; TotCho, total cholines; TotFA, total fatty acids; TotPG,
total phosphoglycerides; Tyr, tyrosine; UnsatDeg, estimated degree of unsaturation; Val, valine;
VLDL, very-low-density lipoprotein.

Heterogeneity was small (12<25% for 15 out of 21 metabolites) and statistically
non-significant in almostall (19 out of 21) analyses. As shown in the related forest
plots (Figure S1 in Supplement 1) association estimates were quite consistent
across the different datasets, including those enriched for cardiometabolic risk.
To confirm this, we reran the analyses after removing two datasets (CODAM
subgroup with type 2 diabetes mellitus and TMS subgroup with type 2 diabetes
mellitus) containing approximately 900 participants with established diabetes and
elevated cardiovascular risk factors. Association estimates were highly concordant
with those of the original analyses (r=0.99); all the 21 metabolites detected in the
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original analyses were associated at nominal level with depression (17 at FDR
g<0.05; Table S3 in Supplement 1).

Additional adjustment for BMI partially reduce the strength of the association
of these 21 metabolites with depression (regression slope of the 21 beta’s before
versus after BMI-adjustment=0.65, whereas a beta value of 1 would indicate similar
average association sizes; correlation r=0.98): of the 21 metabolites associated
with depression, 16 remained significantly related to depression at p<0.05 and
13 at FDR g<0.05 (Table 2). Table S2 in Supplement 2 shows the pooled ORs and
heterogeneity findings for all metabolites.

Associations of 98 detailed lipid composition and particle
concentration measures of lipoprotein subclasses with depression
Figure 2 shows the ORs of the meta-analyses for the 98 lipid measures of the 14
lipoprotein subclasses, ordered from large to small particle size. Generally, there
appeared to be a shift in association with depression by lipoprotein classes: VLDL
lipoprotein levels were positively related to depression, intermediate-density
lipoprotein (IDL) and LDL lipid levels were not consistently associated, whereas
HDL lipoprotein measures were inversely related to depression. Furthermore,
depression was related to higher TG levels.

53



Chapter 3

VLDL.CI
VLDLFC =

‘!‘Q.?C \ \ Ve
,;:m CI \ \g_g // -\Q@?\.“I
> .:\@\\5\\\ \ Kl

P 04 "‘.‘ _,/_::‘ & uLU\-'T; -
* XLHOLTG i = X e ot r::‘
v XLHOLL T = .,_‘;_‘-.,___ Y ;.:"u:'.‘\);wl
+ NLHOLG ' —— ' —_— \
% = H s o7 ! —®—— MWDLPL"
- ¥LHDLPL ' —_— . .
wpLP H = ' —_— L0
‘\s\"‘lw “.____‘-" ’.' R MMLDL -
. . y i Mwip, -
1‘_7@-“&' o ,;// J m g LT
. DL1G /~/ K Wog o
. 5™ / i \\‘\ Stap
\D"\ / ¥ \.\ a . 0
s . M
" Qp .
R o > X By,
& o 4 - P O‘A:
5\'@' 7 i o 1 \ el \ & "ch
N i‘c_.d‘. -"'."_% *\\ \ A '%(!
® 3 o 2 \ +*@ o‘re
o 3
< ‘}\? * ) ’?q “o
FaF k) 'qu, o
i 5 B, %
¥ o3 + B £ -
¥y oy, v s e 4
* & 5 E;f B . & I?Ff Q’r -
i | ]
4:§§§Ewera-g’9??§\"‘“°-
el - TR TR R
4334
Metabolites

Cluster
® VLOL
& DL
» LDL
® HDL

Figure 2.Pooled odds ratios (OR) and 95% confidence intervals for the association of the

98 lipid measures of lipoprotein subclasses with depression.

*Significant at false discovery rate q < 0.05. Dotted circle indicates an OR of 1. Particle sizes:
extremely large (XXL) very-low-density lipoprotein (VLDL), >75 nm; very large (XL) VLDL, 64
nm; large (L) VLDL, 53.6 nm; medium (M) VLDL, 44.5 nm; small (S) VLDL, 36.8 nm; very small
(XS) VLDL, 31.3 nm; intermediate-density lipoprotein (IDL), 28.6 nm; L low-density lipoprotein
(LDL), 25.5 nm; M LDL, 23.0 nm; S LDL, 18.7 nm; XL high-density lipoprotein (HDL), 14.3 nm;
L HDL, 12.1 nm; M HDL, 10.9 nm; S HDL, 8.7 nm. C, total cholesterol; CE, cholesterol ester; FC,
free cholesterol; L, total lipids; P, particle concentration; PL, phospholipids; TC, triglycerides

Associations of 81 metabolite ratios with depression

Figure S2 in Supplement 1 shows the ORs of the meta-analyses for the 81 metabolite
ratios, of which 27 were significant at FDR q<0.05. In general, TG to total lipid
ratios were significantly related to an increased odds of depression. Some of
the VLDL, IDL, LDL, and HDL lipid measures as percentage of total lipids were
positively related to depression, whereas others were inversely related. In general,
associations of the metabolite ratios with depression were less pronounced

compared to those with absolute metabolite values.
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Sensitivity analyses

Current depression

The original 5,283 depression cases included subjects with any lifetime history of
depression. In 62% of the cases (3,265 subjects) depression was present between
one month before and one month after blood draw. We repeated analyses with only
these 3,265 current cases with depression (vs. 10,145 controls). Of the 51 lipids,
fatty acids and low-molecular weight metabolites, 22 were associated with current
depression at FDR q<0.05 (Figure S3 in Supplement 1). Notably, the strength of the
associations with the 51 metabolites tended to be greater for current depression
than for the original definition (regression slope of beta’s for current versus
broadly defined depression=1.22, r=0.95) (Table S2 in Supplement 2). Table S2 in
Supplements 2 and Figure S4 and S5 in Supplement 1 show associations of the 98
lipid measures of lipoprotein subclasses, and the 81 metabolite ratios with current
depression, which were largely in line with those of original analyses.

Antidepressant medication

To study whether associations were independent of concurrent antidepressant
medication use, we removed 1,597 subjects across cohorts who reported use
of antidepressants. The majority were depression cases (N=1,305), which was
expected given that depression is the main indication for receiving antidepressant
treatment. Additionally, one study (LLD) was removed because of model
convergence issues. In the remaining 3,966 cases and 8,887 controls - representing
a 21% decrease in effective sample size compared with the original analyses,
associations with the 51 lipids, fatty acids and low-molecular-weight metabolites
were generally in the same direction, but the strength of the associations was
attenuated (regression slope of betas before and after exclusion of antidepressant
users=0.60, r=0.88) (Figure S6 in Supplement 1). Among the 21 significantly
associated metabolites in the overall sample, 8 were still associated at p<0.05, of
which 2 (HDL,- cholesterol, and acetate) at FDR q<0.05 in the antidepressant-free
subsample.

Subgroups

Exploration of consistency of associations across subgroups showed that there
were no significant differences (Wald-test, FDR q>0.05) in the strength of the
association between metabolites and depression across subgroups with depression
diagnoses vs. self-reported depression (r=0.75, Figure S7 in Supplement 1), across
men vs. women (r=0.64, Figure S8 in Supplement 1), across age <50 years vs. >=50
years (r=0.84, Figure S9 in Supplement 1), and across BMI groups (normal vs.
overweight r=0.68, normal vs. obese r=0.55, overweight vs. obese r=0.71, Figures
S$10-12 in Supplement 1).
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DISCUSSION

This meta-analysis of metabolomics and depression, is to our knowledge the
largest of its kind. We analyzed data of more than 15,000 subjects from nine Dutch
clinical and population-based studies in the Netherlands to identify metabolites
associated with depression. Our findings showed that depression is associated
with a metabolic signature towards less HDL and more VLDL and triglycerides
particles. More specifically, 21 plasma lipids, fatty acids and low-molecular-
weight metabolites were significantly related to depression: higher levels of
apolipoprotein B, VLDL cholesterol, triglycerides, diglycerides, total and mono-
unsaturated fatty acids, fatty acid chain length, glycoprotein acetyls, tyrosine,
and isoleucine, and lower levels of HDL cholesterol, acetate, and apolipoprotein Al.
Associations were generally consistent across sex, age and body mass index strata,
and across cohorts using depression diagnoses vs. depressive symptoms. These
metabolic alterations in depression could potentially explain part of the increased
risk of cardiometabolic disease in individuals with depression.

Our findings that depression is related to higher VLDL, higher TG and lower
VLDL are in line with previous research [3, 11, 45]. In the present study, we
predominantly found differences in absolute lipid measures of the VLDL
subfractions, whereas findings with lipid measures to lipid ratios in VLDL were
less consistently associated with depression. This suggests that the total amount
of lipids, rather than the type of lipids, is the main contributor to associations of
depression with VLDL. For other metabolites, previous studies indicated more
mixed findings. We did not find associations for LDL cholesterol measures, which
contrasts with a previous meta-analysis that showed associations between
depression and increased LDL cholesterol [11]. For measures of fatty acids, we
observed that higher mono unsaturated fatty acids, total fatty acids and estimated
fatty acids chain length were associated with an increased odds of depression.
Most evidence for links with fatty acids in depression stems from research on
omega-3 fatty acids [12], for which we did not observe a consistent, significant
association with depression in the present study. The finding of proinflammatory
glycoprotein acetyls being positively associated with depression is in line with the
large body of evidence linking inflammation to depression [46]. The short chain
fatty acid and ketone body acetate was lower in depression. It was hypothesized
that a Western-style diet alters gut microbiome composition, resulting in lower
acetate levels, which could subsequently induce depression [4]. Furthermore, a
smaller study found lower isoleucine levels in depression [47], which contrasts
our findings. Finally, a review concluded that there was no association between
tyrosine and depression [48], whereas we observed higher tyrosine in depression.
Discrepancies could be explained by differences in study characteristics or
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variation in analytic approaches, such as selection of potentially confounding
factors.

We additionally evaluated the impact of the time frame of depression assessment
on the results. In secondary analyses including cases with current depression
only, associations tended to become enhanced, suggesting that metabolomics
alterations represent state markers reflecting current depression. Nevertheless, a
similar profile of associations was found when analyzing depression cases defined
in a broader timeframe. The metabolic signature identified may therefore also
represent a persisting biological scar after remission of depression, or a pre-
existing underlying vulnerability factor for development of depression.

The impact of antidepressant medication use on the results was explored in
secondary analyses, although this observational study precludes definitive
conclusions, as depression severity most likely represents the clinical indication
for antidepressant treatment (confounded by indication) [49]. We reanalyzed
data after excluding antidepressant users, and found that the strength of
associations was attenuated. Furthermore, the reduction in effective sample size
substantially impacted the power to find significant associations. Nevertheless,
directions of associations were highly consistent with those obtained in the full
sample. Furthermore, the literature shows that potential detrimental effects of
antidepressants on dyslipidemia is evident mainly for tricyclic antidepressants
(TCA) [50, 51]. Data from the NESDA cohort [51], including patients from mental
health care institutions and with the highest prevalence of antidepressant users
(27%, Table 1), showed that TCA antidepressant were prescribed only in 3% of
the participants. As the overall prevalence of antidepressant use in other cohorts
included in the present meta-analysis was lower than approximately 9%, it could
be assumed that the number of TCA users may be limited. This observation,
combined with the results of our sensitivity analyses, suggests that antidepressant
use is unlikely to be the major driver of the associations between metabolites and
depression.

Secondary analyses also indicated that results were generally attenuated when BMI
was taken into account, suggesting that part of the differential metabolite levels
in depression could be explained by BMI. However, interrelationships between
BMI, metabolite, depression and antidepressants are particularly complex. A
significant genetic correlation has been found between depression and BMI [52],
indicating that they may emerge from partially shared etiological mechanisms; at
the same time BMI has been shown to influence metabolite concentrations [42].
The ability to disentangle different independent effects of this complex network
in observational data is limited. Nevertheless, the majority of metabolites were

57



Chapter 3

associated with depression after taking into account BMI, indicating that this
factor explains only a limited portion of the depression-metabolites link.

The present findings may be explained by three, non-mutually exclusive, scenarios.
First, alterations of lipids may be a consequence of depression. Depressed persons
are more likely to engage in unhealthy behaviors such as sedentariness, excessive
alcohol use and poor nutrition (e.g., saturated fats), which may lead to dyslipidemia
[16]. Second, lipid dysregulations may be part of the pathophysiological pathways
implicated in depression, such as chronic HPA-axis and inflammatory activity,
resulting in lipolysis, release of fatty acids, synthesis of VLDL, hypertriglyceridemia
and reduction in HDL cholesterol. Third, metabolomic alterations in depression
may represent epiphenomena stemming from the same root, such as a common
genetic factor. A recent genome-wide association study (GWAS) of major
depression involving >450,000 participants, reported a significant genetic
correlation (rg=0.14, p=7.8x107) with high TG levels, but not with LDL or HDL
[53]. Furthermore, no genetic correlations emerged with metabolites of the same
panel that we found to be associated with depression, although the relatively
smaller sample size (~25,000) of the metabolomics GWAS may substantially limit
the ability to detect correlation; the only exception was a nominally significant
correlation with glycoprotein acetyls (rg=0.15, p=0.03), with the same direction
of the phenotypic association we identified. Further experimental studies and
genetically informed designs such as Mendelian randomization may disentangle
whether depression and lipid dysregulations emerge from shared etiology, and
whether depression causally determines lipid alterations or vice versa.

The present study has some limitations. Owing to limited availability or differences
in assessment across datasets we cannot rule out confounding by other health-
related or lifestyle factors, such as chronic cardiometabolic conditions, alcohol use
or specific food intake before sample collection. Nevertheless, the associations
between depression and metabolites were consistent across datasets, including
those enriched for traits such as diabetes, cardiovascular risk factors and migraine.
Furthermore, alcohol use may represent a mediating mechanism rather than a
confounder in the metabolites-depression association, as recent evidence [54]
showed that alcohol dependence is to quite some extent caused by depression.
Analyses were adjusted for fasting status (>94% of subjects were fasting,
Table 1), but both fasting and non-fasting samples can be reliably analyzed by
the metabolomics platform used [26, 36]. We could not examine whether the
associations with metabolites detected vary as a function of specific depression
clinical characteristics. Strengths of the study (large samples, metabolites data
generated for all studies with the same platform) have enabled the identification
of the most reliable metabolic signals associated with depression. These are worth
further examination in relation to clinically relevant phenotypes (e.g., age of onset,
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recurrence, duration, symptom profiles) in future studies based on psychiatrically
well-characterized samples.

This large-scale meta-analysis including more than 15,000 participants identified
a metabolomics signature associated with depression. This biological signature is
partially shared with other conditions such as diabetes, obesity and cardiovascular
diseases [3, 5-7] that commonly co-occur with depression, heavily burdening
public health resources. Alterations in the lipid spectrum identified in the present
study may represent a substrate linking depression to cardiometabolic diseases
and, therefore, a potential target for prevention and treatment of depression and
its detrimental somatic sequelae.
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SUPPLEMENTARY MATERIAL

Full version of supplementary materials can be found through the following link:
https://ars.els-cdn.com/content/image/1-s2.0-S0006322319316282-mmc1.pdf

https://ars.els-cdn.com/content/image/1-s2.0-S0006322319316282-mmc2.xlsx
https://ars.els-cdn.com/content/image/1-s2.0-S0006322319316282-mmc3.x1sx

Information about BBMRI-NL consortium can be found through the following link:
https://www.bbmri.nl/bbmri-metabolomics-consortium

Classification of depressed cases and controls

Controls were those with a negative diagnostic interview for lifetime depression, or
had a score on the depression questionnaires below established cut-off scores (i.e.,
CES-D<16, HADS-D<8 and/or IDS-SR30<14). If multiple self-reports of depressive
symptoms before blood sampling were available, controls needed to score below
the established cut-offs during all these assessments. When diagnostic data on
other psychiatric disorders were available (e.g., anxiety disorders), persons with
other psychiatric disorders were excluded from the controls.

Metabolomics assessment

A total of 230 metabolites or metabolite ratios were reliably quantified from
Ethylenediaminetetraacetic acid (EDTA) plasma samples using targeted high-
throughput proton Nuclear Magnetic Resonance (*H-NMR) metabolomics
(Nightingale Health Ltd, Helsinki, Finland) [19]. This platform provides
simultaneous quantification of routine lipids, lipoprotein subclass profiling
with lipid concentrations within 14 subclasses, fatty acid composition, and
various low-molecular-weight metabolites including amino acids, ketone bodies
and gluconeogenesis-related metabolites in molar concentration units. This
metabolomics platform has been extensively used and described in numerous
studies (see https://nightingalehealth.com/publications for an overview),
including large-scaled epidemiological studies in the field of type 2 diabetes [20],
cardiovascular disease [21], mortality [22], and lifestyle factors such as alcohol
intake [23]. Details of the experimentation and applications of the 'H-NMR
metabolomics platform have been extensively described previously [19, 24, 25].

The entire process from sample handling to data processing is highly standardized
and fully automated. Samples were prepared irrespective of depression status,
because depression cases and controls entered each study at random order (i.e.
unrelated to depression status), and the laboratory analyzing the samples was
unaware of depression cases vs. control status when preparing the samples.
Automated liquid handlers mixed 260 L buffer (75 mM Na,HPO, in 80%/20%
HZO/DZO, pH 7.4; 4.64 mM sodium 3-(trimethylsilyl)propionate-Z,2,3,3-d4, and

64



Depression and targeted metabolomics

6.15 mM sodium azide) with the plasma in 1:1 ratio and moved the prepared
samples to 96-format racks of NMR tubes, which were subsequently moved to the
robotic sample changer, cooled to refrigerator temperature. Each rack contained 2
quality control samples: 1 serum mimic and a mixture of 2 low-molecular-weight
metabolites. For the native plasma samples, the lipoprotein (80k data points after 4
dummy scans using 8 transients, 90° pulse) and low-molecular-weight metabolites
(64k data points, using 24 (or 16) transients acquired after 4 steady state scans,
T2-relaxation-filtered pulse sequence) data were automatically collected at 310.1K
either with the 500 MHz or the 600 MHz Bruker AVANCE IIIHD NMR spectrometer,
with a relaxation delay of 3.0 seconds [19, 25].

The NMR spectra are converted to absolute concentrations via Bayesian modeling
performed via advanced proprietary software and integrates quality control
checks. Several of the metabolic biomarkers have already been ‘validated’ with
other techniques (i.e. routine clinical chemistry assays, gas chromatography, an
enzymatic method, and/or mass spectrometry) [21, 24, 26-28]. Furthermore,
genetic studies [29-31] performed on the same metabolomics platform showed
that the labels applied to the metabolites are coherent and linked with biologically
relevant and plausible genes.

The 14 lipoprotein subclass sizes were defined as follows: extremely large
VLDL with particle diameters from 75 nm upwards and a possible contribution
of chylomicrons, five VLDL subclasses, IDL, three LDL subclasses and four
HDL subclasses. The following components of the lipoprotein subclasses were
quantified: phospholipids (PL), TG, cholesterol (C), free cholesterol (FC), and
cholesteryl esters (CE). The mean size for VLDL, LDL and HDL particles was
calculated by weighting the corresponding subclass diameters with their particle
concentrations.

NMR spectroscopy provides highly consistent biomarker quantification. This is
due to the inherently reproducible nature of the technology; the samples never
come into contact with the radiofrequency detector in the NMR spectrometer.
Biomarker quantification directly from plasma, without any sample extraction
procedures, further contributes to the high reproducibility [24]. Representative
coefficients of variations (CVs) for the metabolic biomarkers are published as
Supplementary Data 3 in Kettunen et al. [30] with the CVs determined for 9,600
samples. Values ranged between 0.3 and 19.5 (mean 4.5%), and most values are
comparable to routinely used assays in clinical chemistry.

Covariates

To be largely in line with previous metabolomics meta-analytic studies, [23], we
adjusted analyses for the following potentially confounding variables: age (in
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years), sex, fasting status (yes/no), use of lipid modifying medication (yes/no),
and current smoking (yes/no). The lipid modifying drugs were defined according
to the related Anatomical Therapeutic Chemical Classification System (ATC) code
C10 (Lipid modifying agents) in order to capture all the medications falling under
this category, including the use of single agents (C10A - Lipid modifying agents,
plain: C10AA HMG CoA reductase inhibitors; C10AB Fibrates; C10AC Bile acid
sequestrants; C10AD Nicotinic acid and derivatives; C10AX Other lipid modifying
agents) and all their potential combinations (C10B - Lipid modifying agents,
combination: C10BA HMG CoA reductase inhibitors in combination with other
lipid modifying agents; C10BX HMG CoA reductase inhibitors, other combinations).
The antidepressant medications selected for the sensitivity analyses included
all classes listed under the ATC code NO6A (NO6AA Non-selective monoamine
reuptake inhibitors, NO6AB Selective serotonin reuptake inhibitors, NO6AF
Monoamine oxidase inhibitors, non-selective, NO6AG Monoamine oxidase A
inhibitors, NO6AX Other antidepressants). Given the bidirectional relationship
between depression and obesity and their shared biological processes (including
genes, endocrine and immuno-inflammatory mechanisms) [32], the role of obesity
was explored in greater detail in sensitivity analysis (see Statistical analyses).
Body mass index (BMI) was calculated as measured weight (kg)/length (m)?, and
divided into normal weight (BMI=18.50-24.99), overweight (BMI=25.00-29.99)
and obesity (BMI1=230).

Assessment of potential bias due to metabolites data transformation
According to the standardized protocol of data processing applied in the present
study a constant of 1 was added to the metabolite values before log-transformation.
This common practice, adopted also in several other studies also from the same
BBMRI-NL Metabolomics Consortium [33], aims to achieve normalization of the
distribution also for metabolites with initial values equaling zero. Nevertheless,
itis important to acknowledge that this transformation may have had introduced
some bias due to the high variability in the normal range of different metabolite. In
the present analyses we aimed to estimate the potential degree of bias introduced
by comparing the results of the metabolites-depression associations obtained
applying three different transformation before log-transformation: A) adding
a constant of 1; B) adding the value of the 10" percentile of the distribution
(excluding 0 values) of each metabolite, a value therefore within the normal range
of the original metabolite; C) excluding all 0 values, a more conservative approach.

Analyses were performed in the NESDA sample (N=2,509), the most representative
dataset for the trait under study, which involves subjects well phenotyped in
psychiatric terms including healthy controls and depressed patients from various
settings and developmental stages of psychopathology. Furthermore, analyses
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focused on the 51 metabolites classified in the cluster of “lipids, fatty acids and
various low-molecular-weight metabolites”.

Ridge plots in Figure S13 shows the distribution (per SD increase) of the (log)
values of the metabolites after the three different transformation. The three sets
of values were used in logistic regression analyses estimating the association
between metabolites and lifetime depression, adjusting for sex, age, smoking,
lipid modifying drugs and fasting status. Results were highly similar across the
three transformations. In Figure S14 the estimates obtained used the original
transformation A were plotted against estimates obtained with transformation
B (panel 1), and against those obtained with transformation C (panel 2). In
both instances the correlation between association effect sizes equaled 1 as the
estimates were substantially identical across transformation (coefficient from
regressing estimates of transformation A on those from transformation B = 1.02,
se=0.01; coefficient from regressing estimates of transformation A on those from
transformation C = 1.00, se=0.02). Overall, these results suggests that the degree
of bias potentially introduced by the transformation applied in original analyses
is minimal and negligible.
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Chapter 4

ABSTRACT

Metabolome reflects the interplay of genome and exposome at molecular level
and thus can provide deep insights into the pathogenesis of a complex disease
like major depression. To identify metabolites associated with depression we
performed a metabolome-wide association analysis in 13,596 participants
from five European population-based cohorts characterized for depression, and
circulating metabolites using ultra high-performance liquid chromatography/
tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform.
We tested 806 metabolites covering a wide range of biochemical processes
including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and
vitamin metabolism for their association with depression. In a conservative model
adjusting for life style factors and cardiovascular and antidepressant medication
use we identified 8 metabolites, including 6 novel, significantly associated with
depression. In individuals with depression, increased levels of retinol (vitamin
A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol
and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-
aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA
(18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either
directly food derived or are products of host and gut microbial metabolism of
food-derived products. Hippurate and mannitol/sorbitol have previously been
consistently associated with depression. Our Mendelian randomization analysis
suggests that low hippurate levels are causally related to depression. Further
analysis of dietary sources of the metabolites in the UK Biobank reveals that
increased vitamin A intake may also have causal implications for major depression.
Our findings highlight putative actionable targets for depression prevention that
are easily modifiable through diet interventions.
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INTRODUCTION

Depression is the most common psychiatric disorder with an average lifetime
prevalence of 11-15% [1]. A sharp increase in the prevalence of depression
worldwide (33.7%; confidence interval 27.5-40.6) has been observed during the
recent COVID-19 pandemic [2] and is predicted to increase as the effects of the
pandemic unfold further [3]. The molecular mechanisms underlying depression
remain elusive. The heritability is estimated to be around 40% [4] and 87 genetic
variants have been identified to be associated with depression [5]. There is also
a range of environmental risk factors for morbidity including low education,
diet and smoking [6]. There is increasing evidence that diet influences mood [7].
Depression also often co-occurs not-only with other neuro-psychiatric pathologies
[8, 9], but also clusters strongly with systemic disorders such as cardiometabolic
disease, diabetes and arthritis [10-13]. Treatment success for depression is poor
and mortality is high [12, 14, 15]. While depression is primarily considered as a
disorder of the brain [16], it is associated with metabolic changes in the blood
circulation that may be explained by weight loss/gain, changes in diet and
altered gut metabolism [17]. There is increasing interest in metabolomic studies
of depression that capture the downstream effects of genes, lifestyle factors,
pathology and medication [18-20]. A novel hypothesis why circulating metabolites
may be involved in depression is that these metabolites are involved in the gut-
brain axis, i.e., the bi-directional signalling between the gut, its microbiome and
the brain [21, 22]. Metabolomic studies on depression have been small and findings
have not always been consistent [23]. Yet, consensus is building that depression
is associated with increased levels of glutamate, lactate, alanine, isobutyrate
and sorbitol and with decreased levels of kynurenine, gamma aminobutyric acid
(GABA), phenylalanine, tyrosine, creatinine, hypoxanthine, leucine, tryptophan,
N-methylnicotinamide, f-aminoisobutyric acid, hippurate, amino-ethanol and
malonate [24]. Our study of 5,283 patients with depression and 10,145 controls
from nine Dutch cohorts [25] using a proton Nuclear Magnetic Resonance (NMR)
metabolomics platform (Nightingale Health Ltd., Helsinki, Finland) identified 21
cardiometabolic metabolites that are significantly related to depression. These
include an unfavorable spectrum of metabolites associated to cardiometabolic
morbidity and mortality [26-28] including apolipoprotein Al and B, very-low-
density and high-density lipoprotein cholesterol, di- and triglycerides, (mono-)
unsaturated fatty acids, fatty acid chain length, acetate, glycoprotein acetyls,
tyrosine, and isoleucine [29].

A problem hampering the translation of findings of metabolomics studies
into preventive and therapeutic interventions is that metabolites in the blood
circulation are strongly influenced by medication and comorbidity [22]. Although
their effects are well recognized, the potential bias is not controlled for in most
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studies conducted to date. Another problem to be tackled is to disentangle
metabolic changes that occur as a cause from those that occur because of
depression progression. To control for confounding, we conducted a comprehensive
analysis of the relation between the blood metabolome and depression in five large
scale epidemiologic cohorts including a total of 13,596 participants. This setting
allows us to control for confounding effects of medication and co-morbidity. The
metabolome in the circulation was characterized by mass spectrometry (MS) using
Metabolon. To identify the origin of metabolites (gut and/or human) we integrate
our findings with those of the Virtual Metabolic Human (VMH) and Assembly
of Gut Organisms through Reconstruction and Analysis (AGORA2) databases.
To separate potential causal effects from the consequences of the disease, we
integrate genomic and metabolomic data using the NIHR BioResource (NBR).
We then examine the impact of anti-depressive therapy on the metabolites in the
Predictors of Remission in Depression to Individual and Combined Treatments
(PReDICT) study. Finally, we study the association of the diet-based sources of
these metabolites with depression and brain pathology in the UK Biobank.

METHODS

Study populations

The association analysis of metabolite levels with depression was performed
in 13,596 participants separately recruited in five different cohort studies. The
following cohort studies were included: the Rotterdam Study (RS), the Study of
Health in Pomerania (SHIP-TREND), the Cooperative Health Research in the Region
of Augsburg (KORA) study, the European Prospective Investigation into Cancer
(EPIC)-Norfolk Study, and the Netherlands Epidemiology of Obesity (NEO) study.
Detailed information on these cohorts is provided in the Supplementary Materials.
All participants provided written informed consent, studies were approved by
their local ethics committees and conformed to the principles of the declaration
of Helsinki. Patients or the public were not involved in the design, or conduct, or
reporting, or dissemination plans of our research.

Association of depression with the dietary sources of the depression-associated
metabolites was performed in the UK Biobank study. UK Biobank is a prospective
cohort study including ~ 500,000 participants aged 40-69 years at baseline
recruited between 2006 and 2010. The aim of the study is to investigate the effects
of genetic and environmental factors on the risk of common multifactorial diseases.
Participants have provided a detailed information on lifestyle, medical history and
nutritional habits; basic variables such as weight, height, blood pressure etc. were
measured; and blood and urine samples were taken. Detailed information about
the cohort is provided in the Supplementary Materials.
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To ascertain the effects of various depression treatments including cognitive
behavioural therapy (CBT) and antidepressants SSRI (escitalopram) and SNRI
(duloxetine) on the depression-associated metabolites we performed a lookup in
the PReDICT study. The design of PReDICT study has been published previously.
[28] Details on the study and the metabolomics assessments are provided in the
Supplementary Materials.

To select instruments/proxies for metabolites for Mendelian Randomization we
used the results of the genome-wide association study (GWAS) performed using
the NIHR BioResource (NBR). NIHR BioResource (NBR) - Rare Disease Study is
a multi-center whole-exome and whole-genome sequencing study including up
to 13,600 patients (http://bioresource.nihr.ac.uk/rare-diseases/rare-diseases/).
The NBR-Rare Diseases study was approved by the East of England Cambridge
South national research ethics committee (REC) under reference number: 13/
EE/0325. The inclusion and exclusion criteria, as well as other steps of quality
control, adjustment and transformations followed the same analytical steps as
described before [30].

Depression assessment

In the RS, depressive symptoms were assessed with the 20-item version of the
Centre for Epidemiologic Studies Depression (CES-D) scale, a self-report measure
of depressive symptoms experienced during the prior week [30]. The total score
ranges from 0 - 60, where a higher score indicates more depressive symptoms.
In the SHIP-trend and KORA cohorts, depressive symptoms were assessed with
the Patient Health Questionnaire 9 (PHQ-9) [31], where each of the nine DSM-IV
criteria for depression are scored from 0 - 3. The total score ranges from 0 -
27 where higher score indicates a greater depression severity. In KORA a brief
interview version of PHQ-9 called Patient Health Questionnaire Depression (PHQ-
D) module was used to measure depression [31, 32]. In the EPIC-Norfolk study
depression was assessed using the following question: “Has the doctor ever told
you that you have any of the following: depression requiring treatment?” with
answers “yes” or “no”. In the NEO cohort, depressive symptoms were assessed
using the Inventory Depressive Symptomatology Self Report questionnaire (IDS-
SR30) [33], which assesses specific depressive symptoms (via a 4-level response
system) during the last week and their severity. The total score ranges from 0 to
84, with higher scores indicating higher severity. Thus, in all cohorts except EPIC-
Norfolk, depression in participants was measured on a quantitative scale and used
as such in the analysis.

In the UKB study, we used the derived lifetime probable major depressive disorder

measure as described in Smith et al. 2013 [34]. We further defined current
depressive symptoms by summing the responses to four questions related to mood
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in the past two weeks. These include, (1) Over the past two weeks, how often have
you felt down, depressed or hopeless?, (2) Over the past two weeks, how often have
you had little interest or pleasure in doing things?, (3) Over the past two weeks,
how often have you felt tense, fidgety or restless? and (4) Over the past two weeks,
how often have you felt tired or had little energy? Answers could be given on a
four-point scale ranging from 0-3 (0 = not at all, 1 = several days, 2 = more than
half of the days and 3 = nearly every day). The total score ranged from 0-12 where
higher score indicating more severe depression.

In the PReDICT study, participants were treatment-naive adults defined as
having never previously received a minimally adequate course of treatment
with an antidepressant medication or evidence-based psychotherapy for a mood
disorder, aged 18 to 65 years with moderate-to-severe, non-psychotic MDD
depression as assessed by the Structured Clinical Interview for DSM-IV [35]
and a psychiatrist’s evaluation, and if they scored 218 on the HRSD17. Eligible
patients were randomized equally to one of three 12-week treatment arms: (1)
cognitive behavior therapy (CBT, 16 sessions); (2) duloxetine (30-60 mg/d); or
(3) escitalopram (10-20 mg/d).

Metabolomics measurements

In all studies, the metabolome was quantified using the Metabolon platform
(Metabolon Inc., Durham, USA). Different versions of the platform have been
used and details on the platforms are included in the Supplementary Materials.
In all studies, metabolites with = 40% missing values were removed and for the
remaining metabolites missing metabolite values were replaced with half of
the detection limit for that particular metabolite [36]. Subsequently, a natural
logarithm transformation was applied to all metabolites and metabolites were
scaled to standard deviation units.

In the PReDICT study, metabolites were quantified using targeted metabolomics
platforms including ultra-performance liquid chromatography triple quadrupole
mass spectrometry (UPLC-TQMS) (Waters XEVO TQ-S, Milford, USA) and gas
chromatography time-of-flight mass spectrometry (GC-TOFMS) (Leco Corporation,
St Joseph, USA). Metabolites with >20% missing values were excluded. Then,
metabolites were log-transformed, imputed and scaled to mean zero and variance
1. Details are provided in the Supplementary Materials.

Non-targeted metabolite detection and quantification was conducted by the
metabolomics provider Metabolon, Inc. (Durham, USA) on fasting plasma samples
of 10,654 participants from the UK Bioresource. The metabolomic dataset
measured by Metabolon included 1069 compounds of known structural identity
belonging to the following broad categories - amino-acids, peptides, carbohydrates,
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energy intermediates, lipids, nucleotides, cofactors and vitamins, and xenobiotics.
Metabolites data were day-median normalized, and inverse normalized, as the
metabolite concentrations were not normally distributed. Metabolic traits with
more than 20% missing values were excluded leaving 722 metabolites of known
chemical identity for analysis.

Genotyping

For the GWAS of metabolites, genotyping in the UK bioresource was carried out
with a high-density array data (Affymetrix UK Biobank Axiom® Array). Genotypes
were subsequently imputed using information from the Human Reference
Consortium imputation panel (version rl.1, 2016) [37]. Only individuals of full
European ancestry (N=8,809) were included in the analyses in the discovery
cohort.

Statistical analyses

Metabolites association analysis

All cohorts used linear regression analysis to test the association between the
metabolite levels (dependent variable) and depression. Three different models
were tested, where the first model (model 1) was adjusted for age and sex only, the
second model (model 2) was additionally adjusted for antidepressant medication
usage, and the third model was an extension of the second model (model 3) with
additional adjustment for lipid-lowering medication (yes/no), antihypertensive
medication (yes/no), antidiabetic medication (yes/no), BMI (kg/m?), and current
smoking (yes/no). The summary statistics from all cohorts were combined in
a sample size-weighted meta-analysis using METAL software [38]. Sample size
weighted meta-analysis was used since the depression measurement scales were
different among cohorts. Only metabolites that were present in two or more
studies were included. To investigate the robustness of our findings, a sensitivity
analysis was performed by including only cohorts that assessed metabolites with
the most recent version of the Metabolon platform (HD4).

Association analysis of major depressive disorder with dietary sources of the
metabolites in the UK Biobank

We used logistic regression analysis to test the association between major
depressive disorder and dietary sources of metabolites (vitamin A supplements,
retinol intake estimated from food, fresh fruits intake and vitamin K antagonists).
Age, sex and principal components were used as covariates in the analysis. For the
association of current depressive symptoms, we used linear regression analysis.
We further tested the association of volume of white matter hyperintensities
(WMH) with vitamin supplements to ascertain the impact of these supplements
on brain pathology. Linear regression analysis was used with the volume of WMH
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as the dependent variable, vitamin supplements as the independent variable, and
age, sex, BMI, head size and principal components as covariates. All analyses were
performed in R.

Metabolite GWAS for Mendelian Randomization (MR) analysis

To test for association between metabolite levels and genotypes, we built linear
regression models where the outcome was defined as the transformed level of
each metabolite, predicted by the allele dosage at each polymorphic (MAF > 0.01)
genotyped or imputed genetic variant. In addition, analyses were adjusted for age,
sex and BMI. All analyses were conducted using the PLINK software (https://www.
cog-genomics.org/plink/2.0/).

Mendelian Randomization (MR) analysis

To understand the relationship between the identified metabolites and major
depression we performed bidirectional two-sample MR analysis. For major
depression we used the independent genome-wide significant single nucleotide
polymorphisms (SNPs) reported by Howard et al. 2019 [5] as instrumental
variables (IVs). Summary statistics for these IVs were extracted from Howard
et al. The summary statistics for the metabolites were extracted from the GWAS
performed in UK Bioresource. Of the identified metabolites in this study (model
3), GWAS results were available for six metabolites including 2-aminooctanoate,
10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), hippurate,
mannitol/sorbitol and retinol (Supplementary Table 1). The IVs for these six
metabolites and their summary statistics were extracted from the same GWAS.
Because of scarcity in GWAS-grade significance for SNPs associated with these
metabolites, we used independent SNPs that showed the strongest association
with a p-value < 10% as instruments (Supplementary Table 2). The summary
statistics for depression for these IVs were extracted from the publicly available
dataset (2019 PGC UKB Depression Genome-wide; https://www.med.unc.edu/pgc/
download-results/mdd/). For the analysis we used the ‘mr_allmethods’ option of
the R (https://cran.r-project.org/) library “MendelianRandomization” [39] that
reports the results from the median method (simple, weighted and penalized),
Inverse variance weighted and Egger methods (penalized, robust and penalized
& robust).
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Table 1. Descriptive statistics of the study populations.

RS SHIP- KORA EPIC- EPIC- NEO
trend Norfolk B2 Norfolk B3
N 484 965 1688 4639 5163 599
Ncases/Ncontrols - - - 638/4001 685/4478 -
Mean age (years) (SD) 731 50.1 61 59.9 59.6 55.8
(6.3) (13.6) (8.8) (8.8) (8.9) (6.0)
Age range (years) 62-96 20-81 32-77 40-78 40-78 45-66
Females (%) 525 56.0 514 524 52.8 52.6
Mean BMI (kg/m?) (SD) 26.8 274 28.2  26.20 26.2 259
(3.7) (4.6) 48 (3.7) (3.8) (4.0)
Smoking (%) 12.6 220 145 114 109 119
Medication
Antidepressants 3.7 4.0 5.6 4.5 3.8 5.3
(%)
Lipid-loweringmedication 10.5 7.8 16.7 1.4 1.5 7.7
(%)
Antihypertensives 0.6 28.2 379 195 17.0 19.7
(%)
Antidiabetics 5.4 0 7.5 1.9 2.0 2.7
(%)
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Depression and untargeted metabolomics

Effect of antidepressant therapy on metabolites in PReDICT study

To examine the strength and significance of metabolite concentration changes
within each of the three treatment arms, i.e., (1) CBT (16 sessions); (2) duloxetine
(30-60 mg/d); or (3) escitalopram (10-20 mg/d), linear mixed effect models (with
random intercept) with metabolite levels (in log scale) as the dependent variable,
were fitted while correcting for age, sex, BMI, and baseline HRSD17. Then, the R
package “emmeans” was used to compute the least squared means of the contrasts
of interest (week 12 vs. baseline) and their corresponding p-values.

To detect whether metabolites levels were associated with clinical outcomes, linear
regression analyses corrected for age, sex and treatment arm were performed.
Dependent variables (Baseline HRSD17, Week 12 HRSD17, and 12 weeks change in
HRSD17) were regressed on either of following independent variables: 1) baseline
metabolite, 2) week 12 metabolite, 3) 2 weeks change in metabolites and 4) 12
weeks change in metabolites.

Linking metabolites to human and/or gut metabolism

To assess whether the identified metabolites are products of human metabolism,
gut microbial metabolism, or both, we integrated our findings with those of
the Virtual Metabolic Human (VMH) and Assembly of Gut Organisms through
Reconstruction and Analysis (AGORA2) databases. Additional information is
provided in the Supplementary Materials.

RESULTS

This study includes 13,596 participants from five independent cohorts including
the Rotterdam Study (RS), the Study of Health in Pomerania (SHIP-TREND),
the Cooperative Health Research in the Region of Augsburg (KORA) study, the
European Prospective Investigation into Cancer (EPIC)-Norfolk Study, and
the Netherlands Epidemiology of Obesity (NEO) study. A detailed description
of the study participants is provided in Table 1. Depression was measured on
a quantitative scale in all cohorts except the EPIC-Norfolk study, where the
participants reported depression on a yes/no scale. The mean age ranged from
50.1 years in SHIP-Trend to 73.1 years in the Rotterdam Study. The percentage of
female participants (51-56%) and mean body mass index (BMI; between 26-28 kg/
m?) were comparable between studies. There were differences in the percentage
of smokers between the cohorts, ranging from 11% in EPIC-Norfolk and to 22%
in SHIP-Trend.

When testing for an association with depression adjusting for age and sex, 53 (41

novel) metabolites were significantly associated with depression after adjusting
for multiple testing (false discovery rate (FDR) < 0.05; Table 2 & Figure 1). These
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include nine metabolites in the amino acid metabolism pathway including five
previously associated with depression (leucine, kynurenate, citrulline, glutamate
and serotonin) [23, 40, 41] and four novel metabolites (N-acetylputrescine,
5-methylthioadenosine (MTA), 2-aminobutyrate and indolepropionate). In
addition, significant association was found for six carbohydrates (one novel),
six cofactors and vitamins, all of which were novel, 26 lipids (25 novel), and six
xenobiotics (five novel) (Table 2).

Zscore < 0 5 3
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Figure 1. Association plot of metabolites with depression.

This plot shows the top findings of the association analysis of metabolites with depressive
symptoms, for all three models tested. Only metabolites with FDR p-value < 0.1 are shown in
this Figure. The associations with a negative Z-score are depicted in grey, while the positive
associations are depicted in orange. The plot is divided per metabolite subgroup. Significance
levels: **: FDR < 0.001, *: FDR < 0.05. Script for Figure modified from Nath et al.(Genome Biol,
2017.18(1): p. 146.).

When adjusting for antidepressant use (model 2), 12 metabolites remained
significantly associated (FDR <0.05) with depression (Table 2, Figure 1),
suggesting that most associations observed with depression were confounded
by antidepressant medication use. Of the amino acids, only citrulline remained
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significantly associated with depression after adjustment for antidepressant
medication (Table 2, Figure 1). Other metabolites that remained significantly
associated with depression in the extended model included four xenobiotics
(4-hydroxycoumarin, hippurate, 3-phenylpropionate (hydrocinnamate) and
cinnamoylglycine), four lipids (2-aminooctanoate, 10-undecenoate (11:1n1),
1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) and 1-linoleoyl-GPA (18:2)), and three
cofactors and vitamins (retinol (vitamin A), bilirubin (Z,Z), bilirubin (E,Z or Z,E)).
Among these, higher levels of 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) and
retinol (vitamin A) were associated with an increased risk of depression, while
the others were associated with a decreased risk (Figure 1).

We subsequently build a more conservative model, further adjusting for other
medication use, including lipid-lowering medication, antihypertensive medication,
antidiabetic medication, BMI and current smoking (model 3). Seven out of the 12
metabolites remained significantly associated with depression (Table 2). These
included retinol (vitamin A), hippurate, 4-hydroxycoumarin, 2-aminooctanoate,
10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), and
1-linoleoyl-GPA (18:2). Additionally, mannitol/sorbitol appeared statistically
significant in model 3. Complete results of the meta-analysis are available in
Supplementary Table 3.

There was no significant evidence for effect modification by sex (Supplementary
Table 4) and the directionality of effects tended to be consistent in men and women.
Effect sizes appeared to be stronger in women. Results were consistent across
various versions of the Metabolon platform and depression assessing instruments
and a sensitivity meta-analysis, which only included results from cohorts that
had assessed metabolites on the most recent (HD4) platform, showed that they
remained essentially unchanged (Supplementary Table 5).

Association of depression with dietary sources of metabolites in the
UK Biobank

To evaluate the association of food sources of the identified metabolites with major
depression we conducted a series of analyses in the UK Biobank (UKB). In the UKB
information on vitamin supplements including vitamin A, retinol intake from food,
consumption of fresh fruits - a major source of hippurate, and medication use
including vitamin k antagonist (a proxy for 4-hydroxycoumarin) was available. In
a cross-sectional analysis, we found a significant positive association of vitamin
A intake from supplements with both measures of depression including current
depressive symptoms (beta = 0.23, p-value = 1.25x10%°) and lifetime major
depressive disorder (MDD, OR = 1.40, p-value = 9.72x10%). However, vitamin D
supplement intake was also significantly positively associated with both measures
of depression (Table 3), suggesting that depressed individuals take more vitamin
supplements than non-depressed individuals.
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Since both vitamin A and vitamin D are fat-soluble and can cross the blood-brain
barrier, we performed additional association with the measure of brain pathology,
i.e., white matter hyperintensity (WMH) volume. Only vitamin A supplement
intake was found to be associated with higher volume of WMH (beta = 479.09,
p-value = 0.04, Supplementary Table 6), suggesting a possible role of vitamin
A in brain diseases. To address the issue of reverse causality, we additionally
tested the association of depression with retinol intake estimated from the food
consumed in the previous 24 hours. Significant positive association of estimated
retinol intake was observed with both measures of depression (current depressive
symptoms, p-value = 1.26x10-%; lifetime MDD, p-value = 1.4x10°%). However, the
effect estimates were small (Table 3), which may in part be explained by the
imprecision of food consumption questionnaires. Fresh fruit intake, a major
source of hippurate, was negatively associated with both measures of depression
(current depressive symptoms, beta =-0.06, p-value = 1.61x102%%; lifetime
MDD, OR = 0.96, p-value = 3.27x10?%) and vitamin K antagonists, a proxy for
4-hydroxycoumarin, was positively associated with both measures of depression
(current depressive symptoms, beta = 0.43, p-value = 1.04x10-*¢; lifetime MDD,
OR =1.15, p-value = 0.016) (Table 3).

Mendelian randomization analysis

Testing the hypothesis that major depression results in changes of circulating
metabolites in the Mendelian randomization analysis (MR), nominally significant
results were obtained for 2-aminooctanoate and 10-undecenoate (11:1n1), under
the MR-Egger method and weighted median method, respectively. However,
these findings did not remain significant after adjustment for multiple testing
(Supplementary Table 7). MR models in which we tested the hypothesis that levels
of circulating metabolites increase the risk of depression provided significant
evidence for a causal relation between hippurate and the risk of depression, both
in the MR-Egger robust and penalized-robust methods (Supplementary Table 8).
The effect estimate was consistent with the inverse relationship observed between
hippurate and major depression in this study. However, a significant intercept was
also observed suggesting pleiotropy. To exclude a pleiotropic effect, we studied
the effect of intervention on the metabolite in the PReDICT trial.

Effect of antidepressant therapy on hippurate

To further evaluate the impact of antidepressant therapy including cognitive
behavioral therapy (CBT), duloxetine - a serotonin-norepinephrine reuptake
inhibitor (SNRI) and escitalopram - a selective serotonin reuptake inhibitor (SSRI)
on hippurate we consulted the PReDICT study. The PReDICT study allows us to
test the effect of antidepressant therapy on the metabolite levels in circulation by
measuring the metabolite levels before and after the antidepressant therapy. In
PReDICT, we found that levels of hippurate in the circulation increased significantly
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from baseline to week 12 only after treatment with escitalopram (estimated
week 12 vs. baseline difference = 0.45, 95% confidence interval (CI; 0.16,0.74),
p-value = 0.002; Supplementary Figure 1), but not in the cognitive behaviour
therapy (CBT) and duloxetine treatment arms (CBT: estimated difference = -0.02,
95% CI (-0.39,0.33) and p-value = 0.87; duloxetine: estimated difference = 0.13,
95% CI (-0.17,0.44) and p-value = 0.38). In this study, we could not show a relation
between hippurate and depression as the study recruited patients only and
lacked healthy controls. In patients receiving pharmacotherapy (escitalopram
and duloxetine arms), the association of baseline depression as measured by the
17-item Hamilton Rating Scale for Depression (HRSD17) and baseline hippurate
was not statistically significant (beta = 0.04, 95% CI (-0.03,0.11), p-value = 0.27).
Further, no significant association was observed between depression in week 12
as measured by the HRSD17 and week 12 hippurate (beta = 0.09, p-value = 0.45)
and 12 weeks change in HRSD17 and 12 weeks change in hippurate (beta = 0.02,
95% CI (-0.65, 1.57), p-value = 0.85).

Linking the human circulating metabolome to gut microbiome
metabolism

Of the 53 metabolites identified in this study in model 1, 28 metabolites could
be matched to a unique VMH metabolite ID. For each metabolite, the presence
or absence in the global human reconstruction, Recon3D [42], and a resource of
7,206 reconstructions of human gut microbes, AGORA2 (https://www.biorxiv.org/
content/10.1101/2020.11.09.375451v1) was retrieved. In total, 12 metabolites
were present in both the human and gut microbial metabolic networks, three were
only present in gut microbes, and 13 were only present in human (Supplementary
Table 9). To further investigate potential links between the microbiome and
metabolites associated with depression, the potential of the 7,206 AGORAZ2 strains
to consume or secrete the 15 microbial metabolites identified in this study was
computed. Since hippurate is synthesized in the liver and renal cortex from
the microbial metabolite benzoate [43], the uptake and secretion potential for
benzoate was also predicted for the 7,206 strains.

A wide range of genera and species were involved in the uptake of mannitol
(Supplementary Table 10). Mannitol is largely secreted by several species of the
genus Bacteroides followed by Lactobacillus, among others (Supplementary Table
11). Both genera have previously been found to be associated with depression [17].
In total, 3,616 AGORAZ2 strains mainly of the Gammaproteobacteria and Bacilli
classes (Supplementary Table 11) synthesized benzoate as a product of benzamide
(VMH reaction ID: BZAMAH). Interestingly, benzamides are a class of antipsychotic
medication.
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DISCUSSION

In this study, we identified 53 metabolites significantly associated with depression,
most of which, including those in the monoamine and neurotransmitter pathways
(serotonin, kynurenate and glutamate), were explained by antidepressant use. We
identified novel associations with depression for six metabolites, including retinol
(vitamin A), 4-hydroxycoumarin, 2-aminooctanoate, 10-undecenoate (11:1n1),
1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), 1-linoleoyl-GPA (18:2) and confirmed
the association of hippurate and mannitol/sorbitol. We found that the relation of
hippurate and depression may be causal and that hippurate levels can be modified
by a specific antidepressant, escitalopram. Analysing the major dietary sources
of these metabolites in the UKB study, we found that retinol (vitamin A) intake
was significantly higher and fresh fruits intake, a major source of hippurate,
significantly lower in depressed individuals compared to those who were not
depressed.

One of the most interesting findings of this study is the identification of the
association of higher levels of retinol (active form of vitamin A) with depression.
There have been several case reports of individuals with vitamin A intoxication
with no previous history of depression, who developed symptoms of depression
and even psychosis when overdosed with vitamin A [44, 45]. Depressive symptoms
resolved upon discontinuation of vitamin A, implying that depression may be a side
effect of vitamin A intake [44]. Animal models have suggested elevated monoamine
oxidase enzyme activity and depression-related behavior upon vitamin A
supplementation [46, 47]. Our study is the first to link higher levels of retinol
in blood with depression in the general population. Retinol and its derivatives
known as retinoids are lipid soluble and can cross the blood-brain barrier. Vitamin
A is required for brain development and functioning [48, 49]. However, excess of
vitamin A is neurotoxic and may result in brain shrinkage [49]. Brain areas high
in retinoic acid signaling and receptors overlap with areas of relevance to stress
and depression [50]. Further, vitamin A is known to increase the synthesis of
triglyceride-rich very low-density lipoproteins (VLDLs) and apolipoproteins in
the serum [51, 52], which we found associated with depression in our previous
study [53]. Since food it the primary source of vitamin A, an important question
to answer is whether vitamin A intake is associated to depression. In the UK
Biobank we found significant increase in dietary retinol intake in individuals
with depression. Thus, our findings ask for intervention studies that evaluate
prospectively the effect of vitamin A reduction in depressed patients.

Two of the most strongly associated metabolites with depression were xenobiotics,

hippurate and 4-hydroxycoumarin. In line with the findings of our study,
decreased levels of hippurate have been previously reported in urine and plasma
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of individuals with unipolar and bipolar depression consistently in several studies
and it has been suggested as a biomarker for depressive disorders [54]. Our MR
analysis suggests that low hippurate levels in circulation are a part of the causal
pathway leading to depression. However, as the MR could not exclude a pleiotropic
effect, our findings yield a hypothesis that requires further evaluation in a clinical
trial. While we could not show an association between hippurate and depression
in the PReDICT study, as the study lacked controls, hippurate levels were higher
12 weeks after initiation of selective serotonin reuptake inhibitor (SSRI) therapy
(escitalopram) but not for SNRI or CBT, raising the question whether blood levels
of hippurate can be used in clinical trials for compliance and efficiency of SSRIs
specifically. Hippurate is derived from benzoate and polyphenols and is reported
to be a metabolomics marker of gut microbiome diversity [53]. A diet rich in whole
grains and fruits has been reported to increase levels of Hippurate [53]. In line
with the decreased levels of hippurate in depressed individuals found in our
metabolome-wide association analysis, we found significantly decreased fresh
fruit intake among individuals with depression in the UKB, which is in line with
the previous study that high consumption of fruits, vegetables, nuts, and legumes
is associated with a reduced risk of depression [7, 55].

The metabolite 4-hydroxycoumarin is a fungal derivative of coumarin. Coumarins
are found naturally in plants and spices [55] and coumarin is converted into
4-hydroxycoumarin by fungi [56]. 4-hydroxycoumarin is then converted into
dicoumarol in the presence of formaldehyde [56]. Dicoumarol is an anticoagulant
(warfarin) that inhibits the synthesis of vitamin K, also called vitamin K antagonist,
and is commonly used to treat thromboembolic diseases [57]. In the UKB, we found
significant positive association of anticoagulant use (vitamin K antagonists) with
major depression. A history of depression is a risk factor for thromboembolism
[58-60]. Antidepressants are also known to interact with warfarin [61] and
are also associated with increased risk of thromboembolism [62]. Taking all
findings together, we hypothesize that depression/antidepressant use depletes
4-hydroxycoumarin in circulation leading to thromboembolism. Vitamin K has
been shown to act in the nervous system as it is involved in sphingolipid synthesis
[63]. Sphingolipids are present in high concentrations in cell membranes of
neuronal and glial cells [64]. Sphingolipids are essential for important cellular
events, including proliferation, differentiation, senescence, cell-cell interactions,
and transformation [65] and they have been linked to aging, Alzheimer’s disease,
and Parkinson’s disease [66-68]. Further, sphingolipids were found to play a crucial
role in the development of depression- and anxiety-related behaviours in mice [69,
70] and depression is seen often in patients with sphingolipid storage diseases [71-
75]. Treatment with escitalopram /citalopram is also associated with changes in
sphingolipids [76]. In our study, we did not find an association of depression with
circulating sphingolipids present on the Metabolon platform. However, we cannot
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exclude that 4-hydroxycoumarin in the blood affects sphingolipid metabolism in
the brain specifically.

Other metabolites that were found to be significant in our study include mannitol/
sorbitol, of which increased levels were associated with depression. Higher levels
of sorbitol in plasma and urine have previously been consistently reported in
patients with unipolar and bipolar depression and, like hippurate, it has been
suggested as a diagnostic biomarker of depression [23]. Mannitol/sorbitol are
sugar alcohols found in food such as fruits and berries and often used in diet/
sugar free foods as sweeteners [77]. Fructose reduced diets have been shown
to improve gastrointestinal disorders, depression and mood disorders [78]. Our
AGORAZ2 analysis suggests that mannitol is mainly secreted by several species
of Bacteroides, Lactobacillus, Fructobacillus, Alistipes and Bifidobacterium.
Interestingly, all genera, except for Fructobacillus have previously been associated
with depression [17], asking for further studies on the role of the microbiome,
circulating levels of mannitol and depression.

Finally, there were four lipids identified in our study (2-aminooctanoate,
10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) and
1-linoleoyl-GPA (18:2)) significantly associated with depression. 1-Palmitoyl-
2-palmitoleoyl-GPC (16:0/16:1) also known as phosphatidylcholine (16:0/16:1)
or lecithin (HMDB0007969) is commonly found in foods like eggs, soyabean,
liver, nuts and seeds and is a precursor of choline. Lecithin is believed to cause
depression by increasing the production of acetylcholine in the brain [79]. When
fed to animals and humans, lecithin significantly increases the levels of choline
in blood and brain and of acetylcholine in brain [80-82]. Our study is the first to
show higher circulating levels of lecithin in the depressed individuals from the
general population. The other three lipids 2-aminooctanoate, 10-undecenoate
(11:1n1) and 1-linoleoyl-GPA (18:2) were negatively associated with depression.
2-Aminooctanoate (alpha-aminocaprylic acid) and 10-undecenoate (11:1n1)
(undecylenic acid) are neutral hydrophobic molecules for which there is not much
known in the literature. Lower levels of 10-undecenoate (11:1n1) have been found
in individuals with non-alcoholic fatty liver disease [83]. 1-linoleoyl-GPA (18:2) is
alysophosphatidic acid (LPA 18:2). LPA is a bioactive membrane lipid that acts on
atleast six distinct G protein-coupled receptors (LPA1-6) and plays a role in pain
sensitivity and emotional regulation [84]. LPA knock out mice exhibit anxiety-
related behaviour [84, 85].

We found that decreased plasma levels of serotonin, kynurenate, leucine and
citrulline and higher levels of glutamate were associated with depression. Lower
plasma/serum levels of serotonin, kynurenate, citrulline and leucine and higher
levels of glutamate have been reported in relationship to depression in earlier
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studies [40, 41, 86, 87], which also appears consistent with our findings of model
1. However, we and others have shown that antidepressants affect plasma/serum
levels of serotonin, glutamate, leucine and kynurenine [87-91]. An important
finding of our study is that only citrulline remained significantly associated with
depression after adjusting for antidepressant medication use. Lower levels of
citrulline and its precursor arginine were previously associated to depression in
unmedicated individuals [41, 92]. Interestingly, treatment with SSRIs significantly
increase the levels of plasma citrulline [93]. Further, levels of plasma citrulline
were found to be significantly increased two hours post treatment with ketamine,
suggesting a possible mechanism of action of the rapid acting drug [92]. Citrulline
is an intermediate in the urea cycle and linked to nitric-oxide synthesis [93]. It
is absorbed by the gut and has useful therapeutic effects against cardiovascular
diseases [94]. In our study the association of citrulline with depression lost its
significance, albeit not completely, after adjusting for cardiovascular medication
use and BMI.

Our study is the first large-scale effort combining metabolites measured on
assorted, untargeted metabolomics platforms (Metabolon) studied in relationship
to depression. In addition to confirming several previously identified metabolites
in smaller studies, we successfully identified novel metabolites that are associated
with depression. Our findings are robust across different versions of the Metabolon
platform or the criteria assessing presence of clinical or subclinical depression.
A possible limitation of our study is that differences in metabolomics platforms
and technologies that were used by different cohorts to assess depression may
have resulted in a reduction of statistical power. Older versions of the Metabolon
platform reported significantly fewer known metabolites compared to the more
recent implementations. Another possible limitation of our study is the presence
of residual confounding. After adjusting for medication use and the lifestyle
factors smoking and BMI, confounding may still be present and may influence the
results [95]. Also, our MR analysis was most likely underpowered lacking strong
instrumental variables for both depression and the associated metabolites.

Analysing circulating levels of 806 metabolites from untargeted metabolomics
platforms in 13,596 individuals, we identified six new associations of metabolites
with depression including retinol (vitamin A), 4-hydroxycoumarin and four lipids,
2-aminooctanoate, 10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC
(16:0/16:1) and 1-linoleoyl-GPA (18:2), while confirming known associations
of hippurate and mannitol/sorbitol. We further show that previously identified
associations of depression with metabolites belonging to the amino-acid pathways
including serotonin, kynurenate, leucine and glutamate are likely explained by
antidepressant medication. Our findings point to effective preventive targets, as
most of these metabolites are food derived and thus can be altered in patients by
modifying diet.
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ABSTRACT

Background

A recent hypothesis postulates the existence of an “immune-metabolic depression”
(IMD) dimension characterized by metabolic dysregulations. Combining data
on metabolomics and depressive symptoms, we aimed to identify depressions
associated with an increased risk of adverse metabolic alterations.

Method

Clustering data were from 1094 individuals with major depressive disorder in
the last 6 months and measures of 149 metabolites from a 'H-NMR platform and
30 depressive symptoms (IDS-SR30). Canonical correlation analyses (CCA) were
used to identify main independent metabolite-symptom axes of variance. Then,
for the replication, we examined the association of the identified dimensions
with metabolites from the same platform and cardiometabolic diseases in an
independent population-based cohort (n=6572).

Results

CCA identified an overall depression dimension and a dimension resembling IMD,
in which symptoms such as sleeping too much, increased appetite, and low energy
level had higher relative loading. In the independent sample, the overall depression
dimension was associated with lower cardiometabolic risk, such as (i.e., per SD)
HOMA-1B -0.06 (95% CI:-0.09;-0.04), and visceral adipose tissue -0.10 cm? (95%
CI:-0.14;-0.07). In contrast, the IMD dimension was associated with well-known
cardiometabolic diseases such as higher visceral adipose tissue 0.08 cm? (95%
CI:0.04;0.12), HOMA-1B 0.06 (95% CI:0.04;0.09), and lower HDL-cholesterol levels
-0.03 mmol/L (95% CI:-0.05;-0.01).

Conclusions

Combining metabolomics and clinical symptoms we identified a replicable
depression dimension associated with adverse metabolic alterations, in line
with the IMD hypothesis. Patients with IMD may be at higher cardiometabolic
risk and may benefit from specific treatment targeting underlying metabolic
dysregulations.
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INTRODUCTION

Cardiovascular disease (CVD) together with major depressive disorder (MDD) are
leading causes of mortality and disease burden worldwide [1, 2]. Each of these
conditions may predispose for the other, and the presence of one condition worsens
the prognosis of the other [3]. Although the mechanism of this comorbidity is still
not fully understood, adverse metabolic alterations may serve as the element that
connects the two conditions [1, 3, 4]. A recent large scale epidemiological study
in >15,000 individuals analyzing the association between depression and more
than 200 lipid related metabolites [5] found that depression is associated with a
metabolic signature that is also found in CVD patients [6]. This metabolic signature
was characterized by a shift in the lipids levels encompassing less HDL-cholesterol
and more very low density lipoproteins (VLDL) and triglycerides, in line with a
higher metabolic syndrome profile in depression [5]. This metabolic signature
may represent a substrate linking depression to cardiometabolic diseases.
Another large population-based study in >350,000 individuals [4] concluded that
the risk factors of CVD (i.e., inflammatory markers (CRP, IL-6) and biomarker
(triglycerides)) are likely causal for the development of depression.

MDD is a highly heterogeneous disorder: patients with the same MDD diagnoses
according to DSM-V (Diagnostic and Statistical Manual of Mental Disorders) [7]
may experience very different symptom profiles [8]. These different clinical
expressions may be, in turn, differentially related to underlying biological
dysregulations. Recent evidence suggests that adverse metabolic alterations
and inflammatory dysregulation map more consistently onto “atypical, energy-
related depressive symptoms”, such as excessive sleepiness, hyperphagia,
weight gain, and fatigue [9]. This set of symptoms is partially shared with other
constructs, such as sickness behavior [10] and nosological categories, such as
atypical depression, seasonal affective disorder, and bipolar disorder [7]. The
clustering of atypical, energy-related depressive symptoms with inflammatory
and metabolic alterations indexes an underlying quantitative dimension, labelled
“immuno-metabolic depression” (IMD), with transdiagnostic value and potentially
present in psychiatric (depression, bipolar or psychotic disorders) and somatic
(obesity, diabetes, cardiovascular) disorders characterized by overlapping
symptomatology or biological dysregulations [9]. Nonetheless, further empirical
evidence is needed to fully characterize the clustering between specific symptom
profiles and immuno-metabolic biological dysregulations. The identification of
depression dimensions characterized by this clustering of clinical and biological
features could give us a better understanding of the shared biological mechanisms
between depression and cardiometabolic diseases and potential opening for
interventions aimed at avoiding their reciprocal influence [11-13]. Furthermore,
the identification of individuals with this specific form of depression may create
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awareness amongst healthcare providers and the need to perform more rigorous
cardiometabolic health checks and interventions.

The main aim of the present study was to identify depression dimensions
associated with increased risk of adverse metabolic profile by combining data on
metabolomics and depressive symptoms. First, we applied a data-driven method
to identify patterns of correlations between depressive symptoms and metabolites
from a lipid-focused metabolomic platform in >1,000 MDD patients. Previous
studies aimed at parsing depression heterogeneity through data-driven methods
followed two conceptually distinct approach (Supplemental figure 1 adapted from
[14]). In one approach (top-down), studies [15, 16] performed symptom-based
clustering as a first step and subsequently evaluated the clustering results via
association with biomarker levels. In the opposite approach (bottom-up), studies
[17, 18] performed biomarker-based clustering as a first step and subsequently
evaluated the clustering results via association with clinical features. The novelty
of the present study is that we merged the two approaches and performed
clustering based on both symptoms and biomarkers, leveraging their co-variance
structure. Then, for the replication, we examined the association between the
identified dimensions and 51 metabolites from the same panel, and clinical
cardiometabolic diseases such as levels of fasting glucose, insulin resistance, total
and abdominal adiposity in an independent population-based cohort (n=6572).

METHOD

Study design

The current analysis consists of two parts: the metabolite-symptom clustering
and the replication (Figure 1). In the first part, we used a data-driven approach
to dissect the heterogeneity of depression and to identify main independent
metabolite-symptom dimension of variance in 1094 individuals with depression
in the last 6 months from the Netherlands Study of Depression and Anxiety cohort
(NESDA). Then, in the replication, we examined the association between the
dimensions identified and the cardiometabolic metabolites (51 lipids, fatty acids,
and low-molecular-weight metabolites) and diseases in an independent dataset
of 6572 participants from the general population enrolled in the Netherlands
Epidemiology of Obesity (NEO) study. The research protocol of NESDA was
approved by the medical ethical committees of the following participating
universities: Leiden University Medical Center (LUMC), Vrije University Medical
Center (VUMC), and University Medical Center Groningen (UMCG). The NEO study
was approved by medical ethics committee of Leiden University Medical Center
(LUMCQ). All participants gave written informed consent.
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Figure 1. An illustration of the method
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Part 1: Metabolite-symptom clustering

We performed this analysis on 1094 participants diagnosed with MDD in the
last 6 months via the structured Composite Interview Diagnostic Instrument
(CIDI, version 2.1) [19] from NESDA [20]. After an overnight fast, EDTA plasma
was collected and stored in aliquots at -80°C until further analysis by "H-NMR
(Nightingale Health Ltd, Helsinki, Finland) [21] metabolomics platform. This
metabolomics platform consists of 230 metabolites or metabolite ratios and can
be classified into 3 clusters [22] as follow: 1) lipids, fatty acids, and low-molecular-
weight metabolites (n=51); 2) lipid composition and particle concentration
measures of lipoprotein subclasses (n= 98); and 3) metabolite ratios (n= 81). In this
analysis, we focused on the first two classes (n=149). Metabolite ratios were not
used due to redundancy. We processed the metabolomic data based on the protocol
described in Appendix 1 that was suggested by the manufacturer of the platform
and has been consistently applied in several large-scale epidemiological studies
[5, 23]. Blood samples were analyzed in two batches (April 2014 and December
2014) by 'H-NMR (Nightingale Health Ltd, Helsinki, Finland) [21]. We regressed the
metabolites on age and batch effect in order to remove their confounding effect.

During the baseline assessment, the presence of major depressive disorder was
determined with the Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-1V)-based Composite Interview Diagnostic Instrument (CID]I,
version 2.1, World Health Organization, 1997) by specially trained research staff.
Additionally, participants were asked to complete the Inventory of Depressive
Symptomatology (IDS-SR30), which assesses (via a 4-level response system) the
presence of 30 depressive symptoms during the last week and their severity [24].
Additional measures of body mass index (BMI), waist circumference and fasting
glucose level are described in details in Appendix 2.

Statistical analysis for metabolite-symptom clustering

Our goal was to identify independent dimensions emerging from patterns of
correlations between depressive symptoms and metabolites. For that, we used
canonical correlation analysis (CCA, [25]).

1.A. Principal component analysis (PCA)

Metabolites are correlated to each other; to avoid overfitting and unstable results
of CCA, data reduction [26] of metabolomics was performed applying PCA to age-
and batch-adjusted metabolites residuals. PCA is described in more details in
Appendix 3. We selected principal components explaining the highest proportion
of variance (components that explained more than 10% of variance) in metabolites.
Therefore, the next analysis was performed on principal components explaining
the highest proportion of metabolites variance and 30 depressive symptoms.
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1.B. Canonical correlation analysis (CCA)

CCA [25] is a method that given two sets of variables X and Y (in this case,
metabolites and depressive symptoms), find a linear combination of X that is
maximally correlated with a linear combination of Y (i.e., a weighted sum of
each variable). Detailed definition and description of CCA method explained in
Appendix 4. In our analysis we chose to proceed with the first two canonical pairs
that provided more information about the two sets of variables. The relationship
between the created canonical variables of depressive symptoms and metabolites
from the same panel and cardiometabolic diseases was validated in an independent
sample (see replication section).

1.C. lllustrative analyses

In order to better explain the results of CCA and the meaning of its output we
proposed two additional analyses (point 1.C. In Figure 1). To explore how the first
two metabolic canonical variates (mCVI and mCVII) classify individuals in terms
of cardiometabolic diseases (i.e., BMI, waist circumference, and fasting glucose)
we plotted the predicted level of the cardiometabolic diseases as a function of
the two metabolic canonical variates (i.e., smoothing function was used for the
prediction). Furthermore, to evaluate the symptoms contribution to the two
canonical correlation, for each symptom we calculated the symptoms loadings,
expressed in Pearson’s correlation coefficient, with the first two symptoms
canonical variates (sCVI and sCVII).

Part 2: Replication

To replicate the results of previous step, we investigated the association between
the dimensions identified in the previous step via CCA and metabolomics and
cardiometabolic diseases in the Netherlands Epidemiology of Obesity (NEO)
study [27]. The depressive symptoms in NEO study were assessed by IDS-
SR30 [24], the same instrument used in the NESDA study. For the purpose of
replication, we included only the first class from the H-NMR platform (i.e., 51
lipids, fatty acids, and low-molecular-weight metabolites) in the main results. For
completeness of data, we showed the result of the entire metabolomic platform
in the supplementary results since they have large overlap with the standard
clinical lipid profile. We used the same protocol for processing this metabolomic
data in the clustering step. The cardiometabolic diseases are described in detail
elsewhere [27]. From fasting glucose and insulin concentrations, we calculated the
Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and HOMA of
beta-cell function (HOMA-1B) as markers of hepatic insulin resistance and steady-
state insulin secretion [28]. HOMA-IR was calculated as fasting insulin (pU/mL) x
fasting glucose (mmol/L)/22.5 and HOMA-1B% as 20 x fasting glucose (mmol/1)-
3.5[28, 29].
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Statistical analysis for replication

2.A. Weighting of depressive symptoms

To index the two dimensions identified in the clustering step, we created two
weighted depressive symptom scores. We weighted each individual item of the
IDS-SR30 based on extracted CCA weights from the previous step. Then, we
summed the weighted depressive symptoms to create two weighted IDS scores.
We standardized weighted IDS scores to a mean of zero and a standard deviation
of one to allow comparison across the scores.

2.B. Linear regressions

We used linear regression to examine the relationship between the two
weighted IDS scores as the independent variable and 51 'H-NMR metabolites
and cardiometabolic diseases (BM], total body fat, waist circumference, visceral
adipose tissue, HbAlc, fasting glucose, HOMA-IR, HOMA-1B, total cholesterol, LDL-
cholesterol, HDL-cholesterol, and triglycerides) as dependent variables. We fitted
four linear regression models, the crude model, model 1, model 2 and, model 3.
Model 1 was adjusted for age, sex, and educational level. Model 2 was adjusted
for age, sex, educational level, smoking, alcohol consumption, physical activity,
and ethnicity. Model 3 was model 2 with additional adjustment for lipid-lowering
drugs, and antidepressants. The false discovery rate (FDR) method was applied to
correct for the multiple testing. As the NEO study is a population-based study with
oversampling of individuals with a BMI > 27 kg/m?, all results are based on BMI-
weighted analysis. The weighting factor is based on BMI distribution in the general
Dutch population to make our results generalizable to the Dutch population.

RESULTS

Part 1:Metabolite-Symptom clustering
Table 1 shows the main demographic, health- and depression-related characteristic,
in the NESDA sample of individuals with MDD in the last 6 months.

1.A. Principal component analysis

Data reduction of metabolomics was performed using PCA, identifying three
principal components that explained more than 10% of the variance in metabolites
(together explained 75% of the variance) (Scree plot in Supplemental figure 2).

1.B. Canonical correlation analysis

The resulting 3 principal components were used in the CCA analysis and were
correlated to the 30 depressive symptoms, to identify the main independent
metabolite-symptom dimensions of variance based on their correlation. The
correlation between the linear transformation (weights) of metabolites principal
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components (metabolic canonical variate I, mCVI) and depressive symptoms
(symptom canonical variate I, sCVI) was 0.30 explaining 54 % of the metabolite-
symptom covariance, for the second pair of canonical variates the correlation
between mCVII and sCVII was 0.24 explaining 33% of the metabolite-symptom
covariance (Supplemental figure 3).

Table 1. Characteristics of the study population for the metabolite-symptom clustering
step (NESDA)

Metabolite-symptom clustering
(NESDA n=1094)

N 1094
Women, n (%) 741 (67.73)
Age (years) (mean, sd) 40.88 (12.11)
High educational level (high) n (%) 306 (27.97)
Use of lipid-modifying medications, yes n (%) 78 (7.13)
BMI (kg/m?) (mean, sd) 2590 (5.51)
Waist circumference (cm) 89.58 (14.56)
Glucose (mmol/L) 5.20 (1.15)
Use of antidepressant Yes n (%) 477 (43.60)

Total IDS-score (0-84) median (25th,75th percentiles) 32.50 (24.0,41.0)

Normally distributed data shown as mean and standard deviation (SD), skewed
distributed data shown as median (25th, 75th percentiles), and categorical data are
shown as percentage. High education level: university or college education, while other
education level: none, primary school, or lower vocational education. IDS-SR30: Inventory
of Depressive Symptomatology (self-report). BMI: body mass index. NESDA: Netherlands
study for depression and anxiety.

1.C. lllustrative analyses

To explore how the first two metabolic canonical variates (mCVI and mCVII)
classify individuals in terms of cardiometabolic diseases (i.e., measures of BMI,
waist circumference, and fasting glucose) we plotted the predicted level of
the diseases as a function of the two metabolic canonical variates. Level plots
depicted in Figure 2 show that high values in BMI, waist circumference, and fasting
glucose tended to cluster at high level of mCVII and low levels for mCVI. Figure 3
shows the loading, expressed as Pearson’s correlation coefficient, of IDS-SR item
on the two symptoms canonical variates (sCVI and sCVII). In the first variate,
correlation coefficients were substantially consistent across the entire spectrum
of items, including mood, cognitive and somatic symptoms. In the second variate,
the loading of specific items such as difficulty falling asleep, sleeping too much,
increase weight and appetite, low energy level and gastrointestinal problems were
relatively higher as compared to the other symptoms.
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Figure 2. Level plot of the predicted cardiometabolic health conventional biomarker as
functions of the first and second metabolic canonical variates.

We interpreted the first canonical variate CVI, explaining a larger proportion
of symptom-metabolite covariance (54%), as an overall depression dimension
characterized by a wide array of symptoms (sCVI, Figure 3) and lower levels of
cardiometabolic diseases (mCVI, Figure 2). The second variate, explaining 33%
of the symptom-metabolite covariance, partially resembled the postulated IMD
construct [9], with relevance for energy-related behavioral symptoms and higher
cardiometabolic diseases. Thus, for interpretability we labelled the two canonical
variates, respectively, “overall depression” and “IMD”.
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Figure 3. Canonical loading of depressive symptoms on the symptoms canonical variates
sCV I: First symptoms canonical variates I. sCV II: Second symptoms canonical variates.
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Part 2: Replication

The baseline characteristics for all 6572 participants of the NEO cohort included in
the replication step are shown in Supplemental table 1. The mean age in the NEO
population was 55.7 years (standard deviation (SD)): 6 years, and the median of
the IDS-SR30 questionnaire was 8.0 points (4, 13).

2.A. Weighting of depressive symptoms

We created two weighted depressive symptoms scores labelled “overall depression”
and “IMD” with the weights derived in CCA for, respectively, the first and second
canonical variate.

2.B. Linear regression

We examined the association of these weighted scores with 51 metabolites and
cardiometabolic diseases (levels of BMI, total body fat, waist circumference,
visceral adipose tissue, HbAlc, fasting glucose, HOMA-IR, HOMA-1B, total
cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides). Figures 4A and
4B depict the linear regression effect estimates and 95% confidence intervals
for the association between the weighted symptom sum score and the 51 lipids,
fatty acids, and low-molecular-weight metabolites, and cardiometabolic diseases
adjusted for age, sex, and educational level (model 1). The results of all crude
and adjusted models can be found in Supplemental table 2 and 3. In general the
two weighted symptoms scores showed divergent pattern of results: IMD showed
metabolic alterations linked to increased cardiometabolic risk, while overall
depression score showed opposite associations. IMD was associated with (per
standard deviation (SD)) higher glycoprotein acetylase 0.08 mmol/L (95% CI:
0.06;0.11), apolipoprotein B 0.06 g/L (95% CI:0.03;0.08), triglyceride levels 0.09
mmol/L (95% CI: 0.06;0.11), total body fat 0.06% (95% CI:0.05;0.08), visceral
adipose tissue 0.08 cm? (95% CI:0.04;0.12), HOMA-1B 0.06 (95% CI: 0.04;0.09),
and lower HDL-cholesterol levels -0.03 mmol/L (95% CI: -0.05;-0.01). In contrast,
the overall depression was associated with (per SD) glycoprotein acetylase -0.11
mmol/L (95% CI: -0.14;-0.09), apolipoprotein B -0.04 g/L (95% CI: -0.06;-0.01),
triglyceride levels -0.08 mmol/L (95% CI: -0.11;-0.06), total body fat -0.07%
(95% CI:-0.09;-0.06), visceral adipose tissue -0.10 cm? (95% CI:-0.14;-0.07),
HOMA-1B -0.06 (95% -0.09;-0.04), and HDL-cholesterol levels 0.07 mmol/L (95%
CI: 0.05;0.09) (Figure 4A, 4B). We repeated the analysis of the linear regression
with additional adjustment for lipid-lowering drugs (model 3) and results did not
notably change (Supplement table 2,3).
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DISCUSSION

Using a data-driven method, we combined metabolomics and clinical symptoms
data to dissect depression heterogeneity and identify independent underlying
dimensions in participants diagnosed with MDD in the last 6 months from NESDA
cohort (n=1094). Then, we replicated our results by examining the association
between the identified dimensions and 51 metabolites from the same lipidomic
panel, and cardiometabolic diseases in an independent dataset of 6572 participants
from the general population enrolled in the NEO study.

We used the NESDA sample including subjects with a recent MDD diagnosis to
obtain a sharper picture, leveraging the higher intensity of depressive symptoms of
clinical relevance, of the covariance between symptoms and metabolites commonly
associated with cardiometabolic risk. We identified a major dimension reflecting
overall depression explaining a large proportion (54%) of symptom-metabolite
covariance, and innovatively characterized by a wide array of symptoms and
reduced levels of cardiometabolic diseases. A second dimension explaining
33% of symptom-metabolite covariance emerged as characterized by higher
cardiometabolic diseases and higher relative relevance for symptoms like difficulty
falling asleep, sleeping too much, increase weight and appetite, low energy level
and gastrointestinal problems. This second dimension partially resemble the
recently pustulated [9] construct of IMD, defined by the clustering of inflammatory
and metabolic dysregulations with behavioral energy-related symptoms. We
labelled therefore the first and second dimensions “overall depression ” and “IMD”.
In the replication step, we found that the IMD dimension was associated with a
metabolic profile similar to the metabolic profile reported in individuals with
cardiometabolic diseases such as higher triglyceride levels, visceral adipose tissue
content, branched chain amino acids, glycoprotein acetylase, insulin resistance
and lower HDL-cholesterol levels. In contrast, the associations between these
metabolites and the overall depression dimension were in the opposite direction,
indicating a lower cardiometabolic risk.

The present finding confirm the presence of partially divergent correlation
structures between specific depressive symptom profiles and metabolic
dysregulations. The weights estimated in NESDA certainly reduced or magnified
the relevance of certain symptoms in relation to metabolic alteration. However,
results obtained after weighting of the different symptoms are consistent with
those obtained using unweighted depressive symptoms in previous studies.
In a previous work [30], we investigated the association between individual
depressive symptoms measured with IDS-SR30 and overall and abdominal
adiposity (known proxy for adverse metabolic alteration) indexes such as total
body fat, and visceral adipose tissue in NEO study. Overall, adiposity indexes were
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associated with a wide variety of depressive symptoms, but were more strongly
associated with energy-related symptoms (i.e., hyperphagia, low energy level,
and increased physical exhaustion) found to contribute relatively more strongly
to the IMD-like dimension identified in the present study. Moreover, this is in
line with the previous research in this field that confirmed that the presence
of homeostatic shift toward increase energy (increased appetite) intake and
decrease energy expenditure (sleeping too much, difficulty falling asleep [31]
and low energy level) were more strongly associated with inflammatory and
metabolic biomarkers considered as risk factors for CVD. In earlier work based
on NESDA data, among participants with active depression episode, increased
a neuroendocrine energy homeostasis marker (leptin) [32] was associated
(independently from BMI) with a depressive symptoms profile defined by increase
the intake (increase appetite/weight) and decrease the expenditure (fatigue, low
energy) [33]. Likewise, in the same population, another study confirmed the
relationship between cardiometabolic diseases, such as increased abdominal
adiposity, inflammation markers, and metabolic syndrome, and increased appetite
during the active depressive episode [13]. In agreement with above-mentioned
well characterized clinical cohort studies, similar results were obtained from a
large population-based studies [34] that confirmed the association between this
cluster of symptoms and higher CRP. Our findings are also consistent with previous
literature showing a correlation between mood-related syndrome characterized
by the presence of similar atypical energy-related symptom profile and metabolic
dysregulation. For example, bipolar disorder has been linked to impairment of
glucose metabolism [35], seasonal affective disorder with dysregulations of major
metabolic regulator (i.e., adiponectin) [36], and sickness behaviour with immuno-
metabolic alterations [37]. Also, in a small study that combined neuroimaging and
biochemical approaches, hyperphagia during depression was strongly associated
with endocrine dysregulation and inflammation [38]. Interestingly, earlier [39]
and recent [40] large-scale genomic studies found that the genetic overlap between
BMI, CRP and leptin with depression is symptom specific; this overlap was only
found in depressed patients with increased hypersomnia [40], weight and appetite
[39, 40]. In addition, a cross-disorder systematic review identified a set of genes
- coding for energy balance, metabolism, circadian rhythm, inflammation and
HPA-axis activity - as potential shared genetic basis for cardiometabolic diseases,
depression and bipolar disorder [41]. Another study [42] that used neuroticism
as genetic specifier to stratify depression patients showed that the portion of the
common genetic liability between depression and neuroticism was also share
with other psychiatric disorders; interestingly, the genetic liability not shared
with neuroticism was positively correlated with metabolic phenotypes and CVD.
These results confirm the existence of different dimension within the construct
of depression rooted in underlying biological and genetic mechanisms. Based
on evidence along this line of research, the existence of an “immuno-metabolic
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depression (IMD)” dimension of depression was hypothesized [9]. This dimension
is characterized by the clustering of immuno-metabolic biological alterations and
behavioral symptom related to homeostasis dysregulation, which in turn can be
the link between depression and CVD [9].

Many plausible mechanisms can directly or indirectly lead to or result from this
homeostatic shift as maintaining energy homeostasis is governed by biological,
behavioral and environmental factors [43]. For example, low-grade inflammation
which associated with adiposity and depression [44], favor -as proposed previously
[45]- the fast aerobic glycolysis in the immune cells over other efficient but yet
slower energy production pathways (e.g., lipid oxidation). This appropriation of
the available cellular fuel done by immune cells results in low energy available to
any other activities. When the body has low energy level, the circadian rhythm
and sleep cycle disturb as well (i.e., feeling tired and sleeping during the day which
affect sleeping time and quality during the night) [45]. Moreover, dysregulation
of neuroendocrinological signaling (e.g., leptin, and insulin which have crucial
metabolic roles) may diminish their function as satiety inducers hormones which
lead to the development of increased appetite and decreased energy level symptoms
[43]. These biological processes interact with behavioral/environmental factors
that contribute in regulating of the energy homeostasis. Obesogenic environment
(e.g., low physical activity demand, and availability of palatable food) could shift
the energy balance toward energy accumulation which in turn can result in
low grade inflammation and neuroendocrinal dysregulation [46, 47]. Putting it
together, the IMD symptoms profile may reflects a prolonged homeostatic failure
that closely interconnected with neuroendocrinal and metabolic dysregulation
that also reported in patients with CVD [48].

Fully characterizing the IMD dimension identified in the present study, in terms
of its clinical manifestation and underlying biological mechanisms is the first
step in the path to a personalized approach for patients with depression [49].
This full characterization may help in guiding the choice of the most suitable
intervention to alleviate the symptoms burden or to prevent its adverse prognosis.
Moreover, understanding the clinical, and biological characteristics of this
depression dimension will increase the precision of the genetic studies that aim
to comprehend depression genetic architecture [50]. Future research is needed
to help us understand to what extent treating underlying metabolic dysregulation
will contribute to mitigate this symptoms profile adversity. Nonetheless, we
also need to know to what degree will behavioral intervention that target this
symptoms profile such as exercising, dieting and sleep hygiene can improve the
cardiometabolic health profile. Moreover, future genetics studies using techniques
such as Mendelian Randomization are needed to test the causal direction between
metabolic dysregulation and specific depressive symptom profile [51].
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To the best of our knowledge, this study is the largest study that exploits jointly
metabolomic and clinical symptom data to dissect depression dimensionality
in a large, well-defined clinical (i.e., subjects with a psychiatric diagnosis)
cohort (NESDA). Moreover, we replicate our findings from the clustering set in
a population based large cohort (NEO). Furthermore, while previous studies [16,
52] investigating the biological correlates of depression subtypes commonly
examined a very limited number of biomarkers, we used an extensive lipid focused
metabolomics platform (149 metabolites) and 12 cardiometabolic diseases,
including four extensive adiposity measures, glucose, insulin and lipoprotein
measures. While we confirmed the link between an IMD-like depression dimension
and cardiometabolic risk [9], a novel aspect of the present findings is that we
also provided evidence of an independent dimension associated with lower
cardiometabolic risk, potentially eluding to protective factors and resilience.
However, some methodological issues should be considered. First, we performed
the metabolite-symptom clustering and replication in two different samples. On
the other hand, the samples’ differences may also be considered a strength: the
connection between metabolites indexing cardiometabolic risk and IMD-like
depressive symptoms could be already detected in the general population, where
symptom severity does not cross the clinical threshold. This may be relevant
in terms of potential preventive interventions. Second, we should acknowledge
the limitation of the NMR metabolite platform, which mainly is a lipidomic
metabolomic platform. Accordingly, the term metabolic dysregulation should be
interpreted based on the used metabolomic platform. Third, based on the cross-
sectional study design, we are unable to infer the directionality of the relationship
between depressive symptoms and adverse metabolic alterations.

In the present study, using a data-driven method we identified two independent
depression dimensions differentially related with cardiometabolic diseases,
such as higher triglycerides, higher visceral fat content, lower HDL-cholesterol
levels and insulin resistance in the replication step. Our findings confirm that
depression is associated with metabolic alterations that could represent the
mechanism linking depression with CVD. However, these metabolic alteration
are not present in all forms of depression. Depressed patients with IMD may be
at higher cardiometabolic risk and may require specific additional treatment
targeting underlying metabolic dysregulations.
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SUPPLEMENTARY MATERIAL

Full version of supplementary materials can be found through the following link:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874986/bin/S0033291
721001471sup001.docx

Appendix 1. Processing the metabolomics data

Values of metabolites that could not be quantified were set as missing for all
individuals. Furthermore, metabolite values with outlying concentrations (+ 5
SD) were additionally set as missing. A value of 1 was added to all metabolite
values, which were subsequently natural log-transformed to approximate
normality. The obtained values were scaled to standard deviation units to enable
comparison. This protocol for processing the metabolomic data was suggested
by the manufacturer of the platform and has been consistently applied in several
large-scale epidemiological studies [1, 2]. Blood samples were analyzed in two
batches (April 2014 and December 2014) by 'H-NMR (Nightingale Health Ltd,
Helsinki, Finland) [3]. We regressed the metabolites on age and batch effect in
order to remove their confounding effect.

Appendix 2. Additional measures of body mass index (BMI), waist
circumference and fasting glucose level

Body mass index (BMI), waist circumference and fasting glucose level were used in
the analysis to examine the relationship between CCA output and cardiometabolic
diseases. Height and weight were measured to calculate BMI in kg/m? as an index
of general adiposity. Waist circumference (cm), defined as the minimal abdominal
circumference between the lower edge of the rib cage and the iliac crests, was
measured by trained clinical staff according to a standardized procedure as index
of abdominal adiposity. Glucose was measured from fasting plasma samples by
using standard laboratory technique.

Appendix 3. Principal component analysis (PCA)

PCA is an orthogonal linear transformation, that scalarly projected the data to a
new coordinate system in which the maximum variation in the data projected on
the first coordinate (i.e. first principal component), the second maximum variation
projected on the second coordinate, and so on [4].

Appendix 4. Canonical correlation analysis (CCA)

CCA [5] is a method that, given two sets of variables X and Y (in this case,
metabolites and depressive symptoms), finds a linear combination of X that is
maximally correlated with a linear combination of Y (i.e., a weighted sum of each
variable). The linear transformation weights were chosen such that the correlation
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between resulting linear combinations is maximized. These linear combinations
are called canonical variates (i.e., mCV (metabolites canonical variates), sCV
(symptoms canonical variates)). Together mCV and sCV are called a canonical
pair and the correlation between this canonical pair is called the canonical
correlation. In a specific dataset, it is possible to find multiple canonical pairs
such that canonical pairs are uncorrelated to each other and equal to the number
of variables in the smallest dataset. In our analysis we chose to proceed with the
first two canonical pairs that provided more information about the two sets of
variables. The relationship between the created canonical variables of depressive
symptoms and metabolites from the same panel and cardiometabolic diseases was
validated in an independent sample (see replication section).
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Chapter 6

ABSTRACT

Background

Adiposity has been shown to be linked with atypical energy-related symptoms
(AES) of depression. We used genomics to separate the effect of adiposity from
that of metabolic dysregulations to examine whether the link between obesity and
AES is dependent on the presence of metabolic dysregulations.

Method

Data were from NEO (n=5734 individuals) and NESDA (n=2238 individuals)
cohorts, in which the Inventory of Depressive Symptomatology (IDS-SR30) was
assessed. AES profile was based on four symptoms: increased appetite, increased
weight, low energy level, and leaden paralysis. We estimated associations between
AES and two genetic risk scores (GRS) indexing increasing total body fat with
(metabolically unhealthy adiposity, GRS-MUA) and without (metabolically healthy
adiposity, GRS-MHA) metabolic dysregulations.

Results

We validated that both GRS-MUA and GRS-MHA were associated with higher total
body fat in NEO study, but divergently associated with biomarkers of metabolic
health (e.g., fasting glucose and HDL-cholesterol) in both cohorts. In the pooled
results, per standard deviation, GRS-MUA was specifically associated with a higher
AES score (=0.03, 95%CI: 0.01; 0.05), while there was no association between
GRS-MHA and AES ($=-0.01, 95%CI: -0.03; 0.01).

Conclusion

These results suggest that the established link between adiposity and AES profile
emerges in the presence of metabolic dysregulations, which may represent the
connecting substrate between the two conditions.
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INTRODUCTION

The bidirectional relationship between obesity and depression has been well-
established [1]: the presence of one of these conditions increases the risk of
developing the other [2-5]. There is some evidence for a causal role of obesity in
developing depression, though much still has to be elucidated [6, 7]; not every
individual with depression is obese, and not every obese individual is depressed.
The association between obesity and depression is complicated by heterogeneity
on both sides.

Obesity is a metabolically complex and heterogenous condition. One type of
obesity, known as “metabolically unhealthy”, is interwoven with cardiometabolic
diseases, endocrinological alteration, and inflammation [8]. However, about 30
% of obese individuals are “metabolically healthy” [9], and excess total body fat
is disconnected from these metabolic alterations [8]. A previous study by Ji et
al., which combined data from genome-wide association studies on total body fat
percentage and biomarkers of metabolic health, identified 14 single nucleotide
polymorphisms (SNPs) associated with increased total body fat and a favourable
metabolic profile characterised by higher circulating levels of HDL-cholesterol,
and lower levels of triglycerides [10].

Similar to obesity, depression is a heterogeneous disorder. Individuals with a
diagnosis of depression may express different symptom profiles that, in turn, are
linked to different metabolic adversities. Emerging evidence [1, 11] indicates that
the overlap between obesity and depression is stronger in individuals expressing
atypical depressive symptoms related to altered energy intake/output balance,
such as increased sleepiness, increased appetite, increased weight, low energy level
and leaden paralysis. Consistently, in our earlier work [12], the four most strongly
associated symptoms with increased total body fat were atypical energy-related
symptoms (AES), namely increased appetite, leaden paralysis, low energy level,
and increased weight. This connection is also supported by large-scale genomics
studies showing genetic covariance between metabolic traits and these AES [13,
14].

The mechanism underlying the relationship between obesity and specific
depressive symptoms known as atypical energy-related symptoms (AES) profile
is unknown. We expect that metabolic dysregulations may represent the shared
link connecting obesity with the AES profile. Studies have shown that the atypical
energy-related symptom profile is associated with an adverse immuno-metabolic
profile, such as BMI and fasting glucose [15, 16], and biomarkers of neurotoxicity
(kynurenine and quinolinic acid) related to low grade inflammation [17]. In the
present study, we used genomics to separate the effect of adiposity from that of
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metabolic dysregulations to examine whether the link between obesity and AES
is dependent on metabolic dysregulations. We used the same genetic instruments
applied by Tyrrell et al. [7] to inspect the causal role of adiposity in the development
of depression in the UK Biobank. They used two genetic risk scores (GRS, reflecting
an individual’s genetic liability for a given trait) with a similar effect on total body
fat but an opposing relationship with metabolic dysregulations (one predicting
high total body fat without metabolic dysregulations and the other predicting
high total body fat with metabolic dysregulations). The authors could not observe
different patterns of associations between the two GRS and overall depression [7]
but were unable to analyse specific depression symptom profiles. We expect that
the association may differ when focusing on specific depressive symptom profiles.

For the current study, we used two large datasets from The Netherlands
Epidemiology of Obesity study (NEO study, a population-based cohort including
>6600 participants with oversampling of overweight and obese individuals) and
from the Netherlands Study of Depression and Anxiety (NESDA, a prospective
cohort enriched with ~3000 participants with depressive disorders). In these
studies, we derived two GRS: 1) a GRS of metabolically healthy adiposity (GRS-
MHA), consisting of the SNPs associated with higher total body fat but a favourable
metabolic profile identified by Ji et al. [10]; (2) a GRS of metabolically unhealthy
adiposity (GRS-MUA), linked to higher adiposity and unfavourable metabolic
profile based on a GWAS of BMI (See method section and appendix 1) [7, 10, 18].
We hypothesised that two GRS scores, built to index consistent association with
total body fat but opposite direction associations with biomarkers of metabolic
health (e.g., HDL-cholesterol and fasting glucose), and AES (i.e., increased
appetite, increased weight, low energy level, and leaden paralysis). In particular,
we expected that AES profile to be specifically linked with GRS-MUA reflecting
increased adiposity accompanied by metabolic dysregulations.

METHOD

Study cohorts

The Netherlands Epidemiology of Obesity (NEO) study

NEO study is a population-based cohort study including 6671 men and women aged
45 to 65 years [19]. All inhabitants with a self-reported body mass index (BMI)
of 27 kg/m? or higher and living in the greater area of Leiden, the Netherlands,
were eligible to participate in the NEO study. In addition, all inhabitants aged
between 45 and 65 years from one adjacent municipality (Leiderdorp, the
Netherlands) were invited to participate irrespective of their BMI, allowing for
a reference distribution of BMI. Prior to the study visit, participants completed
questionnaires at home with respect to demographic, lifestyle, and clinical
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information. Participants visited the NEO study centre after an overnight fast
for an extensive physical examination, including anthropometry. This analysis
included 5734 unrelated participants of European ancestry with available genetic
and phenotypic information.

Netherlands Study of Depression and Anxiety (NESDA)

NESDA is an ongoing longitudinal cohort study that aims to describe the long-
term course and consequences of depression and to examine its interaction with
biological and psychosocial factors [20]. At baseline, 2981 individuals aged 18
through 65 years with depressive and/or anxiety disorders (confirmed by the
Composite International Diagnostic Interview (CIDI, version 2.1.)) and healthy
controls were included from the community, primary care, and secondary care
settings between 2004 and 2007. The assessment included a diagnostic interview
to assess the presence of depressive and anxiety disorders, a medical exam, and
several questionnaires on symptom severity, other clinical characteristics and
lifestyle. Participants were followed-up during four biannual assessments. For
the current study, we used data from unrelated individuals of European ancestry
with genetic information at the baseline data (n=2238) and 4 subsequent follow-up
waves in which IDS-SR30 symptoms were assessed (total observations=11152).
The research protocol of NESDA was approved by the medical ethical committees
of the following participating universities: Leiden University Medical Centre, Vrije
University Medical Centre, and University Medical Centre Groningen.

Genetic risk scores

Genotyping, quality control, and imputation of GWAS data for both cohorts were
previously described in detail [21, 22] (Appendix 2). In each cohort, we created two
genetic risk scores (GRS) following the procedure previously proposed by Tyrrell
etal. [7] (Appendix 1): the first one is metabolically healthy adiposity (GRS-MHA)
included the 14 SNPs that were identified by Ji et al. and associated with higher
total body fat but with a favourable metabolic profile indexed by the following
biomarkers: HDL-cholesterol, sex hormone binding globulin, triglycerides, fasting
insulin, adiponectin, and alanine transaminase (Appendix 1) [10]. The second
GRS (the metabolically unhealthy adiposity (GRS-MUA)) included 76 SNPs that
were linked to higher adiposity and unfavourable metabolic profile GRS index an
individual’s lifetime genetic liability for a certain trait and are built as weighted
sums of genetic variants associated with that trait. For each individual, the number
of trait-increasing alleles carried at each SNP (0,1 or 2) is weighted for the effect
size of that SNP in a GWAS of the trait of interest and then summed. In each cohort,
the two GRS were standardized to a mean of zero and a standard deviation of one.
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Atypical energy-related depressive symptoms (AES)

As described in a previous study [15], the AES profile was based on the sum score
of items extracted from the Inventory of Depressive Symptomatology (IDS-SR30)).
The IDS-SR30 assesses (via a 4-points likert scale) the presence of 30 depressive
symptoms during the last week and their severity [23]. The symptoms used in the
AES included the first four top-ranking symptoms associated with total body fat
in a previous analysis in the NEO study [12], namely increased appetite, leaden
paralysis, low energy level, and increased weight. Increased sleepiness, previously
included among atypical energy-related symptoms [15], was not among the top-
ranking body-fat related symptoms and was not considered in primary analyses.
In NESDA, we used baseline and four follow-up waves. AES scores at each wave
were averaged in order to index the participant’s long-term exposure to depressive
symptoms. In each cohort, the AES score was standardized to a mean of zero and
a standard deviation of one.

Total body fat and biomarkers of metabolic health

To benchmark the relationship between the two GRS and the total body fat and
blood biomarkers of metabolic health, we used measurements of total body fat (i.e.,
total body fat was only available in the NEO study) and biomarkers of the same - or
very closely related - traits used in the training of GRS-MHA, including triglyceride,
LDL-cholesterol, HDL-cholesterol (i.e., lipid profile), and fasting glucose (i.e.,
glucose profile). Additionally, we tested the association with the inflammatory
biomarkers, C-reactive protein (CRP) in both cohorts and interleukin-6 (IL-6)
in NESDA, previously shown [15] to be associated with atypical energy-related
symptoms. Measurements details about biomarkers of metabolic health are
provided in Appendix 3.

Statistical analysis
A schematic representation of the main elements of the study structure and the
two analytical steps is depicted in Figure 1.

A. Benchmarking of GRS-MUA, GRS-MHA and AES against total body fat and

biomarkers of metabolic health

This step consists of two parts (A.1 and A.2) (Figure 1). In the first part of step one
(A.1), the associations of GRS-MUA, GRS-MHA and AES with total body fat were
investigated in the NEO study. This step aimed to validate that the increase in all
three instruments were associated with higher total body fat as the benchmark
measure for adiposity. In the second part of step one (A.2), we estimated the
association of GRS-MUA and GRS-MHA with the following biomarkers of metabolic
health: triglyceride, LDL-cholesterol, HDL-cholesterol, fasting glucose, and CRP
both in NEO and NESDA cohorts. The aim was to validate the different directions
associations with biomarkers of metabolic health of the two GRS (GRS-MUA and

130



Adiposity genetic risk scores and depressive profiles

GRS-MHA). Associations were estimated with linear regression models adjusted
for age, sex and genetic ancestry-informative principal components. A.1 analyses
were run only in NEO (due to availability of total body fat measure); A.2 analyses
were run in parallel in NEO and NESDA and study-specific estimates were pooled
using a fixed-effect meta-analysis.

Figure 1. A schematic representation of the main elements of the study structure and the

two analytical steps

GRS-MUA: genetic risk score-metabolically unhealthy adiposity. GRS-MHA: genetic risk score:
metabolically healthy adiposity. AES: atypical energy-related depressive symptoms. NEO study:
The Netherlands epidemiology of obesity study. NESDA: The Netherlands study of depression
and anxiety.

B. Association between GRS-MUA, GRS-MHA and Atypical energy-related
symptom profile (AES)

In this main step, we estimated the association of GRS-MUA and GRS-MHA with
AES. The aim of these analyses was to show divergent associations, consistently
with the associations with metabolic biomarkers in A.2. GRS-MUA would be
expected to show a positive association with AES, and GRS-MHA would be
expected to show a negative association with AES. As in A.2, we used linear
regression models adjusted for age, sex and genetic ancestry-informative
principal components, and we pooled estimates obtained in NEO and NESDA using
fixed-effect meta-analysis. To illustrate the findings of this step, we also used
logistic regression models adjusted for age, sex and genetic ancestry-informative
principal components for the associations between GRS-MUA, GRS-MHA and
individual atypical energy-related symptoms (dichotomized as low vs high). The
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dichotomization was applied differently in NEO (low =0 vs high=1-3) and NESDA
(low=0-1 vs high= 2-3) cohorts based on the different level of average symptom
endorsement - lower in the population-based NEO and higher in the clinically-
enriched NESDA cohort - as previously prescribed [12, 24]. In NESDA, individual
atypical energy-related symptoms in the baseline and the four follow-up waves
were averaged before the dichotomization. Furthermore, we added two sensitivity
analyses in the linear regression model in which we first investigated the impact
of the inclusion of increased sleepiness symptom among atypical energy-related
symptom profile (i.e., by adding it as an extra symptom to the score) on the results.
Second, to further confirm the specificity of the associations detected for AES, we
derived similarly to previous work [15-17] a melancholic symptom profile score
(0-24 range) including the following melancholic features [25]: diurnal variation
(mood worse in the morning), early morning awakening, distinct quality of mood,
excessive guilt, decreased appetite, decreased weight, psychomotor agitation and
psychomotor retardation. All analyses were done using R version 4.0.2, and for
the meta-analysis step, package (rmeta) was used.

RESULTS

The baseline characteristics for 5734 participants of the NEO study and 2238
participants of the NESDA included in this study are shown in Supplemental Table
1. The median of the AES in the NEO population was 1 point (25th-75th percentiles:
0-3), while the median of AES in the NESDA population was 2 points (25th-
75th percentiles: 1-3.6). The correlation between metabolic and inflammatory
biomarkers are depicted in Supplemental Figure 1.

A. Benchmarking of GRS-MUA, GRS-MHA and AES against total body fat and
biomarkers of metabolic health

The analyses in the first part (A.1) were done only in the NEO study. All three
instruments (GRS-MUA, GRS-MHA, and AES) were associated with increased total
body fat in the same direction. Effect estimate ([§) in percentage total body fat
per standard deviation (SD) increase of 1) GRS-MUA equal to: 0.23% (95% CI:
0.08; 0.39), 2) GRS-MHA 0.31% (95% CI: 0.15; 0.46), and 3) AES 1.43% (95% CI:
1.28; 1.59). The association between total body fat and AES was substantially
similar when increased weight symptom was removed from the AES score 1.49,
95%CI (1.34;1.65). Supplemental Table 2 shows the results of the linear regression
analysis of the associations between the three instruments (GRS-MUA, GRS-MHA,
and AES) and total body fat in the NEO study. Figure 2 depicts the predicted values
of total body fat as a function of above mentioned three instruments. These results
confirmed that the two GRS and the AES profile were consistently aligned to body
fat. Then, the second part of this step (A.2) confirmed that the GRS-MUA and GRS-
MHA were differently associated with the biomarkers of metabolic health in NEO
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and NESDA cohorts (Supplemental Table 2 for cohort specific association). Figure
3 depicts the pooled (and supplemental table 3 shows cohort-specific) effect
estimates and 95% confidence intervals for the association of the two genetic
risk scores and the biomarkers of metabolic health. GRS-MUA was associated
with an adverse metabolic profile such as (per SD) higher fasting glucose 0.03
mmol/L (95% CI: 0.01; 0.05) and lower HDL-cholesterol -0.02 mmol/L (-0.04;
0.00). The GRS-MHA was linked to a favourable metabolic profile, such as (per
SD) lower fasting glucose -0.03 mmol/L (-0.05; 0.00) and higher HDL-cholesterol
0.07 mmol/L (0.05; 0.09). GRS-MUA and GRS-MHA were not associated with the
inflammatory biomarker C-reactive protein (CRP) in both cohorts and IL-6 in
NESDA (Supplemental Table 3).

b
b4

=

Total body fat (%)
Total body fat (%)
\

2 0 2 2 0 2
5D of genetic risk score-metabolically unhealthy adiposity (GRS-MUA) SD of genetic risk score-metabaolically healthy adiposity (GRS-MHA)

Total body fat (%)

SD of atypical energy-related

Figure 2. Predicted values of total body fat in the NEO study as function of the GRS-MUA,

GRS-MHA, and AES

SD: standard deviation. AES: Atypical energy-related symptom profile: a sum score of the
four depressive symptoms, increased appetite, increased weight, low energy level, and leaden
paralysis. The grey area represents 95% confidence interval.
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Figure 3. Pooled results of effect estimates of the linear regression between the genetic
instruments (GRS-MUA, GRS-MHA) and biomarkers of metabolic health, model adjusted

for age, sex, and genetic ancestry-informative principal components
GRS-MUA: Genetic risk score metabolically unhealthy adiposity, GRS-MHA: Genetic risk score
metabolically healthy adiposity. SD: standard deviation

B. Association between GRS-MUA, GRS-MHA and atypical energy-related
symptom profile

Finally, we examined the association between the two genetic risk scores (GRS-
MUA, GRS-MHA) and the AES profile. Figure 4 shows pooled estimates and 95%
CIs, and supplemental table 4a shows cohort-specific effect estimates and 95% Cls
of the associations with AES from linear regression models adjusted for age, sex,
and genetic ancestry-informative principal components. GRS-MUA was specifically
associated with higher AES (per SD) 0.03 (95% CI: 0.01;0.05); in contrast, GRS-
MHA was not associated with AES-0.01 (-0.03;0.01). Supplemental Table 6 shows
the results of the association between GRS-MUA, GRS-MHA and individual atypical
energy-related symptoms that showed profiles of associations similar to the overall
score of AES. This may suggest that the selected symptoms may have converging
biology and that the overall AES association is not driven by a particular individual
symptom. Adding increased sleepiness to the AES yielded similar results indicating
that a substantial proportion of genetic co-variance between GRS-MUA and AES
was already captured by the four symptoms of increased appetite, increased
weight, low energy level, and leaden paralysis. Figure 4 and Supplemental Table
5a show that neither GRS-MUA nor GRS-MHA were associated with melancholic
symptom profile. This finding suggests that the detected link between GRS-MUA
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and AES is specific for this symptom profile. Finally, we repeated this step (B)
using BMI-weighted analyses in the NEO study. Since NEO is a population-based
study with oversampling of individuals with a BMI > 27 kg/m?, a weighted analyses
were performed as sensitivity analyses. The weighting factor is based on BMI
distribution in the general Dutch population to make our results generalizable
to the Dutch population. This procedure did not substantially change the results
(Supplemental Table 4b and 5b).

= GREMHA -+ GRS-MUA

8 2 S

Beta (95% Confidence Interval) per 1 SD
o 2
-

Atypical enegry-relsted Melancholc

Deprassive profile

Figure 4. Pooled results of effect estimate of the linear regressions between the genetic
instruments (GRS-MUA, GRS-MHA) and atypical energy related symptoms and melancholic
symptoms profile, model adjusted for age, sex, and genetic ancestry-informative principal

components.

GRS-MUA: Genetic risk score metabolically unhealthy adiposity, GRS-MHA: Genetic risk score
metabolically healthy adiposity. SD: standard deviation. Atypical energy-related symptom
profile: a sum score of the four depressive symptoms, increased appetite, increased weight, low
energy level, and leaden paralysis. Melancholic depressive symptoms profile: a sum score of the
symptoms, decreased appetite, decreased weight, early morning awakening, mood variation in
relation to the time of the day, distinct quality of mood, excessive guilt, psychomotor agitation,
and psychomotor retardation

DISCUSSION

This study investigated whether the established link between adiposity and
AES of depression is rooted in underlying metabolic dysregulations. For that,
we uncoupled the effect of adiposity from that of metabolic dysregulations.
We studied the relationships between two adiposity increasing genetic risk
scores (i.e., GRS-MUA and GRS-MHA) and AES. Both genetic instruments used
in this study increased the predisposition to high adiposity. The discrepancy
between them is that GRS-MUA also increases the predisposition to metabolic
dysregulations, and GRS-MHA associates with a favourable metabolic profile.
We firstly validated the two GRS by estimating their associations with the traits
they were trained to capture: GRS-MUA and GRS-MHA both predicted a high total
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body fat level and were divergently associated with metabolic dysregulations.
In a subsequent step we tested our main hypothesis by showing that AES was
specifically associated with GRS-MUA indexing the liability for increased total
body fat accompanied by metabolic dysregulations. GRS-MUA and GRS-MHA were
divergently associated with metabolic dysregulations and AES. In particular, GRS-
MUA was specifically associated with higher AES scores. Overall, these results
suggest that the established link between adiposity and atypical energy-related
depressive symptoms emerges in the presence of metabolic dysregulations, which
may represent the connecting substrate between the two conditions.

The mechanisms underlying this relationship between adiposity and this specific
depression profile are unknown. The recently introduced transdiagnostic model of
immuno-metabolic depression (IMD) [26] suggests that metabolic dysregulations
and inflammation act as a shared substrate influencing the development of
specific behavioural symptoms common to depression and obesity. For instance,
alterations in central signalling of leptin and insulin may associate with shifting
body energy balance from expenditure to accumulation, favouring the development
of hyperphagia, present in both obesity and atypical form of depression. Finally,
these metabolic dysregulations have been hypothesised to be the link between
depression and cardiovascular diseases. For example, immuno-metabolic
dysregulations commonly linked to CVD, such as triglyceride, IL-6, and CRP,
were causally related to depression [27]. It was recently reported that adiposity-
related inflammation can be dissociated from metabolic dysregulation and that it
represents the main predictor of depressive symptoms independently of metabolic
dysregulation [28]. Interestingly, a recent study showed that higher inflammation
measured by IL-6 activity is a potential causal for a specific symptom profile of
depression, such as sleep problems or fatigue [29]. In the present study, using
genetic instruments related to metabolic health, we identified a potential role for
metabolic dysregulation in the link between obesity and atypical energy-related
symptoms profile. This role may be independent and complementary as compare
to that of inflammatory alterations. The two GRS were not consistently associated
with inflammatory biomarkers commonly linked to AES. This may suggest that
inflammatory biomarkers levels may depend on underlying pathways independent
from those of metabolic dysregulations tagged by our specific GRS, although both
convergent on atypical, energy-related depressive symptoms [15]. Alternatively,
the lack of association may be due to the limited power of GRS composed of a
reduced set of SNPs to capture different traits with limited genetic covariance
with those on which they were trained.

Other mechanisms related to body fat but not associated with immuno-metabolic

biological alterations (e.g., weight shame [30], body image dissatisfaction [31])
may play a role in developing and experiencing depression. However, considering
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that in our results, GRS-MHA was not related to higher AES, these alternative
mechanisms seem less likely. A previous individual-participants meta-analysis
study [32] pooled data from 8 studies (n>30000) to test the relationship between
metabolically healthy adiposity and depression. They divided individuals into four
groups, non-obese metabolically healthy (reference), non-obese metabolically
unhealthy, obese metabolically healthy, and obese metabolically unhealthy. They
found an increased risk of depression in all three categories in comparison to the
reference [32]. This might mean that the body image dissatisfaction explanation
may be still valid for the other types of depression.

The present findings highlight the importance of resolving depression
heterogeneity when examining its biology. Tyrrell et al. [7] and Marten et al.
[33] inspected the causal role of adiposity (via two instrumental variables,
metabolically unhealthy adiposity GRS and metabolically healthy adiposity GRS)
in the development of depression in the UK Biobank. For example, Tyrrell et al.
[7] hypothesised that the GRS-MUA would be associated with depression due to
the underlying metabolic dysregulation and GRS-MHA would not be associated
with depression for the link with the favourable metabolic profile. Instead, they
found that both GRS-MUA and GRS-MHA were associated with depression. The
results of [7] and [33] exemplify how depression heterogeneity hinders efforts to
identify its biological underpinnings. In this work, we found a positive association
between GRS-MHU and AES and a negative association between GRS-MHA and
AES, which was in the direction initially hypothesised by Tyrrell et al. by focusing
on a specific depressive symptom profile. The present findings are consistent with
previous genetic studies that showed the AES was associated with the genetic risk
scores that related to a higher risk of adiposity and its related immuno-metabolic
dysregulations such as GRS of BMI [34]. Moreover, two large scale genetics studies
in > 30000 individuals from the UK Biobank [35] and >26000 individuals from
Psychiatric Genomics Consortium [13] found a genetics overlap between adiposity
related traits such as BMI, and leptin levels and AES (e.g., increased weight).
Overall, evidence from those previous studies and the present one support the
hypothesis that the link between adiposity and AES is driven by immune-metabolic
dysregulation [26].

The strengths of the present study are, first, we used a large sample size (n>
7000) by combining participants from two cohorts. Second, both the NEO study
(i.e., a population-based study that focuses on obesity) and the NESDA cohort
(i.e., a clinical cohort study that focuses on depression) have similar genetics and
symptoms instruments and detailed biomarkers of metabolic health. However,
some limitations need to be addressed. First, based on the different sample sizes
between NEO and NESDA, the meta-analysed results of the pooled analyses are
driven by the largest study. Nonetheless, the results in both studies were similar.
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Second, considering the observational design of the study, causality questions
about the association between the two genetic risk scores and AES cannot be
answered in this study. Third, GRS were derived using summary genotype data and
GWAS summary statistics obtained from subjects of European ancestry GWASs,
which make our results not fully generalizable to other ethnicities.

This study showed that the established link between adiposity and atypical energy-
related depressive symptoms emerges in the presence of metabolic dysregulation.
This supports the hypothesis that metabolic dysregulation represents a key
connecting mechanism between adiposity and a specific form of depression.
Albeit health care providers shift from assessing adiposity based on BMI solely by
incorporating waist circumference and lipid profile to diagnose the overall health
profile, less has been done regarding the depression heterogeneity. Monitoring the
metabolic health of patients who express atypical energy-related symptomatology
could be beneficial to prevent the development of cardiometabolic disorders.
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SUPPLEMENTARY MATERIAL

Full version of supplementary materials can be found through the following link:
https://ars.els-cdn.com/content/image/1-s2.0-S0889159122004627-mmc1.doc
https://ars.els-cdn.com/content/image/1-s2.0-S0889159122004627-mmc2.x1sx

Appendix 1. Genetic risk scores

In each cohort (i.e.,, NESDA and NEO), we created two genetic risk scores (GRS):
the first one is metabolically healthy adiposity (GRS-MHA) included the 14 SNPs
[1] that associated with higher total body fat but a favourable metabolic profile.
Ji et al [1] identified these 14 SNPs in three steps analyses. First, SNPs related
to increase total body fat were identified based on a GWAS of total body fat in
more than 442,000 individuals in the UK Biobank. Second, multivariate GWAS of
metabolic biomarkers performed based on the summary statistics of the GWASs
of the following metabolic biomarkers: total body fat (n=120000) [2], HDL-
cholesterol (n=99900) [3], adiponectin (n =29,400) [4], sex hormone-binding
globulin (n=21800) [5], triglyceride (n=96600) [3], fasting insulin (n=51800) [6]
and alanine transaminase (n=55500) [7]. Third, genetic variants associated with
step 1 and step 2 were selected (SNPs related to metabolically healthy adiposity).
The second GRS was linked to higher adiposity and unfavourable metabolic
profile (metabolically unhealthy adiposity (GRS-MUA)) based on a GWAS of
BMI in 339,224 individuals [8, 9], where 76 SNPs associated with metabolically
unhealthy adiposity were identified. Following the procedure previously proposed
by Tyrrell et al [9], we calculated GRS-MUA based on 76 SNPs (i.e., 75 SNPs were
available in NEO and 72 SNPs in NESDA) [8, 9]. GRS were calculated as follows:
each individual variants were recoded as 0, 1 and 2, according to the number
of adiposity increasing alleles. Each variant was weighted by its effect size
(B-coefficient) obtained from the primary GWAS [8], then a sum of the weighted
variants was derived as previously done by Ji et al and Tyrrell et al [1, 9]. In each
cohort, the two GRS were standardized to a mean of zero and a standard deviation
of one, allowing interpretability.

Appendix 2. Genetic data technical report (genotyping and imputation)
Genotyping, quality control, and imputation of GWAS data for NEO and NESDA
cohorts were previously described in detail [10, 11].

Genotyping and Imputation in NEO study

DNA was extracted from venous blood samples obtained from the antecubital vein.
Genotyping was performed in Centre National de Génotypage (Evry Cedex, France),
using the Illumina HumanCoreExome-24 BeadChip (Illumina, San Diego, CA). The
detailed quality-control process has previously been described [10]. Genotypes
were further imputed to the 1000 Genome Project reference panel (version 3,
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2011) [12] using IMPUTE (version 2.2) software [13]. No genetic variants with an
imputation quality <0.4 or a minor allele frequency (MAF) <0.01 were considered
for the analyses in the current study (Supplemental Table 7).

Genotyping and Imputation in NESDA

Methods for biological sample collection and DNA extraction have been described
previously [14]. Quality control and imputation pipelines were also previously
described [11]. Briefly, 95% of the samples were genotyped on the Affymetrix
6.0 Human SNP array and the remaining on the Perlegen-Affymetrix 5.0 array.
After platform-specific QC the missing SNP genotypes between each platform were
imputed using the GONL (Genome of the Netherlands) [15-17] reference panel
and then merged, followed by additional more stringent QC. This cross-platform
GONL imputed dataset was used to identify ancestry outliers, defined based on
Principal Components Analysis (PCA) by projecting 10 PCs from 1000G reference
set populations on the cross-platform imputed data using the SMARTPCA program
as described earlier [18, 19]. Individuals with PC values located outside of the range
of European and/or British populations were defined as outliers. Upon exclusion of
outliers, 10 PCs were recomputed for cross-platform imputed data to capture the
variation within the Netherlands. The SNPs from the cross-platform GONL imputed
dataset (~1.3M) were used for a second round of imputations to the Haplotype
Reference Consortium [20] reference panel using the Michigan Imputation Server
[21]. The cross-platform imputed dataset was used to build a relationship matrix
measuring genetic similarity using GCTA [22], which was pruned at 0.05 threshold
in order to retain unrelated participants. After application of additional post-
imputation QC (MAF > 0.01, HWE-p > 1e-6) 87 SNPs were extracted for the present
analyses (Supplemental Table 7). All the selected SNPs had high imputation quality
(<0.6).

Appendix 3. Total body fat and biomarkers of metabolic health

To confirm the relationship between the two GRS and the total body fat and
blood biomarkers of metabolic health, we used measurements of total body
fat (i.e., total body fat was only available in NEO study), and triglyceride, LDL-
cholesterol, HDL-cholesterol (i.e., lipid profile), and fasting glucose (i.e., glucose
profile). We additionally used HOMA of beta-cell function (HOMA-1B), Homeostasis
Model Assessment for Insulin Resistance (HOMA-IR), and HbA1c (%) that were
only available in the NEO study. Finally, we used two inflammatory biomarkers
(C-reactive protein (CRP) and Interleukin-6 (IL-6). IL-6 was only available in
NESDA. Total body fat was measured by Tanita bioelectrical impedance balance
(TBF-310, Tanita International Division, UK) [23]. Lipid and glucose profile were
measured from fasting plasma samples by using standard clinical laboratory
techniques [24, 25]. From fasting glucose and insulin concentrations, we calculated
the HOMA-IR and HOMA-1B as markers of hepatic insulin resistance and steady-
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state insulin secretion [26]. HOMA-IR was calculated as fasting insulin (uU/mL) x
fasting glucose (mmol/L)/22.5 and HOMA-1B% as 20 x fasting glucose (mmol/1)-
3.5 [26, 27]. Concentrations of C-reactive protein (CRP) were determined using
a high sensitivity CRP assay (TINA-Quant CRP HS system, Roche, Germany and
Modular P800, Roche, Germany) in NEO study [28]. In NESDA, plasma levels of CRP
were measured by an in-house high-sensitivity enzyme-linked immunosorbent
assay (ELISA) based on purified protein and polyclonal anti-CRP antibodies (Dako,
Glostrup, Denmark) [29]. IL-6 in NESDA was measured by a high-sensitivity solid-
phase ELISA (Human IL-6 Quantikine HS kit, R&D Systems, Minneapolis, MN,
USA) [29]. In each cohort, all biomarkers of metabolic health were standardized
to a mean of zero and a standard deviation for each variable of interest of one,
allowing interpretability. Additionally, CRP and Il-6 were loge transformed before
standardization.

Supplemental Table 4a. Results of the linear regression analysis of the association
between the genetic instruments (GRS-MUA, GRS-MHA) and atypical energy-related
depressive symptoms.

GRS-MUA GRS-MHA
B(95% CI) p-value B(95% CI) p-value
AES NEO 0.02 (0.00;0.05) 1.11X10° -0.02(-0.05;0.01) 1.17X 10

NESDA 0.05 (0.01;0.09) 2.27X10° 0.01(-0.03;0.05) 7.02X 10!
Pooled 0.03 (0.01;0.05) 1.06X10°* -0.01(-0.03;0.01) 2.56X 10"
AES NEO  0.02(-0.01;0.04) 2.39X10°" -0.02 (-0.04;0.01) 2.35X 10
(sensitivity) npopa 0.04(0.00;,0.09) 3.71X10°2  0.00 (-0.04;0.04) 9.61X 10!
Pooled 0.02(0.00;0.05) 3.59X10°% -0.01(-0.03;0.01) 3.25X 10"

AES: Atypical energy-related symptom profile: a sum score of the four symptoms, increased
appetite, increased weight, low energy level, leaden paralysis. AES (sensitivity): a sum
score of the five symptoms, increased sleepiness, increased appetite, increased weight,
low energy level, leaden paralysis.

Supplemental Table 5a. Results of the linear regression analysis of the association
between the genetic instruments (GRS-MUA, GRS-MHA) and melancholic depressive
symptoms.

GRS-MUA GRS-MHA
B(95% CI) p-value B(95% CI) p-value

Melancholic NEO  0.00 (-0.02;0.03) 9.40X10° -0.02 (-0.04;0.01) 1.71X 10!

;ﬁg}ﬁ?ms NESDA 0.02 (-0.02;0.06) 3.95X10°' 0.02 (-0.03;0.06) 4.71X 10

(sensitivity) Pooled 0.01 (-0.02;0.03) 6.07X10°* -0.01(-0.03;0.01) 4.34X10

Melancholic symptoms profile (sensitivity): a sum score of the symptoms, decreased
appetite, decreased weight, early morning awakening, mood variation in relation to
the time of the day, distinct quality of mood, excessive guilt, psychomotor agitation,
psychomotor retardation.
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Chapter 7

ABSTRACT

Background

Depression is associated with an increased risk of developing cardiometabolic
diseases (i.e., a composite of type 2 diabetes and cardiovascular disease). This
association may vary for different depressive symptom profiles and individual
cardiometabolic diseases. We examined the association between depression
and specific depressive symptom profiles with individual and composite
cardiometabolic diseases.

Method

In 6561 participants from the Netherlands Epidemiology of Obesity (NEO)
study, depressive symptoms were measured with the Inventory of Depressive
Symptomatology (IDS-SR30) and two dimensional profiles were created:
atypical energy-related symptom (AES) and melancholic symptom profiles.
Participants were followed for 41 896 person-years, and incidents of type 2
diabetes and cardiovascular disease were extracted from medical records at
general practitioners. The Cox proportional-hazard model was used to examine
the relationships of overall, atypical energy-related symptoms and melancholic
depression scores with overall cardiometabolic diseases and individual
components of type 2 diabetes, and cardiovascular disease.

Results

The median follow-up time for type 2 diabetes and cardiovascular disease was
seven years (8% developed a cardiometabolic disease, 5% type 2 diabetes, 5%
cardiovascular disease). A one SD increase of IDS-SR30 at baseline was associated
with an increased risk of cardiometabolic diseases (HR:1.20 CI1 95% (1.10-1.31)).
For the specific symptom profiles, atypical energy-related symptoms profile was
associated with an increased risk of type 2 diabetes (HR 1.26 (95 % CI (1.14-
1.42)), while melancholic symptom profile was associated with an increased risk
of cardiovascular disease (HR 1.15 CI 95% (1.03-1.28)).

Conclusion

Depressive symptoms were associated with the onset of type 2 diabetes and
cardiovascular disease (median follow-up of seven years). This association
varied for different depressive symptom profiles and cardiometabolic diseases.
Considering a more personalized approach that takes into account differential
depression symptomatology may be beneficial to prevent or delay the development
of cardiometabolic diseases.
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INTRODUCTION

The relation between depression and cardiometabolic diseases (i.e., type 2 diabetes
and cardiovascular disease) is complex, multifactorial, and not fully understood.
The two conditions negatively impact individual health and well-being and burden
the healthcare system. Large meta-analyses of longitudinal studies [1-3] indicate
that depression is associated with a 30-60% increased risk of cardiometabolic
diseases (i.e., heart disease, myocardial infarction, type 2 diabetes, and stroke).
Interestingly, for all these cardiometabolic outcomes, bidirectional associations
with depression have also been suggested showing that heart disease [4], diabetes
[1] and stroke [5] are associated with an increased risk of developing depression.

Depression’s heterogeneity likely contributes to variability in its link with
cardiometabolic diseases. Patients with depression report different symptom
profiles that, in turn, may represent the expression of different underlying
pathophysiological processes. It is, therefore, likely that the association with
cardiometabolic diseases may be stronger in individuals with specific symptom
profiles. Emerging evidence suggests that inflammatory and metabolic
dysregulation, commonly accompanying cardiometabolic diseases, tend to cluster
with “atypical” depressive symptoms characterized by altered energy intake and
expenditure balance [6]. For instance, recent studies showed that an atypical
energy-related symptom (AES) profile characterized by increased sleepiness,
increased appetite, increased weight, low energy level and leaden paralysis was
associated with altered inflammatory and metabolic markers (i.e., fasting glucose,
HDL-cholesterol, triglycerides, blood pressure, waist circumference, CRP, and IL-6)
and inflammation-related tryptophan catabolites (i.e., kynurenine and quinolinic
acid) [7, 8]. In contrast, these markers were not associated with a melancholic
symptom profile characterized by early morning awakening, worse mood in the
morning, distinct quality of mood, decreased appetite, weight loss, negative self-
outlook, psychomotor retardation, and psychomotor agitation [7]. Based on this
evidence, it is hypothesized that individuals expressing atypical energy-related
depressive symptoms have a higher risk of cardiometabolic diseases than those
mainly reporting melancholic symptoms.

This hypothesis is partially in line with results from two recent follow-up studies.
In the first one [9], among 2522 individuals with at least one cardiovascular
risk factor, 506 had relevant depressive symptoms based on Beck’s Depression
Inventory (BDI) questionnaire then melancholic and non-melancholic depressive
symptoms groups were created [10]. The participant is classified into the
melancholic group if the score of adding the following symptoms: the feeling of
sadness, failure, anhedonia, guilt, being punished, irritability, loss of interest, and
changes in sleeping and appetite is equal or higher than the score of the rest of BDI
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symptoms (if the score is lower than the score above then participant is classified
into the non-melancholic group) [9]. In both groups, the incidence of cardiovascular
disease extracted from national registers over 8 years of follow-up was higher
than in controls, with the largest effect size for the non-melancholic group. In the
second study [11], among 28,726 individuals from the general population, 4711
had a lifetime diagnosis of major depressive disorder and were classified as either
atypical or non-atypical based only on the presence or absence of hyperphagia
and hypersomnia symptoms extracted from Alcohol Use Disorder and Associated
Disabilities Interview Schedule-1V (AUDADIS-1V). Again, as compared with
individuals without depression, both these groups had a higher risk of incident
cardiovascular disorders over 3 years, with the largest effect size for the atypical
subgroup.

In the present study, we further expanded the examination of the association
between depressive symptoms and incident cardiometabolic diseases, including
both type 2 diabetes and cardiovascular disease recorded in general practitioner
registries followed up for seven years. Furthermore, we refined the examination
of different clinical manifestations of depression by using dimensional profilers
for AES and melancholic symptoms rather than binary subtypes, as in previous
studies [9, 11]. As a result, we were better able to capture the variability of a
wider array of depressive symptomatology. We hypothesize that overall depressive
symptoms are associated with cardiometabolic diseases. Furthermore, we expect
this association to be driven by the AES profile, previously associated with markers
of cardiometabolic risk.

METHODS

Study design and population

The Netherlands Epidemiology of Obesity (NEO) study is a population-based cohort
study including 6671 men and women aged 45 to 65 years [12]. All inhabitants aged
between 45 and 65 years with a self-reported body mass index (BMI) of 27 kg/m?
or higher and living in the greater area of Leiden, the Netherlands, were eligible to
participate in the NEO study. In addition, all inhabitants aged between 45 and 65
years from one adjacent municipality (Leiderdorp, the Netherlands) were invited
to participate irrespective of their BMI. Prior to the study visit (2008-2012),
participants completed questionnaires at home with respect to demographic,
lifestyle, and clinical information. Participants visited the NEO study center after
an overnight fast for an extensive physical examination.

Participants were followed over time (median = 6.7 years) for the occurrence of

type 2 diabetes and cardiovascular disease via their electronic medical records
at the general practitioners (see outcome and censoring). The present study is a
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prospective analysis of the relationship between depressive symptoms (overall
depression) and depressive symptom profiles measured by the Inventory of
Depressive Symptomatology (self-report) IDS-SR30 at the baseline and 1)
cardiometabolic diseases (i.e., merged type 2 diabetes and cardiovascular disease),
2) type 2 diabetes, and 3) cardiovascular disease. We excluded participants
without IDS-SR30 total score data (n=16) or follow-up information (n=94), leaving
6561 participants for the main analyses. The NEO study was approved by the
medical ethics committee of Leiden University Medical Center (LUMC) and all
participants gave written informed consent.

Assessment of depressive symptoms and profiles

At baseline, we asked all participants to complete the Dutch version of the IDS-
SR30 questionnaire [13], which assesses specific depressive symptoms during the
past week and their severity. The IDS-SR30 rates (via a 4-level response system)
the presence of a wide array of depressive symptoms, including core symptoms
of major depressive episodes, melancholic (e.g., anhedonia, nonreactive mood,
psychomotor retardation/agitation, appetite or weight decrease, early morning
awakening, and self-outlook) and atypical energy-related (e.g., hypersomnia,
increased appetite, weight gain, low energy level, and leaden paralysis (physical
exhaustion)) features, and commonly associated symptoms (e.g., irritability,
anxiety, somatic complaints). We used the total score ranges from 0 to 84, with
higher scores indicating higher severity as a continuous variable. Furthermore,
we categorized the total score in the secondary analyses. For that, we grouped
the participant according to the clinically predefined severity cut-offs as follow:
score < 13 as “no depressive mood” status (n = 4625, reference), 14-25 as “mild
depressive mood” (n = 1413), 26-84 as “severe depressive mood” (n = 523) [13].

We derived depressive profiles in line with previous studies [7, 14] using items
from IDS-SR30. The AES profile was based on the sum score of the following items:
increased sleepiness, increased appetite, weight gain, low energy level, and leaden
paralysis. Then, we also used a melancholic depressive profile as another clinically
established symptom profile for comparison with AES, as it also reflects severity
[7, 15]. This symptom profile was created by summing the score of the following
items: early morning awakening, mood worse in the morning, distinct quality of
mood, decreased appetite, weight loss, self-outlook, psychomotor retardation, and
psychomotor agitation. Additionally, in order to better illustrate the shape of the
association between symptom profiles and cardiometabolic diseases, for each
symptom profile, we grouped the participant into four severity score groups: no
symptoms: 0 (reference), mild symptoms:1-2, moderate symptoms: 3-4 and severe
symptoms: =5.
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Ascertainment and definition of outcomes

Diagnoses of type 2 diabetes and cardiovascular disease incidence were extracted
from electronic medical records of general practitioners (GPs). This record covers
all medical information of the patients regarding prescriptions, GP consultations,
and reports from laboratories and specialist visits available at the GP office. Data
extraction was performed based on three criteria: (1) the diagnostic coding by
the GPs to indicate the health problems or type of care, based on the International
Classification of Primary Care (ICPC) [16], (2) finding of predefined type 2 diabetes
and cardiovascular disease related keywords in the descriptions of the GP
database, and (3) prescription of specific medication, registered according to the
Anatomical Therapeutic Chemical (ATC) codes or by screening medication names
[17]. The date of diagnosis was defined as the first date of an ICPC-coded diagnosis,
a strong indication for the diagnosis based on keywords in the medical records,
or prescription of relevant medication. In case only a keyword was found without
a confirmed ICPC code, we confirmed the diagnoses using the laboratory values
and reading the free text in the medical records. If it remained unclear whether
a particular participant was diagnosed with type 2 diabetes or cardiovascular
disease, the general practitioner was contacted. A participant was considered as
having an incidence of type 2 diabetes or cardiovascular disease when the date of
diagnosis occurred after the baseline visit date.

In the present analysis, we used the preliminary follow-up data, as the extraction
of information from the GP medical records is still ongoing. Our analyses were
focused on the development of three outcomes: (1) cardiometabolic diseases
(i.e., having either type 2 diabetes or/and cardiovascular disease), (2) type 2
diabetes, and (3) cardiovascular disease. For each outcome of interest, we excluded
participants who had the prevalent condition of interest at baseline based on
information extracted from the GP medical records (Figure 1). For this reason, the
sample sizes for our analyses differ based on the studied outcome of interest (i.e.,
type 2 diabetes, cardiovascular disease, both type 2 diabetes and cardiovascular
disease). Participants were coded as having type 2 diabetes when the extracted
data from GP registration in 2018 indicated 1) the diagnosis of type 2 diabetes
(i.e., ICPC codes T90 or T90.02). In addition, the medication list of participants
was checked for the use of insulin, metformin and sulfonylurea derivative, and
participants using these medications were considered to have type 2 diabetes (n of
participants who developed the outcome=276). Similarly, participants were coded
as having cardiovascular disease if the extracted data from GP registration in 2018
indicated any of the following diagnoses of 1) myocardial infarction (ICPC Code:
K75 or K76.02), 2) transient ischemic attack (K89), or 3) stroke/cerebrovascular
accident (K90 or its subtypes: K90.01, subarachnoid haemorrhage; K90.02,
intracerebellar haemorrhage; or K90.03, cerebral infarction.
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Figure 1. Study population
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Keywords included synonyms of myocardial infarction, chest pain, cardiovascular
surgery procedures such as coronary artery bypass grafting (CABG) or angioplasty,
and synonyms of cerebrovascular accident or haemorrhage. The medication list of
participants was checked for the use of specific anticoagulants. In this preliminary
data, other types of cardiovascular disease were not yet included (n of participants
who developed the outcome=285). We merged the two outcomes (i.e., type 2
diabetes and cardiovascular disease) into a new outcome called cardiometabolic
diseases if the participants had either or both diseases (n of participants who
developed the outcome=483).

Time of follow-up was defined as the number of days between the baseline of the
study and the date of diagnosis or censoring due to death, loss to follow-up (move
to another GP or outside of the Netherlands), or the end of the follow-up (extraction
date at the GP in 2018), whichever comes first. However, not all participants were
followed from start to finish.

Statistical analysis

Characteristics of the study population were expressed as a mean with standard
deviation (SD), a median (25th, 75th percentiles) or percentages (%). The incidence
rates per 1000 person-years for each outcome were estimated as: (new cases of
outcome/ person-years of the population at risk) x 1000.

Cox regression analyses

We performed Cox proportional-hazard models to investigate the relationship
between the depressive symptoms at the baseline and the outcomes using 3 steps.
In step 1, we performed adjusted Cox proportional-hazard models to investigate
the relationships between depressive symptoms and cardiometabolic outcome. In
step 2, we explored the relationship between the baseline depressive symptoms
and (1) type 2 diabetes and (2) cardiovascular disease as individual outcomes.
In step 3, to take the heterogeneity of depressive symptomatology into account,
we conducted adjusted Cox proportional-hazard models to investigate the
relationships between two depressive symptom profiles (atypical energy-related
and melancholic) with type 2 diabetes and cardiovascular disease.

Analyses of the three steps were adjusted for age, sex (model 1) and further BMI
adjustment (model 2). Model 2 is important because BMI is a strong risk factor
for type 2 diabetes and is related to depression. Finally, in model 3 we further
adjusted for type 2 diabetes at baseline when applicable (i.e., in analyses with
cardiovascular disease as outcome). All analyses were done using R version 4.0.5,
and for the Cox proportional-hazard model analysis “survival” package was used.

156



Depression profiles and risk of cardiometabolic disease

RESULTS

For cardiometabolic diseases as the outcome, some participants were lost to follow-
up (n=45), died (n=58), or only had data from an intermediate data extraction
in 2012-2013 (n=306). For type 2 diabetes and cardiovascular disease as the
outcomes of interest, 46 and 50 were lost to follow-up, 60 and 75 participants
died, and 321 and 342 participants only had data from intermediate extraction
in 2012-2013, respectively. For participants who did not develop the outcome of
interest, data were censored at the known follow-up time or date of death or the
last known follow-up time before death.

Table 1 shows the characteristics of the NEO population (mean age 56.0), men
and women (52.0% women). For the cardiometabolic diseases as the outcome,
the population at risk was 5734, the median (25th, 75th percentiles) follow-up
time was 6.7 years (5.9, 7.9), and the incidence rate (IR) was 13/1000 person-
years. For type 2 diabetes as the outcome, the population at risk was 5957, and the
median (25th, 75th percentiles) follow-up time was 6.8 (6.0, 7.9). 5% developed the
outcome, IR 7/1000 person-years. For cardiovascular disease, the population at
risk was 6295, the median (25th, 75th percentiles) follow-up time was 6.7 (5.9,7.8).
5% developed the outcome, IR 7/1000 person-years. The Pearson’s correlation
between the two symptom profiles was 0.4, indicating that they are capturing
partially different dimensions of depressive symptomatology.

Table 1. Baseline characteristics for 6561 men and women aged 45 to 65 years included
in the analysis from Netherlands Epidemiology of Obesity study

Characteristic N=6561
Age (years) Mean (sd) 56.0 (6.0)
Sex (women) (n(%)) 3443 (52.0)
BMI Mean (sd) 30.1 (4.8)
Ethnicity (White) (n(%)) 6227 (95.0)
Education (High) (n(%)) 2452 (38.0)
Smoking (n(%))

No 2274 (35.0)
Former 3217 (49.0)
Current 1067 (16.0)

Alcohol consumption (g/day) 9.0 (2.0, 22.0)
Median (25th, 75th percentiles).

Type 2 diabetes incidence (outcome) (n(%)) 276 (4.2%)
Type 2 diabetes prevalence (baseline) (n(%)) 604 (9.2%)
Cardiovascular diseases incidence (outcome) (n(%)) 285 (4.3%)
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Table 1. Continued.

Characteristic N=6561
Cardiovascular diseases prevalence (baseline) (n(%)) 266 (4.1%)
Atypical energy-related symptom profile 1.0 (0.0, 3.0)
Median (25th, 75th percentiles)

Atypical energy-related symptom profile
(Categorized) (n(%))
None (<0) 1994 (30.0)
Mild (>0 and <3) 2560 (39.0)
Moderate (23 and <5) 1553 (24.0)
Severe (25) 454 (6.9)
Melancholic symptom profile 1.0 (0.0, 3.0)
Median (25th, 75th percentiles)
Melancholic symptom profile
(Categorized) (n(%))
None (<0) 2597 (40.0)
Mild (>0 and <3) 1940 (30.0)
Moderate (=3 and <5) 1394 (21.0)
Severe (25) 630 (9.6)
IDS-SR30 total score 9(5,15)
Median (25th, 75th percentiles)
Depressive mood (Categorized) (n(%))
None (< 13) 4625 (70.0)
Mild (14-25) 1413 (22.0)
Moderate to severe (26-84) 523 (8.0)

Step 1: Overall depressive symptoms and cardiometabolic diseases

Table 2 shows the results of the Cox proportional-hazard model of the continuous
and categorized total score of IDS-SR30 and cardiometabolic diseases. We
found that a one SD increase of IDS-SR30 in the baseline was associated with an
increased risk of cardiometabolic diseases (HR:1.20 C1 95% (1.10-1.31)) for model
1 (adjusted for age and sex). In particular, compared to those without depressive
mood, individuals in the severe depressive mood group had the highest risk of
cardiometabolic diseases (HR:1.67 CI 95% (1.23-2.27) (Figure 2A). Additional
adjustment for BMI (model 2) slightly reduced the strength of the associations;
the HR of cardiometabolic diseases in individuals with severe depressive mood, as
compared to those without depressive mood, was 1.47 CI (95% 1.08-2.00) (Figure

2B).
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Figure 2. Cox proportional-hazard regressions for the depressive mood, atypical ener-
gy-related and melancholic symptoms profile and all three outcomes

A.Qutcome: Cardiometabolic diseases adjusted for age and sex

B.Outcome: Cardiometabolic diseases adjusted for age, sex,

and BMI
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Depressive mood: we grouped the participant according to the clinically predefined severity
cut-offs as follow: score < 13 as “no depressive mood” status (n = 4625, reference), 14-25 as “mild
depressive mood” (n = 1413), 26-84 as “severe depressive mood” (n = 523). Atypical energy-
related symptom profile (a sum score of the five symptoms, increased sleepiness, increased
appetite, increased weight, low energy level, leaden paralysis). Melancholic symptoms profile:
asum score of the symptoms, decreased appetite, decreased weight, early morning awakening,
mood variation in relation to the time of the day, distinct quality of mood, excessive guilt,
psychomotor agitation, psychomotor retardation. For each symptom profile, we grouped the
participant in four severity score groups: no symptoms: 0 (reference), mild symptoms:1-2,
moderate symptoms: 3-4 and severe symptoms: 5.
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Table 2. Cox proportional-hazard regressions for IDS-SR30 total score, atypical energy-
related and melancholic symptoms profiles with cardiometabolic diseases.

Model 1 HR Model 2 HR
(95% CI) (95% CI)
IDS-SR30 total score 1.20 (1.10-1.31) 1.14 (1.04-1.25)
(continuous)
Cardiometabolic Depressive mood
diseases (categorical)
(n=5734, 483
events) None Reference Reference
Mild 1.12 (0.89-1.41) 1.01 (0.81-1.27)
Severe 1.67 (1.23-2.27) 1.47 (1.08-2.00)
AES (continuous) 1.15 (1.06-1.26)  1.07 (0.97-1.17)
AES (categorical)
Cardiometabolic
diseases None Reference Reference
(n= 573‘:,;133 Mild 1.10 (0.88-1.37) 1.03 (0.82-1.29)
events
Moderate 1.34 (1.05-1.71)  1.11 (0.86-1.42)
Severe 1.83 (1.29-2.59) 1.41(0.99-2.02)
Melancholic (continuous) 1.14 (1.05-1.24) 1.11 (1.02-1.21)
Melancholic (categorical)
Cardiometabolic
diseases None Reference Reference
(n= 5734.)483 Mild 1.04 (0.84-1.30) 1.03 (0.82-1.28)
events
Moderate 1.22 (0.96-1.54) 1.12(0.88-1.43)
Severe 1.51(1.11-2.04) 1.39 (1.03-1.89)

Model 1: Adjusted for age and sex. Model 2: Adjusted for age, sex, and BMI. IDS-SR30:
Inventory of depressive symptomatology-self report (standardized). None group was set as
the reference group throughout the analyses. AES: Atypical energy-related symptom profile
(a sum score of the five symptoms, increased sleepiness, increased appetite, increased
weight, low energy level, leaden paralysis) (standardized). Melancholic symptoms profile:
a sum score of the symptoms, decreased appetite, decreased weight, early morning
awakening, mood variation in relation to the time of the day, distinct quality of mood,
excessive guilt, psychomotor agitation, psychomotor retardation (standardized). For each
symptom profile, we grouped the participant in four severity score groups: no symptoms:
0 (reference), mild symptoms:1-2, moderate symptoms: 3-4 and severe symptoms: >5.

Step 2: Overall depressive symptoms and (1) type 2 diabetes and (2)
cardiovascular disease)

Table 3 shows the results of the Cox proportional-hazard models of the continuous
and categorized total score of IDS-SR30, atypical energy-related and melancholic
symptom profiles and individual cardiometabolic diseases. We found that a one SD
increase of IDS-SR30 in the baseline is associated with an increased risk of type
2 diabetes (HR:1.26 CI 95% (1.14-1.41)) for model 1. As compared to individuals
without depressive mood, individuals in the severe depressive mood group had
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the highest risk of type 2 diabetes (HR: 1.99 CI 95% (1.38-2.89) (Figure 2C), also
after adjusting for BMI (HR: 1.59 CI 95% (1.09-2.31) (Figure 2D). Furthermore,
a one SD increase of IDS-SR30 in the baseline is associated with an increased
risk of developing cardiovascular disease (HR:1.15 CI 95% (1.03-1.29)) in model
1. Individuals in the severe depressive mood group, compared to those without
depressive mood, had the highest risk of cardiovascular disease (HR: 1.36 CI
95% (0.88-2.08) for model 1 (Figure 2E). Additionally, adjusting for BMI or type
2 diabetes at baseline did not change the hazard ratios.

Table 3. Cox proportional-hazard regressions for IDS-SR30 total score, atypical energy-
related and melancholic symptoms profiles with type 2 diabetes and cardiovascular
disease.

Model 1 HR Model 2 HR
(95% CI) (95% CI)

IDS-SR30 total score 1.26 (1.14-1.41) 1.16 (1.04-1.30)

(continuous)
Type 2 diabetes Depressive mood
(n=5957,276 (categorical)
events)
Mild 1.04 (0.76-1.41) 0.89 (0.66-1.21)
Severe 1.99 (1.38-2.89) 1.59 (1.09-2.31)

Type 2 diabetes

AES (continuous)

AES (categorical)

1.27 (1.14-1.42)

1.14 (1.02-1.27)

n= f i . 96-1. . .88-1.
5957,276 Mild 1.31 (0.96-1.78) 1.20 (0.88-1.64
events) Moderate 1.57 (1.12-2.20)  1.16 (0.82-1.64)
Severe 290 (190-4.41) 1.98 (1.29-3.04)

Type 2 diabetes

Melancholic (continuous)

Melancholic (categorical)

1.13 (1.01-1.26)

1.07 (0.95-1.20)

(n= 5957, 276 Mild 1.06 (0.79-1.42)  1.02 (0.76-1.37)
events) Moderate 1.29 (0.95-1.77)  1.15 (0.84-1.57)
Severe 1.40 (0.93-2.11)  1.23 (0.82-1.86)
IDS-SR30 total score  1.15(1.03-1.29)  1.13 (1.00-1.26)
Cardiovascular (continuous)
disease Depressive mood
(n=6295, 285
events) Mild 1.35(1.02-1.80)  1.30 (0.98-1.73)
Severe 1.36 (0.88-2.08) 1.27 (0.83-1.96)
AES (continuous) 1.08 (0.96-1.22) 1.05 (0.93-1.18)
Cardiovascular AES (categorical)
(n=dei;g§?§35 Mild 097 (0.73-1.29)  0.94 (0.71-1.25)
events) Moderate 1.37 (1.01-1.86) 1.28 (0.93-1.75)
Severe 1.04 (0.61-1.79)  0.93 (0.54-1.60)



Chapter 7

Table 3. Continued.

Model 1 HR Model 2 HR
(95% CI) (95% CI)

Melancholic (continuous) 1.15(1.03-1.28) 1.13 (1.01-1.26)

Cardiovascular  Melancholic (categorical)

(n=(2;g§S§85 Mild 0.95 (0.71-1.27)  0.94 (0.70-1.26)
events) Moderate 1.16 (0.85-1.58) 1.13 (0.82-1.54)
Severe 1.57 (1.08-2.30) 1.51 (1.03-2.21)

Model 1: Adjusted for age and sex. Model 2: Adjusted for age, sex, and BMI. IDS-SR30:
Inventory of depressive symptomatology-self report (standardized). None group was set as
the reference group throughout the analyses. AES: Atypical energy-related symptom profile
(a sum score of the five symptoms, increased sleepiness, increased appetite, increased
weight, low energy level, leaden paralysis) (standardized). Melancholic symptoms profile:
a sum score of the symptoms, decreased appetite, decreased weight, early morning
awakening, mood variation in relation to the time of the day, distinct quality of mood,
excessive guilt, psychomotor agitation, psychomotor retardation (standardized). For each
symptom profile, we grouped the participant in four severity score groups: no symptoms:
0 (reference), mild symptoms:1-2, moderate symptoms: 3-4 and severe symptoms: >5.

Step 3: Depressive profiles and type 2 diabetes and cardiovascular
disease

Table 3 shows Cox proportional-hazard model results for the continuous and
categorized depressive profiles (atypical energy-related and melancholic
symptom profiles) and type 2 diabetes, and cardiovascular disease. We found
that the atypical energy-related symptom profile and melancholic symptom profile
had a different pattern of association with type 2 diabetes and cardiovascular
disease. One SD increase in the atypical energy-related symptom profile was
associated with an increased risk of type 2 diabetes HR 1.27 (95 % CI (1.14-1.42))
in model 1. As compared to those without AES, results showed an increased risk
of type 2 diabetes for individuals with moderate ((HR: 1.57 CI 95% (1.12-2.20))
and severe depressive AES (HR: 2.90 CI 95% (1.90-4.41) (Figure 2C). In Model 2,
further adjustment for BMI decreased the strength of the association: the HR of
individuals with severe AES, when compared with those without AES, was 1.98 (CI
95% 1.29-3.04) (Figure 2D). The same symptom profile was not associated with
cardiovascular disease in any of the adjusted Cox proportional-hazard models.

For melancholic symptom profile, one SD increase in the score was associated
with an increased risk of type 2 diabetes (HR 1.13 CI 95% (1.01-1.26)) for model
1. Nevertheless, adding BMI to the model substantially decreased the hazard ratio
(HR 1.07 CI 95% (0.95-1.20)). For cardiovascular disease, one SD increase in the
melancholic symptom profile was associated with an increased risk of the outcome
(HR 1.15 C1 95% (1.03-1.29)) for the model adjusted for age and sex. As compared
to participants without melancholic symptoms, participants with the severe
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melancholic symptoms have an increased risk of cardiovascular disease (HR: 1.57
CI95% (1.08-2.30)) (Figure 2E). All further adjustments for type 2 diabetes at the
baseline and BMI did not change the hazard ratio.

DISCUSSION

This study explored the association between depressive symptoms and the risk
of developing cardiometabolic diseases in large population-based cohort with a
median follow-up of seven years. We were able to disentangle the heterogeneity
of the exposure (i.e., depressive symptoms) and the outcome (i.e., cardiometabolic
diseases) by examining the association of two specific depressive symptom
profiles, atypical energy-related symptom and melancholic profiles, with type
2 diabetes and cardiovascular disease. We found that having higher overall
depressive symptoms at the baseline is associated with an increased risk of
developing cardiometabolic diseases over time. When zooming in the atypical
energy-related symptom profile, we found that it was specifically associated with
a higher risk of developing type 2 diabetes, while the melancholic was associated
with a higher risk of developing cardiovascular disease.

The incidence rate of type 2 diabetes was 2.5 times higher in cohort of this study
compared to the general Dutch population [18]. This was expected because of the
oversampling of obese and overweight individuals (i.e., higher BMI individuals
are at higher risk of developing type 2 diabetes) in the NEO study. However,
the incidence rate of cardiovascular disease was similar to the general Dutch
population [19]. Moreover, our finding that depressive symptoms increased the risk
of developing cardiometabolic diseases and its component (i.e., type 2 diabetes and
cardiovascular disease) are in line with the previous knowledge. Meta-analyses
of longitudinal studies showed that depression (both clinical depression and
depressive symptoms) increased the risk of developing type 2 diabetes (relative
risk=1.37 -1.67) [1, 20-22]. Similarly, another recent meta-analysis that included
twenty-one follow-up studies reported that depression (i.e., combined depressive
scales and depression diagnosis) increased the risk of type 2 diabetes (risk ratio
1.18) [23]. Additionally, depression was also reported as a risk factor for developing
cardiovascular disease (i.e., myocardial infarction (MI), stroke, or coronary death)
in meta-analyses of longitudinal studies (hazard ratio= 1.31-2.6) [2, 3, 24, 25].
The direction of this association is in agreement with a Mendelian Randomization
(MR) study that suggested that genetic predisposition to depression is associated
with increased risk of cardiovascular disease (i.e., coronary artery disease (14%)
and myocardial infarction (21%)) [26]. Additionally, data from another MR study
[27] suggest that obesity, type 2 diabetes, smoking, and high lipid level mediate
this causal relationship.
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Many mechanisms were studied earlier and described as potential links between
depressive symptoms with cardiometabolic diseases. These mechanisms are
behavioral (i.e., physical inactivity, unbalanced diet, smoking, alcohol abuse,
and low level of medical/lifestyle adherence), biological (i.e., HPA, immuno-
metabolic, autonomic dysregulations), and iatrogenic (i.e., the pharmacological
impact of depression medication on cardiometabolic diseases) [28]. Furthermore,
possible common causes for the independent expression of both depression and
cardiometabolic diseases include childhood trauma, personality, and genetic
pleiotropy [28]. A recent study [29] identified 24 pleiotropic genes likely to be
shared between depression and cardiometabolic diseases (i.e., defined in this study
as type 2 diabetes, cardiovascular disease, and their risk factors such as obesity,
hypertension, HDL and LDL cholesterol, triglycerides, and fasting glucose and
insulin). Four of these genes were shared between depression with type 2 diabetes
or cardiovascular disease and regulate neurogenesis, appetite, neurotransmitters,
and melatonin receptor [29].

To deepen our understanding, we investigated the association between specific
depressive symptom profiles and individual cardiometabolic diseases. Our study
suggests that atypical energy-related symptom profile was the main driver for
the association between depression and increased risk of type 2 diabetes. This
noted link could be explained by interconnected behavior factors and biological
mechanisms such as surplus calorie intake and immuno-metabolic dysregulation
(i.e., low-grade inflammation and adipokines over secretion), which may later
manifest as type 2 diabetes [6, 30]. The hemostatic shift toward positive energy
balance, which distinguishes AES, may lead to lipid accumulation in ectopic organs,
a known risk factor for insulin resistance and type 2 diabetes [31, 32]. This positive
energy balance also creates cellular nutrient stress, especially on the site of
protein folding (i.e., endoplasmic reticulum) [33]. This cellular stress triggers the
“metaflammation” response. The “metaflammation” describes the situation when
the low-grade inflammation alters the function of insulin in metabolic tissues such
as the liver and brain [33]. Accumulated white adipose tissue secrete adipokines
(e.g., leptin) that play a significant role in inhibition of insulin secretion from
pancreatic 3 cells [34]. This aligns with the previous work that confirmed the
increased pro-inflammatory markers and metabolic dysregulation (e.g., CRP and
IL-6, high BMI and total body fat, insulin resistance, leptin resistance, dyslipidemia,
and hyperglycemia) in individuals with depression reporting AES profile [6, 7,
35-41]. Additionally, pro-inflammatory markers may trigger neuroinflammation
associated with decreased tryptophan and increased catabolites associated with
the atypical energy-related symptom profile and worse health outcomes such as
type 2 diabetes [8, 42]. Furthermore, chronic low-grade inflammation, has been
suggested to mediate the relationship between atypical energy-related symptoms
and type 2 diabetes [43]. Several genetic studies converged in showing that MDD
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patients reporting AES symptoms carried a higher number of genetic risk variants
for the following metabolic traits such as increased obesity, CRP, triglycerides and
leptin [44-46].

In contrast to that atypical energy-related symptoms, the melancholic symptoms
profile was specifically associated with cardiovascular disorders. Different
potentially shared risk factors or mechanisms may explain this association. For
instance, depressed individuals expressing a melancholic symptom profiles have
been shown to be more likely smokers as compared to other patients [44, 45].
Biologically, individuals with depression who reported insomnia, early morning
awakening, and decreased appetite were also experiencing HPA and locus
ceruleus-norepinephrine LC-NE systems hyperactivation [46]. Hyperactivation
of both systems was also linked to an imbalance in the autonomic tone (i.e.,
sympathetic and parasympathetic nervous systems). Not only activation of the
sympathetic system, but the withdrawal of vagal tone (i.e., decreased activity
of parasympathetic nervous system) was also associated with the melancholic
subtype [47]. Researchers found that decreased heart rate variability (HRV)
accompanied by increased resting heart rate were associated with this subtype
of MDD compared to control [47]. This hyperactivation of the sympathetic
and decreased parasympathetic nervous systems was associated with pro-
inflammatory factors and heart rate variability associated with cardiovascular
disease [48-50]. It is plausible that the differential association between the two
depressive profiles (i.e., AES and melancholic) with the incidence of the two
cardiometabolic profiles is rooted in partially distinct complex network of the
underlying biological pathways and behavioral lifestyles. In addition to the
abovementioned evidence, this explanation is supported by the recent postulation
of possible distinct symptoms specific psychopathological pathways that links
depression with cardiac risk, one through BMI and inflammation and the other
through dysregulation of HPA and the autonomic nervous system [51]. Nonetheless,
the exact nature of this specific associations is still unknown and requires further
investigation in future research including mechanistic studies.

Several methodological aspects of this study should be addressed. The large
sample size, the detailed information of the depressive symptomatology, the
follow-up and the detailed information about cardiometabolic outcomes allowed
us to investigate the heterogeneity of depression and cardiometabolic diseases.
However, there were some limitations. For example, depressive symptoms were
evaluated via a self-report questionnaire. Nonetheless, IDS-SR30 is time and
cost-efficient for research purposes and showed high concordance with clinical
diagnosis of depression [52]. Second, depressive symptomatology data was only
available at the baseline, so we were unable to evaluate the depressive symptoms
at the time of the occurrence of the cardiometabolic diseases. However, a recent
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study [53] showed a remarkable stability of depressive symptoms measured with
IDS-SR30 over nine years follow-up in 1941 participants of the NESDA study. Third,
we cannot rule out the possibility of reverse causality. We do however consider
this highly unlikely, especially due to the fact that we excluded participants with
cardiometabolic diseases at the baseline.

In conclusion, we confirmed the previous association between depressive
symptoms and increased risk of developing cardiometabolic diseases. Additionally,
disaggregating depressive symptoms in different profiles showed a specific trend
of associations with cardiometabolic risk. Following up on patients with depression
for developing cardiometabolic diseases and measuring depressive symptoms in
individuals at risk for cardiometabolic diseases could be beneficial in primary and
secondary preventive efforts. Our findings suggest that such preventive efforts
may benefit from a more personalized approach taking into account differential
symptom manifestations.
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Chapter 8

DISCUSSION

Brief introduction of the main aims and findings

Obesity, depression and cardiometabolic diseases are complex phenotypes [1, 2].
Their heterogeneity complicates studying them individually and hinders efforts to
understand the links between them. This thesis aimed to elucidate the relationship
between obesity and depression and possible mechanisms linking both conditions
together and with cardiometabolic diseases.

Figure 1 in chapter 1 illustrates the outline of this thesis. First, our aim in chapter
two of this thesis was to examine the relationship between obesity and depression
in N=6459 participants. We uniquely dissected both obesity and depression in our
analysis. Instead of relying only on body mass index (BMI), we used it together
with three other adiposity measures. Two of the four measures reflect the overall
adiposity (BMI and total body fat), and the other two reflect the abdominal
adiposity (waist circumference and visceral adipose tissue). For the depression
side, we assessed 30 depressive symptoms (IDS-SR30). We found that all four
measures of adiposity were positively associated with depressive mood and
individual symptoms of depression. Furthermore, this link between measures of
adiposity (particularly total body fat) and depressive symptoms appeared to be
more robust for atypical energy-related depressive symptoms (increased weight,
increased appetite, low energy level and leaden paralysis).

Second, to identify plasma metabolites associated with depression, in chapters
three and four, we performed two studies with two different metabolomics
platforms measuring more than 1000 metabolites with a limited cross-platform
overlap (N=18 metabolites). The first and the second metabolomics studies
used data from, respectively, nine (total N=15 428) and five (total N= 13 596)
Dutch and European cohorts from the general population and clinical settings.
In chapter three, by using a targeted lipid-based metabolomics platform, we
found a metabolic signature for depression characterized by twenty-one lipids,
fatty acids, and low-molecular-weight metabolites: as compared to non-depressed
controls, participants with depressed mood had lower levels of high-density
lipoprotein (HDL), short-chain fatty acid and ketone body acetate and higher
levels of very low-density lipoprotein (VLDL), triglyceride particles, glycoprotein
acetyls, tyrosine and isoleucine. Associations were generally consistent across
sex, age, and BMI strata and across cohorts assessing depression diagnoses with
psychiatric interview versus those assessing depressive symptoms with self-
report instruments. Furthermore, in chapter four, leveraging a wide untargeted
metabolomic platform, we identified 53 metabolites associated with depression,
including those in the monoamine and neurotransmitter pathways (serotonin,
kynurenate and glutamate). These associations were partially explained by
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antidepressant use (i.e., a possible proxy for depression severity). We also
identified novel associations for retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-
GPC (16:0/16:1) (lecithin), and lower levels of 2-aminooctanoate, 10-undecenoate
(11:1n1), 1-linoleoyl-GPA (18:2) with depression. These novel associations were not
explained by antidepressant use, cardiovascular medication and lifestyle factors.

Next, in chapter five, we extended the use of the same metabolomic platform
applied in chapter three to investigate depression heterogeneity. We performed a
data-driven clustering analysis based on depressive symptoms and metabolomics
in N=1094 participants diagnosed with clinical Major Depressive Disorder (MDD)
(i.e., in the last six months) from the Netherlands Study of Depression and Anxiety
(NESDA). We aimed to identify depression dimensions associated with an adverse
metabolic profile. Clustering analysis identified the following two metabolite-
depression dimensions. The first dimension was characterized by a substantially
uniform endorsement of mood, cognitive, and somatic depressive symptoms
and lower levels of metabolic dysregulations. The second is a dimension with
relatively stronger contribution from energy-related behavioral symptoms (such
as sleeping too much, increased appetite, and low energy levels) and increased
levels of metabolic dysregulations. After the clustering step, we examined the
association between these dimensions and the same metabolomics panel and
individual components of cardiometabolic diseases (fasting glucose levels, insulin
resistance, total body fat, and visceral adipose tissue) in N=6572 participants
from the NEO study. The first depression dimension was associated with a lower
cardiometabolic risk profile. In contrast, the dimension with relevance for energy-
related depressive symptoms was associated with higher visceral adipose tissue,
triglyceride levels, branched-chain amino acids, glycoprotein acetylase, insulin
resistance and lower HDL-cholesterol levels.

In chapter six, we investigated whether the established link between adiposity
and atypical energy-related symptoms of depression is rooted in underlying
metabolic dysregulations. In this analysis, we uncoupled the effect of adiposity
from that of metabolic dysregulations in relation to atypical energy-related
symptoms profile by studying the relationships between two previously defined
adiposity increasing genetic risk scores (GRS) and atypical energy-related
symptoms profile. Both genetic instruments used in this study were associated
with increased body fat. The difference between them was that one genetic risk
score was associated with the predisposition to an unfavorable metabolic profile
(i.e., metabolic dysregulations), whereas the other was associated with a favorable
metabolic profile. We meta-analyzed results from two individual studies; the NEO
study (N=5734) and NESDA (N=2238). We found that higher atypical energy-
related depressive symptoms was positively and specifically associated with GRS
that increased the risk of adiposity accompanied by metabolic dysregulations,
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but not with the GRS of obesity with a favorable metabolic profile; these findings
suggest that metabolic dysregulation represents a connecting mechanism between
adiposity and atypical energy related symptoms of depression.

Finally, in chapter seven, we explored the association between different depressive
symptom profiles and the risk of development of cardiometabolic diseases in
N= 6561 individuals from the NEO study, over a median follow-up of seven years.
We were able to disentangle the components of the exposure (depressive symptoms
categorized in overall depression and atypical energy-related symptoms profile)
and the outcome (cardiometabolic diseases categorized as type 2 diabetes and
cardiovascular disease). We found that overall depression was associated with an
increased risk of cardiometabolic disease. More specifically, the atypical energy-
related symptoms profile was significantly associated with an increased risk of
type 2 diabetes onset.

Insights based on the main findings

The results of this thesis render two major insights. First, the interrelatedness
between obesity and depression goes deeper than distal factors such as social
stigma, self-image, or the use of medication and lifestyle, since our analysis
reported an overlap between metabolic signatures in depression and obesity
that was not fully explained by these factors. We hypothesized that metabolic
dysregulation is a potential biological candidate that could (at least partially)
explain the comorbidity between obesity and depression (see The potential role
of metabolic dysregulation in the link between obesity and depression section).
Second, the connection between depression, metabolic dysregulation and
obesity varied due to depression heterogeneity and was strongest for a specific
depressive symptom profile. We found that metabolic dysregulations correlated
more consistently with atypical energy-related symptoms profile. This symptoms
profile was positively associated with adiposity only in the presence of metabolic
dysregulations. Depression heterogeneity also impacted the link between
depression and cardiometabolic diseases with atypical energy-related symptoms
profile increasing specifically the risk of type 2 diabetes.

The potential role of metabolic dysregulation in the link between
obesity and depression

Many interconnected biological pathways can explain how metabolic dysregulation
links obesity and depression and how the two conditions can further lead to
cardiometabolic diseases. Firstly, it is possible that obesity causes depression,
mediated through inflammation, insulin resistance, and metabolic dysregulation.
Previous molecular epidemiological studies (i.e., Mendelian Randomization)
suggested a causal role of obesity in developing depression [3]. Similarly,
another recent Mendelian randomization suggested a causal role of obesity in
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increased C-reactive protein (CRP) levels [4]. Inflammation has been shown to
impact on psychopathological processes relevant for depression, alterations in
monoaminergic neurotransmission, tryptophan degradation towards neurotoxic
end-products, glutamate-related increased excitotoxicity, decreased neurotrophic
factors synthesis or hypothalamic-pituitary-adrenal(HPA)-axis activity disruption
[5]- Inflammation may also alter the function of two closely connected hormones
(leptin and insulin) giving rise to insulin resistance [6] and leptin resistance
[7]. Leptin is secreted proportional to the body’s adiposity and is known, along
with insulin, as the “fed state” hormones [8, 9]. Both hormones have receptors
in the hypothalamus, the area of the brain responsible for maintaining the
overall body homeostasis, which, if compromised, is linked with depression [10,
11]. Longitudinally, elevated acute phase cytokines and proteins in the baseline
increased the risk of developing depressive symptoms [12, 13]. Also, CRP interferes
with leptin binding with its receptor leading to leptin resistance [14]. Leptin
resistance causes elevated leptin concentrations, which in turn inhibits insulin
secretion from pancreatic 8 cells [15].

Impairment of insulin function is linked to metabolic dysregulation that may lead
to depression. A wide range of metabolic dysregulations, such as disrupted lipid
and glucose metabolism, has frequently been reported in obesity and depression
[10, 16-18]. This is in line with results from our metabolomic-depression analysis
(chapters three and four), where we used two large scales metabolomic platforms
to investigate the metabolic signature of depression. For example, we reported
increased VLDL, triglyceride, and lower HDL cholesterol. These findings show an
overlap between metabolic signatures in both obesity [19] and depression.

Secondly, another possibility is the reverse, i.e., that depression causes obesity,
mediated by metabolic dysregulation. Adulthood and early life stress cause
depression that may intervene with food choices, physical activity, and metabolic
homeostasis leading to dyslipidemia, inflammation, and metabolic dysregulation.
Alterations in circulating lipid concentrations may be linked to pathophysiological
pathways related to depression and obesity, such as chronic activation of the
hypothalamic-pituitary-adrenal (HPA) axis or chronic low-grade inflammation
[20]. Glucocorticoid-induced hypercortisolemia is known to result in lipolysis,
the release of fatty acids and synthesis of very-low density lipoprotein (VLDL)
[21]. Similarly, activation of the pro-inflammatory response leads to a reduction
in HDL cholesterol and phospholipids, and an increase in triglyceride, caused by
the compensatory production and accumulation of phospholipid-rich VLDL [22].
From metabolomic-depression analysis (chapters three and four), we found that
lower levels of high-density lipoprotein (HDL), short-chain fatty acid and ketone
body acetate and higher levels of very low-density lipoprotein (VLDL), triglyceride
particles, glycoprotein acetyls, tyrosine, and vitamin A were associated with
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depression. Vitamin A has previously been suggested as a cause of dyslipidemia by
increasing the synthesis of triglyceride-rich very-low-density lipoproteins (VLDLSs),
inhibiting fatty acid degradation, and affecting the synthesis of apolipoproteins
in the liver [23, 24].

Lastly, a common cause could influence both depression and obesity. Carrying
a genetic disposition to leptin and insulin resistance independently or with a
genetic predisposition for inflammation may precede and give rise to metabolic
dysregulation, leading to both obesity and depression. Leptin stimulates the
appetite-suppressing [25] proopiomelanocortin (POMC) neuron in the nucleus of
the hypothalamus that activates the transcription of the melanocortin peptides
(i.e., o, B, and y MSH, and Mc3r and Mc4r) [26]. It has been proposed [27] that
alterations of the leptin-melanocortin pathway impair not only its anorexigenic
effect, leading to obesity, but also its effect on mood regulation, potentially leading
to the development of depression. A recent study [28] identified five shared genetic
risks between depression (or its treatment) and obesity. Two of these genes are
components of the leptin-melanocortin pathway (i.e., proopiomelanocortin
(POMC) and brain-derived neurotrophic factor (BDNF)). The link between obesity
and metabolic dysregulation through leptin resistance and further depression
may explain our findings from chapter two. We reported a positive association
between depression and total body fat. Symptoms of depression related to
disturbance of energy homeostasis were associated with total body fat (see below
‘Heterogeneity of depression and obesity’). This result is in line with the previous
work that examined the relationship between adiposity and depression (by using
BMI as a proxy for total body fat) in epidemiological studies [10, 29-31]. Thus,
metabolic dysregulation may act in two non-mutually exclusive ways: as a common
underlying factor influencing the liability to both depression and obesity or as
mediating mechanism in causal relationships between these conditions [10].

Heterogeneity of depression and obesity

We confirmed the existence of different dimensions within the construct of
depression rooted in partially divergent underlying biological and genetic
mechanisms. In this thesis, we observed that the link between obesity and
depression was more apparent when considering the heterogeneity of depression
and obesity. Similarly, the association of depression with cardiometabolic diseases
changed as a function of depression heterogeneity. We found from the results
of chapter two that depressive symptoms related to energy homeostasis were
relatively more strongly linked to total body fat (i.e., adiposity) as compared to
other symptoms. From the results of chapter six, we found that atypical energy-
related symptoms profile was positively associated with the genetic variants
that increased the predisposition to increase total body fat with metabolic
dysregulation but not with the genetic variants that increased the predisposition to
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obesity without metabolic dysregulation. This aligns with the recently introduced
transdiagnostic model of immuno-metabolic depression (IMD) [32], suggesting that
inflammatory and metabolic dysregulations act as a shared substrate influencing
the development of specific behavioral symptoms common to depression and
obesity. For instance, as mentioned above, alterations in central signaling of leptin
and insulin may associate with shifting body energy balance from expenditure to
accumulation. This shift favors the development of hyperphagia, present in both
obesity and atypical energy-related form of depression. Previous research [33]
has shown that among patients with a current diagnosis of depression, higher
leptin concentration in the blood is associated with depressive symptoms related
to energy metabolism like hyperphagia, fatigability and physical exhaustion,
independently from BMI. This agrees with our results from chapter two, where we
reported that the effect estimates for symptoms of this cluster were the top-ranked
for the associations between individual depressive symptoms with total body fat
(i.e., closely linked to leptin concentration). Additionally, our results from chapter
five, where we performed a data-driven clustering analysis between metabolites
commonly associated with cardiovascular health and depressive symptoms, show
the presence of a specific dimension with higher relative relevance for symptoms
like difficulty falling asleep, sleeping too much, increased appetite, and low energy
level correlates with metabolic dysregulations. These metabolic dysregulations
have been hypothesized to link depression and cardiometabolic diseases. For
example, immuno-metabolic dysregulations such as marked by elevated plasma
concentrations of triglycerides, IL-6, and CRP, were causally related to depression
[34]. Interestingly, a recent study has shown that inflammation as measured by
IL-6 activity but not CRP is a potential cause for a specific symptoms profile of
depression, such as sleep problems or fatigue [35]. Finally, our findings suggest
that metabolic dysregulation links obesity and depression with some but not
all elements of cardiometabolic diseases. For example, atypical energy-related
symptoms profile was specifically related to an increased risk of type 2 diabetes
but not cardiovascular disease.

Future work

We suggest three important areas of research in this field for the coming years.
Firstly, more longitudinal studies that aim to study the relationship between
depression symptoms profile and obesity and cardiometabolic diseases are
needed to understand the directionality of the reported associations. Second,
experimental mechanistic studies and genetically informed designs such
as Mendelian Randomization may identify the presence of causal processes
underlying these associations. Finally, future randomized control trials aiming
to target the underlying immuno-metabolic dysregulations via pharmacological or
behavioral interventions (such as exercising, dieting and sleep hygiene) in patients
with depression expressing atypical energy-related symptoms are needed to help
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us understand to what extent treating underlying metabolic dysregulation will
contribute to mitigate this symptoms profile adversity.

Methodological considerations

Several methodological aspects of this thesis should be considered. The main
strength of the analysis of this thesis is using data from two large and deeply
phenotyped cohorts. The NEO study has detailed information about obesity
phenotype with additional information about depression, and the NESDA has
detailed depression phenotype with additional information about obesity.
Both cohorts have the same depressive symptoms instruments, lipid-related
metabolomic data, and obesity-related genetics that allowed us to perform
discovery-replication and pooled analysis in the two cohorts. However, some
methodological limitations should be acknowledged. First, the observational
nature of the analyses in this thesis does not allow us to completely rule out the
possibility of residual confounding. However, due to the design of the cohorts, we
could adjust for a broad set of relevant confounding factors related to the studies’
associations, including age, sex, educational level, smoking, alcohol consumption,
physical activity, antidepressants, lipid-lowering drugs, and ethnicity. Second, most
of the studies of this thesis were performed in a cross-sectional design which does
not allow us to infer causality in the detected associations. Third, we cannot rule
out the possibility of reverse causality due to the nature of observational studies
in chapter seven, where we performed a longitudinal analysis between baseline
depressive symptoms profiles and developing type 2 diabetes and cardiovascular
disease. However, we consider this highly unlikely, mainly because we removed
participants with cardiometabolic diseases at the baseline. Fourth, in the NEO
study, the depressive symptoms were assessed only via the self-report IDS-SR30
without a clinical diagnosis of depression. Nonetheless, IDS-SR30 is time and cost-
efficient for research purposes and showed high concordance with the clinical
diagnosis of depression [36].

The implication of this work

This thesis adds to the existing knowledge that encourages the consideration
of a more refined classification for depression based on depressive symptoms
profiles and their possible biological underpinnings. Albeit healthcare providers
are shifting from assessing adiposity solely based on BMI by incorporating waist
circumference and lipid profile to diagnose the overall health profile, less has
been done so far regarding depression heterogeneity. It is essential to increase
awareness about the different manifestations of depression symptomatology,
which may arise from potentially divergent pathophysiological pathways. Two
individuals with the same DSM-5 scores could have completely different symptoms
profiles, biological vulnerabilities and disease trajectory or prognosis. Thus, it is
important that healthcare providers become aware of the link between depressive
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symptom profiles and their associations with biological biomarkers related to
other health problems such as obesity, insulin resistance, type 2 diabetes and
cardiovascular disease. Target screening of specific symptom profiles can
provide better healthcare for patients with depression. This screening can also
be used to protect from, or delay, the manifestation of metabolic dysregulations
to cardiometabolic diseases (i.e., type 2 diabetes and cardiovascular disease).
When patients with depression are expressing atypical energy-related symptoms
profile, it may be useful to monitor their metabolic health biomarkers to prevent
the development of cardiometabolic diseases. Our results highlight the importance
of considering the instruments to assess depressive symptoms in research and
clinical practice. In most studies, psychometric instruments are used to ask about
changes in neurovegetative symptoms such as appetite and sleep, but not about the
direction of that change. The overwhelming majority of questionnaires assessing
depressive symptoms conflate opposite changes in neurogenerative symptoms
(example: one question conflating decreased and increased appetite: “Poor
appetite or overeating” from UK Biobank mental health questionnaire (MHQ) [37,
38] and another question from the UK Biobank computerized touchscreen interface
questionnaire [39] evaluating the presence of a change in the weight but not the
direction of that change, such as loss or gain weight: “Compared with one year ago,
has your weight changed?” with the following multiple choices No - weigh about
the same, Yes - gained weight, Yes - lost weight, Do not know, Prefer not to answer).
However, based on the results of this thesis, the connection between changes in
appetite and metabolic dysregulation seems stronger for one specific direction
of the changes (i.e., increased appetite and weight gain). Adding to that, refining
the depression phenotype will increase the precision of the genetic studies that
aim to comprehend depression genetic architecture [40]. In the clinical setting,
we also should increase awareness about the correlation between depressive
symptoms profiles with distinct biological and clinical manifestations when
treating patients with depression. It is crucial to take a close look at the symptoms
expressed in each patient. Based on the results of this thesis, we demonstrated
that participants with depression expressing atypical energy-related depressive
symptoms might carry genetic and clinical vulnerability to insulin-resistance
related illness (i.e., adiposity, metabolic dysregulations, and type 2 diabetes).
Similarly, diseases that are usually put under the label of cardiometabolic diseases
should be studied separately as research has shown that each may have a partially
distinct pathophysiology. The original definition of cardiometabolic diseases was
used to describe the elements of metabolic syndrome and the diseases that they
predict (i.e., stroke, heart disease, and type 2 diabetes). However, the definition of
cardiometabolic diseases has expanded recently to include cardiovascular diseases,
insulin resistance-related diseases, and renal function related diseases (example
[28, 41]). Although all these conditions are closely related, it may be beneficial
to distinguish groups of diseases that share similar underlying pathophysiology.
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In chapter seven, we found that atypical energy-related depressive symptoms
were associated with an increased risk of type 2 diabetes but not cardiovascular
disease (i.e., both labelled as cardiometabolic diseases). The 2016 guidelines on
cardiovascular disease prevention from The European Society of Cardiology’s
(ESC) [42] recommend active screening for increased cardiometabolic risk factors
such as obesity, type 2 diabetes and depression starting from age 40 for men and
age 50 for women at least once every five years. We argue that following up on
patients with depression for cardiometabolic diseases and measuring specific
depressive symptoms in individuals at risk for cardiometabolic diseases could be
beneficial in primary and secondary preventive efforts. Additionally, preventive
and treatment efforts may benefit from a more personalized approach taking into
account differential depressive symptoms manifestations. Very recently, clinical
trials [43-45] have started testing the efficacy of targeting immuno-metabolic
pathways in the treatment of specific subgroups of depressed patients selected
based on their bio-clinical profile. Among these clinical studies, the INFLAMED
trial [45] is currently testing the efficacy of an anti-inflammatory add-on to
standard antidepressants in the treatment of MDD patients expressing atypical
energy-related symptoms and with sign of low-grade inflammation.

Conclusion

Our findings highlight the importance of considering the heterogeneity of
adiposity, depression, and cardiometabolic diseases. The complex nature of
the relationship between the three conditions makes it challenging to draw a
one-size-fits-all conclusion. Our results suggest that metabolic dysregulation
is a potential biological mechanism that links specific forms of depression
with obesity. This proposed mechanism could lead to the development of
cardiometabolic diseases. In this thesis, we found that the atypical energy-related
symptoms profile - characterized by behavioral symptoms reflecting altered
energy intake and expenditure (i.e., increased appetite, increased sleepiness,
low energy level, leaden paralysis, increased weight) - is the main driver of the
relationship between depression, adiposity, immune-metabolic dysregulation
and their later manifestation (type 2 diabetes). It is important to raise awareness
about the depression heterogeneity and how distinct symptoms profile such as
atypical energy-related symptoms profile could further correlate with clinical
manifestation of metabolic dysregulation and increase the risk of debilitating
diseases such as type 2 diabetes. Future detailed genetics and experimental
studies that aim to answer the causation question are needed in order to move
forward to better precise and personalize diagnosis and treatment for all patients
with depression, obesity and cardiometabolic diseases.
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Appendices

NEDERLANDSE SAMENVATTING

De relatie tussen obesitas en depressie blijkt complex te zijn en wordt niet volledig
begrepen. Obesitas en depressie zijn in twee richtingen met elkaar verbonden:
enerzijds verhoogt depressie het risico op obesitas, terwijl obesitas op zijn
beurt het risico op depressie verhoogt. Echter, niet elk persoon met depressie
heeft obesitas en niet elk persoon met obesitas is depressief. Zowel obesitas als
depressie zijn geassocieerd met een verhoogd risico op cardiometabole ziekten.
Hieronder vallen hart- en vaatziekten en diabetes mellitus type 2. Het verrichten
van onderzoek naar de associatie tussen obesitas, depressie en cardiometabole
ziekten wordt bemoeilijkt door hun complexiteit en heterogeniteit. Bovendien is
aangetoond dat deze associatie slechts gedeeltelijk wordt verklaard door leefstijl,
medicatie en de aanwezigheid van comorbiditeiten. De hypothese luidt derhalve dat
er mogelijk sprake is van biologische verbindingen tussen de drie ziektebeelden.

Obesitas wordt gekenmerkt door een verschuiving van de energiebalans naar
overmatige vetopslag, dat over het algemeen plaatsvindt in het gehele lichaam en
voornamelijk in de buikholte. Dit teveel aan vet is geassocieerd met verstoringen
van het immuunsysteem als gevolg van laaggradige inflammatie. Daarnaast is er
sprake van metabole ontregeling die verstoringen veroorzaakt in het transport
van essentiéle stoffen door het lichaam, die nodig zijn voor de energiebalans
(bekend als ‘homeostase’). Volgens de World Health Organization (WHO) wordt
obesitas gedefinieerd als een body mass index (BMI) groter dan of gelijk aan
30 kg/m?, waarbij BMI wordt berekend als gewicht gedeeld door lengte in het
kwadraat. Alhoewel BMI een hoge correlatie heeft met de hoeveelheid vet die in
hetlichaam is opgeslagen als vetweefsel, wordt hierbij geen onderscheid gemaakt
met hoge vetvrije massa, oftewel spiermassa. Bovendien kan het gebruik van BMI
problematisch zijn wanneer etniciteiten met elkaar worden vergeleken, aangezien
daarbij sprake is van verschillende lichaamsstructuren en -samenstellingen. Dit
kan tot onjuiste conclusies leiden als BMI-afkappunten zonder correctie voor de
verschillende etniciteiten worden gebruikt. Daarom meten wij in dit proefschrift
zowel het totale lichaamsvet als de vetverdeling in het lichaam. Naast de
heterogeniteit van meeteenheden en definities van obesitas, zijn er vele subtypes
van obesitas. Twee subtypen zijn tegengesteld aan elkaar en zullen in het kader van
dit proefschrift hier beschreven worden: a) ‘metabolisch ongezonde obesitas’, die
geassocieerd wordt met overtollig lichaamsvet en de aanwezigheid van ontsteking
en metabole ontregeling; b) ‘metabolisch gezonde obesitas’ die geassocieerd wordt
met overtollig lichaamsvet en een gezond (of gunstig) metabool profiel.

Depressie uit zich in aanhoudende neerslachtigheid en/of het onvermogen om

plezier te voelen. Dit treedt op in combinatie met cognitieve symptomen (zoals
verminderde concentratie of besluiteloosheid) en somatische symptomen (zoals
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vermoeidheid, pijn, toe- of afname van gewicht en eetlust). De diagnose depressie
wordt gesteld volgens de criteria van de Diagnostic and Statistical Manual of Mental
Disorders (DSM-V). lemand dient dan gedurende meer dan twee weken aanzienlijke
functionele beperkingen hebben met vijf van de negen symptomen, twee daarvan
moeten fundamentele symptomen van depressieve stemming en anhedonie
zijn. Depressie kan worden vastgesteld middels een gestructureerd klinisch
diagnostisch interview, zoals het Composite International Diagnostic Interview
(CIDI, versie 2.1), of middels gevalideerde zelfrapportagevragenlijsten, zoals de
Inventory of Depressive Symptomatology (IDS-SR30). De IDS-SR30 evalueert op
een 4-puntenschaal de aanwezigheid van 30 depressieve symptomen tijdens de
laatste week en scoort de ernst van deze symptomen. Doordat op vele verschillende
manieren aan de DSM-criteria voor depressie kan worden voldaan, kwam er
recentelijk meer aandacht voor depressie heterogeniteit. Verschillende subtypes
en dimensies van depressie zijn reeds beschreven. De meest cruciale dimensie
van depressie voor dit proefschrift is een cluster van somatische symptomen die
gerelateerd zijn aan de beschikbaarheid en het verbruik van energie in het lichaam.
Deze symptomen zijn toegenomen slaperigheid, toegenomen eetlust, toegenomen
gewicht, laag energieniveau en fysieke uitputting. Dit symptomenprofiel werd
consequent in verband gebracht met obesitas, ontsteking, metabole ontregeling
en cardiometabole ziekten.

Aanvankelijk werd de term ‘cardiometabole ziekten’ geintroduceerd om alle
metabole ontregelingen ten gevolge van insulineresistentie te beschrijven;
zoals eerder vermeld betreffen dit het metabool syndroom, hart- en vaatziekten
en diabetes mellitus type 2. Echter, momenteel heeft de term geen duidelijke
definitie. Het wordt gebruikt om diabetes mellitus type 2 en hart- en vaatziekten
te beschrijven, maar ook hun risicofactoren zoals insulineresistentie, hypertensie,
hyperglykemie, dyslipidemie en soms ook nierziekten. Dit impliceert een
heterogeen karakter van de term cardiometabole ziekten, met name door het
feit dat factoren die enerzijds diabetes voorspellen, zoals componenten van het
metabool syndroom, niet altijd (of maar zwak) hart- en vaatziekten voorspellen.

In dit proefschrift streefden we ernaar om de aard van de relatie tussen obesitas,
depressie en cardiometabole ziekten te ontrafelen. We karakteriseerden de
associatie tussen verschillende maten van obesitas en metabole dysregulaties (die
gewoonlijk gelinkt worden aan obesitas), en depressie. Verder onderzochten we of
deze associatie varieerde tussen verschillende depressieve symptoomprofielen.
Ook wilden we de rol van metabole ontregeling onderzoeken als mogelijk
verbindingsmechanisme tussen obesitas en een depressief profiel, dat gekenmerkt
wordt door atypische symptomen die de energiechomeostase weerspiegelen. Ten
slotte wilden we het risico van algemene depressie en specifieke depressieve

189



Appendices

symptoomprofielen op het ontwikkelen van cardiometabole ziekten nader
bestuderen.

Het doel van hoofdstuk 2 van dit proefschrift was om meer kennis te vergaren over
de relatie tussen obesitas en depressie. De associatie tussen obesitas en depressie
was al eerder bestudeerd, maar wij bekeken de definitie van obesitas op unieke
wijze vanuit verschillende invalshoeken. In plaats van ons alleen te baseren op
het BM], die bekend staat als een beperkte maat voor obesitas, gebruikten we
het samen met drie andere adipositasmaten. Twee van de vier maten (BMI en
totaal lichaamsvet) geven de totale adipositas weer, terwijl de andere twee maten
(tailleomtrek en visceraal vetweefsel) de abdominale adipositas weergeven. Het
totale lichaamsvet werd geschat middels bio-elektrische impedantieanalyse.
Voor het meten van visceraal vetweefsel werd beeldvormend onderzoek verricht
middels MRI-scan. Voor het onderzoeken van depressie werd de IDS-SR30
vragenlijst gebruikt. Wij vonden dat alle vier de maten van adipositas (BMI,
totaal lichaamsvet, middelomtrek, visceraal vetweefsel) positief samenhingen
met depressieve stemming en individuele symptomen van depressie. Bovendien
bleek het verband tussen adipositasmaten (met name totaal lichaamsvet) en
depressieve symptomen sterker te zijn voor atypische energie-gerelateerde
depressieve symptomen; oftewel toegenomen gewicht, toegenomen eetlust, laag
energieniveau en loodzware verlamming (fysieke uitputting).

In de hoofdstukken 3 en 4 trachtten we plasmametabolieten te identificeren die
geassocieerd zijn met depressie. Metabolieten zijn kleine moleculen die voortkomen
uit biochemische processen in het lichaam. Dit werd onderzocht in twee
grootschalige analyses met twee verschillende metabolomics-platforms waarbij
meer dan 1000 metabolieten werden gemeten met een beperkte overlap tussen de
platforms (N=18 metabolieten), in negen Nederlandse en vijf Europese cohorten uit
de algemene bevolking en klinische populaties. In de eerste metabolomics studie
vonden we een metabole signatuur voor depressie die vergelijkbaar is met dat van
cardiometabole ziekten: lagere niveaus van HDL-cholesterol en hogere niveaus
van VLDL-cholesterol, triglyceriden en de ontstekingsmarker glycoproteine
acetyls. De associaties werden niet beinvloed door geslacht, leeftijd en BMI, en
waren gelijk voor cohorten met depressie-diagnoses en cohorten met depressieve
symptomen. Daarnaast identificeerden we in de tweede metabolomics studie ook
nieuwe associaties tussen retinol (vitamine A) en depressie.

In hoofdstuk 5 beoogden we depressiedimensies te identificeren die samenhangen
met een verhoogd risico op een ongunstig metabool profiel, door gegevens van
metabolomics en depressieve symptomen te combineren. We voerden data-driven
clustering uit op basis van zowel symptomen als metabolomics bij deelnemers met
de diagnose klinische depressie. Om onze bevindingen naar aanleiding van de
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clustering te repliceren, onderzochten we in een onafhankelijk bevolkingscohort
de associatie van de geidentificeerde dimensies met hetzelfde metabolomics-
panel en individuele cardiometabole ziekten (zoals concentraties van nuchtere
glucose, insulineresistentie, totaal lichaamsvet en visceraal vetweefsel). Middels
clusteringanalyse werden twee metaboliet-depressiedimensies geidentificeerd.
De eerste dimensie werd gekenmerkt door een vrijwel uniforme bevestiging van
een reeks stemmings-, cognitieve en somatische depressieve symptomen en lagere
niveaus van metabole disregulaties. De dimensie met vertoonde een relatief sterke
bijdrage van energie-gerelateerde symptomen (zoals slaapzucht, verhoogde eetlust
en lage energieniveaus) en een verhoogde mate van metabole ontregelingen. Uit de
replicatieanalyses bleek dat de dimensie met relevantie voor energie-gerelateerde
depressieve symptomen geassocieerd was met meer visceraal vetweefsel, insuline
resistentie en hogere concentraties van triglyceriden, vertakte-keten aminozuren,
glycoproteine acetylase en lagere concentraties van HDL-cholesterol dan de
dimensie van algemene depressie.

In hoofdstuk 6 gebruikten we genetica (genetics risk score analyse) om het effect
van adipositas te onderscheiden van dat van metabole dysregulaties, om na te
gaan of het verband tussen obesitas en atypische energie-gerelateerde depressieve
symptomen afhankelijk is van de aanwezigheid van metabole dysregulaties.
In deze analyse hebben wij het effect van adipositas losgekoppeld van dat van
metabole dysregulaties door twee genetische risicoscores (GRS) te creéren die
beide geassocieerd waren met adipositas. De ene GRS was ook geassocieerd met
de aanleg voor een ongunstig metabool profiel (oftewel metabole dysregulaties),
terwijl de andere GRS geassocieerd was met een gunstig metabool profiel. We
hebben de resultaten van twee afzonderlijke studies gemeta-analyseerd, namelijk
van de NEO-studie en de NESDA. We observeerden dat de GRS dat het risico op
adipositas in combinatie met metabole disregulaties verhoogde, geassocieerd
was met een verhoogd atypisch energie-gerelateerd depressie profiel. De GRS
die gepaard gaat met obesitas met een gunstig metabool profiel was echter niet
geassocieerd met een atypisch energie-gerelateerd symptoomprofiel.

Ten slotte onderzochten we in hoofdstuk 7 de associatie van algemene depressie en
atypisch energie-gerelateerd symptoomprofiel met het risico op cardiometabole
ziekten. We voerden een time-to-event analyse (mediane follow-up periode van
7 jaar) uit om het risico op cardiometabole ziekten en de componenten daarvan
(diabetes mellitus type 2 en hart- en vaatziekten) en koppelden deze uitkomsten
aan depressie en een atypisch energie-gerelateerd symptoomprofiel van depressie.
De uitkomst hiervan was dat algehele depressie samenhing met een verhoogd
risico op cardiometabole ziekten. In het bijzonder was het profiel van atypische
energie-gerelateerde symptomen geassocieerd met een verhoogd risico op
diabetes mellitus type 2.
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De uitkomsten beschreven in dit proefschrift dragen bij aan de bestaande
overtuiging dat een verfijndere classificatie voor depressie, op basis van
symptoomprofielen en hun mogelijke biologische onderbouwing, overwogen
dient te worden. Inmiddels wordt adipositas in de dagelijkse praktijk op meer
dan alleen het BMI beoordeeld, namelijk ook de tailleomtrek en het lipidenprofiel.
Echter, dergelijke aandacht bestaat nog niet voor de heterogeniteit van depressie.
Een grotere bewustwording van de verschillende manifestaties van depressie-
symptomatologie, die het gevolg kunnen zijn van uiteenlopende pathofysiologische
mechanismen, is van essentieel belang. Wanneer een patiént met depressie
een atypisch energie-gerelateerd symptoomprofiel heeft, kan het nuttig zijn
om diens metabole biomarkers te controleren om mogelijke ontwikkeling van
cardiometabole ziekten te voorkomen. In de klinische praktijk moeten wij
ons bij de behandeling van patiénten met depressie ook meer bewust worden
van de correlatie tussen symptoomprofielen van depressie en afzonderlijke
biologische en klinische manifestaties. Het is cruciaal om goed te kijken naar de
symptomen die bij elke patiént tot uiting komen. De resultaten van dit proefschrift
tonen aan dat patiénten met een depressie die atypische energie-gerelateerde
depressieve symptomen vertonen, genetisch en klinisch kwetsbaar zijn voor
aan insulineresistentie gerelateerde ziekten (namelijk adipositas, metabole
ontregelingen en diabetes mellitus type 2). Een gepersonaliseerde aanpak kan
behulpzaam zijn in preventie van deze chronische en complexe ziekten. Hierbij
dient er rekening gehouden worden met de heterogeniteit van depressie en de
associatie tussen atypische energie-gerelateerde symptomen van depressie en
deze ziekten.
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