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Chapter 1

INTRODUCTION

Obesity, depression, and cardiometabolic diseases are known as “diseases of 
modernity” due to the alarmingly increased prevalence since the last century 
[1, 2]. The first notion of the link between obesity and depression was made by 
Mary E. Moore in 1962 [3]. This was followed by epidemiological studies, which 
confirmed [4] the presence of this association. Simultaneously, epidemiological 
studies also reported on the link between obesity and cardiometabolic diseases 
[5], and depression and cardiometabolic diseases [6-9]. However, the links between 
these conditions appear complex and not fully understood. The comprehensive 
aim of this thesis is to elucidate the nature of the relationship between depression, 
obesity, and cardiometabolic diseases by investigating the heterogeneity of the 
three conditions.

Depression, obesity and cardiometabolic diseases: a complex 
relationship
Depression is the state of low mood and/or persistent inability to feel pleasure 
or reword accompanied by emotional, cognitive and somatic symptoms [10] and 
has been shown to be linked to obesity and cardiometabolic diseases (Table 1). 
The “Global burden of diseases” between 1999-2019 showed that depression, 
obesity and cardiometabolic diseases were among the ten leading causes of the 
highest absolute number of days lost for disability and premature death [11, 12]. 
Individuals with depression are at 58% increased risk of developing obesity 
[13] and 40% increased risk of premature death due to other comorbid diseases 
such as cardiometabolic diseases [14, 15]. To be diagnosed with depression, 
according to the Diagnostic and Statistical Manual of Mental Disorders (DSM) 
criteria, a person should report having substantial functional impairment with 
five out of nine symptoms for more than two weeks; two of them should be 
fundamental symptoms of depressed mood and anhedonia [10]. DSM contains 
four emotional symptoms (depressed mood, anhedonia, feeling of worthlessness 
or guilt, and suicidal ideation), three neurovegetative symptoms (low energy level, 
increased or decreased sleep, and increased or decreased weight), and finally, 
two neurocognitive symptoms (ability to think or concentrate or indecisiveness, 
and psychomotor retardation or agitation) [10, 16]. Depression can be assessed 
via structured clinical diagnostic interview such as the Composite International 
Diagnostic Interview (CIDI, version 2.1)) (then labelled as clinical depression 
or major depressive disorder (MDD) or a validated self-report questionnaires 
with specific cut-offs used to defined participants with depressed mood. 
Many instruments have been developed to extensively assess depressive 
symptomatology [17]. For example, the Inventory of Depressive Symptomatology 
(IDS-SR30) assesses (via a 4-points likert scale) the presence during the last week 
and the severity of the core symptoms of a major depressive episodes, melancholic 
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(e.g., anhedonia, non-reactive mood, psychomotor retardation/agitation, appetite 
or weight decrease, early morning awakening and self-outlook) and atypical (e.g., 
mood reactivity, leaden paralysis, weight gain or increased appetite, hypersomnia, 
and interpersonal sensitivity) features, and commonly associated symptoms (e.g., 
irritability, anxiety, somatic complaints) [18].

Table 1. The association between depression and cardiometabolic diseases

Obesity is characterized by a shift in energy balance toward excessive storing of 
fat droplets in adipose tissue, which is associated with low-grade inflammation 
and impairment of metabolic flexibility (i.e., impairment of sensing and trafficking 
essential substances for cellular energy homeostasis) [19]. Obesity is defined based 
on body mass index, which is calculated as weight (kg) divided by squared height 
(m2). The World Health Organization (WHO) standard measure for defining obesity 
is BMI ≥ 30) [20]. Globally, the prevalence of overweight and obesity has been 
continuously increasing since the 1980s, and if trends do not level off or reverse, 
more than half of the world’s adult population could be overweight or obese by 
2030 [2]. Moreover, obesity is a complex condition and is also comorbid with other 
complex diseases such as depression, type 2 diabetes, heart disease, and stroke 
(Table 1) [21].

There is compelling epidemiological evidence that confirms that obesity and 
depression are associated [4, 13, 22, 23] in cross-sectional (Table 1; pooled 
odds ratios from 6 meta-analyses ranged from 1.14-1.41) and bi-directionally in 
longitudinal settings (Table 1; pooled odds ratios for depression as an outcome 
ranged from 1.19 to 2.15, and for obesity as an outcome from 1.37 to 1.71). This 
association between obesity and depression is only partially explained by distal 
factors such as lifestyle, medication, and comorbidity [4, 13, 22]. Hence the 
hypothesis is that there is a high potential for an underlying biological link.

1
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Heterogeneity of depression and obesity
Depression is a heterogeneous condition [24], as the depression diagnosis, 
by definition, allows for many ways for the DSM criteria to be met [25, 26]. To 
understand depression heterogeneity, various subtypes of depression have been 
described [27]. Two clinical depression subtypes, the atypical depression and 
the melancholic depression [28, 29], have traditionally received more attention. 
Atypical depression is characterized by mood reactivity (i.e., mood brightens 
in response to positive events), fatiguability, excessive sleepiness, hyperphagia, 
weight gain, and interpersonal rejection sensitivity [28]. Melancholic depressive 
symptoms reflect a state of the hyperarousal stress response, characterized by the 
inability to have pleasure or reward, pronounced feelings of worthlessness, non-
reactive mood, psychomotor disturbances (agitation or retardation), insomnia, 
loss of appetite and weight, having the worse mood early in the morning [29]. 
However, this concept of distinct binary depression subtypes has been criticized 
as it is almost impossible for the subtypes not to overlap [27]. More recently, data-
driven approaches have been used in an attempt to perform cluster analysis for 
depressive symptoms in relation to biomarkers and clinical features. In the top-
down approach, studies [30, 31] investigators performed depressive symptom-
based clustering as a first step and subsequently evaluated the clustering results 
via association with biomarker levels. These studies reported that a cluster of 
atypical energy-related depressive symptoms, such as increased weight and 
fatigue, were associated with metabolic and inflammatory dysregulations [30, 31]. 
In contrast, in bottom-up approach studies [32, 33], biomarker-based clustering 
was done as a first step, and subsequently, the clustering results were evaluated 
via association with clinical features. These studies led to reports of a cluster of 
participants with higher metabolic and inflammatory markers who tended to be 
more vulnerable to depression [32, 33].

Regardless of the differences in the definitions of the different subtypes, 
accumulated scientific evidence highlighted that individuals who express 
behavioural symptoms related to energy homeostasis (as a dimension or 
continuous score of symptoms and not as a binary subtype) are most likely to 
have increased: BMI, total body fat, proinflammatory markers, acute phase 
proteins (i.e., IL-6, and CRP), fasting glucose, triglycerides, blood pressure, waist 
circumference, insulin resistance, leptin resistance and inflammation-related 
tryptophan catabolites (i.e., kynurenine and quinolinic acid), and decreased HDL-
cholesterol [22, 34-40]. Milaneschi et al. [24] conceptualized these findings in the 
“immuno-metabolic depression” hypothesis, where they postulated the existence 
of an “immune-metabolic depression” (IMD) dimension characterized by the 
clustering of depressive symptoms, namely atypical energy-related symptoms 
(i.e., increased sleepiness, increased appetite, increased weight, low energy level 
and leaden paralysis) with immuno-metabolic dysregulations such as adiposity, 
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hyperglycaemia, dyslipidaemia, and inflammation. This model is characterized by 
the presence of immuno-metabolic dysregulation linked to behavioural symptoms 
that favour a homeostatic shift toward positive energy balance (increased intake 
and decreased expenditure) [24].

Obesity too is a heterogenous condition, which can be defined and characterized 
in different ways. As stated, body mass index (BMI) is the WHO standard measure 
for measuring obesity (BMI ≥ 30) [20]. Studies that investigated the association 
between obesity and depression mainly define obesity based on BMI [41-43]. BMI 
has a high correlation with the amount of fat stored in the body as adipose tissue, 
but it is also a proxy for high fat-free mass (i.e., muscle mass). Therefore, when BMI 
is used alone it can be problematic, for instance for interethnic comparison [20, 44] 
because it has been shown that total body fat storage and distribution varies among 
ethnic groups. For example, people from the Asian population have lower BMI and 
a higher tendency for abdominal fat accumulation than the European population. 
Therefore, the prevalence of type 2 diabetes and cardiovascular disease in the 
Asian population was reported in the BMI cut-off ≤25 [45]. The amount of total 
body fat can be directly measured and reported utilizing bioelectrical impedance 
analysis [46]. The term “adiposity” is used when referring to body fat. Even when 
total body fat is measured accurately, the location of fat accumulation (i.e., fat 
distribution) in the peripheral parts of the body or in between organs in the 
abdominal cavity (i.e., abdominal adiposity) particularly has an additive value 
for understanding the link between obesity and depression. Abdominal adiposity 
can be measured as waist circumference; furthermore, by exploiting magnetic 
resonance imaging, we can more accurately assess the amount of visceral adiposity 
[46]. A stronger association between depression and abdominal adiposity, as 
compared to overall adiposity, has been confirmed in previous studies [47, 48]. 
Previous work has indicated that obesity can affect health and disease differently 
[49, 50] by showing different and sometimes opposing relationship with metabolic 
dysregulations. [51-53]. These opposing forms of obesity have also been described 
as a) metabolically unhealthy obesity, which is associated with excess body fat with 
the presence of inflammation and metabolic dysregulation, and b) metabolically 
healthy obesity with excess body fat and healthy metabolic profile (favourable 
metabolic profile) [49, 50].

The comorbidity of obesity and depression with cardiometabolic 
diseases
Besides obesity and depression, this thesis will also examine how “cardiometabolic 
diseases” fits into this relationship. Twenty years ago, Linda Pescatello introduced 
the name “cardiometabolic diseases” to include all metabolic dysregulation 
resulting from insulin resistance (i.e., metabolic syndrome and cardiovascular 
disease, stroke and type 2 diabetes) [54]. Currently, the term cardiometabolic 

1
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diseases has no clear definition. Instead, it is used to describe type 2 diabetes 
and cardiovascular disease and their risk factors, such as insulin resistance, 
hypertension, hyperglycaemia, and dyslipidaemia, without clear criteria. This 
implies a heterogeneous nature of cardiometabolic diseases, especially with the 
notion that factors that predict diabetes, such as components of metabolic syndrome 
(high waist circumference, triglyceride, and fasting glucose, hypertension, and 
low HDL cholesterol), do not (or weakly) predict cardiovascular disease [55]. 
Following the literature in this field, we define cardiometabolic diseases as all 
insulin resistance related dysregulation unless we specify a subgroup of this 
constellation. Large meta-analyses of longitudinal studies [56-58] indicate that 
depression is associated with an increased risk of cardiometabolic diseases (i.e., 
myocardial infarction, type 2 diabetes, and stroke). Moreover, there is evidence 
that diabetes, heart disease, and stroke also increase the risk of depression) [56, 
58, 59]. However, the link between depression and cardiometabolic diseases is 
not fully understood.

Using -omics to disentangle the relationship between obesity and 
depression
An overlap between obesity and depression has been reported on metabolomic 
and genetic levels, which may indicate a shared biological mechanism between 
the two conditions [22, 60]. The advancement in the targeted proton nuclear 
magnetic resonance platform (1H-NMR) spectroscopy and mass spectrometry-
based (GC-MS) technologies is opening new opportunities to study obesity and 
depression based on their metabolic (phenotypic) signature. Metabolomics; is 
defined as “the study of the unique chemical fingerprints that specific cellular 
processes leave behind” [61]. The role of metabolic dysregulation was previously 
investigated in patients with depression and an animal model of depression in a 
few studies [62-64]. Shao et al. [63] used gas chromatography-mass spectrometry 
(GC-MS) to study cerebellar metabolomics in a chronic mild stress rodent model 
of depression. This study showed evidence that the depression model in the 
rodent is associated with metabolic dysregulation in glucose, lipid, and energy 
biosynthesis pathways. Similarly, Zheng et al. [62] found that glucose and lipid 
dysregulation such as polyunsaturated fatty acids, very low density lipoprotein 
and low density lipoprotein signalling could be potential predictors for depression. 
In a small sample size study (N=30), Paige et al. [64] used GC-MS to study the 
metabolic signature in over 60 years old patients with depression and healthy 
controls. They found a metabolic signature of declined gamma-aminobutyric acid 
(GABA), glycerol, and short-chain fatty acids such as palmitate and oleate to be 
linked to depression. Despite the existence of small scales of metabolomics analysis 
in depression, the heterogeneity of different metabolomics technologies and the 
heterogeneity of the depression phenotype make it hard to draw a valid conclusion 
about depression metabolic signature [65].
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One important genetic study explored the role of metabolic dysregulation in the 
relationship between adiposity and depression using a Mendelian Randomization 
(MR) analysis [66]. Mendelian Randomization uses genetic variants for modifiable 
risk factors as an unconfounded instrument variable (e.g., genetic variants for 
obesity), leveraging the random assortment of genes from parents to offspring 
during gamete formation and conception [67]. Two genetic risk scores, which 
reflects an individual’s genetic liability for a given phenotype, were created [66]. 
A genetic risk score is calculated as sum of number of risk alleles across all single 
nucleotide polymorphisms (SNPs) related to a certain trait, weighted for the SNPs’ 
estimates derived from an independent GWAS [68]. The first genetic risk score was 
built to index adiposity associated with favourable metabolic profile [51], while 
the second was associated with adiposity associated with an unhealthy metabolic 
profile [66]. Results indicated that both genetic risk scores were associated with 
depression, leading the authors to conclude that both favorable and unfavorable 
adiposity are associated with depression. This study is a clear example of how 
treating depression as a unity and not considering its heterogenous nature might 
hinder our effort to understand its biological underpinning in relation to obesity. 
Other genetics studies reported specific and different profiles of overlap between 
obesity, immuno-metabolic dysregulations and depression when considering 
depression heterogeneity. These studies showed that depression expressing 
atypical energy-related symptoms was associated with the genetic risk scores 
(GRS) that related to a higher risk of adiposity (i.e., genetic risk scores of BMI) 
and its related immuno-metabolic dysregulations (e.g., GRS of C reactive protein 
CRP and GRS of leptin) [69]. Two large scale studies by the UK Biobank [70] and 
in Psychiatric Genomics Consortium (PGC) [71] found a genetic overlap between 
adiposity related traits such as BMI, leptin and CRP levels and MDD with atypical 
energy-related symptoms such as increased appetite, weight and sleep). Moreover, 
these metabolic dysregulations have been hypothesized to be the link between 
depression and cardiovascular disease. For example, genetic instruments for 
immuno-metabolic dysregulations traits commonly linked to CVD, such as 
triglyceride, IL-6, and CRP, were associated with higher risk of depression [72]. 
Particularly, genetic variants that predict increased IL-6 were associated with 
fatigue and sleep alterations [73].

Thesis objectives
In the present thesis, we aimed to disentangle the nature of the relationship 
between obesity, depression and cardiometabolic diseases. We characterized 
the association of different measures of obesity and commonly related metabolic 
dysregulations with depression. Furthermore, we investigated whether this 
association varied across different depressive symptoms profiles. We also 
examined the role of metabolic dysregulation as potential linking mechanism 
between obesity and a depressive profile characterized by atypical symptoms 

1
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reflecting energy homeostasis. Finally, we intended to study further the effect 
of overall depression and specific depressive symptoms profiles on the risk of 
developing the cardiometabolic diseases.

OUTLINE OF THIS THESIS

Figure 1 illustrates the outline of this thesis. In chapter two of this thesis, we 
aspired to gain more knowledge about the previously reported relationship 
between obesity and depression by studying the association of four adiposity 
measures (BMI and total body fat reflecting overall adiposity, and waist 
circumference and visceral adipose tissue reflecting the abdominal adiposity) 
with overall depression scores and individual symptoms of depression measured 
by IDS-SR30 in participants from a population-based cohort (Netherlands 
Epidemiology of Obesity (NEO) study). In chapters three and four, we aimed 
to identify plasma metabolites associated with depression. We did this in two 
large-scale studies with two different metabolomics platforms measuring more 
than 1000 metabolites with a limited overlap (N=18 metabolites) in nine and 
five Dutch and European cohorts, respectively, from the general population and 
clinical settings. In chapter five, we considered to identify depression dimensions 
associated with increased risk of adverse metabolic profile by combining data on 
metabolomics and depressive symptoms. We performed data-driven clustering 
based on both symptoms and metabolomics in participants diagnosed with 
clinical depression. In order to replicate our findings, we examined the association 
between the identified dimensions and the same metabolomics panel and 
individual cardiometabolic risk markers (e.g., fasting glucose, insulin resistance, 
total body fat, and visceral adipose tissue) in an independent population-based 
cohort. In chapter six, we use genetics to separate the effect of adiposity from 
that of metabolic dysregulations to examine whether the link between obesity 
and atypical energy-related depressive symptoms is dependent on the presence 
of metabolic dysregulations. Finally, in chapter seven, we examined the effect 
of overall depression and specific depressive symptoms profiles on the risk of 
eveloping the cardiometabolic diseases. We performed a time to event analysis to 
disentangle the risk of overall depression and atypical energy-related symptom 
profile and cardiometabolic diseases and their components (type 2 diabetes and 
cardiovascular disease) in a median follow-up of 7 years. In chapter eight, we 
discussed the results of this thesis, methodological considerations, suggestions 
for future work, and the clinical implication of the thesis findings.
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15

Introduction

Figure 1. Outline of the thesis

Overview of the used data sources

The Netherlands Epidemiology of Obesity (NEO) study
In chapters two to seven we analysed data from The Netherlands Epidemiology 
of Obesity (NEO) study, a population-based cohort study including 6671 men 
and women aged 45 to 65 years [45]. All inhabitants with a self-reported body 
mass index (BMI) of 27 kg/m2 or higher and living in the greater area of Leiden, 
the Netherlands were eligible to participate in the NEO study. In addition, all 
inhabitants aged between 45 and 65 years from one adjacent municipality 
(Leiderdorp, the Netherlands) were invited to participate irrespective of their BMI, 
allowing for a reference distribution of BMI. Prior to the study visit, participants 
completed questionnaires at home with respect to demographic, lifestyle, and 
clinical information. Participants visited the NEO study center after an overnight 
fast for an extensive physical examination including anthropometry. The present 
analyses are cross-sectional analyses (i.e., chapter two to six) of the baseline 
measurements of the NEO study and longitudinal analysis (chapter seven) of 
the baseline measurement of NEO study and the developing of cardiometabolic 
diseases extracted from GP registration in 2018. The NEO study was approved by 
the medical ethics committee of Leiden University Medical Center (LUMC) and all 
participants gave written informed consent.

Netherlands Study of Depression and Anxiety
In chapters, three, five, and six, we analysed data from Netherlands Study of 
Depression and Anxiety (NESDA), which is an ongoing longitudinal cohort study 

1
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that aims to describe the long-term course and consequences of depression and to 
examine its interaction with biological and psychosocial factors [82]. At baseline 
(n = 2981) individuals aged 18 through 65 years with depressive and/or anxiety 
disorders and healthy controls were included from the community, primary care, 
and secondary care settings between 2004 and 2007. The assessment included a 
diagnostic interview to assess the presence of depressive and anxiety disorders, 
a medical exam, and several questionnaires on symptom severity, other clinical 
characteristics and lifestyle. Participants were followed-up during four biannual 
assessments. The research protocol of NESDA was approved by the medical ethical 
committees of the following participating universities: Leiden University Medical 
Center (LUMC), Vrije University Medical Center (VUMC), and University Medical 
Center Groningen (UMCG).

BBMRI-NL Metabolomics Consortium
In chapter three, we analysed data from Biobanking and BioMolecular resources 
Research Infrastructure-The Netherlands (BBMRI-NL) with data on depression 
and metabolites for over 25,000 people. In addition to the described above NEO 
study and NESDA, data from Cohort on Diabetes and Atherosclerosis Maastricht 
(CODAM) [74], The Maastricht Study [84], Erasmus Rotterdam Family study (ERF) 
[75], Leiden University Migraine Neuro-Analysis (LUMINA) [76], Netherlands Twin 
Register (NTR) [77], the Rotterdam Study (RS) [78], and Lifelines Deep (LLD) 
[79-81] was also included. Detailed information on these cohorts is provided in 
the Supplementary Materials of chapter three. All participants provided written 
informed consent. Studies were approved by local ethics committees.

Additional study cohorts
In chapter four, the association analysis of metabolite levels with depression was 
estimated in more than 13000 participants separately recruited in five different 
cohort studies. The following cohort studies were included: the Rotterdam Study 
(RS) [82], the Study of Health in Pomerania (SHIP-TREND) [83], the Cooperative 
Health Research in the Region of Augsburg (KORA) study [84], the European 
Prospective Investigation into Cancer (EPIC)-Norfolk Study [85], in addition to 
the Netherlands Epidemiology of Obesity (NEO) study described above. Detailed 
information on these cohorts is provided in the Supplementary Materials of 
chapter four. All participants provided written informed consent, studies were 
approved by their local ethics committees and conformed to the principles of the 
declaration of Helsinki.
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ABSTRACT

Objective
We aimed to evaluate the association between measures of adiposity with 
depressive mood and specific depressive symptoms.

Methods
This study was performed in the Netherlands Epidemiology of Obesity (NEO) 
study, a population-based study that consists of 6671 middle-aged individuals. 
We examined the association between measures of overall adiposity (BMI and 
total body fat), and abdominal adiposity (waist circumference and visceral adipose 
tissue), with depressive mood severity subgroups and 30 depressive symptoms. 
Multinomial logistic regression was performed adjusting for potential confounding.

Results
Measures of adiposity were associated with depressive mood in a graded fashion. 
Total body fat showed the strongest association with mild (Odds Ratio (OR): 
1.59 per standard deviation, 95% Confidence Interval (95% CI): 1.41-1.80) and 
moderate to very severe (OR: 1.97, 95% CI: 1.59-2.44) depressive mood. Regarding 
individual symptoms of depressive mood, total body fat was associated with most 
depressive symptoms (strongest associations for hyperphagia and fatigability).

Conclusions
In the general population, overall and abdominal adiposity measures were 
associated with depressive mood. This association encompasses most of the 
depressive symptoms and appeared to be the strongest with specific “atypical” 
neurovegetative symptoms, which may be an indication of an alteration in the 
energy homeostasis.
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INTRODUCTION

Obesity and depression are serious health conditions that both constitute major 
economic and social burdens worldwide [1]. Although there is an abundance of 
research that examined the complex association between both conditions, the 
conclusions are inconsistent [2]. Where the larger body of evidence is leaning 
toward the presence of a link between obesity and major depressive disorder 
(MDD) [3], there are studies that reported that both conditions are unrelated [4] or 
only reported the presence of an association in sub-groups, for example in women 
[5].

A recent review [3] summarized the epidemiological evidence of the interconnection 
between obesity and MDD from large meta-analyses: overall, evidence suggests 
that obesity and depression are bidirectionally associated, with the presence of 
one increasing the risk of developing the other. Nevertheless, several important 
aspects of the relationship between obesity and depression need to be clarified. 
First of all, the majority of previous work in this field define obesity according to 
body mass index (BMI=body weight in kg/(height in m2)) [6]. However, BMI is an 
approximation of total body fat and does not distinguish between high muscle or 
fat mass [7]. Furthermore, BMI value does not inform us about the distribution 
of the fat in the body [7, 8]. This could be of importance, because it is known that 
especially abdominal adiposity is associated with inflammation, insulin resistance 
and metabolic syndrome [9].

Depression is also a heterogeneous condition: patients with a diagnosis of the same 
depressive disorder may endorse very different symptoms. This heterogeneity may 
have contributed to the inconsistency and variability observed in the reported 
association between adiposity and depression. This association appears to be 
stronger in certain subgroups of patients. Emerging evidence suggests that 
the MDD link with obesity measures, and related metabolic and inflammatory 
dysregulations (i.e. high lipid and glucose levels, low HDL-cholesterol and high 
inflammation markers), is stronger for patients with a symptom profile often 
labeled as “atypical”, including neurovegetative symptoms related to energy 
metabolism such as hyperphagia, hypersomnia, fatigability and physical 
exhaustion [10]. Results from the Netherlands Study of Depression and Anxiety 
(NESDA) cohort showed for instance that among patients with Major Depressive 
Disorder (MDD) appetite upregulation and ’leaden paralysis’ (described as the 
feeling of being physically weighted down) during an active depressive episode 
were the symptoms most strongly associated with BMI and obesity-related 
inflammatory (high C-reactive protein (CRP) and tumor necrosis-α (TN-α)) [11] 
and endocrine (high leptin) alterations [12]. Whether this link between obesity 
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correlates and specific depressive symptoms exists also in the general population 
is unknown.

We set out to coherently interrogate the relationship between overall and 
abdominal adiposity and depressive mood and its individual symptoms in 6459 
participants from a population-based cohort (Netherlands Epidemiology of 
Obesity (NEO) study). Several measures of adiposity were examined, including 
overall (BMI and total body fat) and abdominal or central (waist circumference 
and visceral adipose tissue) adiposity. Among these measures, total body fat and 
visceral adipose tissue are accurate measures for overall and abdominal adiposity, 
respectively. Furthermore, we examined the specific associations between 
the measures of adiposity with 30 depression-related symptoms (assessed by 
Inventory of Depressive Symptomatology-Self Report 30 questionnaire (IDS-
SR30)).

METHODS

Study design and population
The Netherlands Epidemiology of Obesity (NEO) study is a population-based cohort 
study including 6671 men and women aged 45 to 65 years [13]. All inhabitants 
with a self-reported body mass index (BMI) of 27 kg/m2 or higher and living in 
the greater area of Leiden, the Netherlands were eligible to participate in the 
NEO study. In addition, all inhabitants aged between 45 and 65 years from one 
adjacent municipality (Leiderdorp, the Netherlands) were invited to participate 
irrespective of their BMI, allowing for a reference distribution of BMI. Prior to 
the study visit, participants completed questionnaires at home with respect to 
demographic, lifestyle, and clinical information. Participants visited the NEO study 
center after an overnight fast for an extensive physical examination including 
anthropometry. In a random subgroup of participants without contraindications 
(i.e., body circumference ≥ 170 cm, implanted metallic devices, or claustrophobia) 
magnetic resonance imaging (MRI) of abdominal fat was performed. The present 
analysis is a cross-sectional analysis of the baseline measurements of the NEO 
study. The NEO study was approved by the medical ethics committee of Leiden 
University Medical Center (LUMC) and all participants gave written informed 
consent. We selected 6459 participants with complete measures of body mass 
index (BMI), depressive symptoms via IDS-SR30 and relevant covariates. Among 
these participants, 6428 were available for analyses based on total body fat, 6420 
for waist circumference and 2475 for visceral adipose tissue.

Measures of adiposity
For this analysis, we assessed four adiposity measures: body mass index (BMI), 
total body fat, waist circumference and visceral adipose tissue. We used BMI 
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and the percent of total body fat as measures of overall adiposity; and waist 
circumference and visceral adipose tissue as measures of abdominal adiposity. 
Body height was measured with a vertically fixed, calibrated tape measure. Body 
weight and total body fat were measured by Tanita bioelectrical impedance balance 
(TBF-310, Tanita International Division, UK). BMI was calculated by dividing the 
weight by the height squared (kg/m2). For abdominal fat, waist circumference 
was measured with a measuring tape placed midway horizontally between the 
lower costal margin and the iliac crest. For visceral adipose tissue, analyses were 
performed in a random subgroup of participants without contraindications. 
Visceral adipose tissue was assessed by a turbo spin echo imaging protocol 
using MRI. Imaging was performed on a 1.5 Tesla MR system (Philips Medical 
Systems, Best, The Netherlands). At the level of the fifth lumbar vertebra, three 
transverse images each with a slice thickness of 10 mm were obtained during a 
breath hold. The fat depots were converted from the number of pixels to squared 
centimeters for all three slides, using in-house-developed software (MASS, Medis, 
the Netherlands). In the analysis, the average of the three slices was used [14].

Assessment of depressive mood
We asked all participants to complete the Dutch translation of the IDS-SR30 
questionnaire, which assesses specific depressive symptoms during the last 
week and their severity. The IDS-SR30 rates (via a 4-level response system) the 
presence of a wide array of depressive symptoms, including core symptoms 
of major depressive episodes, melancholic (e.g., anhedonia, nonreactive mood, 
psychomotor retardation/agitation, appetite or weight decrease, early morning 
awakening, and self-outlook) and atypical (e.g., mood reactivity, leaden paralysis 
(physical exhaustion), weight gain or increased appetite, hypersomnia, and 
interpersonal sensitivity) features, and commonly associated symptoms (e.g., 
irritability, anxiety, somatic complaints). The total score ranges from 0 to 84, with 
higher scores indicating higher severity.

We regarded the participants as having clinically relevant depressive mood when 
their IDS-SR30 total score was ≥ 14. Furthermore, we grouped the participant 
according to the clinically predefined severity cut-offs as follow: score ≤ 13 as 
“no depressive mood” status (n=4540, reference), 14-25 as “mild depressive 
mood” (n=1397), 26-38 as “moderate depressive mood” (n=428), 39-48 is “severe 
depressive mood” (n=68) and 49-84 is “very severe depressive mood” (n=26) [15]. 
For analysis purposes and due to the relatively small sample size in moderate, 
severe and very severe sub-categories, they have been merged into “moderate to 
very severe”.
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Covariates
By a self-reported questionnaire, participants were asked to report their date 
of birth, ethnicity, educational level (as a proxy for the socioeconomic status), 
tobacco smoking status and alcohol consumption. Participants reported the 
frequency, duration and intensity of their physical activity during leisure time, 
which was expressed in metabolic equivalents of tasks in hours per week [16]. 
Caloric intake (KJ/day) was estimated by a food frequency questionnaire [17]. For 
the antidepressants N06AA and N06A, participants were asked to bring all the 
medications that they have been using for the last month to the NEO study centre. 
Then, all prescribed and self-medication were recorded by research nurses based 
on Anatomical Therapeutic Chemical Classification System (ATC).

Statistical analysis
In the NEO study, individuals with a BMI of 27 kg/m2 or higher were oversampled. 
To correctly represent associations in the general population adjustments for 
the oversampling of individuals with high BMI were made [18]. This was done 
by weighting individuals towards the BMI distribution of participants from the 
Leiderdorp municipality [19], whose BMI distribution was similar to the BMI 
distribution of the general Dutch population. All results are based on weighted 
analyses. Consequently, the results apply to a population-based study without 
oversampling of individuals with a BMI ≥ 27 kg/m2. Characteristics of the study 
population were expressed as a mean with standard deviation (SD), a median 
(25th and 75th) or as percentages (%). We standardized all measures of adiposity 
to a mean of zero and a standard deviation of one to allow comparison across 
different measures.

First, we examined the association between each measure of adiposity with the 
IDS-SR30 clinical groups using multinomial logistic regression models; the “no 
depressive mood” groups was set as the reference group. The first model was 
adjusted for age and sex; the second model was adjusted for age, sex, education 
level, tobacco smoking, alcohol consumption, physical activity, caloric intake, and 
ethnicity. Additionally, since abdominal adiposity is strongly related to overall 
adiposity (Table S 1), all abdominal adiposity analyses were adjusted for total body 
fat [20]. Subsequently, we repeated these analyses after excluding participants 
who were using N06AA and N06A antidepressants. Finally, we stratified our main 
analysis (i.e., the multinomial logistic regression between adiposity measures and 
depressive mood) by sex.

Second, we used logistic regression to examine the relationship between the 
overall and abdominal adiposity measurements and the 30 individual items from 
the IDS-SR30. For each item, the four-level answer system was dichotomized to 
code for low (reference: levels 0) versus medium-high (levels 1,2,3) symptoms. 
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Likewise, this analyses were adjusted for age and sex in the first model, and the 
confounding factors in model 2. Additionally, in order to account for the average 
depressive symptoms severity, adjustment for the IDS-SR30 total score was done 
(model 3 and 4). Analyses that included abdominal adiposity were additionally 
adjusted for total body fat. All statistical analysis were performed with STATA 
statistical software (StataCorp, College Stations, Texas, USA), version 14.0).

RESULTS

Baseline characteristics for all 6459 participants included in this analysis of NEO 
cohort are shown in Table 1. The mean age in the NEO population was 55.7 years 
(standard deviation (SD)): 6.0 years), 56.4% of participants were women and 
95.0% were of Caucasian ethnicity. There are large differences in the total body 
fat and visceral adipose tissue between men and women. Out of the total NEO 
population 24.3% participants had depressive mood problems. Finally, in the IDS-
SR30 questionnaire women reported more depressive symptoms than men (9 
points (25th-75th percentiles): 6-15)) versus (6 points (25th-75th percentiles): 3-11)).

Measures of adiposity and depressive mood
The percentage of participants with depressive mood in each quartile of adiposity 
measures are illustrated in Figure 1. For all adiposity measures the proportion 
of individuals with mild and moderate to very severe depressive mood is largest 
in the highest adiposity measure quartile. Odds ratios (OR) and 95% confidence 
intervals from adjusted multinomial logistic regression for the association between 
overall and abdominal adiposity measures and the severity of the depressive mood 
are shown in Table 2. Overall and abdominal adiposity measures were positively 
associated with mild and moderate to very severe depressive mood in a graded 
fashion, with higher ORs for the moderate to very severe depressive mood than 
mild depressive mood. In general, ORs of total body fat were relatively higher than 
those obtained from other adiposity measures. For example, increased total body 
fat was associated with mild and moderate to very severe depressive mood (OR: 
1.59 (95% CI: 1.41-1.80)), (OR: 1.97 (95% CI: 1.59-2.44)) respectively. In covariate-
adjusted models, measures of abdominal adiposity were also associated with 
depressed mood (waist circumference: mild depressed mood (OR: 1.45 (95% CI: 
1.33 -1.59)) and moderate to very severe depressive mood (OR: 1.82 (95% CI: 
1.59-2.08)); visceral adipose tissue, mild depressed mood (OR: 1.36 (95% CI: 1.19-
1.54)) and moderate to very severe depressive mood (OR: 1.57 (95% CI: 1.25-1.97)). 
Nevertheless, further adjustment for total body fat substantially reduced the 
magnitude of these estimates (Table 2), suggesting that the association between 
abdominal adiposity and depression may largely explained by total body fat (i.e., 
the association between visceral adipose tissue and mild and moderate to very 
severe depressive mood was (OR: 1.08 (95% CI: 0.90-1.29)), (OR: 1.23 (95% CI: 
0.87-1.73)) respectively).

2
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Table 1. Baseline characteristics for 6459 men and women aged 45 to 65 years included 
in the analysis from Netherlands Epidemiology of Obesity study.

Characteristics Total population Men (43.6%) Women (56.4%)
Age (years) 55.7 (6.0) 56.1 (6.1) 55.5 (6.0)
Educational level (% high) 45.9 48.0 44.3
Tobacco smoking (%)

Never 38.5 34.4 41.7
Former 45.4 47.0 44.1
Current 16.1 18.6 14.2

Alcohol consumption (g/day) 14.7 (16.3) 20.5 (19.2) 10.3 (11.9)
Physical activity (metabolic 
equivalent of task (MET)- 
hours per week)

120.1 (59.5) 118.3 (62.4) 121.5 (57.1)

Ethnicity (% Caucasian) 94.9 95.1 94.8
Depressive mood characterization

Current depressive mood (%) 24.3 16.6 30.2
IDS-SR30 total score 8 (4, 13) 6 (3, 11) 9 (6, 15)

None (%) 75.7 83.4 69.7
Mild (%) 18.5 12.4 23.3
Moderate to very severe (%) 5.8 4.2 7.0

Use of antidepressants (%) 6.6 4.5 8.2
Measures of adiposity

Overall adiposity
BMI (Kg/m2) 26.3 (4.5) 26.9 (3.7) 25.9 (4.9)
Total body fat (%) 31.6 (24.8, 38.3) 24.5 (21.2, 28.1) 37.0 (32.3, 41.4)

Abdominal adiposity
Waist circumference (cm) 92.2 (13.4) 98.5 (10.9) 87.3 (13.1)
Visceral adipose tissue (cm2) 89.8 (56.1) 115.8 (57.7) 66.7 (42.9)

Normally distributed data shown as mean and standard deviation (SD), skewed 
distributed data shown as median (25th ,75th percentiles) and categorical data are 
shown as percentage. High education level: university or college education, while other 
education level: none, primary school or lower vocational education. IDS-SR30: Inventory 
of Depressive Symptomatology (self-report). BMI: body mass index. Number of individual 
with available data for each adiposity measures (BMI=6459, total body fat n=6428, waist 
circumference=6420, visceral adipose tissue n=2475).
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Figure 1. The percentage of participants with depressive in each quartile of adiposity 
measures

When we repeated the analyses of multinomial logistic regression between 
overall and abdominal adiposity and depressive mood categories after exclusion of 
participants who were using antidepressants (6.6%) for any reason, results did not 
materially change (Table S 2). We also excluded individuals with type 2 diabetes, 
cardiovascular disease and hypertension and the effect estimates again did not 

2

168239_Alshehri_BNW-def.indd   31168239_Alshehri_BNW-def.indd   31 13-10-2023   13:06:0713-10-2023   13:06:07



32

Chapter 2

materially change (Table S 3). The sex-stratified analyses are shown in Table S 4. 
Overall, direction and strength of effect sizes were similar between sexes.

Table 2. Results of the multinomial logistic regression analysis of the association between 
overall and abdominal adiposity measures and the severity of depressive mood.

1 SD OR
(95% CI)

Model 1
OR

 (95% CI)

Model 2
OR

 (95% CI)

Model 1
OR

 (95% CI)

Model 2
OR

 (95% CI)
Overall adiposity

None
(75.7%)

Mild
(18.5%)

Moderate to very severe
(5.8%)

BMI (kg/m2) 4.5 Reference 1.36
(1.27-1.47)

1.35
(1.25-1.46)

1.63
(1.48-1.81)

1.58
(1.42-1.75)

Total body fat (%) 8.7 Reference 1.61
(1.43-1.81)

1.59
(1.41-1.80)

2.06
(1.66-2.56)

1.97
(1.59-2.44)

Abdominal adiposity
Waist 

circumference 
(cm)

13.4 Reference 1.28
(1.08-1.52)

1.25
(1.05-1.49)

1.90
(1.44-2.51)

1.82
(1.37-2.43)

Visceral adipose 
tissue (cm2)

56.1 Reference 1.09
(0.92-1.30)

1.08
(0.90-1.29)

1.27
(0.89-1.81)

1.23
(0.87-1.73)

OR: odds ratio per standard deviation. IDS-SR30: Inventory of depressive symptomatology 
(self-report). None: score (0-13). Mild: score (14-25). Moderate to very severe: (26-84). BMI: 
body mass index. For analysis purposes moderate, severe and very severe IDS-SR30 groups 
have been merged into (moderate to very severe). Model 1: adjusted for age and sex. Model 
2: adjusted for age, sex, educational level, smoking, alcohol consumption, physical activity, 
caloric intake and ethnicity. Models for waist circumference and visceral adipose tissue 
were additionally adjusted for total body fat. Number of individual with available data for 
each adiposity measures (BMI=6459, total body fat n=6428, waist circumference=6420, 
visceral adipose tissue n=2475).

Body fat measurements and depressive mood symptoms
The logistic regression analysis results of overall and abdominal adiposity 
measures and the individual 30 items of IDS-SR30 are shown in Figure 2 
and fully reported Table S 5. We found that overall and abdominal adiposity 
measurements were significantly associated with 27 (BMI), 26 (total body fat), 
14 (waist circumference), and 2 (visceral adipose tissue) of the 30 depressive 
mood symptoms. We ranked the ORs of the fully adjusted model (i.e., model2) of 
logistic regression of overall and abdominal measures and the individual items 
of IDS-SR30 from high to low (Table S 6). “Atypical” neurovegetative symptoms, 
such as hyperphagia, low energy level and physical exhaustion were consistently 
among top ranked symptoms across different measures of adiposity. Symptoms 
of problems falling asleep and early morning awakening showed no association 
with adiposity measures.
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DISCUSSION

This study examined the nature of the association between accurate measures 
of adiposity (i.e., total body fat and visceral adipose tissue) and depressive mood 
in a population-based study that consisted of 6459 middle-aged individuals. We 
found that especially total body fat, and to a lesser extent other measures of overall 
and abdominal adiposity, was positively associated with the depressive mood in 
a graded fashion; as the severity of obesity increases, the severity of depressive 
mood increases.

In this study, we were able to replicate the previously reported positive association 
between BMI and depressive mood [2, 3, 21]. However, the question remained 
whether this positive association is due to high body fat or high muscle mass. To 
answer this question, we investigated the association between total body fat as 
estimated by bio-impedance analysis and depressive mood. Previous studies that 
investigated the association between total body fat and depression were small. 
The presence of a positive association between total body fat and depression was 
observed only in women in a previous work that aimed to determine the sex-
specific relationship between obesity and depression (n=67) [22]. In the current 
study, we were able to detect a positive association between total body fat and 
depressive mood both in men and women, which may imply that total body fat 
specifically plays a crucial role in relation to depression.

We also set out to examine whether abdominal adiposity contributes to the 
previously reported association between adiposity and depressive mood. 
Compiled evidence has indicated that waist circumference, which has been used 
as a proxy for visceral adiposity, is positively associated with depression [23]. 
Nonetheless, waist circumference does not discriminate between visceral adipose 
tissue and abdominal subcutaneous fat [23, 24]. A population-based study of well-
functioning older participants [25] showed that depressive mood at baseline 
predicted an elevation of the visceral adipose tissue measured by the computed 
tomographic (CT) scanning after five years follow-up. In our analysis, we found 
a positive association between the measures of abdominal adiposity (both waist 
circumference and visceral adipose tissue) and depressive mood. Nonetheless, 
since abdominal adiposity can be an indicator for overall adiposity we adjusted the 
analysis for total body fat to estimate the specific association of abdominal fat. As it 
has been reported previously [24], we found that the association between visceral 
adipose tissue and depressive mood attenuated after taking into account the total 
body fat adjustment, which may indicate that total body fat is a large contributor 
to the association between adiposity and depression. Interestingly, we found that 
the pattern of the main results were similar when stratifying the analyses by sex. 
This suggests that, despite the established differences in adiposity and depression 
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prevalence across sex, the association between adiposity and depressive mood is 
consistent in men and women.

Depressive mood is a heterogeneous condition [26]. It has previously been 
suggested [10, 27] that adiposity related immune-metabolic dysregulations such 
as abnormal glucose, triglyceride, C-reactive protein (CRP), interleukin-6 (IL-6) 
and tumor necrosis-α (TN-α) concentrations are mainly associated with “atypical” 
neurovegetative symptoms of depression [28]. Using data from the NESDA cohort 
[12], it has been shown that among patients with a current diagnosis of MDD, higher 
leptin concentration in the blood (which directly associated with the adiposity 
level in the body) is associated with symptoms related to energy metabolism 
like hyperphagia, fatigability and physical exhaustion, independently from BMI. 
More recent evidence confirmed that the association between this phenotypic 
constellation, and adiposity and immuno-metabolic dysregulation markers (i.e., 
C-reactive protein (CRP) and leptin) extended down to the genetic level. Large 
collaborative genetic studies [29, 30] reported that subjects with a MDD diagnosis 
reporting hyperphagia or weight gain during the most severe depressive episode in 
their lifetime, carried a higher number of risk variants for immuno-metabolic traits 
such as obesity, C-reactive protein (CRP), leptin, and triglycerides dysregulation. 
In the present study, we demonstrated that both overall and abdominal adiposity 
were most strongly associated with the same cluster of depressive mood symptoms 
that relate to energy metabolism (i.e. hyperphagia, low energy level, and increased 
physical exhaustion) in addition to the more typical symptoms of depressive mood.

Biologically, depression is associated with imbalances in either the hypothalamic-
pituitary-adrenal (HPA) axis, the immune system (inflammation), or the regulation 
of the metabolic pathways. Since these physiological systems are also highly 
interconnected, it is a challenging process to look at each one of them individually 
[3, 31]. Accumulation of adipose tissue above the normal levels is associated 
with low-grade inflammation, insulin resistance [32], leptin resistance [33], 
and imbalanced activity of the hypothalamic-pituitary-adrenal (HPA) axis [34] 
which are known to be directly or indirectly associated with depressive mood 
[35]. Previous studies suggested that the neuroendocrine signaling processes 
that regulate both mood and energy metabolism are strongly interconnected 
[36]. Leptin hormone stimulates the proopiomelanocortin (POMC) neuron in the 
nucleus of the hypothalamus that activates the transcription of the melanocortin 
peptides (i.e. α, β, and γ MSH, and Mc3r and Mc4r) [37]. These peptides have been 
suggested to be responsible for regulating energy intake and energy expenditure 
[38]. Common forms of obesity are thought to be associated with leptin resistance 
in the brain, blunting its anorexigenic effect and consequently disinhibiting 
feeding and energy storage despite increasing circulating leptin [39]. An impact 
of leptin on depression has been suggested by research on animal models [40, 

2
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41] indicating antidepressant-like effects of leptin, although exact underlying 
mechanisms remain unknown. It has been proposed [42] that alterations of 
the leptin–melanocortin pathway may impair not only its anorexigenic effect, 
leading to obesity, but also its effect on mood regulation, potentially leading to 
the development of depression. Furthermore, genome-wide association studies 
for both obesity and depression show an intersectional association between 
genes that show strong hits in both conditions, such as neural growth regulator 
1 (NEGR1) and olfactomedin 4 (OLFM4). Noteworthy, these genes play a role in 
energy regulating mechanism by modulating the synaptic plasticity in brain 
areas essential for regulating both mood and appetite [3]. We could hypothesize 
that the impairment of energy homeostasis systems may represent the link that 
mechanistically connect adiposity with depressive mood. This mechanism may act 
in two, non-mutually exclusive, ways: as common underlying factor influencing 
the liability to both depression and obesity, or as mediating mechanisms in causal 
relationships between the two conditions.

Several additional mechanisms may explain the association between adiposity and 
depressive mood, including social and behavioral factors such as social rejection, 
exclusion and/or stigma [43]. An agent-based approach to study the effect of social 
rejection on depression found that individuals with obesity are more vulnerable 
to develop depression when obesity is less common in their social networks [44]. 
It is also possible that behavioral factors that define depressive mood such as low 
motivation, low energy level, physical inactivity and overconsumption of energy-
dense food disturb the body homeostasis and lead to an accumulation of adiposity 
[36].

Some methodological aspects should be considered. The NEO study is a population-
based study in which adiposity measures and depressive mood along with potential 
confounding factors where thoroughly phenotyped. However, the cross-sectional 
design of this study does not allow us to draw a conclusion about the directionality 
of associations. Second, although we adjusted for a large number of covariates in 
the models, based on the nature of observational studies, residual confounding 
may still be present. Third, the question of whether total body fat or abdominal 
fat is more important cannot be answered from this data. Fourth, the depressive 
mood was assessed only via the self-report IDS-SR30 that may introduce a 
misclassification of the participants with depressive mood. Nevertheless, this 
instruments has been extensively validated and used in previous research and 
the proportion of identified patients with depressive mood in the present study 
(~30%) is similar to the previous report in populations with obesity [45].

In conclusion, in this study we showed that in the general population overall and 
abdominal adiposity measures were positively associated with the depressive 
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mood. This association encompasses almost all depressive symptoms but was 
strongest for a specific cluster of ‘’atypical’’ neurovegetative depressive symptoms 
that indicate a deformity in the energy metabolism and homeostasis pathways. 
Our results suggests that the energy homeostasis dysfunction could connect the 
mechanisms responsible for developing both adiposity and depressive mood, either 
as a common cause or in a mediating role. Future longitudinal and experimental 
studies that exploit the available ‘-omics’ technologies, such as metabolomics and 
proteomics, are needed to fully elucidate the pathophysiological links that may 
connect adiposity and depression.

2
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Table S 5. Results of logistic regression between the adiposity measures and the individual 
items from the IDS-SR30 ranked based on their ORs from high to low. (Model 2)

BMI Total body fat Waist 
circumference

Visceral adipose 
tissue

1 12. Increase 
in appetite 
(Hyperphagia)

12. Increase 
in appetite 
(Hyperphagia)

18. Thought of 
death or suicide

20. Low energy 
level (Fatigability)

2 20. Low energy 
level (Fatigability)

30. Physical 
exhaustion

23. Psychomotor 
retardation 
(Feeling slowed 
down)

30. Physical 
exhaustion

3 30. Physical 
exhaustion

20. Low energy 
level (Fatigability)

20. Low energy 
level (Fatigability)

18. Thought of 
death or suicide

4 14. Increased 
weight (Within the 
last two weeks)

14. Increased 
weight (Within the 
last two weeks)

12. Increase 
in appetite 
(Hyperphagia)

10. Diminished 
quality of mood

5 25. Having Aches 
and pains

25. Having Aches 
and pains

10. Diminished 
quality of mood

16. Self-criticism or 
blame

6 13. Decreased 
weight (Within the 
last two weeks)

13. Decreased 
weight (Within the 
last two weeks)

30. Physical 
exhaustion

23. Psychomotor 
retardation 
(Feeling slowed 
down)

7 21.Diminished 
capacity of 
pleasure or 
enjoyment

21.Diminished 
capacity of 
pleasure or 
enjoyment

08. Diminished 
reactivity of mood

15. Concentration 
/ decision-making 
problems

8 19. Diminished 
interest in people 
and activity

19. Diminished 
interest in people 
and activity

16. Self-criticism or 
blame

17.Future 
pessimism

9 26. Having other 
bodily symptoms

26. Having other 
bodily symptoms

05. Feeling sad 12. Increase 
in appetite 
(Hyperphagia)

10 10. Diminished 
quality of mood

10. Diminished 
quality of mood

19. Diminished 
interest in people 
and activity

19. Diminished 
interest in people 
and activity

2
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ABSTRACT

Background
Depression has been associated with metabolic alterations, which adversely 
impact cardiometabolic health. Here, a comprehensive set of metabolic markers, 
predominantly lipids, was compared between depressed and non-depressed 
persons.

Methods
Nine Dutch cohorts were included, comprising 10,145 controls and 5,283 persons 
with depression, established with diagnostic interviews or questionnaires. 
A proton nuclear magnetic resonance metabolomics platform provided 230 
metabolite measures: 51 lipids, fatty acids and low-molecular-weight metabolites, 
98 lipid composition and particle concentration measures of lipoprotein subclasses 
and 81 lipid and fatty acids ratios. For each metabolite measure logistic regression 
analyses adjusted for sex, age, smoking, fasting status and lipid-modifying 
medication were performed within cohort, followed by random-effects meta-
analyses.

Results
Of the 51 lipids, fatty acids and low-molecular-weight metabolites, 21 were 
significantly related to depression (false discovery rate q<0.05). Higher levels 
of apolipoprotein B, very-low density lipoprotein cholesterol, triglycerides, 
diglycerides, total and mono-unsaturated fatty acids, fatty acid chain length, 
glycoprotein acetyls, tyrosine, and isoleucine, and lower levels of high-density 
lipoprotein cholesterol, acetate, and apolipoprotein A1 were associated with 
increased odds of depression. Analyses of lipid composition indicators confirmed 
a shift towards less high-density lipoprotein cholesterol and more very-low density 
lipoprotein cholesterol and triglycerides particles in depression. Associations 
appeared generally consistent across sex, age and body mass index strata, and 
across cohorts with depressive diagnoses versus symptoms.

Conclusions
This large-scale meta-analysis indicates a clear distinctive profile of circulating 
lipid metabolites associated with depression, potentially opening new prevention 
or treatment avenues for depression and its associated cardiometabolic 
comorbidity.
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INTRODUCTION

Depression imposes a huge burden on individuals and society [1]. With a high 
annual (6%) and lifetime (19%) prevalence, depression is among the leading 
contributors to global disease burden [1, 2]. It has been associated with an 
increased risk of somatic disease, including cardiometabolic conditions such 
as metabolic syndrome [3], obesity [4], diabetes mellitus [5], stroke [6], and 
cardiovascular disease [7], as well as an increased risk of all-cause mortality [8].

Depression is correlated with metabolic alterations in peripheral bodily systems 
[1]. A systematic review [9] summarizing metabolomics analyses of urine, 
cerebrospinal fluid, and blood samples of patients with depression highlighted 
a set of altered metabolites implicated in energy metabolism, neuronal integrity 
and transmission. Meta-analyses showed that depression was associated with 
increased blood levels of total cholesterol [10] and triglycerides (TG) [3], and 
decreased low density lipoprotein (LDL) cholesterol [11], high density lipoprotein 
(HDL) cholesterol [3], and omega-3 polyunsaturated fatty acids [12]. However, 
considerable heterogeneity was noted between studies, which was partly 
explained by differential lipid classifications [11].

Alterations in circulating lipid concentrations may be linked to pathophysiological 
pathways related to depression, such as chronic activation of the hypothalamic-
pituitary-adrenal (HPA) axis or chronic low-grade inflammation [1]. Glucocorticoid-
induced hypercortisolemia is known to result in lipolysis, the release of fatty acids 
and synthesis of very-low density lipoprotein (VLDL) [13]. Similarly, activation 
of the pro-inflammatory response leads to a reduction in HDL cholesterol and 
phospholipids, and an increase in TG, caused by the compensatory production 
and accumulation of phospholipid-rich VLDL [14]. In addition, omega-3 fatty 
acids have anti-inflammatory properties, impact HPA-axis functioning, promote 
cell membrane fluidity, and are involved in the regulation of dopaminergic 
and serotonergic neurotransmission, which can be altered in depression [15]. 
Alterations of circulating concentrations of lipids may also represent a consequence 
of depression. Patients with depression are more likely to engage in unhealthy 
behaviors, such as sedentariness, excessive alcohol use and poor nutrition 
(with preference for high palatable food rich in saturated fats), which may lead 
to dyslipidemia [16], that can result in metabolic syndrome and cardiovascular 
disease.

Emerging technologies allow high-throughput profiling of lipids and other 
metabolites, which has led to efforts of determining metabolic signatures 
of various diseases [17, 18]. A few studies have applied this to depression [19, 
20], but the results remain inconsistent [21, 22]; this is partly due to different 

3

168239_Alshehri_BNW-def.indd   45168239_Alshehri_BNW-def.indd   45 13-10-2023   13:06:0913-10-2023   13:06:09



46

Chapter 3

methodologies used and different metabolites (lipids, amino acids and other small 
molecules) analyzed [23].

This study aims to identify plasma lipids, fatty acids and low-molecular-weight 
metabolites associated with depression by analyzing data from nine Dutch clinical- 
and population-based studies, and to assess consistency of findings across studies. 
A strength of the study is that all metabolites were measured around the same 
time with the same targeted proton nuclear magnetic resonance platform that 
quantifies lipids, fatty acids and low-molecular-weight metabolites, including those 
that have been related to consequences of depression (e.g., insulin resistance [24], 
onset of cardiovascular events [25], and mortality [26]).

METHODS AND MATERIALS

Sample description
Eleven datasets from nine cohorts participating in the Biobanking and 
BioMolecular resources Research Infrastructure-The Netherlands (BBMRI-NL) 
were included: Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) [27], 
The Maastricht Study [28], Erasmus Rucphen Family study (ERF) [29], Leiden 
University Migraine Neuro-Analysis (LUMINA) [30], Netherlands Epidemiology 
of Obesity study (NEO), Netherlands Study of Depression and Anxiety (NESDA), 
Netherlands Twin Register (NTR) [31], the Rotterdam Study (RS), and Lifelines-
DEEP (LLD) [32-34]. Both CODAM and The Maastricht Study contributed two 
datasets stratified by diabetes mellitus status. In total, we included 5,283 persons 
with depression and 10,145 control subjects (see Supplement 1 for detailed cohort 
descriptions). All participants provided written informed consent. Studies were 
approved by local ethics committees.

Measurements

Depression
The presence of depression was measured either before blood sampling or up to 
a maximum of one month after blood sampling. Subjects were defined as cases 
when meeting all the criteria required for a diagnosis of major depressive disorder 
(MDD) in clinical structured interviews in four cohorts, or when scoring above 
validated clinical cut-off score in depression questionnaires in five cohorts (see 
Table S1 in Supplement 1 for all instruments and definitions). In the main analyses, 
cases included subjects with any history of depression in lifetime.

Metabolites
Supplement 1 shows details on blood collection (for each cohort), measurement 
and processing of metabolite measurements. Using targeted high-throughput 
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proton Nuclear Magnetic Resonance metabolomics (Nightingale Health Ltd, 
Helsinki, Finland), 230 metabolites or metabolite ratios were reliably quantified 
from ethylenediamine tetraacetate plasma samples [35]. This metabolomics 
platform has been used in large-scaled epidemiological studies of diabetes [24], 
cardiovascular disease [25], mortality [26] and alcohol intake [36]. To enhance 
interpretation, metabolites were classified into three clusters curated by 
Nightingale Health [37]: 1) lipids, fatty acids and low-molecular-weight metabolites 
(N=51); 2) lipid composition and particle concentration measures of lipoprotein 
subclasses (N=98); 3) metabolite ratios (N=81). Data were processed according to 
a shared protocol applied also in other studies of BBMRI-NL [38]. In each cohort, 
values of metabolites that could not be quantified (≤5 metabolites per cohort) 
were set as missing for all subjects. Furthermore, metabolites values in subjects 
with outlying concentrations (±5 SDs) were additionally set as missing. A value of 
1 was added to all metabolite values (Supplement 1 includes extensive analyses 
indicating that the degree of bias potentially introduced by this transformation is 
likely negligible) that were subsequently natural log-transformed to approximate 
normality. The obtained values were scaled to standard deviations units in each 
cohort to enable comparison.

Statistical analyses
Per-metabolite logistic regression analyses were initially performed in each 
dataset. The dependent variable was depression, and independent variables were 
the 230 metabolite measurements. For the Netherlands Twin Register cohort, 
logistic regression using generalized estimating equations were conducted, 
accounting for family-relatedness. All models were adjusted for age, sex, fasting 
status, use of lipid-modifying drugs listed under ATC (Anatomical Therapeutic 
Chemical Classification System) code C10 and smoking (Supplement 1 for 
measurements). All analyses were based on available data per metabolite (pair-
wise deletion). Dataset-specific estimates were combined using random-effects 
meta-analyses (restricted maximum-likelihood estimator) to obtain pooled odds 
ratios (ORs). Heterogeneity of results between datasets was quantified by I2 [39] 
along with 95% confidence intervals (CI) as recommended [40, 41].

As body mass index (BMI) has been shown to be associated with depression [4] 
and metabolites [42], we reran the main analyses adjusting for BMI. Furthermore, 
to investigate whether metabolic profiles were dependent on recent presence of 
depression, additional analyses were conducted comparing current depressed 
cases (depression present ±1 month around blood sampling) and controls. We 
conducted sensitivity analyses in which we excluded subjects using antidepressant 
medication (ATC code N06A), to study the impact of depression apart from its 
treatment. Here, we a priori expected to find a less distinctive metabolomics 
profile, given that antidepressant medication prescriptions are more likely in 
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individuals with higher depression severity. Correlations between estimates 
obtained from these sensitivity analyses and estimates obtained in the main 
analyses were computed to measure the impact of the factors considered.

Four additional sets of stratified analysis were performed to explore whether 
associations between metabolites and depression were different as a function 
of (1) depression assessment (diagnosis vs. self-report instrument), (2) sex (men 
vs. women), (3) age (<50 years vs. ≥50 years) and (4) BMI (normal (18.50-24.9) 
vs. overweight (25.0-29.9) and vs. obesity (≥30)). A Wald-test was performed to 
test differences in effect sizes across these strata [43], and correlations between 
estimates obtained across strata were estimated.

The False Discovery Rate (FDR) method [44] was applied to address multiple testing 
at the meta-analysis level for 230 metabolites. Meta-analyses were conducted with 
the ‘metafor’ package (version 2.0.0) in R v3.4.2-3.4.3 (R Foundation for Statistical 
Computing, Vienna, Austria).

RESULTS

Overview of cohorts
The study population comprised 15,428 adults from 11 datasets of 9 cohorts. There 
were 10,145 controls, and 5,283 participants with depression. Table 1 shows the 
characteristics of the 11 datasets. Across the cohorts, the average age ranged 
from 40.4-64.8 years, the proportion of women ranged from 32% to 70%, and the 
median prevalence of depression was 29.5%.
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Associations of 51 lipids, fatty acids and low-molecular-weight 
metabolites with depression
Figure 1 shows a polar plot with ORs of meta-analyses investigating associations 
between depression and the 51 metabolites, after adjustment for sex, age, smoking, 
lipid modifying drugs, and fasting status. Of these, 21 metabolites were associated 
with depression at FDR q<0.05 (Table 2; Figure S1 in Supplement 1). Metabolites 
associated with a higher odds for depression were apolipoprotein B; remnant (non-
HDL and non-LDL) cholesterol, VLDL cholesterol, and mean diameter of VLDL; the 
glycerides and phospholipid markers diglycerides; TG in LDL, serum TG, TG in 
HDL, TG in VLDL, the fatty acid measures total fatty acids, monounsaturated fatty 
acid, and estimated fatty acid chain length; the inflammation marker glycoprotein 
acetyls; and the amino acids tyrosine and isoleucine. Higher levels of metabolites 
that were associated with a lower odds for depression were apolipoprotein A1, 
cholesterol content for HDL (in particular HDL2- and HDL3- cholesterol), and mean 
diameter of HDL, and ketone body acetate.

Table 2. Overview of the 21 lipids, fatty acids and various low-molecular-weight 
metabolites that are significantly related to depression in the pooled analysis at FDR q<0.05

Model 1 Model 2*
Metabolite Pooled 

OR
p-value FDR 

q-value
Pooled 

OR
p-value FDR 

q-value
Apolipoproteins

ApolipoproteinA1 0.90 2.71×10-7 2.50×10-6 0.94 0.007 0.021
ApolipoproteinB 1.08 2.40×10-4 6.90×10-4 1.05 0.014 0.040

Cholesterol
Remnant cholesterol 1.07 0.003 0.006 1.05 0.014 0.038
VLDL cholesterol 1.10 1.68×10-4 5.03×10-4 1.07 0.001 0.002
HDL cholesterol 0.86 1.24×10-12 9.47×10-11 0.91 2.03×10-5 2.59×10-4

HDL2 cholesterol 0.89 5.78×10-6 2.79×10-5 0.93 0.001 0.003
HDL3 cholesterol 0.90 2.18×10-5 8.37×10-5 0.93 4.91×10-4 0.002
Mean diameter of 
VLDL

1.13 1.30×10-6 8.82×10-6 1.08 2.39×10-4 0.001

Mean diameter of 
HDL

0.91 2.10×10-4 6.10×10-4 0.96 0.104 0.222

Di- and triglycerides
Diglycerides 1.09 2.56×10-5 9.65×10-5 1.07 0.003 0.008
Serum total TG 1.11 3.29×10-5 1.15×10-4 1.08 1.92×10-4 0.001
VLDL TG 1.11 8.68×10-5 2.77×10-4 1.08 1.76×10-4 0.001
LDL TG 1.05 0.015 0.032 1.04 0.101 0.218
HDL TG 1.09 0.007 0.015 1.07 0.029 0.072
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Table 2. Continued.

Model 1 Model 2*
Metabolite Pooled 

OR
p-value FDR 

q-value
Pooled 

OR
p-value FDR 

q-value
Fatty acids

Mono Unsaturated FA 1.09 7.13×10-6 3.35×10-5 1.06 0.004 0.012
Total FA 1.05 0.013 0.027 1.03 0.102 0.219
Estimated FA chain 
length

1.10 0.020 0.043 1.08 0.060 0.140

Inflammation
Glycoprotein acetyls 1.13 0.003 0.007 1.09 0.028 0.071

Ketone bodies
Acetate 0.91 0.003 0.006 0.93 0.038 0.092

Amino acids
Tyrosine 1.07 0.013 0.028 1.02 0.552 0.760
 Isoleucine 1.14 8.26×10-6 3.71×10-5 1.08 0.001 0.004

Model 1: adjusted for sex, age, smoking, lipid modifying drugs, fasting status; Model 2: 
adjusted for model 1 and body mass index; Abbreviations: FDR=false discovery rate, 
FA=fatty acids, HDL=high-density lipoprotein, LDL=low-density lipoprotein, OR=odds 
ratio, TG=triglycerides, VLDL=very-low-density lipoprotein.

3

168239_Alshehri_BNW-def.indd   51168239_Alshehri_BNW-def.indd   51 13-10-2023   13:06:0913-10-2023   13:06:09



52

Chapter 3

Figure 1. Polar plot illustrating pooled odds ratio and 95% confidence intervals for the 
association of the 51 lipids, fatty acids and various low-molecular-weight metabolites with 
depression
*Significant at false discovery rate q < 0.05. Dotted circle indicates an OR of 1. Density: high-
density lipoprotein (HDL) subfraction 2 (HDL2), 1.063–1.125 g/mL; HDL3, 1.125–1.210 g/mL. 
AcAce, acetoacetate; Ace, acetate; Ala, alanine; Alb, albumin; ApoA1, apolipoprotein A-I; ApoB, 
apolipoprotein B; bOHBut, 3-hydroxybutyrate; C, cholesterol; Cit, citrate; CLA, conjugated 
linoleic acids; Crea, creatinine; D, mean diameter; DAG, diglycerides; DHA, docosahexaenoic acid; 
Est, esterified; FA, fatty acids; FALen, estimated fatty acids chain length; FAw3, ω-3 fatty acids; 
FAw6, ω-6 fatty acids; Glc, glucose; Gln, glutamine; Gp, glycoprotein acetyls, mainly α1-acid 
glycoprotein; His, histidine; IDL, intermediate-density lipoprotein; Ile, isoleucine; LA, linoleic 
acid (18:2); Lac, lactate; Leu, leucine; LDL, low-density lipoprotein; MUFA, monounsaturated 
fatty acids (16:1, 18:1); PC, phosphatidylcholine and other cholines; Phe, phenylalanine; PUFA, 
polyunsaturated fatty acids; Remnant, non-HDL, non-LDL cholesterol; SFA, saturated fatty acids; 
SM, sphingomyelins; TG, triglycerides; TotCho, total cholines; TotFA, total fatty acids; TotPG, 
total phosphoglycerides; Tyr, tyrosine; UnsatDeg, estimated degree of unsaturation; Val, valine; 
VLDL, very-low-density lipoprotein.

Heterogeneity was small (I2<25% for 15 out of 21 metabolites) and statistically 
non-significant in almost all (19 out of 21) analyses. As shown in the related forest 
plots (Figure S1 in Supplement 1) association estimates were quite consistent 
across the different datasets, including those enriched for cardiometabolic risk. 
To confirm this, we reran the analyses after removing two datasets (CODAM 
subgroup with type 2 diabetes mellitus and TMS subgroup with type 2 diabetes 
mellitus) containing approximately 900 participants with established diabetes and 
elevated cardiovascular risk factors. Association estimates were highly concordant 
with those of the original analyses (r=0.99); all the 21 metabolites detected in the 
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original analyses were associated at nominal level with depression (17 at FDR 
q<0.05; Table S3 in Supplement 1).

Additional adjustment for BMI partially reduce the strength of the association 
of these 21 metabolites with depression (regression slope of the 21 beta’s before 
versus after BMI-adjustment=0.65, whereas a beta value of 1 would indicate similar 
average association sizes; correlation r=0.98): of the 21 metabolites associated 
with depression, 16 remained significantly related to depression at p<0.05 and 
13 at FDR q<0.05 (Table 2). Table S2 in Supplement 2 shows the pooled ORs and 
heterogeneity findings for all metabolites.

Associations of 98 detailed lipid composition and particle 
concentration measures of lipoprotein subclasses with depression
Figure 2 shows the ORs of the meta-analyses for the 98 lipid measures of the 14 
lipoprotein subclasses, ordered from large to small particle size. Generally, there 
appeared to be a shift in association with depression by lipoprotein classes: VLDL 
lipoprotein levels were positively related to depression, intermediate-density 
lipoprotein (IDL) and LDL lipid levels were not consistently associated, whereas 
HDL lipoprotein measures were inversely related to depression. Furthermore, 
depression was related to higher TG levels.

3
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Figure 2.Pooled odds ratios (OR) and 95% confidence intervals for the association of the 
98 lipid measures of lipoprotein subclasses with depression.
*Significant at false discovery rate q < 0.05. Dotted circle indicates an OR of 1. Particle sizes: 
extremely large (XXL) very-low-density lipoprotein (VLDL), >75 nm; very large (XL) VLDL, 64 
nm; large (L) VLDL, 53.6 nm; medium (M) VLDL, 44.5 nm; small (S) VLDL, 36.8 nm; very small 
(XS) VLDL, 31.3 nm; intermediate-density lipoprotein (IDL), 28.6 nm; L low-density lipoprotein 
(LDL), 25.5 nm; M LDL, 23.0 nm; S LDL, 18.7 nm; XL high-density lipoprotein (HDL), 14.3 nm; 
L HDL, 12.1 nm; M HDL, 10.9 nm; S HDL, 8.7 nm. C, total cholesterol; CE, cholesterol ester; FC, 
free cholesterol; L, total lipids; P, particle concentration; PL, phospholipids; TC, triglycerides

Associations of 81 metabolite ratios with depression
Figure S2 in Supplement 1 shows the ORs of the meta-analyses for the 81 metabolite 
ratios, of which 27 were significant at FDR q<0.05. In general, TG to total lipid 
ratios were significantly related to an increased odds of depression. Some of 
the VLDL, IDL, LDL, and HDL lipid measures as percentage of total lipids were 
positively related to depression, whereas others were inversely related. In general, 
associations of the metabolite ratios with depression were less pronounced 
compared to those with absolute metabolite values.
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Sensitivity analyses

Current depression
The original 5,283 depression cases included subjects with any lifetime history of 
depression. In 62% of the cases (3,265 subjects) depression was present between 
one month before and one month after blood draw. We repeated analyses with only 
these 3,265 current cases with depression (vs. 10,145 controls). Of the 51 lipids, 
fatty acids and low-molecular weight metabolites, 22 were associated with current 
depression at FDR q<0.05 (Figure S3 in Supplement 1). Notably, the strength of the 
associations with the 51 metabolites tended to be greater for current depression 
than for the original definition (regression slope of beta’s for current versus 
broadly defined depression=1.22, r=0.95) (Table S2 in Supplement 2). Table S2 in 
Supplements 2 and Figure S4 and S5 in Supplement 1 show associations of the 98 
lipid measures of lipoprotein subclasses, and the 81 metabolite ratios with current 
depression, which were largely in line with those of original analyses.

Antidepressant medication
To study whether associations were independent of concurrent antidepressant 
medication use, we removed 1,597 subjects across cohorts who reported use 
of antidepressants. The majority were depression cases (N=1,305), which was 
expected given that depression is the main indication for receiving antidepressant 
treatment. Additionally, one study (LLD) was removed because of model 
convergence issues. In the remaining 3,966 cases and 8,887 controls - representing 
a 21% decrease in effective sample size compared with the original analyses, 
associations with the 51 lipids, fatty acids and low-molecular-weight metabolites 
were generally in the same direction, but the strength of the associations was 
attenuated (regression slope of betas before and after exclusion of antidepressant 
users=0.60, r=0.88) (Figure S6 in Supplement 1). Among the 21 significantly 
associated metabolites in the overall sample, 8 were still associated at p<0.05, of 
which 2 (HDL3- cholesterol, and acetate) at FDR q<0.05 in the antidepressant-free 
subsample.

Subgroups
Exploration of consistency of associations across subgroups showed that there 
were no significant differences (Wald-test, FDR q>0.05) in the strength of the 
association between metabolites and depression across subgroups with depression 
diagnoses vs. self-reported depression (r=0.75, Figure S7 in Supplement 1), across 
men vs. women (r=0.64, Figure S8 in Supplement 1), across age <50 years vs. >=50 
years (r=0.84, Figure S9 in Supplement 1), and across BMI groups (normal vs. 
overweight r=0.68, normal vs. obese r=0.55, overweight vs. obese r=0.71, Figures 
S10-12 in Supplement 1).

3
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DISCUSSION

This meta-analysis of metabolomics and depression, is to our knowledge the 
largest of its kind. We analyzed data of more than 15,000 subjects from nine Dutch 
clinical and population-based studies in the Netherlands to identify metabolites 
associated with depression. Our findings showed that depression is associated 
with a metabolic signature towards less HDL and more VLDL and triglycerides 
particles. More specifically, 21 plasma lipids, fatty acids and low-molecular-
weight metabolites were significantly related to depression: higher levels of 
apolipoprotein B, VLDL cholesterol, triglycerides, diglycerides, total and mono-
unsaturated fatty acids, fatty acid chain length, glycoprotein acetyls, tyrosine, 
and isoleucine, and lower levels of HDL cholesterol, acetate, and apolipoprotein A1. 
Associations were generally consistent across sex, age and body mass index strata, 
and across cohorts using depression diagnoses vs. depressive symptoms. These 
metabolic alterations in depression could potentially explain part of the increased 
risk of cardiometabolic disease in individuals with depression.

Our findings that depression is related to higher VLDL, higher TG and lower 
VLDL are in line with previous research [3, 11, 45]. In the present study, we 
predominantly found differences in absolute lipid measures of the VLDL 
subfractions, whereas findings with lipid measures to lipid ratios in VLDL were 
less consistently associated with depression. This suggests that the total amount 
of lipids, rather than the type of lipids, is the main contributor to associations of 
depression with VLDL. For other metabolites, previous studies indicated more 
mixed findings. We did not find associations for LDL cholesterol measures, which 
contrasts with a previous meta-analysis that showed associations between 
depression and increased LDL cholesterol [11]. For measures of fatty acids, we 
observed that higher mono unsaturated fatty acids, total fatty acids and estimated 
fatty acids chain length were associated with an increased odds of depression. 
Most evidence for links with fatty acids in depression stems from research on 
omega-3 fatty acids [12], for which we did not observe a consistent, significant 
association with depression in the present study. The finding of proinflammatory 
glycoprotein acetyls being positively associated with depression is in line with the 
large body of evidence linking inflammation to depression [46]. The short chain 
fatty acid and ketone body acetate was lower in depression. It was hypothesized 
that a Western-style diet alters gut microbiome composition, resulting in lower 
acetate levels, which could subsequently induce depression [4]. Furthermore, a 
smaller study found lower isoleucine levels in depression [47], which contrasts 
our findings. Finally, a review concluded that there was no association between 
tyrosine and depression [48], whereas we observed higher tyrosine in depression. 
Discrepancies could be explained by differences in study characteristics or 
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variation in analytic approaches, such as selection of potentially confounding 
factors.

We additionally evaluated the impact of the time frame of depression assessment 
on the results. In secondary analyses including cases with current depression 
only, associations tended to become enhanced, suggesting that metabolomics 
alterations represent state markers reflecting current depression. Nevertheless, a 
similar profile of associations was found when analyzing depression cases defined 
in a broader timeframe. The metabolic signature identified may therefore also 
represent a persisting biological scar after remission of depression, or a pre-
existing underlying vulnerability factor for development of depression.

The impact of antidepressant medication use on the results was explored in 
secondary analyses, although this observational study precludes definitive 
conclusions, as depression severity most likely represents the clinical indication 
for antidepressant treatment (confounded by indication) [49]. We reanalyzed 
data after excluding antidepressant users, and found that the strength of 
associations was attenuated. Furthermore, the reduction in effective sample size 
substantially impacted the power to find significant associations. Nevertheless, 
directions of associations were highly consistent with those obtained in the full 
sample. Furthermore, the literature shows that potential detrimental effects of 
antidepressants on dyslipidemia is evident mainly for tricyclic antidepressants 
(TCA) [50, 51]. Data from the NESDA cohort [51], including patients from mental 
health care institutions and with the highest prevalence of antidepressant users 
(27%, Table 1), showed that TCA antidepressant were prescribed only in 3% of 
the participants. As the overall prevalence of antidepressant use in other cohorts 
included in the present meta-analysis was lower than approximately 9%, it could 
be assumed that the number of TCA users may be limited. This observation, 
combined with the results of our sensitivity analyses, suggests that antidepressant 
use is unlikely to be the major driver of the associations between metabolites and 
depression.

Secondary analyses also indicated that results were generally attenuated when BMI 
was taken into account, suggesting that part of the differential metabolite levels 
in depression could be explained by BMI. However, interrelationships between 
BMI, metabolite, depression and antidepressants are particularly complex. A 
significant genetic correlation has been found between depression and BMI [52], 
indicating that they may emerge from partially shared etiological mechanisms; at 
the same time BMI has been shown to influence metabolite concentrations [42]. 
The ability to disentangle different independent effects of this complex network 
in observational data is limited. Nevertheless, the majority of metabolites were 
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associated with depression after taking into account BMI, indicating that this 
factor explains only a limited portion of the depression-metabolites link.

The present findings may be explained by three, non-mutually exclusive, scenarios. 
First, alterations of lipids may be a consequence of depression. Depressed persons 
are more likely to engage in unhealthy behaviors such as sedentariness, excessive 
alcohol use and poor nutrition (e.g., saturated fats), which may lead to dyslipidemia 
[16]. Second, lipid dysregulations may be part of the pathophysiological pathways 
implicated in depression, such as chronic HPA-axis and inflammatory activity, 
resulting in lipolysis, release of fatty acids, synthesis of VLDL, hypertriglyceridemia 
and reduction in HDL cholesterol. Third, metabolomic alterations in depression 
may represent epiphenomena stemming from the same root, such as a common 
genetic factor. A recent genome-wide association study (GWAS) of major 
depression involving >450,000 participants, reported a significant genetic 
correlation (rg=0.14, p=7.8x10-7) with high TG levels, but not with LDL or HDL 
[53]. Furthermore, no genetic correlations emerged with metabolites of the same 
panel that we found to be associated with depression, although the relatively 
smaller sample size (~25,000) of the metabolomics GWAS may substantially limit 
the ability to detect correlation; the only exception was a nominally significant 
correlation with glycoprotein acetyls (rg=0.15, p=0.03), with the same direction 
of the phenotypic association we identified. Further experimental studies and 
genetically informed designs such as Mendelian randomization may disentangle 
whether depression and lipid dysregulations emerge from shared etiology, and 
whether depression causally determines lipid alterations or vice versa.

The present study has some limitations. Owing to limited availability or differences 
in assessment across datasets we cannot rule out confounding by other health-
related or lifestyle factors, such as chronic cardiometabolic conditions, alcohol use 
or specific food intake before sample collection. Nevertheless, the associations 
between depression and metabolites were consistent across datasets, including 
those enriched for traits such as diabetes, cardiovascular risk factors and migraine. 
Furthermore, alcohol use may represent a mediating mechanism rather than a 
confounder in the metabolites-depression association, as recent evidence [54] 
showed that alcohol dependence is to quite some extent caused by depression. 
Analyses were adjusted for fasting status (>94% of subjects were fasting, 
Table 1), but both fasting and non-fasting samples can be reliably analyzed by 
the metabolomics platform used [26, 36]. We could not examine whether the 
associations with metabolites detected vary as a function of specific depression 
clinical characteristics. Strengths of the study (large samples, metabolites data 
generated for all studies with the same platform) have enabled the identification 
of the most reliable metabolic signals associated with depression. These are worth 
further examination in relation to clinically relevant phenotypes (e.g., age of onset, 
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recurrence, duration, symptom profiles) in future studies based on psychiatrically 
well-characterized samples.

This large-scale meta-analysis including more than 15,000 participants identified 
a metabolomics signature associated with depression. This biological signature is 
partially shared with other conditions such as diabetes, obesity and cardiovascular 
diseases [3, 5-7] that commonly co-occur with depression, heavily burdening 
public health resources. Alterations in the lipid spectrum identified in the present 
study may represent a substrate linking depression to cardiometabolic diseases 
and, therefore, a potential target for prevention and treatment of depression and 
its detrimental somatic sequelae.

3
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Information about BBMRI-NL consortium can be found through the following link:
https://www.bbmri.nl/bbmri-metabolomics-consortium

Classification of depressed cases and controls
Controls were those with a negative diagnostic interview for lifetime depression, or 
had a score on the depression questionnaires below established cut-off scores (i.e., 
CES-D<16, HADS-D<8 and/or IDS-SR30<14). If multiple self-reports of depressive 
symptoms before blood sampling were available, controls needed to score below 
the established cut-offs during all these assessments. When diagnostic data on 
other psychiatric disorders were available (e.g., anxiety disorders), persons with 
other psychiatric disorders were excluded from the controls.

Metabolomics assessment
A total of 230 metabolites or metabolite ratios were reliably quantified from 
Ethylenediaminetetraacetic acid (EDTA) plasma samples using targeted high-
throughput proton Nuclear Magnetic Resonance (1H-NMR) metabolomics 
(Nightingale Health Ltd, Helsinki, Finland) [19]. This platform provides 
simultaneous quantification of routine lipids, lipoprotein subclass profiling 
with lipid concentrations within 14 subclasses, fatty acid composition, and 
various low-molecular-weight metabolites including amino acids, ketone bodies 
and gluconeogenesis-related metabolites in molar concentration units. This 
metabolomics platform has been extensively used and described in numerous 
studies (see https://nightingalehealth.com/publications for an overview), 
including large-scaled epidemiological studies in the field of type 2 diabetes [20], 
cardiovascular disease [21], mortality [22], and lifestyle factors such as alcohol 
intake [23]. Details of the experimentation and applications of the 1H-NMR 
metabolomics platform have been extensively described previously [19, 24, 25].

The entire process from sample handling to data processing is highly standardized 
and fully automated. Samples were prepared irrespective of depression status, 
because depression cases and controls entered each study at random order (i.e. 
unrelated to depression status), and the laboratory analyzing the samples was 
unaware of depression cases vs. control status when preparing the samples. 
Automated liquid handlers mixed 260 µL buffer (75 mM Na2HPO4 in 80%/20% 
H2O/D2O, pH 7.4; 4.64 mM sodium 3-(trimethylsilyl)propionate-2,2,3,3-d4, and 
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6.15 mM sodium azide) with the plasma in 1:1 ratio and moved the prepared 
samples to 96-format racks of NMR tubes, which were subsequently moved to the 
robotic sample changer, cooled to refrigerator temperature. Each rack contained 2 
quality control samples: 1 serum mimic and a mixture of 2 low-molecular-weight 
metabolites. For the native plasma samples, the lipoprotein (80k data points after 4 
dummy scans using 8 transients, 90° pulse) and low-molecular-weight metabolites 
(64k data points, using 24 (or 16) transients acquired after 4 steady state scans, 
T2-relaxation-filtered pulse sequence) data were automatically collected at 310.1K 
either with the 500 MHz or the 600 MHz Bruker AVANCE IIIHD NMR spectrometer, 
with a relaxation delay of 3.0 seconds [19, 25].

The NMR spectra are converted to absolute concentrations via Bayesian modeling 
performed via advanced proprietary software and integrates quality control 
checks. Several of the metabolic biomarkers have already been ‘validated’ with 
other techniques (i.e. routine clinical chemistry assays, gas chromatography, an 
enzymatic method, and/or mass spectrometry) [21, 24, 26-28]. Furthermore, 
genetic studies [29-31] performed on the same metabolomics platform showed 
that the labels applied to the metabolites are coherent and linked with biologically 
relevant and plausible genes.

The 14 lipoprotein subclass sizes were defined as follows: extremely large 
VLDL with particle diameters from 75 nm upwards and a possible contribution 
of chylomicrons, five VLDL subclasses, IDL, three LDL subclasses and four 
HDL subclasses. The following components of the lipoprotein subclasses were 
quantified: phospholipids (PL), TG, cholesterol (C), free cholesterol (FC), and 
cholesteryl esters (CE). The mean size for VLDL, LDL and HDL particles was 
calculated by weighting the corresponding subclass diameters with their particle 
concentrations.

NMR spectroscopy provides highly consistent biomarker quantification. This is 
due to the inherently reproducible nature of the technology; the samples never 
come into contact with the radiofrequency detector in the NMR spectrometer. 
Biomarker quantification directly from plasma, without any sample extraction 
procedures, further contributes to the high reproducibility [24]. Representative 
coefficients of variations (CVs) for the metabolic biomarkers are published as 
Supplementary Data 3 in Kettunen et al. [30] with the CVs determined for 9,600 
samples. Values ranged between 0.3 and 19.5 (mean 4.5%), and most values are 
comparable to routinely used assays in clinical chemistry.

Covariates
To be largely in line with previous metabolomics meta-analytic studies, [23], we 
adjusted analyses for the following potentially confounding variables: age (in 

3
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years), sex, fasting status (yes/no), use of lipid modifying medication (yes/no), 
and current smoking (yes/no). The lipid modifying drugs were defined according 
to the related Anatomical Therapeutic Chemical Classification System (ATC) code 
C10 (Lipid modifying agents) in order to capture all the medications falling under 
this category, including the use of single agents (C10A - Lipid modifying agents, 
plain: C10AA HMG CoA reductase inhibitors; C10AB Fibrates; C10AC Bile acid 
sequestrants; C10AD Nicotinic acid and derivatives; C10AX Other lipid modifying 
agents) and all their potential combinations (C10B - Lipid modifying agents, 
combination: C10BA HMG CoA reductase inhibitors in combination with other 
lipid modifying agents; C10BX HMG CoA reductase inhibitors, other combinations). 
The antidepressant medications selected for the sensitivity analyses included 
all classes listed under the ATC code N06A (N06AA Non-selective monoamine 
reuptake inhibitors, N06AB Selective serotonin reuptake inhibitors, N06AF 
Monoamine oxidase inhibitors, non-selective, N06AG Monoamine oxidase A 
inhibitors, N06AX Other antidepressants). Given the bidirectional relationship 
between depression and obesity and their shared biological processes (including 
genes, endocrine and immuno-inflammatory mechanisms) [32], the role of obesity 
was explored in greater detail in sensitivity analysis (see Statistical analyses). 
Body mass index (BMI) was calculated as measured weight (kg)/length (m)2, and 
divided into normal weight (BMI=18.50-24.99), overweight (BMI=25.00-29.99) 
and obesity (BMI≥30).

Assessment of potential bias due to metabolites data transformation
According to the standardized protocol of data processing applied in the present 
study a constant of 1 was added to the metabolite values before log-transformation. 
This common practice, adopted also in several other studies also from the same 
BBMRI-NL Metabolomics Consortium [33], aims to achieve normalization of the 
distribution also for metabolites with initial values equaling zero. Nevertheless, 
it is important to acknowledge that this transformation may have had introduced 
some bias due to the high variability in the normal range of different metabolite. In 
the present analyses we aimed to estimate the potential degree of bias introduced 
by comparing the results of the metabolites-depression associations obtained 
applying three different transformation before log-transformation: A) adding 
a constant of 1; B) adding the value of the 10th percentile of the distribution 
(excluding 0 values) of each metabolite, a value therefore within the normal range 
of the original metabolite; C) excluding all 0 values, a more conservative approach.

Analyses were performed in the NESDA sample (N=2,509), the most representative 
dataset for the trait under study, which involves subjects well phenotyped in 
psychiatric terms including healthy controls and depressed patients from various 
settings and developmental stages of psychopathology. Furthermore, analyses 
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focused on the 51 metabolites classified in the cluster of “lipids, fatty acids and 
various low-molecular-weight metabolites”.

Ridge plots in Figure S13 shows the distribution (per SD increase) of the (log)
values of the metabolites after the three different transformation. The three sets 
of values were used in logistic regression analyses estimating the association 
between metabolites and lifetime depression, adjusting for sex, age, smoking, 
lipid modifying drugs and fasting status. Results were highly similar across the 
three transformations. In Figure S14 the estimates obtained used the original 
transformation A were plotted against estimates obtained with transformation 
B (panel 1), and against those obtained with transformation C (panel 2). In 
both instances the correlation between association effect sizes equaled 1 as the 
estimates were substantially identical across transformation (coefficient from 
regressing estimates of transformation A on those from transformation B = 1.02, 
se=0.01; coefficient from regressing estimates of transformation A on those from 
transformation C = 1.00, se=0.02). Overall, these results suggests that the degree 
of bias potentially introduced by the transformation applied in original analyses 
is minimal and negligible.

3
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ABSTRACT

Metabolome reflects the interplay of genome and exposome at molecular level 
and thus can provide deep insights into the pathogenesis of a complex disease 
like major depression. To identify metabolites associated with depression we 
performed a metabolome-wide association analysis in 13,596 participants 
from five European population-based cohorts characterized for depression, and 
circulating metabolites using ultra high-performance liquid chromatography/
tandem accurate mass spectrometry (UHPLC/MS/MS) based Metabolon platform. 
We tested 806 metabolites covering a wide range of biochemical processes 
including those involved in lipid, amino-acid, energy, carbohydrate, xenobiotic and 
vitamin metabolism for their association with depression. In a conservative model 
adjusting for life style factors and cardiovascular and antidepressant medication 
use we identified 8 metabolites, including 6 novel, significantly associated with 
depression. In individuals with depression, increased levels of retinol (vitamin 
A), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) (lecithin) and mannitol/sorbitol 
and lower levels of hippurate, 4-hydroxycoumarin, 2-aminooctanoate (alpha-
aminocaprylic acid), 10-undecenoate (11:1n1) (undecylenic acid), 1-linoleoyl-GPA 
(18:2) (lysophosphatidic acid; LPA 18:2) are observed. These metabolites are either 
directly food derived or are products of host and gut microbial metabolism of 
food-derived products. Hippurate and mannitol/sorbitol have previously been 
consistently associated with depression. Our Mendelian randomization analysis 
suggests that low hippurate levels are causally related to depression. Further 
analysis of dietary sources of the metabolites in the UK Biobank reveals that 
increased vitamin A intake may also have causal implications for major depression. 
Our findings highlight putative actionable targets for depression prevention that 
are easily modifiable through diet interventions.
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INTRODUCTION

Depression is the most common psychiatric disorder with an average lifetime 
prevalence of 11-15% [1]. A sharp increase in the prevalence of depression 
worldwide (33.7%; confidence interval 27.5–40.6) has been observed during the 
recent COVID-19 pandemic [2] and is predicted to increase as the effects of the 
pandemic unfold further [3]. The molecular mechanisms underlying depression 
remain elusive. The heritability is estimated to be around 40% [4] and 87 genetic 
variants have been identified to be associated with depression [5]. There is also 
a range of environmental risk factors for morbidity including low education, 
diet and smoking [6]. There is increasing evidence that diet influences mood [7]. 
Depression also often co-occurs not-only with other neuro-psychiatric pathologies 
[8, 9], but also clusters strongly with systemic disorders such as cardiometabolic 
disease, diabetes and arthritis [10-13]. Treatment success for depression is poor 
and mortality is high [12, 14, 15]. While depression is primarily considered as a 
disorder of the brain [16], it is associated with metabolic changes in the blood 
circulation that may be explained by weight loss/gain, changes in diet and 
altered gut metabolism [17]. There is increasing interest in metabolomic studies 
of depression that capture the downstream effects of genes, lifestyle factors, 
pathology and medication [18-20]. A novel hypothesis why circulating metabolites 
may be involved in depression is that these metabolites are involved in the gut-
brain axis, i.e., the bi-directional signalling between the gut, its microbiome and 
the brain [21, 22]. Metabolomic studies on depression have been small and findings 
have not always been consistent [23]. Yet, consensus is building that depression 
is associated with increased levels of glutamate, lactate, alanine, isobutyrate 
and sorbitol and with decreased levels of kynurenine, gamma aminobutyric acid 
(GABA), phenylalanine, tyrosine, creatinine, hypoxanthine, leucine, tryptophan, 
N-methylnicotinamide, β-aminoisobutyric acid, hippurate, amino-ethanol and 
malonate [24]. Our study of 5,283 patients with depression and 10,145 controls 
from nine Dutch cohorts [25] using a proton Nuclear Magnetic Resonance (NMR) 
metabolomics platform (Nightingale Health Ltd., Helsinki, Finland) identified 21 
cardiometabolic metabolites that are significantly related to depression. These 
include an unfavorable spectrum of metabolites associated to cardiometabolic 
morbidity and mortality [26-28] including apolipoprotein A1 and B, very-low-
density and high-density lipoprotein cholesterol, di- and triglycerides, (mono-) 
unsaturated fatty acids, fatty acid chain length, acetate, glycoprotein acetyls, 
tyrosine, and isoleucine [29].

A problem hampering the translation of findings of metabolomics studies 
into preventive and therapeutic interventions is that metabolites in the blood 
circulation are strongly influenced by medication and comorbidity [22]. Although 
their effects are well recognized, the potential bias is not controlled for in most 
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studies conducted to date. Another problem to be tackled is to disentangle 
metabolic changes that occur as a cause from those that occur because of 
depression progression. To control for confounding, we conducted a comprehensive 
analysis of the relation between the blood metabolome and depression in five large 
scale epidemiologic cohorts including a total of 13,596 participants. This setting 
allows us to control for confounding effects of medication and co-morbidity. The 
metabolome in the circulation was characterized by mass spectrometry (MS) using 
Metabolon. To identify the origin of metabolites (gut and/or human) we integrate 
our findings with those of the Virtual Metabolic Human (VMH) and Assembly 
of Gut Organisms through Reconstruction and Analysis (AGORA2) databases. 
To separate potential causal effects from the consequences of the disease, we 
integrate genomic and metabolomic data using the NIHR BioResource (NBR). 
We then examine the impact of anti-depressive therapy on the metabolites in the 
Predictors of Remission in Depression to Individual and Combined Treatments 
(PReDICT) study. Finally, we study the association of the diet-based sources of 
these metabolites with depression and brain pathology in the UK Biobank.

METHODS

Study populations
The association analysis of metabolite levels with depression was performed 
in 13,596 participants separately recruited in five different cohort studies. The 
following cohort studies were included: the Rotterdam Study (RS), the Study of 
Health in Pomerania (SHIP-TREND), the Cooperative Health Research in the Region 
of Augsburg (KORA) study, the European Prospective Investigation into Cancer 
(EPIC)-Norfolk Study, and the Netherlands Epidemiology of Obesity (NEO) study. 
Detailed information on these cohorts is provided in the Supplementary Materials. 
All participants provided written informed consent, studies were approved by 
their local ethics committees and conformed to the principles of the declaration 
of Helsinki. Patients or the public were not involved in the design, or conduct, or 
reporting, or dissemination plans of our research.

Association of depression with the dietary sources of the depression-associated 
metabolites was performed in the UK Biobank study. UK Biobank is a prospective 
cohort study including ~ 500,000 participants aged 40-69 years at baseline 
recruited between 2006 and 2010. The aim of the study is to investigate the effects 
of genetic and environmental factors on the risk of common multifactorial diseases. 
Participants have provided a detailed information on lifestyle, medical history and 
nutritional habits; basic variables such as weight, height, blood pressure etc. were 
measured; and blood and urine samples were taken. Detailed information about 
the cohort is provided in the Supplementary Materials.
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To ascertain the effects of various depression treatments including cognitive 
behavioural therapy (CBT) and antidepressants SSRI (escitalopram) and SNRI 
(duloxetine) on the depression-associated metabolites we performed a lookup in 
the PReDICT study. The design of PReDICT study has been published previously.
[28] Details on the study and the metabolomics assessments are provided in the 
Supplementary Materials.

To select instruments/proxies for metabolites for Mendelian Randomization we 
used the results of the genome-wide association study (GWAS) performed using 
the NIHR BioResource (NBR). NIHR BioResource (NBR) – Rare Disease Study is 
a multi-center whole-exome and whole-genome sequencing study including up 
to 13,600 patients (http://bioresource.nihr.ac.uk/rare-diseases/rare-diseases/). 
The NBR–Rare Diseases study was approved by the East of England Cambridge 
South national research ethics committee (REC) under reference number: 13/
EE/0325. The inclusion and exclusion criteria, as well as other steps of quality 
control, adjustment and transformations followed the same analytical steps as 
described before [30].

Depression assessment
In the RS, depressive symptoms were assessed with the 20-item version of the 
Centre for Epidemiologic Studies Depression (CES-D) scale, a self-report measure 
of depressive symptoms experienced during the prior week [30]. The total score 
ranges from 0 – 60, where a higher score indicates more depressive symptoms. 
In the SHIP-trend and KORA cohorts, depressive symptoms were assessed with 
the Patient Health Questionnaire 9 (PHQ-9) [31], where each of the nine DSM-IV 
criteria for depression are scored from 0 – 3. The total score ranges from 0 – 
27 where higher score indicates a greater depression severity. In KORA a brief 
interview version of PHQ-9 called Patient Health Questionnaire Depression (PHQ-
D) module was used to measure depression [31, 32]. In the EPIC-Norfolk study 
depression was assessed using the following question: “Has the doctor ever told 
you that you have any of the following: depression requiring treatment?” with 
answers “yes” or “no”. In the NEO cohort, depressive symptoms were assessed 
using the Inventory Depressive Symptomatology Self Report questionnaire (IDS-
SR30) [33], which assesses specific depressive symptoms (via a 4-level response 
system) during the last week and their severity. The total score ranges from 0 to 
84, with higher scores indicating higher severity. Thus, in all cohorts except EPIC-
Norfolk, depression in participants was measured on a quantitative scale and used 
as such in the analysis.

In the UKB study, we used the derived lifetime probable major depressive disorder 
measure as described in Smith et al. 2013 [34]. We further defined current 
depressive symptoms by summing the responses to four questions related to mood 
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in the past two weeks. These include, (1) Over the past two weeks, how often have 
you felt down, depressed or hopeless?, (2) Over the past two weeks, how often have 
you had little interest or pleasure in doing things?, (3) Over the past two weeks, 
how often have you felt tense, fidgety or restless? and (4) Over the past two weeks, 
how often have you felt tired or had little energy? Answers could be given on a 
four-point scale ranging from 0-3 (0 = not at all, 1 = several days, 2 = more than 
half of the days and 3 = nearly every day). The total score ranged from 0-12 where 
higher score indicating more severe depression.

In the PReDICT study, participants were treatment-naive adults defined as 
having never previously received a minimally adequate course of treatment 
with an antidepressant medication or evidence-based psychotherapy for a mood 
disorder, aged 18 to 65 years with moderate-to-severe, non-psychotic MDD 
depression as assessed by the Structured Clinical Interview for DSM-IV [35] 
and a psychiatrist’s evaluation, and if they scored ≥18 on the HRSD17. Eligible 
patients were randomized equally to one of three 12-week treatment arms: (1) 
cognitive behavior therapy (CBT, 16 sessions); (2) duloxetine (30–60 mg/d); or 
(3) escitalopram (10–20 mg/d).

Metabolomics measurements
In all studies, the metabolome was quantified using the Metabolon platform 
(Metabolon Inc., Durham, USA). Different versions of the platform have been 
used and details on the platforms are included in the Supplementary Materials. 
In all studies, metabolites with ≥ 40% missing values were removed and for the 
remaining metabolites missing metabolite values were replaced with half of 
the detection limit for that particular metabolite [36]. Subsequently, a natural 
logarithm transformation was applied to all metabolites and metabolites were 
scaled to standard deviation units.

In the PReDICT study, metabolites were quantified using targeted metabolomics 
platforms including ultra-performance liquid chromatography triple quadrupole 
mass spectrometry (UPLC-TQMS) (Waters XEVO TQ-S, Milford, USA) and gas 
chromatography time-of-flight mass spectrometry (GC-TOFMS) (Leco Corporation, 
St Joseph, USA). Metabolites with >20% missing values were excluded. Then, 
metabolites were log-transformed, imputed and scaled to mean zero and variance 
1. Details are provided in the Supplementary Materials.

Non-targeted metabolite detection and quantification was conducted by the 
metabolomics provider Metabolon, Inc. (Durham, USA) on fasting plasma samples 
of 10,654 participants from the UK Bioresource. The metabolomic dataset 
measured by Metabolon included 1069 compounds of known structural identity 
belonging to the following broad categories - amino-acids, peptides, carbohydrates, 

168239_Alshehri_BNW-def.indd   76168239_Alshehri_BNW-def.indd   76 13-10-2023   13:06:1113-10-2023   13:06:11



77

Depression and untargeted metabolomics

energy intermediates, lipids, nucleotides, cofactors and vitamins, and xenobiotics. 
Metabolites data were day-median normalized, and inverse normalized, as the 
metabolite concentrations were not normally distributed. Metabolic traits with 
more than 20% missing values were excluded leaving 722 metabolites of known 
chemical identity for analysis.

Genotyping
For the GWAS of metabolites, genotyping in the UK bioresource was carried out 
with a high-density array data (Affymetrix UK Biobank Axiom® Array). Genotypes 
were subsequently imputed using information from the Human Reference 
Consortium imputation panel (version r1.1, 2016) [37]. Only individuals of full 
European ancestry (N=8,809) were included in the analyses in the discovery 
cohort.

Statistical analyses

Metabolites association analysis
All cohorts used linear regression analysis to test the association between the 
metabolite levels (dependent variable) and depression. Three different models 
were tested, where the first model (model 1) was adjusted for age and sex only, the 
second model (model 2) was additionally adjusted for antidepressant medication 
usage, and the third model was an extension of the second model (model 3) with 
additional adjustment for lipid-lowering medication (yes/no), antihypertensive 
medication (yes/no), antidiabetic medication (yes/no), BMI (kg/m2), and current 
smoking (yes/no). The summary statistics from all cohorts were combined in 
a sample size-weighted meta-analysis using METAL software [38]. Sample size 
weighted meta-analysis was used since the depression measurement scales were 
different among cohorts. Only metabolites that were present in two or more 
studies were included. To investigate the robustness of our findings, a sensitivity 
analysis was performed by including only cohorts that assessed metabolites with 
the most recent version of the Metabolon platform (HD4).

Association analysis of major depressive disorder with dietary sources of the 
metabolites in the UK Biobank
We used logistic regression analysis to test the association between major 
depressive disorder and dietary sources of metabolites (vitamin A supplements, 
retinol intake estimated from food, fresh fruits intake and vitamin K antagonists). 
Age, sex and principal components were used as covariates in the analysis. For the 
association of current depressive symptoms, we used linear regression analysis. 
We further tested the association of volume of white matter hyperintensities 
(WMH) with vitamin supplements to ascertain the impact of these supplements 
on brain pathology. Linear regression analysis was used with the volume of WMH 

4
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as the dependent variable, vitamin supplements as the independent variable, and 
age, sex, BMI, head size and principal components as covariates. All analyses were 
performed in R.

Metabolite GWAS for Mendelian Randomization (MR) analysis
To test for association between metabolite levels and genotypes, we built linear 
regression models where the outcome was defined as the transformed level of 
each metabolite, predicted by the allele dosage at each polymorphic (MAF > 0.01) 
genotyped or imputed genetic variant. In addition, analyses were adjusted for age, 
sex and BMI. All analyses were conducted using the PLINK software (https://www.
cog-genomics.org/plink/2.0/).

Mendelian Randomization (MR) analysis
To understand the relationship between the identified metabolites and major 
depression we performed bidirectional two-sample MR analysis. For major 
depression we used the independent genome-wide significant single nucleotide 
polymorphisms (SNPs) reported by Howard et al. 2019 [5] as instrumental 
variables (IVs). Summary statistics for these IVs were extracted from Howard 
et al. The summary statistics for the metabolites were extracted from the GWAS 
performed in UK Bioresource. Of the identified metabolites in this study (model 
3), GWAS results were available for six metabolites including 2-aminooctanoate, 
10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), hippurate, 
mannitol/sorbitol and retinol (Supplementary Table 1). The IVs for these six 
metabolites and their summary statistics were extracted from the same GWAS. 
Because of scarcity in GWAS-grade significance for SNPs associated with these 
metabolites, we used independent SNPs that showed the strongest association 
with a p-value < 10-06 as instruments (Supplementary Table 2). The summary 
statistics for depression for these IVs were extracted from the publicly available 
dataset (2019 PGC UKB Depression Genome-wide; https://www.med.unc.edu/pgc/
download-results/mdd/). For the analysis we used the ‘mr_allmethods’ option of 
the R (https://cran.r-project.org/) library “MendelianRandomization” [39] that 
reports the results from the median method (simple, weighted and penalized), 
Inverse variance weighted and Egger methods (penalized, robust and penalized 
& robust).
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Table 1. Descriptive statistics of the study populations.

RS SHIP-
trend

KORA EPIC-
Norfolk B2

EPIC-
Norfolk B3

NEO

N 484 965 1688 4639 5163 599
Ncases/Ncontrols - - - 638/4001 685/4478 -
Mean age (years) (SD) 73.1 

(6.3)
50.1 
(13.6)

61 
(8.8)

59.9 
(8.8)

59.6 
(8.9)

55.8 
(6.0)

Age range (years) 62-96 20-81 32-77 40-78 40-78 45-66
Females (%) 52.5 56.0 51.4 52.4 52.8 52.6
Mean BMI (kg/m2) (SD) 26.8 

(3.7)
27.4 
(4.6)

28.2 
(4.8)

26.20
 (3.7)

26.2 
(3.8)

25.9 
(4.0)

Smoking (%) 12.6 22.0 14.5 11.4 10.9 11.9
Medication

Antidepressants 
(%)

3.7 4.0 5.6 4.5 3.8 5.3

Lipid-loweringmedication 
(%)

10.5 7.8 16.7 1.4 1.5 7.7

Antihypertensives 
(%)

0.6 28.2 37.9 19.5 17.0 19.7

Antidiabetics 
(%)

5.4 0 7.5 1.9 2.0 2.7

4
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Effect of antidepressant therapy on metabolites in PReDICT study
To examine the strength and significance of metabolite concentration changes 
within each of the three treatment arms, i.e., (1) CBT (16 sessions); (2) duloxetine 
(30–60 mg/d); or (3) escitalopram (10–20 mg/d), linear mixed effect models (with 
random intercept) with metabolite levels (in log scale) as the dependent variable, 
were fitted while correcting for age, sex, BMI, and baseline HRSD17. Then, the R 
package “emmeans” was used to compute the least squared means of the contrasts 
of interest (week 12 vs. baseline) and their corresponding p-values.

To detect whether metabolites levels were associated with clinical outcomes, linear 
regression analyses corrected for age, sex and treatment arm were performed. 
Dependent variables (Baseline HRSD17, Week 12 HRSD17, and 12 weeks change in 
HRSD17) were regressed on either of following independent variables: 1) baseline 
metabolite, 2) week 12 metabolite, 3) 2 weeks change in metabolites and 4) 12 
weeks change in metabolites.

Linking metabolites to human and/or gut metabolism
To assess whether the identified metabolites are products of human metabolism, 
gut microbial metabolism, or both, we integrated our findings with those of 
the Virtual Metabolic Human (VMH) and Assembly of Gut Organisms through 
Reconstruction and Analysis (AGORA2) databases. Additional information is 
provided in the Supplementary Materials.

RESULTS

This study includes 13,596 participants from five independent cohorts including 
the Rotterdam Study (RS), the Study of Health in Pomerania (SHIP-TREND), 
the Cooperative Health Research in the Region of Augsburg (KORA) study, the 
European Prospective Investigation into Cancer (EPIC)-Norfolk Study, and 
the Netherlands Epidemiology of Obesity (NEO) study. A detailed description 
of the study participants is provided in Table 1. Depression was measured on 
a quantitative scale in all cohorts except the EPIC-Norfolk study, where the 
participants reported depression on a yes/no scale. The mean age ranged from 
50.1 years in SHIP-Trend to 73.1 years in the Rotterdam Study. The percentage of 
female participants (51-56%) and mean body mass index (BMI; between 26-28 kg/
m2) were comparable between studies. There were differences in the percentage 
of smokers between the cohorts, ranging from 11% in EPIC-Norfolk and to 22% 
in SHIP-Trend.

When testing for an association with depression adjusting for age and sex, 53 (41 
novel) metabolites were significantly associated with depression after adjusting 
for multiple testing (false discovery rate (FDR) < 0.05; Table 2 & Figure 1). These 

4
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include nine metabolites in the amino acid metabolism pathway including five 
previously associated with depression (leucine, kynurenate, citrulline, glutamate 
and serotonin) [23, 40, 41] and four novel metabolites (N-acetylputrescine, 
5-methylthioadenosine (MTA), 2-aminobutyrate and indolepropionate). In 
addition, significant association was found for six carbohydrates (one novel), 
six cofactors and vitamins, all of which were novel, 26 lipids (25 novel), and six 
xenobiotics (five novel) (Table 2).

Figure 1. Association plot of metabolites with depression.
This plot shows the top findings of the association analysis of metabolites with depressive 
symptoms, for all three models tested. Only metabolites with FDR p-value < 0.1 are shown in 
this Figure. The associations with a negative Z-score are depicted in grey, while the positive 
associations are depicted in orange. The plot is divided per metabolite subgroup. Significance 
levels: **: FDR < 0.001, *: FDR < 0.05. Script for Figure modified from Nath et al.(Genome Biol, 
2017. 18(1): p. 146.).

When adjusting for antidepressant use (model 2), 12 metabolites remained 
significantly associated (FDR <0.05) with depression (Table 2, Figure 1), 
suggesting that most associations observed with depression were confounded 
by antidepressant medication use. Of the amino acids, only citrulline remained 
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significantly associated with depression after adjustment for antidepressant 
medication (Table 2, Figure 1). Other metabolites that remained significantly 
associated with depression in the extended model included four xenobiotics 
(4-hydroxycoumarin, hippurate, 3-phenylpropionate (hydrocinnamate) and 
cinnamoylglycine), four lipids (2-aminooctanoate, 10-undecenoate (11:1n1), 
1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) and 1-linoleoyl-GPA (18:2)), and three 
cofactors and vitamins (retinol (vitamin A), bilirubin (Z,Z), bilirubin (E,Z or Z,E)). 
Among these, higher levels of 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) and 
retinol (vitamin A) were associated with an increased risk of depression, while 
the others were associated with a decreased risk (Figure 1).

We subsequently build a more conservative model, further adjusting for other 
medication use, including lipid-lowering medication, antihypertensive medication, 
antidiabetic medication, BMI and current smoking (model 3). Seven out of the 12 
metabolites remained significantly associated with depression (Table 2). These 
included retinol (vitamin A), hippurate, 4-hydroxycoumarin, 2-aminooctanoate, 
10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), and 
1-linoleoyl-GPA (18:2). Additionally, mannitol/sorbitol appeared statistically 
significant in model 3. Complete results of the meta-analysis are available in 
Supplementary Table 3.

There was no significant evidence for effect modification by sex (Supplementary 
Table 4) and the directionality of effects tended to be consistent in men and women. 
Effect sizes appeared to be stronger in women. Results were consistent across 
various versions of the Metabolon platform and depression assessing instruments 
and a sensitivity meta-analysis, which only included results from cohorts that 
had assessed metabolites on the most recent (HD4) platform, showed that they 
remained essentially unchanged (Supplementary Table 5).

Association of depression with dietary sources of metabolites in the 
UK Biobank
To evaluate the association of food sources of the identified metabolites with major 
depression we conducted a series of analyses in the UK Biobank (UKB). In the UKB 
information on vitamin supplements including vitamin A, retinol intake from food, 
consumption of fresh fruits – a major source of hippurate, and medication use 
including vitamin k antagonist (a proxy for 4-hydroxycoumarin) was available. In 
a cross-sectional analysis, we found a significant positive association of vitamin 
A intake from supplements with both measures of depression including current 
depressive symptoms (beta = 0.23, p-value = 1.25×10-25) and lifetime major 
depressive disorder (MDD, OR = 1.40, p-value = 9.72×10-18). However, vitamin D 
supplement intake was also significantly positively associated with both measures 
of depression (Table 3), suggesting that depressed individuals take more vitamin 
supplements than non-depressed individuals. 

4
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Since both vitamin A and vitamin D are fat-soluble and can cross the blood-brain 
barrier, we performed additional association with the measure of brain pathology, 
i.e., white matter hyperintensity (WMH) volume. Only vitamin A supplement 
intake was found to be associated with higher volume of WMH (beta = 479.09, 
p-value = 0.04, Supplementary Table 6), suggesting a possible role of vitamin 
A in brain diseases. To address the issue of reverse causality, we additionally 
tested the association of depression with retinol intake estimated from the food 
consumed in the previous 24 hours. Significant positive association of estimated 
retinol intake was observed with both measures of depression (current depressive 
symptoms, p-value = 1.26×10-08; lifetime MDD, p-value = 1.4×10-03). However, the 
effect estimates were small (Table 3), which may in part be explained by the 
imprecision of food consumption questionnaires. Fresh fruit intake, a major 
source of hippurate, was negatively associated with both measures of depression 
(current depressive symptoms, beta = -0.06, p-value = 1.61×10-205; lifetime 
MDD, OR = 0.96, p-value = 3.27×10-22) and vitamin K antagonists, a proxy for 
4-hydroxycoumarin, was positively associated with both measures of depression 
(current depressive symptoms, beta = 0.43, p-value = 1.04×10-46; lifetime MDD, 
OR = 1.15, p-value = 0.016) (Table 3).

Mendelian randomization analysis
Testing the hypothesis that major depression results in changes of circulating 
metabolites in the Mendelian randomization analysis (MR), nominally significant 
results were obtained for 2-aminooctanoate and 10-undecenoate (11:1n1), under 
the MR-Egger method and weighted median method, respectively. However, 
these findings did not remain significant after adjustment for multiple testing 
(Supplementary Table 7). MR models in which we tested the hypothesis that levels 
of circulating metabolites increase the risk of depression provided significant 
evidence for a causal relation between hippurate and the risk of depression, both 
in the MR-Egger robust and penalized-robust methods (Supplementary Table 8). 
The effect estimate was consistent with the inverse relationship observed between 
hippurate and major depression in this study. However, a significant intercept was 
also observed suggesting pleiotropy. To exclude a pleiotropic effect, we studied 
the effect of intervention on the metabolite in the PReDICT trial.

Effect of antidepressant therapy on hippurate
To further evaluate the impact of antidepressant therapy including cognitive 
behavioral therapy (CBT), duloxetine – a serotonin-norepinephrine reuptake 
inhibitor (SNRI) and escitalopram – a selective serotonin reuptake inhibitor (SSRI) 
on hippurate we consulted the PReDICT study. The PReDICT study allows us to 
test the effect of antidepressant therapy on the metabolite levels in circulation by 
measuring the metabolite levels before and after the antidepressant therapy. In 
PReDICT, we found that levels of hippurate in the circulation increased significantly 

4
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from baseline to week 12 only after treatment with escitalopram (estimated 
week 12 vs. baseline difference = 0.45, 95% confidence interval (CI; 0.16,0.74), 
p-value = 0.002; Supplementary Figure 1), but not in the cognitive behaviour 
therapy (CBT) and duloxetine treatment arms (CBT: estimated difference = -0.02, 
95% CI (-0.39,0.33) and p-value = 0.87; duloxetine: estimated difference = 0.13, 
95% CI (-0.17,0.44) and p-value = 0.38). In this study, we could not show a relation 
between hippurate and depression as the study recruited patients only and 
lacked healthy controls. In patients receiving pharmacotherapy (escitalopram 
and duloxetine arms), the association of baseline depression as measured by the 
17-item Hamilton Rating Scale for Depression (HRSD17) and baseline hippurate 
was not statistically significant (beta = 0.04, 95% CI (-0.03,0.11), p-value = 0.27). 
Further, no significant association was observed between depression in week 12 
as measured by the HRSD17 and week 12 hippurate (beta = 0.09, p-value = 0.45) 
and 12 weeks change in HRSD17 and 12 weeks change in hippurate (beta = 0.02, 
95% CI (-0.65, 1.57), p-value = 0.85).

Linking the human circulating metabolome to gut microbiome 
metabolism
Of the 53 metabolites identified in this study in model 1, 28 metabolites could 
be matched to a unique VMH metabolite ID. For each metabolite, the presence 
or absence in the global human reconstruction, Recon3D [42], and a resource of 
7,206 reconstructions of human gut microbes, AGORA2 (https://www.biorxiv.org/
content/10.1101/2020.11.09.375451v1) was retrieved. In total, 12 metabolites 
were present in both the human and gut microbial metabolic networks, three were 
only present in gut microbes, and 13 were only present in human (Supplementary 
Table 9). To further investigate potential links between the microbiome and 
metabolites associated with depression, the potential of the 7,206 AGORA2 strains 
to consume or secrete the 15 microbial metabolites identified in this study was 
computed. Since hippurate is synthesized in the liver and renal cortex from 
the microbial metabolite benzoate [43], the uptake and secretion potential for 
benzoate was also predicted for the 7,206 strains.

A wide range of genera and species were involved in the uptake of mannitol 
(Supplementary Table 10). Mannitol is largely secreted by several species of the 
genus Bacteroides followed by Lactobacillus, among others (Supplementary Table 
11). Both genera have previously been found to be associated with depression [17]. 
In total, 3,616 AGORA2 strains mainly of the Gammaproteobacteria and Bacilli 
classes (Supplementary Table 11) synthesized benzoate as a product of benzamide 
(VMH reaction ID: BZAMAH). Interestingly, benzamides are a class of antipsychotic 
medication.
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DISCUSSION

In this study, we identified 53 metabolites significantly associated with depression, 
most of which, including those in the monoamine and neurotransmitter pathways 
(serotonin, kynurenate and glutamate), were explained by antidepressant use. We 
identified novel associations with depression for six metabolites, including retinol 
(vitamin A), 4-hydroxycoumarin, 2-aminooctanoate, 10-undecenoate (11:1n1), 
1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1), 1-linoleoyl-GPA (18:2) and confirmed 
the association of hippurate and mannitol/sorbitol. We found that the relation of 
hippurate and depression may be causal and that hippurate levels can be modified 
by a specific antidepressant, escitalopram. Analysing the major dietary sources 
of these metabolites in the UKB study, we found that retinol (vitamin A) intake 
was significantly higher and fresh fruits intake, a major source of hippurate, 
significantly lower in depressed individuals compared to those who were not 
depressed.

One of the most interesting findings of this study is the identification of the 
association of higher levels of retinol (active form of vitamin A) with depression. 
There have been several case reports of individuals with vitamin A intoxication 
with no previous history of depression, who developed symptoms of depression 
and even psychosis when overdosed with vitamin A [44, 45]. Depressive symptoms 
resolved upon discontinuation of vitamin A, implying that depression may be a side 
effect of vitamin A intake [44]. Animal models have suggested elevated monoamine 
oxidase enzyme activity and depression-related behavior upon vitamin A 
supplementation [46, 47]. Our study is the first to link higher levels of retinol 
in blood with depression in the general population. Retinol and its derivatives 
known as retinoids are lipid soluble and can cross the blood-brain barrier. Vitamin 
A is required for brain development and functioning [48, 49]. However, excess of 
vitamin A is neurotoxic and may result in brain shrinkage [49]. Brain areas high 
in retinoic acid signaling and receptors overlap with areas of relevance to stress 
and depression [50]. Further, vitamin A is known to increase the synthesis of 
triglyceride-rich very low-density lipoproteins (VLDLs) and apolipoproteins in 
the serum [51, 52], which we found associated with depression in our previous 
study [53]. Since food it the primary source of vitamin A, an important question 
to answer is whether vitamin A intake is associated to depression. In the UK 
Biobank we found significant increase in dietary retinol intake in individuals 
with depression. Thus, our findings ask for intervention studies that evaluate 
prospectively the effect of vitamin A reduction in depressed patients.

Two of the most strongly associated metabolites with depression were xenobiotics, 
hippurate and 4-hydroxycoumarin. In line with the findings of our study, 
decreased levels of hippurate have been previously reported in urine and plasma 

4
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of individuals with unipolar and bipolar depression consistently in several studies 
and it has been suggested as a biomarker for depressive disorders [54]. Our MR 
analysis suggests that low hippurate levels in circulation are a part of the causal 
pathway leading to depression. However, as the MR could not exclude a pleiotropic 
effect, our findings yield a hypothesis that requires further evaluation in a clinical 
trial. While we could not show an association between hippurate and depression 
in the PReDICT study, as the study lacked controls, hippurate levels were higher 
12 weeks after initiation of selective serotonin reuptake inhibitor (SSRI) therapy 
(escitalopram) but not for SNRI or CBT, raising the question whether blood levels 
of hippurate can be used in clinical trials for compliance and efficiency of SSRIs 
specifically. Hippurate is derived from benzoate and polyphenols and is reported 
to be a metabolomics marker of gut microbiome diversity [53]. A diet rich in whole 
grains and fruits has been reported to increase levels of Hippurate [53]. In line 
with the decreased levels of hippurate in depressed individuals found in our 
metabolome-wide association analysis, we found significantly decreased fresh 
fruit intake among individuals with depression in the UKB, which is in line with 
the previous study that high consumption of fruits, vegetables, nuts, and legumes 
is associated with a reduced risk of depression [7, 55].

The metabolite 4-hydroxycoumarin is a fungal derivative of coumarin. Coumarins 
are found naturally in plants and spices [55] and coumarin is converted into 
4-hydroxycoumarin by fungi [56]. 4-hydroxycoumarin is then converted into 
dicoumarol in the presence of formaldehyde [56]. Dicoumarol is an anticoagulant 
(warfarin) that inhibits the synthesis of vitamin K, also called vitamin K antagonist, 
and is commonly used to treat thromboembolic diseases [57]. In the UKB, we found 
significant positive association of anticoagulant use (vitamin K antagonists) with 
major depression. A history of depression is a risk factor for thromboembolism 
[58-60]. Antidepressants are also known to interact with warfarin [61] and 
are also associated with increased risk of thromboembolism [62]. Taking all 
findings together, we hypothesize that depression/antidepressant use depletes 
4-hydroxycoumarin in circulation leading to thromboembolism. Vitamin K has 
been shown to act in the nervous system as it is involved in sphingolipid synthesis 
[63]. Sphingolipids are present in high concentrations in cell membranes of 
neuronal and glial cells [64]. Sphingolipids are essential for important cellular 
events, including proliferation, differentiation, senescence, cell-cell interactions, 
and transformation [65] and they have been linked to aging, Alzheimer’s disease, 
and Parkinson’s disease [66-68]. Further, sphingolipids were found to play a crucial 
role in the development of depression- and anxiety-related behaviours in mice [69, 
70] and depression is seen often in patients with sphingolipid storage diseases [71-
75]. Treatment with escitalopram /citalopram is also associated with changes in 
sphingolipids [76]. In our study, we did not find an association of depression with 
circulating sphingolipids present on the Metabolon platform. However, we cannot 
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exclude that 4-hydroxycoumarin in the blood affects sphingolipid metabolism in 
the brain specifically.

Other metabolites that were found to be significant in our study include mannitol/
sorbitol, of which increased levels were associated with depression. Higher levels 
of sorbitol in plasma and urine have previously been consistently reported in 
patients with unipolar and bipolar depression and, like hippurate, it has been 
suggested as a diagnostic biomarker of depression [23]. Mannitol/sorbitol are 
sugar alcohols found in food such as fruits and berries and often used in diet/
sugar free foods as sweeteners [77]. Fructose reduced diets have been shown 
to improve gastrointestinal disorders, depression and mood disorders [78]. Our 
AGORA2 analysis suggests that mannitol is mainly secreted by several species 
of Bacteroides, Lactobacillus, Fructobacillus, Alistipes and Bifidobacterium. 
Interestingly, all genera, except for Fructobacillus have previously been associated 
with depression [17], asking for further studies on the role of the microbiome, 
circulating levels of mannitol and depression.

Finally, there were four lipids identified in our study (2-aminooctanoate, 
10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC (16:0/16:1) and 
1-linoleoyl-GPA (18:2)) significantly associated with depression. 1-Palmitoyl-
2-palmitoleoyl-GPC (16:0/16:1) also known as phosphatidylcholine (16:0/16:1) 
or lecithin (HMDB0007969) is commonly found in foods like eggs, soyabean, 
liver, nuts and seeds and is a precursor of choline. Lecithin is believed to cause 
depression by increasing the production of acetylcholine in the brain [79]. When 
fed to animals and humans, lecithin significantly increases the levels of choline 
in blood and brain and of acetylcholine in brain [80-82]. Our study is the first to 
show higher circulating levels of lecithin in the depressed individuals from the 
general population. The other three lipids 2-aminooctanoate, 10-undecenoate 
(11:1n1) and 1-linoleoyl-GPA (18:2) were negatively associated with depression. 
2-Aminooctanoate (alpha-aminocaprylic acid) and 10-undecenoate (11:1n1) 
(undecylenic acid) are neutral hydrophobic molecules for which there is not much 
known in the literature. Lower levels of 10-undecenoate (11:1n1) have been found 
in individuals with non-alcoholic fatty liver disease [83]. 1-linoleoyl-GPA (18:2) is 
a lysophosphatidic acid (LPA 18:2). LPA is a bioactive membrane lipid that acts on 
at least six distinct G protein‐coupled receptors (LPA1–6) and plays a role in pain 
sensitivity and emotional regulation [84]. LPA knock out mice exhibit anxiety-
related behaviour [84, 85].

We found that decreased plasma levels of serotonin, kynurenate, leucine and 
citrulline and higher levels of glutamate were associated with depression. Lower 
plasma/serum levels of serotonin, kynurenate, citrulline and leucine and higher 
levels of glutamate have been reported in relationship to depression in earlier 

4
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studies [40, 41, 86, 87], which also appears consistent with our findings of model 
1. However, we and others have shown that antidepressants affect plasma/serum 
levels of serotonin, glutamate, leucine and kynurenine [87-91]. An important 
finding of our study is that only citrulline remained significantly associated with 
depression after adjusting for antidepressant medication use. Lower levels of 
citrulline and its precursor arginine were previously associated to depression in 
unmedicated individuals [41, 92]. Interestingly, treatment with SSRIs significantly 
increase the levels of plasma citrulline [93]. Further, levels of plasma citrulline 
were found to be significantly increased two hours post treatment with ketamine, 
suggesting a possible mechanism of action of the rapid acting drug [92]. Citrulline 
is an intermediate in the urea cycle and linked to nitric-oxide synthesis [93]. It 
is absorbed by the gut and has useful therapeutic effects against cardiovascular 
diseases [94]. In our study the association of citrulline with depression lost its 
significance, albeit not completely, after adjusting for cardiovascular medication 
use and BMI.

Our study is the first large-scale effort combining metabolites measured on 
assorted, untargeted metabolomics platforms (Metabolon) studied in relationship 
to depression. In addition to confirming several previously identified metabolites 
in smaller studies, we successfully identified novel metabolites that are associated 
with depression. Our findings are robust across different versions of the Metabolon 
platform or the criteria assessing presence of clinical or subclinical depression. 
A possible limitation of our study is that differences in metabolomics platforms 
and technologies that were used by different cohorts to assess depression may 
have resulted in a reduction of statistical power. Older versions of the Metabolon 
platform reported significantly fewer known metabolites compared to the more 
recent implementations. Another possible limitation of our study is the presence 
of residual confounding. After adjusting for medication use and the lifestyle 
factors smoking and BMI, confounding may still be present and may influence the 
results [95]. Also, our MR analysis was most likely underpowered lacking strong 
instrumental variables for both depression and the associated metabolites.

Analysing circulating levels of 806 metabolites from untargeted metabolomics 
platforms in 13,596 individuals, we identified six new associations of metabolites 
with depression including retinol (vitamin A), 4-hydroxycoumarin and four lipids, 
2-aminooctanoate, 10-undecenoate (11:1n1), 1-palmitoyl-2-palmitoleoyl-GPC 
(16:0/16:1) and 1-linoleoyl-GPA (18:2), while confirming known associations 
of hippurate and mannitol/sorbitol. We further show that previously identified 
associations of depression with metabolites belonging to the amino-acid pathways 
including serotonin, kynurenate, leucine and glutamate are likely explained by 
antidepressant medication. Our findings point to effective preventive targets, as 
most of these metabolites are food derived and thus can be altered in patients by 
modifying diet.
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ABSTRACT

Background
A recent hypothesis postulates the existence of an “immune-metabolic depression” 
(IMD) dimension characterized by metabolic dysregulations. Combining data 
on metabolomics and depressive symptoms, we aimed to identify depressions 
associated with an increased risk of adverse metabolic alterations.

Method
Clustering data were from 1094 individuals with major depressive disorder in 
the last 6 months and measures of 149 metabolites from a 1H-NMR platform and 
30 depressive symptoms (IDS-SR30). Canonical correlation analyses (CCA) were 
used to identify main independent metabolite-symptom axes of variance. Then, 
for the replication, we examined the association of the identified dimensions 
with metabolites from the same platform and cardiometabolic diseases in an 
independent population-based cohort (n=6572).

Results
CCA identified an overall depression dimension and a dimension resembling IMD, 
in which symptoms such as sleeping too much, increased appetite, and low energy 
level had higher relative loading. In the independent sample, the overall depression 
dimension was associated with lower cardiometabolic risk, such as (i.e., per SD) 
HOMA-1B -0.06 (95% CI:-0.09;-0.04), and visceral adipose tissue -0.10 cm2 (95% 
CI:-0.14;-0.07). In contrast, the IMD dimension was associated with well-known 
cardiometabolic diseases such as higher visceral adipose tissue 0.08 cm2 (95% 
CI:0.04;0.12), HOMA-1B 0.06 (95% CI:0.04;0.09), and lower HDL-cholesterol levels 
-0.03 mmol/L (95% CI:-0.05;-0.01).

Conclusions
Combining metabolomics and clinical symptoms we identified a replicable 
depression dimension associated with adverse metabolic alterations, in line 
with the IMD hypothesis. Patients with IMD may be at higher cardiometabolic 
risk and may benefit from specific treatment targeting underlying metabolic 
dysregulations.
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INTRODUCTION

Cardiovascular disease (CVD) together with major depressive disorder (MDD) are 
leading causes of mortality and disease burden worldwide [1, 2]. Each of these 
conditions may predispose for the other, and the presence of one condition worsens 
the prognosis of the other [3]. Although the mechanism of this comorbidity is still 
not fully understood, adverse metabolic alterations may serve as the element that 
connects the two conditions [1, 3, 4]. A recent large scale epidemiological study 
in >15,000 individuals analyzing the association between depression and more 
than 200 lipid related metabolites [5] found that depression is associated with a 
metabolic signature that is also found in CVD patients [6]. This metabolic signature 
was characterized by a shift in the lipids levels encompassing less HDL-cholesterol 
and more very low density lipoproteins (VLDL) and triglycerides, in line with a 
higher metabolic syndrome profile in depression [5]. This metabolic signature 
may represent a substrate linking depression to cardiometabolic diseases. 
Another large population-based study in >350,000 individuals [4] concluded that 
the risk factors of CVD (i.e., inflammatory markers (CRP, IL-6) and biomarker 
(triglycerides)) are likely causal for the development of depression.

MDD is a highly heterogeneous disorder: patients with the same MDD diagnoses 
according to DSM-V (Diagnostic and Statistical Manual of Mental Disorders) [7] 
may experience very different symptom profiles [8]. These different clinical 
expressions may be, in turn, differentially related to underlying biological 
dysregulations. Recent evidence suggests that adverse metabolic alterations 
and inflammatory dysregulation map more consistently onto “atypical, energy-
related depressive symptoms”, such as excessive sleepiness, hyperphagia, 
weight gain, and fatigue [9]. This set of symptoms is partially shared with other 
constructs, such as sickness behavior [10] and nosological categories, such as 
atypical depression, seasonal affective disorder, and bipolar disorder [7]. The 
clustering of atypical, energy-related depressive symptoms with inflammatory 
and metabolic alterations indexes an underlying quantitative dimension, labelled 
“immuno-metabolic depression” (IMD), with transdiagnostic value and potentially 
present in psychiatric (depression, bipolar or psychotic disorders) and somatic 
(obesity, diabetes, cardiovascular) disorders characterized by overlapping 
symptomatology or biological dysregulations [9]. Nonetheless, further empirical 
evidence is needed to fully characterize the clustering between specific symptom 
profiles and immuno-metabolic biological dysregulations. The identification of 
depression dimensions characterized by this clustering of clinical and biological 
features could give us a better understanding of the shared biological mechanisms 
between depression and cardiometabolic diseases and potential opening for 
interventions aimed at avoiding their reciprocal influence [11-13]. Furthermore, 
the identification of individuals with this specific form of depression may create 
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awareness amongst healthcare providers and the need to perform more rigorous 
cardiometabolic health checks and interventions.

The main aim of the present study was to identify depression dimensions 
associated with increased risk of adverse metabolic profile by combining data on 
metabolomics and depressive symptoms. First, we applied a data-driven method 
to identify patterns of correlations between depressive symptoms and metabolites 
from a lipid-focused metabolomic platform in >1,000 MDD patients. Previous 
studies aimed at parsing depression heterogeneity through data-driven methods 
followed two conceptually distinct approach (Supplemental figure 1 adapted from 
[14]). In one approach (top-down), studies [15, 16] performed symptom-based 
clustering as a first step and subsequently evaluated the clustering results via 
association with biomarker levels. In the opposite approach (bottom-up), studies 
[17, 18] performed biomarker-based clustering as a first step and subsequently 
evaluated the clustering results via association with clinical features. The novelty 
of the present study is that we merged the two approaches and performed 
clustering based on both symptoms and biomarkers, leveraging their co-variance 
structure. Then, for the replication, we examined the association between the 
identified dimensions and 51 metabolites from the same panel, and clinical 
cardiometabolic diseases such as levels of fasting glucose, insulin resistance, total 
and abdominal adiposity in an independent population-based cohort (n=6572).

METHOD

Study design
The current analysis consists of two parts: the metabolite-symptom clustering 
and the replication (Figure 1). In the first part, we used a data-driven approach 
to dissect the heterogeneity of depression and to identify main independent 
metabolite-symptom dimension of variance in 1094 individuals with depression 
in the last 6 months from the Netherlands Study of Depression and Anxiety cohort 
(NESDA). Then, in the replication, we examined the association between the 
dimensions identified and the cardiometabolic metabolites (51 lipids, fatty acids, 
and low-molecular-weight metabolites) and diseases in an independent dataset 
of 6572 participants from the general population enrolled in the Netherlands 
Epidemiology of Obesity (NEO) study. The research protocol of NESDA was 
approved by the medical ethical committees of the following participating 
universities: Leiden University Medical Center (LUMC), Vrije University Medical 
Center (VUMC), and University Medical Center Groningen (UMCG). The NEO study 
was approved by medical ethics committee of Leiden University Medical Center 
(LUMC). All participants gave written informed consent.
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Part 1: Metabolite-symptom clustering
We performed this analysis on 1094 participants diagnosed with MDD in the 
last 6 months via the structured Composite Interview Diagnostic Instrument 
(CIDI, version 2.1) [19] from NESDA [20]. After an overnight fast, EDTA plasma 
was collected and stored in aliquots at -80°C until further analysis by 1H-NMR 
(Nightingale Health Ltd, Helsinki, Finland) [21] metabolomics platform. This 
metabolomics platform consists of 230 metabolites or metabolite ratios and can 
be classified into 3 clusters [22] as follow: 1) lipids, fatty acids, and low-molecular-
weight metabolites (n= 51); 2) lipid composition and particle concentration 
measures of lipoprotein subclasses (n= 98); and 3) metabolite ratios (n= 81). In this 
analysis, we focused on the first two classes (n=149). Metabolite ratios were not 
used due to redundancy. We processed the metabolomic data based on the protocol 
described in Appendix 1 that was suggested by the manufacturer of the platform 
and has been consistently applied in several large-scale epidemiological studies 
[5, 23]. Blood samples were analyzed in two batches (April 2014 and December 
2014) by 1H-NMR (Nightingale Health Ltd, Helsinki, Finland) [21]. We regressed the 
metabolites on age and batch effect in order to remove their confounding effect.

During the baseline assessment, the presence of major depressive disorder was 
determined with the Diagnostic and Statistical Manual of Mental Disorders, 
Fourth Edition (DSM-IV)-based Composite Interview Diagnostic Instrument (CIDI, 
version 2.1, World Health Organization, 1997) by specially trained research staff. 
Additionally, participants were asked to complete the Inventory of Depressive 
Symptomatology (IDS-SR30), which assesses (via a 4-level response system) the 
presence of 30 depressive symptoms during the last week and their severity [24]. 
Additional measures of body mass index (BMI), waist circumference and fasting 
glucose level are described in details in Appendix 2.

Statistical analysis for metabolite-symptom clustering
Our goal was to identify independent dimensions emerging from patterns of 
correlations between depressive symptoms and metabolites. For that, we used 
canonical correlation analysis (CCA, [25]).

1.A. Principal component analysis (PCA)
Metabolites are correlated to each other; to avoid overfitting and unstable results 
of CCA, data reduction [26] of metabolomics was performed applying PCA to age- 
and batch-adjusted metabolites residuals. PCA is described in more details in 
Appendix 3. We selected principal components explaining the highest proportion 
of variance (components that explained more than 10% of variance) in metabolites. 
Therefore, the next analysis was performed on principal components explaining 
the highest proportion of metabolites variance and 30 depressive symptoms.
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1.B. Canonical correlation analysis (CCA)
CCA [25] is a method that given two sets of variables X and Y (in this case, 
metabolites and depressive symptoms), find a linear combination of X that is 
maximally correlated with a linear combination of Y (i.e., a weighted sum of 
each variable). Detailed definition and description of CCA method explained in 
Appendix 4. In our analysis we chose to proceed with the first two canonical pairs 
that provided more information about the two sets of variables. The relationship 
between the created canonical variables of depressive symptoms and metabolites 
from the same panel and cardiometabolic diseases was validated in an independent 
sample (see replication section).

1.C. Illustrative analyses
In order to better explain the results of CCA and the meaning of its output we 
proposed two additional analyses (point 1.C. In Figure 1). To explore how the first 
two metabolic canonical variates (mCVI and mCVII) classify individuals in terms 
of cardiometabolic diseases (i.e., BMI, waist circumference, and fasting glucose) 
we plotted the predicted level of the cardiometabolic diseases as a function of 
the two metabolic canonical variates (i.e., smoothing function was used for the 
prediction). Furthermore, to evaluate the symptoms contribution to the two 
canonical correlation, for each symptom we calculated the symptoms loadings, 
expressed in Pearson’s correlation coefficient, with the first two symptoms 
canonical variates (sCVI and sCVII).

Part 2: Replication
To replicate the results of previous step, we investigated the association between 
the dimensions identified in the previous step via CCA and metabolomics and 
cardiometabolic diseases in the Netherlands Epidemiology of Obesity (NEO) 
study [27]. The depressive symptoms in NEO study were assessed by IDS-
SR30 [24], the same instrument used in the NESDA study. For the purpose of 
replication, we included only the first class from the 1H-NMR platform (i.e., 51 
lipids, fatty acids, and low-molecular-weight metabolites) in the main results. For 
completeness of data, we showed the result of the entire metabolomic platform 
in the supplementary results since they have large overlap with the standard 
clinical lipid profile. We used the same protocol for processing this metabolomic 
data in the clustering step. The cardiometabolic diseases are described in detail 
elsewhere [27]. From fasting glucose and insulin concentrations, we calculated the 
Homeostasis Model Assessment for Insulin Resistance (HOMA-IR) and HOMA of 
beta-cell function (HOMA-1B) as markers of hepatic insulin resistance and steady-
state insulin secretion [28]. HOMA-IR was calculated as fasting insulin (µU/mL) x 
fasting glucose (mmol/L)/22.5 and HOMA-1B% as 20 x fasting glucose (mmol/l)-
3.5 [28, 29].

5

168239_Alshehri_BNW-def.indd   107168239_Alshehri_BNW-def.indd   107 13-10-2023   13:06:1613-10-2023   13:06:16



108

Chapter 5

Statistical analysis for replication

2.A. Weighting of depressive symptoms
To index the two dimensions identified in the clustering step, we created two 
weighted depressive symptom scores. We weighted each individual item of the 
IDS-SR30 based on extracted CCA weights from the previous step. Then, we 
summed the weighted depressive symptoms to create two weighted IDS scores. 
We standardized weighted IDS scores to a mean of zero and a standard deviation 
of one to allow comparison across the scores.

2.B. Linear regressions
We used linear regression to examine the relationship between the two 
weighted IDS scores as the independent variable and 51 1H-NMR metabolites 
and cardiometabolic diseases (BMI, total body fat, waist circumference, visceral 
adipose tissue, HbA1c, fasting glucose, HOMA-IR, HOMA-1B, total cholesterol, LDL-
cholesterol, HDL-cholesterol, and triglycerides) as dependent variables. We fitted 
four linear regression models, the crude model, model 1, model 2 and, model 3. 
Model 1 was adjusted for age, sex, and educational level. Model 2 was adjusted 
for age, sex, educational level, smoking, alcohol consumption, physical activity, 
and ethnicity. Model 3 was model 2 with additional adjustment for lipid-lowering 
drugs, and antidepressants. The false discovery rate (FDR) method was applied to 
correct for the multiple testing. As the NEO study is a population-based study with 
oversampling of individuals with a BMI > 27 kg/m2, all results are based on BMI-
weighted analysis. The weighting factor is based on BMI distribution in the general 
Dutch population to make our results generalizable to the Dutch population.

RESULTS

Part 1:Metabolite-Symptom clustering
Table 1 shows the main demographic, health- and depression-related characteristic, 
in the NESDA sample of individuals with MDD in the last 6 months.

1.A. Principal component analysis
Data reduction of metabolomics was performed using PCA, identifying three 
principal components that explained more than 10% of the variance in metabolites 
(together explained 75% of the variance) (Scree plot in Supplemental figure 2).

1.B. Canonical correlation analysis
The resulting 3 principal components were used in the CCA analysis and were 
correlated to the 30 depressive symptoms, to identify the main independent 
metabolite-symptom dimensions of variance based on their correlation. The 
correlation between the linear transformation (weights) of metabolites principal 
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components (metabolic canonical variate I, mCVI) and depressive symptoms 
(symptom canonical variate I, sCVI) was 0.30 explaining 54 % of the metabolite-
symptom covariance, for the second pair of canonical variates the correlation 
between mCVII and sCVII was 0.24 explaining 33% of the metabolite-symptom 
covariance (Supplemental figure 3).

Table 1. Characteristics of the study population for the metabolite-symptom clustering 
step (NESDA)

Metabolite-symptom clustering
(NESDA n=1094)

N 1094
Women, n (%) 741 (67.73)
Age (years) (mean, sd) 40.88 (12.11)
High educational level (high) n (%) 306 (27.97)
Use of lipid-modifying medications, yes n (%) 78 (7.13)
BMI (kg/m2) (mean, sd) 25.90 (5.51)
Waist circumference (cm) 89.58 (14.56)
Glucose (mmol/L) 5.20 (1.15)
Use of antidepressant Yes n (%) 477 (43.60)
Total IDS-score (0-84) median (25th ,75th percentiles) 32.50 (24.0,41.0)

Normally distributed data shown as mean and standard deviation (SD), skewed 
distributed data shown as median (25th, 75th percentiles), and categorical data are 
shown as percentage. High education level: university or college education, while other 
education level: none, primary school, or lower vocational education. IDS-SR30: Inventory 
of Depressive Symptomatology (self-report). BMI: body mass index. NESDA: Netherlands 
study for depression and anxiety.

1.C. Illustrative analyses
To explore how the first two metabolic canonical variates (mCVI and mCVII) 
classify individuals in terms of cardiometabolic diseases (i.e., measures of BMI, 
waist circumference, and fasting glucose) we plotted the predicted level of 
the diseases as a function of the two metabolic canonical variates. Level plots 
depicted in Figure 2 show that high values in BMI, waist circumference, and fasting 
glucose tended to cluster at high level of mCVII and low levels for mCVI. Figure 3 
shows the loading, expressed as Pearson’s correlation coefficient, of IDS-SR item 
on the two symptoms canonical variates (sCVI and sCVII). In the first variate, 
correlation coefficients were substantially consistent across the entire spectrum 
of items, including mood, cognitive and somatic symptoms. In the second variate, 
the loading of specific items such as difficulty falling asleep, sleeping too much, 
increase weight and appetite, low energy level and gastrointestinal problems were 
relatively higher as compared to the other symptoms.

5
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Figure 2. Level plot of the predicted cardiometabolic health conventional biomarker as 
functions of the first and second metabolic canonical variates.

We interpreted the first canonical variate CVI, explaining a larger proportion 
of symptom-metabolite covariance (54%), as an overall depression dimension 
characterized by a wide array of symptoms (sCVI, Figure 3) and lower levels of 
cardiometabolic diseases (mCVI, Figure 2). The second variate, explaining 33% 
of the symptom-metabolite covariance, partially resembled the postulated IMD 
construct [9], with relevance for energy-related behavioral symptoms and higher 
cardiometabolic diseases. Thus, for interpretability we labelled the two canonical 
variates, respectively, “overall depression” and “IMD”.
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Figure 3. Canonical loading of depressive symptoms on the symptoms canonical variates
sCV I: First symptoms canonical variates I. sCV II: Second symptoms canonical variates.

5
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Part 2: Replication
The baseline characteristics for all 6572 participants of the NEO cohort included in 
the replication step are shown in Supplemental table 1. The mean age in the NEO 
population was 55.7 years (standard deviation (SD)): 6 years, and the median of 
the IDS-SR30 questionnaire was 8.0 points (4, 13).

2.A. Weighting of depressive symptoms
We created two weighted depressive symptoms scores labelled “overall depression” 
and “IMD” with the weights derived in CCA for, respectively, the first and second 
canonical variate.

2.B. Linear regression
We examined the association of these weighted scores with 51 metabolites and 
cardiometabolic diseases (levels of BMI, total body fat, waist circumference, 
visceral adipose tissue, HbA1c, fasting glucose, HOMA-IR, HOMA-1B, total 
cholesterol, LDL-cholesterol, HDL-cholesterol and triglycerides). Figures 4A and 
4B depict the linear regression effect estimates and 95% confidence intervals 
for the association between the weighted symptom sum score and the 51 lipids, 
fatty acids, and low-molecular-weight metabolites, and cardiometabolic diseases 
adjusted for age, sex, and educational level (model 1). The results of all crude 
and adjusted models can be found in Supplemental table 2 and 3. In general the 
two weighted symptoms scores showed divergent pattern of results: IMD showed 
metabolic alterations linked to increased cardiometabolic risk, while overall 
depression score showed opposite associations. IMD was associated with (per 
standard deviation (SD)) higher glycoprotein acetylase 0.08 mmol/L (95% CI: 
0.06;0.11), apolipoprotein B 0.06 g/L (95% CI:0.03;0.08), triglyceride levels 0.09 
mmol/L (95% CI: 0.06;0.11), total body fat 0.06% (95% CI:0.05;0.08), visceral 
adipose tissue 0.08 cm2 (95% CI:0.04;0.12), HOMA-1B 0.06 (95% CI: 0.04;0.09), 
and lower HDL-cholesterol levels -0.03 mmol/L (95% CI: -0.05;-0.01). In contrast, 
the overall depression was associated with (per SD) glycoprotein acetylase -0.11 
mmol/L (95% CI: -0.14;-0.09), apolipoprotein B -0.04 g/L (95% CI: -0.06;-0.01), 
triglyceride levels -0.08 mmol/L (95% CI: -0.11;-0.06), total body fat -0.07% 
(95% CI:-0.09;-0.06), visceral adipose tissue -0.10 cm2 (95% CI:-0.14;-0.07), 
HOMA-1B -0.06 (95% -0.09;-0.04), and HDL-cholesterol levels 0.07 mmol/L (95% 
CI: 0.05;0.09) (Figure 4A, 4B). We repeated the analysis of the linear regression 
with additional adjustment for lipid-lowering drugs (model 3) and results did not 
notably change (Supplement table 2,3).
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DISCUSSION

Using a data-driven method, we combined metabolomics and clinical symptoms 
data to dissect depression heterogeneity and identify independent underlying 
dimensions in participants diagnosed with MDD in the last 6 months from NESDA 
cohort (n=1094). Then, we replicated our results by examining the association 
between the identified dimensions and 51 metabolites from the same lipidomic 
panel, and cardiometabolic diseases in an independent dataset of 6572 participants 
from the general population enrolled in the NEO study.

We used the NESDA sample including subjects with a recent MDD diagnosis to 
obtain a sharper picture, leveraging the higher intensity of depressive symptoms of 
clinical relevance, of the covariance between symptoms and metabolites commonly 
associated with cardiometabolic risk. We identified a major dimension reflecting 
overall depression explaining a large proportion (54%) of symptom-metabolite 
covariance, and innovatively characterized by a wide array of symptoms and 
reduced levels of cardiometabolic diseases. A second dimension explaining 
33% of symptom-metabolite covariance emerged as characterized by higher 
cardiometabolic diseases and higher relative relevance for symptoms like difficulty 
falling asleep, sleeping too much, increase weight and appetite, low energy level 
and gastrointestinal problems. This second dimension partially resemble the 
recently pustulated [9] construct of IMD, defined by the clustering of inflammatory 
and metabolic dysregulations with behavioral energy-related symptoms. We 
labelled therefore the first and second dimensions “overall depression ” and “IMD”. 
In the replication step, we found that the IMD dimension was associated with a 
metabolic profile similar to the metabolic profile reported in individuals with 
cardiometabolic diseases such as higher triglyceride levels, visceral adipose tissue 
content, branched chain amino acids, glycoprotein acetylase, insulin resistance 
and lower HDL-cholesterol levels. In contrast, the associations between these 
metabolites and the overall depression dimension were in the opposite direction, 
indicating a lower cardiometabolic risk.

The present finding confirm the presence of partially divergent correlation 
structures between specific depressive symptom profiles and metabolic 
dysregulations. The weights estimated in NESDA certainly reduced or magnified 
the relevance of certain symptoms in relation to metabolic alteration. However, 
results obtained after weighting of the different symptoms are consistent with 
those obtained using unweighted depressive symptoms in previous studies. 
In a previous work [30], we investigated the association between individual 
depressive symptoms measured with IDS-SR30 and overall and abdominal 
adiposity (known proxy for adverse metabolic alteration) indexes such as total 
body fat, and visceral adipose tissue in NEO study. Overall, adiposity indexes were 
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associated with a wide variety of depressive symptoms, but were more strongly 
associated with energy-related symptoms (i.e., hyperphagia, low energy level, 
and increased physical exhaustion) found to contribute relatively more strongly 
to the IMD-like dimension identified in the present study. Moreover, this is in 
line with the previous research in this field that confirmed that the presence 
of homeostatic shift toward increase energy (increased appetite) intake and 
decrease energy expenditure (sleeping too much, difficulty falling asleep [31] 
and low energy level) were more strongly associated with inflammatory and 
metabolic biomarkers considered as risk factors for CVD. In earlier work based 
on NESDA data, among participants with active depression episode, increased 
a neuroendocrine energy homeostasis marker (leptin) [32] was associated 
(independently from BMI) with a depressive symptoms profile defined by increase 
the intake (increase appetite/weight) and decrease the expenditure (fatigue, low 
energy) [33]. Likewise, in the same population, another study confirmed the 
relationship between cardiometabolic diseases, such as increased abdominal 
adiposity, inflammation markers, and metabolic syndrome, and increased appetite 
during the active depressive episode [13]. In agreement with above-mentioned 
well characterized clinical cohort studies, similar results were obtained from a 
large population-based studies [34] that confirmed the association between this 
cluster of symptoms and higher CRP. Our findings are also consistent with previous 
literature showing a correlation between mood-related syndrome characterized 
by the presence of similar atypical energy-related symptom profile and metabolic 
dysregulation. For example, bipolar disorder has been linked to impairment of 
glucose metabolism [35], seasonal affective disorder with dysregulations of major 
metabolic regulator (i.e., adiponectin) [36], and sickness behaviour with immuno-
metabolic alterations [37]. Also, in a small study that combined neuroimaging and 
biochemical approaches, hyperphagia during depression was strongly associated 
with endocrine dysregulation and inflammation [38]. Interestingly, earlier [39] 
and recent [40] large-scale genomic studies found that the genetic overlap between 
BMI, CRP and leptin with depression is symptom specific; this overlap was only 
found in depressed patients with increased hypersomnia [40], weight and appetite 
[39, 40]. In addition, a cross-disorder systematic review identified a set of genes 
- coding for energy balance, metabolism, circadian rhythm, inflammation and 
HPA-axis activity – as potential shared genetic basis for cardiometabolic diseases, 
depression and bipolar disorder [41]. Another study [42] that used neuroticism 
as genetic specifier to stratify depression patients showed that the portion of the 
common genetic liability between depression and neuroticism was also share 
with other psychiatric disorders; interestingly, the genetic liability not shared 
with neuroticism was positively correlated with metabolic phenotypes and CVD. 
These results confirm the existence of different dimension within the construct 
of depression rooted in underlying biological and genetic mechanisms. Based 
on evidence along this line of research, the existence of an “immuno-metabolic 

5

168239_Alshehri_BNW-def.indd   115168239_Alshehri_BNW-def.indd   115 13-10-2023   13:06:1713-10-2023   13:06:17



116

Chapter 5

depression (IMD)” dimension of depression was hypothesized [9]. This dimension 
is characterized by the clustering of immuno-metabolic biological alterations and 
behavioral symptom related to homeostasis dysregulation, which in turn can be 
the link between depression and CVD [9].

Many plausible mechanisms can directly or indirectly lead to or result from this 
homeostatic shift as maintaining energy homeostasis is governed by biological, 
behavioral and environmental factors [43]. For example, low-grade inflammation 
which associated with adiposity and depression [44], favor -as proposed previously 
[45]- the fast aerobic glycolysis in the immune cells over other efficient but yet 
slower energy production pathways (e.g., lipid oxidation). This appropriation of 
the available cellular fuel done by immune cells results in low energy available to 
any other activities. When the body has low energy level, the circadian rhythm 
and sleep cycle disturb as well (i.e., feeling tired and sleeping during the day which 
affect sleeping time and quality during the night) [45]. Moreover, dysregulation 
of neuroendocrinological signaling (e.g., leptin, and insulin which have crucial 
metabolic roles) may diminish their function as satiety inducers hormones which 
lead to the development of increased appetite and decreased energy level symptoms 
[43]. These biological processes interact with behavioral/environmental factors 
that contribute in regulating of the energy homeostasis. Obesogenic environment 
(e.g., low physical activity demand, and availability of palatable food) could shift 
the energy balance toward energy accumulation which in turn can result in 
low grade inflammation and neuroendocrinal dysregulation [46, 47]. Putting it 
together, the IMD symptoms profile may reflects a prolonged homeostatic failure 
that closely interconnected with neuroendocrinal and metabolic dysregulation 
that also reported in patients with CVD [48].

Fully characterizing the IMD dimension identified in the present study, in terms 
of its clinical manifestation and underlying biological mechanisms is the first 
step in the path to a personalized approach for patients with depression [49]. 
This full characterization may help in guiding the choice of the most suitable 
intervention to alleviate the symptoms burden or to prevent its adverse prognosis. 
Moreover, understanding the clinical, and biological characteristics of this 
depression dimension will increase the precision of the genetic studies that aim 
to comprehend depression genetic architecture [50]. Future research is needed 
to help us understand to what extent treating underlying metabolic dysregulation 
will contribute to mitigate this symptoms profile adversity. Nonetheless, we 
also need to know to what degree will behavioral intervention that target this 
symptoms profile such as exercising, dieting and sleep hygiene can improve the 
cardiometabolic health profile. Moreover, future genetics studies using techniques 
such as Mendelian Randomization are needed to test the causal direction between 
metabolic dysregulation and specific depressive symptom profile [51].
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To the best of our knowledge, this study is the largest study that exploits jointly 
metabolomic and clinical symptom data to dissect depression dimensionality 
in a large, well-defined clinical (i.e., subjects with a psychiatric diagnosis) 
cohort (NESDA). Moreover, we replicate our findings from the clustering set in 
a population based large cohort (NEO). Furthermore, while previous studies [16, 
52] investigating the biological correlates of depression subtypes commonly 
examined a very limited number of biomarkers, we used an extensive lipid focused 
metabolomics platform (149 metabolites) and 12 cardiometabolic diseases, 
including four extensive adiposity measures, glucose, insulin and lipoprotein 
measures. While we confirmed the link between an IMD-like depression dimension 
and cardiometabolic risk [9], a novel aspect of the present findings is that we 
also provided evidence of an independent dimension associated with lower 
cardiometabolic risk, potentially eluding to protective factors and resilience. 
However, some methodological issues should be considered. First, we performed 
the metabolite-symptom clustering and replication in two different samples. On 
the other hand, the samples’ differences may also be considered a strength: the 
connection between metabolites indexing cardiometabolic risk and IMD-like 
depressive symptoms could be already detected in the general population, where 
symptom severity does not cross the clinical threshold. This may be relevant 
in terms of potential preventive interventions. Second, we should acknowledge 
the limitation of the NMR metabolite platform, which mainly is a lipidomic 
metabolomic platform. Accordingly, the term metabolic dysregulation should be 
interpreted based on the used metabolomic platform. Third, based on the cross-
sectional study design, we are unable to infer the directionality of the relationship 
between depressive symptoms and adverse metabolic alterations.

In the present study, using a data-driven method we identified two independent 
depression dimensions differentially related with cardiometabolic diseases, 
such as higher triglycerides, higher visceral fat content, lower HDL-cholesterol 
levels and insulin resistance in the replication step. Our findings confirm that 
depression is associated with metabolic alterations that could represent the 
mechanism linking depression with CVD. However, these metabolic alteration 
are not present in all forms of depression. Depressed patients with IMD may be 
at higher cardiometabolic risk and may require specific additional treatment 
targeting underlying metabolic dysregulations.

5
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SUPPLEMENTARY MATERIAL

Full version of supplementary materials can be found through the following link:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9874986/bin/S0033291 
721001471sup001.docx

Appendix 1. Processing the metabolomics data
Values of metabolites that could not be quantified were set as missing for all 
individuals. Furthermore, metabolite values with outlying concentrations (± 5 
SD) were additionally set as missing. A value of 1 was added to all metabolite 
values, which were subsequently natural log-transformed to approximate 
normality. The obtained values were scaled to standard deviation units to enable 
comparison. This protocol for processing the metabolomic data was suggested 
by the manufacturer of the platform and has been consistently applied in several 
large-scale epidemiological studies [1, 2]. Blood samples were analyzed in two 
batches (April 2014 and December 2014) by 1H-NMR (Nightingale Health Ltd, 
Helsinki, Finland) [3]. We regressed the metabolites on age and batch effect in 
order to remove their confounding effect.

Appendix 2. Additional measures of body mass index (BMI), waist 
circumference and fasting glucose level
Body mass index (BMI), waist circumference and fasting glucose level were used in 
the analysis to examine the relationship between CCA output and cardiometabolic 
diseases. Height and weight were measured to calculate BMI in kg/m2 as an index 
of general adiposity. Waist circumference (cm), defined as the minimal abdominal 
circumference between the lower edge of the rib cage and the iliac crests, was 
measured by trained clinical staff according to a standardized procedure as index 
of abdominal adiposity. Glucose was measured from fasting plasma samples by 
using standard laboratory technique.

Appendix 3. Principal component analysis (PCA)
PCA is an orthogonal linear transformation, that scalarly projected the data to a 
new coordinate system in which the maximum variation in the data projected on 
the first coordinate (i.e. first principal component), the second maximum variation 
projected on the second coordinate, and so on [4].

Appendix 4. Canonical correlation analysis (CCA)
CCA [5] is a method that, given two sets of variables X and Y (in this case, 
metabolites and depressive symptoms), finds a linear combination of X that is 
maximally correlated with a linear combination of Y (i.e., a weighted sum of each 
variable). The linear transformation weights were chosen such that the correlation 
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between resulting linear combinations is maximized. These linear combinations 
are called canonical variates (i.e., mCV (metabolites canonical variates), sCV 
(symptoms canonical variates)). Together mCV and sCV are called a canonical 
pair and the correlation between this canonical pair is called the canonical 
correlation. In a specific dataset, it is possible to find multiple canonical pairs 
such that canonical pairs are uncorrelated to each other and equal to the number 
of variables in the smallest dataset. In our analysis we chose to proceed with the 
first two canonical pairs that provided more information about the two sets of 
variables. The relationship between the created canonical variables of depressive 
symptoms and metabolites from the same panel and cardiometabolic diseases was 
validated in an independent sample (see replication section).
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ABSTRACT

Background
Adiposity has been shown to be linked with atypical energy-related symptoms 
(AES) of depression. We used genomics to separate the effect of adiposity from 
that of metabolic dysregulations to examine whether the link between obesity and 
AES is dependent on the presence of metabolic dysregulations.

Method
Data were from NEO (n=5734 individuals) and NESDA (n=2238 individuals) 
cohorts, in which the Inventory of Depressive Symptomatology (IDS-SR30) was 
assessed. AES profile was based on four symptoms: increased appetite, increased 
weight, low energy level, and leaden paralysis. We estimated associations between 
AES and two genetic risk scores (GRS) indexing increasing total body fat with 
(metabolically unhealthy adiposity, GRS-MUA) and without (metabolically healthy 
adiposity, GRS-MHA) metabolic dysregulations.

Results
We validated that both GRS-MUA and GRS-MHA were associated with higher total 
body fat in NEO study, but divergently associated with biomarkers of metabolic 
health (e.g., fasting glucose and HDL-cholesterol) in both cohorts. In the pooled 
results, per standard deviation, GRS-MUA was specifically associated with a higher 
AES score (β=0.03, 95%CI: 0.01; 0.05), while there was no association between 
GRS-MHA and AES (β=-0.01, 95%CI: -0.03; 0.01).

Conclusion
These results suggest that the established link between adiposity and AES profile 
emerges in the presence of metabolic dysregulations, which may represent the 
connecting substrate between the two conditions.
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INTRODUCTION

The bidirectional relationship between obesity and depression has been well-
established [1]: the presence of one of these conditions increases the risk of 
developing the other [2-5]. There is some evidence for a causal role of obesity in 
developing depression, though much still has to be elucidated [6, 7]; not every 
individual with depression is obese, and not every obese individual is depressed. 
The association between obesity and depression is complicated by heterogeneity 
on both sides.

Obesity is a metabolically complex and heterogenous condition. One type of 
obesity, known as “metabolically unhealthy”, is interwoven with cardiometabolic 
diseases, endocrinological alteration, and inflammation [8]. However, about 30 
% of obese individuals are “metabolically healthy” [9], and excess total body fat 
is disconnected from these metabolic alterations [8]. A previous study by Ji et 
al., which combined data from genome-wide association studies on total body fat 
percentage and biomarkers of metabolic health, identified 14 single nucleotide 
polymorphisms (SNPs) associated with increased total body fat and a favourable 
metabolic profile characterised by higher circulating levels of HDL-cholesterol, 
and lower levels of triglycerides [10].

Similar to obesity, depression is a heterogeneous disorder. Individuals with a 
diagnosis of depression may express different symptom profiles that, in turn, are 
linked to different metabolic adversities. Emerging evidence [1, 11] indicates that 
the overlap between obesity and depression is stronger in individuals expressing 
atypical depressive symptoms related to altered energy intake/output balance, 
such as increased sleepiness, increased appetite, increased weight, low energy level 
and leaden paralysis. Consistently, in our earlier work [12], the four most strongly 
associated symptoms with increased total body fat were atypical energy-related 
symptoms (AES), namely increased appetite, leaden paralysis, low energy level, 
and increased weight. This connection is also supported by large-scale genomics 
studies showing genetic covariance between metabolic traits and these AES [13, 
14].

The mechanism underlying the relationship between obesity and specific 
depressive symptoms known as atypical energy-related symptoms (AES) profile 
is unknown. We expect that metabolic dysregulations may represent the shared 
link connecting obesity with the AES profile. Studies have shown that the atypical 
energy-related symptom profile is associated with an adverse immuno-metabolic 
profile, such as BMI and fasting glucose [15, 16], and biomarkers of neurotoxicity 
(kynurenine and quinolinic acid) related to low grade inflammation [17]. In the 
present study, we used genomics to separate the effect of adiposity from that of 
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metabolic dysregulations to examine whether the link between obesity and AES 
is dependent on metabolic dysregulations. We used the same genetic instruments 
applied by Tyrrell et al. [7] to inspect the causal role of adiposity in the development 
of depression in the UK Biobank. They used two genetic risk scores (GRS, reflecting 
an individual’s genetic liability for a given trait) with a similar effect on total body 
fat but an opposing relationship with metabolic dysregulations (one predicting 
high total body fat without metabolic dysregulations and the other predicting 
high total body fat with metabolic dysregulations). The authors could not observe 
different patterns of associations between the two GRS and overall depression [7] 
but were unable to analyse specific depression symptom profiles. We expect that 
the association may differ when focusing on specific depressive symptom profiles.

For the current study, we used two large datasets from The Netherlands 
Epidemiology of Obesity study (NEO study, a population-based cohort including 
>6600 participants with oversampling of overweight and obese individuals) and 
from the Netherlands Study of Depression and Anxiety (NESDA, a prospective 
cohort enriched with ~3000 participants with depressive disorders). In these 
studies, we derived two GRS: 1) a GRS of metabolically healthy adiposity (GRS-
MHA), consisting of the SNPs associated with higher total body fat but a favourable 
metabolic profile identified by Ji et al. [10]; (2) a GRS of metabolically unhealthy 
adiposity (GRS-MUA), linked to higher adiposity and unfavourable metabolic 
profile based on a GWAS of BMI (See method section and appendix 1) [7, 10, 18]. 
We hypothesised that two GRS scores, built to index consistent association with 
total body fat but opposite direction associations with biomarkers of metabolic 
health (e.g., HDL-cholesterol and fasting glucose), and AES (i.e., increased 
appetite, increased weight, low energy level, and leaden paralysis). In particular, 
we expected that AES profile to be specifically linked with GRS-MUA reflecting 
increased adiposity accompanied by metabolic dysregulations.

METHOD

Study cohorts

The Netherlands Epidemiology of Obesity (NEO) study
NEO study is a population-based cohort study including 6671 men and women aged 
45 to 65 years [19]. All inhabitants with a self-reported body mass index (BMI) 
of 27 kg/m2 or higher and living in the greater area of Leiden, the Netherlands, 
were eligible to participate in the NEO study. In addition, all inhabitants aged 
between 45 and 65 years from one adjacent municipality (Leiderdorp, the 
Netherlands) were invited to participate irrespective of their BMI, allowing for 
a reference distribution of BMI. Prior to the study visit, participants completed 
questionnaires at home with respect to demographic, lifestyle, and clinical 
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information. Participants visited the NEO study centre after an overnight fast 
for an extensive physical examination, including anthropometry. This analysis 
included 5734 unrelated participants of European ancestry with available genetic 
and phenotypic information.

Netherlands Study of Depression and Anxiety (NESDA)
NESDA is an ongoing longitudinal cohort study that aims to describe the long-
term course and consequences of depression and to examine its interaction with 
biological and psychosocial factors [20]. At baseline, 2981 individuals aged 18 
through 65 years with depressive and/or anxiety disorders (confirmed by the 
Composite International Diagnostic Interview (CIDI, version 2.1.)) and healthy 
controls were included from the community, primary care, and secondary care 
settings between 2004 and 2007. The assessment included a diagnostic interview 
to assess the presence of depressive and anxiety disorders, a medical exam, and 
several questionnaires on symptom severity, other clinical characteristics and 
lifestyle. Participants were followed-up during four biannual assessments. For 
the current study, we used data from unrelated individuals of European ancestry 
with genetic information at the baseline data (n=2238) and 4 subsequent follow-up 
waves in which IDS-SR30 symptoms were assessed (total observations=11152). 
The research protocol of NESDA was approved by the medical ethical committees 
of the following participating universities: Leiden University Medical Centre, Vrije 
University Medical Centre, and University Medical Centre Groningen.

Genetic risk scores
Genotyping, quality control, and imputation of GWAS data for both cohorts were 
previously described in detail [21, 22] (Appendix 2). In each cohort, we created two 
genetic risk scores (GRS) following the procedure previously proposed by Tyrrell 
et al. [7] (Appendix 1): the first one is metabolically healthy adiposity (GRS-MHA) 
included the 14 SNPs that were identified by Ji et al. and associated with higher 
total body fat but with a favourable metabolic profile indexed by the following 
biomarkers: HDL-cholesterol, sex hormone binding globulin, triglycerides, fasting 
insulin, adiponectin, and alanine transaminase (Appendix 1) [10]. The second 
GRS (the metabolically unhealthy adiposity (GRS-MUA)) included 76 SNPs that 
were linked to higher adiposity and unfavourable metabolic profile GRS index an 
individual’s lifetime genetic liability for a certain trait and are built as weighted 
sums of genetic variants associated with that trait. For each individual, the number 
of trait-increasing alleles carried at each SNP (0,1 or 2) is weighted for the effect 
size of that SNP in a GWAS of the trait of interest and then summed. In each cohort, 
the two GRS were standardized to a mean of zero and a standard deviation of one.

6
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Atypical energy-related depressive symptoms (AES)
As described in a previous study [15], the AES profile was based on the sum score 
of items extracted from the Inventory of Depressive Symptomatology (IDS-SR30)). 
The IDS-SR30 assesses (via a 4-points likert scale) the presence of 30 depressive 
symptoms during the last week and their severity [23]. The symptoms used in the 
AES included the first four top-ranking symptoms associated with total body fat 
in a previous analysis in the NEO study [12], namely increased appetite, leaden 
paralysis, low energy level, and increased weight. Increased sleepiness, previously 
included among atypical energy-related symptoms [15], was not among the top-
ranking body-fat related symptoms and was not considered in primary analyses. 
In NESDA, we used baseline and four follow-up waves. AES scores at each wave 
were averaged in order to index the participant’s long-term exposure to depressive 
symptoms. In each cohort, the AES score was standardized to a mean of zero and 
a standard deviation of one.

Total body fat and biomarkers of metabolic health
To benchmark the relationship between the two GRS and the total body fat and 
blood biomarkers of metabolic health, we used measurements of total body fat (i.e., 
total body fat was only available in the NEO study) and biomarkers of the same – or 
very closely related - traits used in the training of GRS-MHA, including triglyceride, 
LDL-cholesterol, HDL-cholesterol (i.e., lipid profile), and fasting glucose (i.e., 
glucose profile). Additionally, we tested the association with the inflammatory 
biomarkers, C-reactive protein (CRP) in both cohorts and interleukin-6 (IL-6) 
in NESDA, previously shown [15] to be associated with atypical energy-related 
symptoms. Measurements details about biomarkers of metabolic health are 
provided in Appendix 3.

Statistical analysis
A schematic representation of the main elements of the study structure and the 
two analytical steps is depicted in Figure 1.

A. Benchmarking of GRS-MUA, GRS-MHA and AES against total body fat and 
biomarkers of metabolic health
This step consists of two parts (A.1 and A.2) (Figure 1). In the first part of step one 
(A.1), the associations of GRS-MUA, GRS-MHA and AES with total body fat were 
investigated in the NEO study. This step aimed to validate that the increase in all 
three instruments were associated with higher total body fat as the benchmark 
measure for adiposity. In the second part of step one (A.2), we estimated the 
association of GRS-MUA and GRS-MHA with the following biomarkers of metabolic 
health: triglyceride, LDL-cholesterol, HDL-cholesterol, fasting glucose, and CRP 
both in NEO and NESDA cohorts. The aim was to validate the different directions 
associations with biomarkers of metabolic health of the two GRS (GRS-MUA and 
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GRS-MHA). Associations were estimated with linear regression models adjusted 
for age, sex and genetic ancestry-informative principal components. A.1 analyses 
were run only in NEO (due to availability of total body fat measure); A.2 analyses 
were run in parallel in NEO and NESDA and study-specific estimates were pooled 
using a fixed-effect meta-analysis.

Figure 1. A schematic representation of the main elements of the study structure and the 
two analytical steps
GRS-MUA: genetic risk score-metabolically unhealthy adiposity. GRS-MHA: genetic risk score: 
metabolically healthy adiposity. AES: atypical energy-related depressive symptoms. NEO study: 
The Netherlands epidemiology of obesity study. NESDA: The Netherlands study of depression 
and anxiety.

B. Association between GRS-MUA, GRS-MHA and Atypical energy-related 
symptom profile (AES)
In this main step, we estimated the association of GRS-MUA and GRS-MHA with 
AES. The aim of these analyses was to show divergent associations, consistently 
with the associations with metabolic biomarkers in A.2. GRS-MUA would be 
expected to show a positive association with AES, and GRS-MHA would be 
expected to show a negative association with AES. As in A.2, we used linear 
regression models adjusted for age, sex and genetic ancestry-informative 
principal components, and we pooled estimates obtained in NEO and NESDA using 
fixed-effect meta-analysis. To illustrate the findings of this step, we also used 
logistic regression models adjusted for age, sex and genetic ancestry-informative 
principal components for the associations between GRS-MUA, GRS-MHA and 
individual atypical energy-related symptoms (dichotomized as low vs high). The 

6

168239_Alshehri_BNW-def.indd   131168239_Alshehri_BNW-def.indd   131 13-10-2023   13:06:1813-10-2023   13:06:18



132

Chapter 6

dichotomization was applied differently in NEO (low =0 vs high=1-3) and NESDA 
(low=0-1 vs high= 2-3) cohorts based on the different level of average symptom 
endorsement – lower in the population-based NEO and higher in the clinically-
enriched NESDA cohort - as previously prescribed [12, 24]. In NESDA, individual 
atypical energy-related symptoms in the baseline and the four follow-up waves 
were averaged before the dichotomization. Furthermore, we added two sensitivity 
analyses in the linear regression model in which we first investigated the impact 
of the inclusion of increased sleepiness symptom among atypical energy-related 
symptom profile (i.e., by adding it as an extra symptom to the score) on the results. 
Second, to further confirm the specificity of the associations detected for AES, we 
derived similarly to previous work [15-17] a melancholic symptom profile score 
(0-24 range) including the following melancholic features [25]: diurnal variation 
(mood worse in the morning), early morning awakening, distinct quality of mood, 
excessive guilt, decreased appetite, decreased weight, psychomotor agitation and 
psychomotor retardation. All analyses were done using R version 4.0.2, and for 
the meta-analysis step, package (rmeta) was used.

RESULTS

The baseline characteristics for 5734 participants of the NEO study and 2238 
participants of the NESDA included in this study are shown in Supplemental Table 
1. The median of the AES in the NEO population was 1 point (25th-75th percentiles: 
0-3), while the median of AES in the NESDA population was 2 points (25th-
75th percentiles: 1-3.6). The correlation between metabolic and inflammatory 
biomarkers are depicted in Supplemental Figure 1.

A. Benchmarking of GRS-MUA, GRS-MHA and AES against total body fat and 
biomarkers of metabolic health
The analyses in the first part (A.1) were done only in the NEO study. All three 
instruments (GRS-MUA, GRS-MHA, and AES) were associated with increased total 
body fat in the same direction. Effect estimate (β) in percentage total body fat 
per standard deviation (SD) increase of 1) GRS-MUA equal to: 0.23% (95% CI: 
0.08; 0.39), 2) GRS-MHA 0.31% (95% CI: 0.15; 0.46), and 3) AES 1.43% (95% CI: 
1.28; 1.59). The association between total body fat and AES was substantially 
similar when increased weight symptom was removed from the AES score 1.49, 
95%CI (1.34;1.65). Supplemental Table 2 shows the results of the linear regression 
analysis of the associations between the three instruments (GRS-MUA, GRS-MHA, 
and AES) and total body fat in the NEO study. Figure 2 depicts the predicted values 
of total body fat as a function of above mentioned three instruments. These results 
confirmed that the two GRS and the AES profile were consistently aligned to body 
fat. Then, the second part of this step (A.2) confirmed that the GRS-MUA and GRS-
MHA were differently associated with the biomarkers of metabolic health in NEO 
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and NESDA cohorts (Supplemental Table 2 for cohort specific association). Figure 
3 depicts the pooled (and supplemental table 3 shows cohort-specific) effect 
estimates and 95% confidence intervals for the association of the two genetic 
risk scores and the biomarkers of metabolic health. GRS-MUA was associated 
with an adverse metabolic profile such as (per SD) higher fasting glucose 0.03 
mmol/L (95% CI: 0.01; 0.05) and lower HDL-cholesterol -0.02 mmol/L (-0.04; 
0.00). The GRS-MHA was linked to a favourable metabolic profile, such as (per 
SD) lower fasting glucose -0.03 mmol/L (-0.05; 0.00) and higher HDL-cholesterol 
0.07 mmol/L (0.05; 0.09). GRS-MUA and GRS-MHA were not associated with the 
inflammatory biomarker C-reactive protein (CRP) in both cohorts and IL-6 in 
NESDA (Supplemental Table 3).

Figure 2. Predicted values of total body fat in the NEO study as function of the GRS-MUA, 
GRS-MHA, and AES
SD: standard deviation. AES: Atypical energy-related symptom profile: a sum score of the 
four depressive symptoms, increased appetite, increased weight, low energy level, and leaden 
paralysis. The grey area represents 95% confidence interval.

6
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Figure 3. Pooled results of effect estimates of the linear regression between the genetic 
instruments (GRS-MUA, GRS-MHA) and biomarkers of metabolic health, model adjusted 
for age, sex , and genetic ancestry-informative principal components
GRS-MUA: Genetic risk score metabolically unhealthy adiposity, GRS-MHA: Genetic risk score 
metabolically healthy adiposity. SD: standard deviation

B. Association between GRS-MUA, GRS-MHA and atypical energy-related 
symptom profile
Finally, we examined the association between the two genetic risk scores (GRS-
MUA, GRS-MHA) and the AES profile. Figure 4 shows pooled estimates and 95% 
CIs, and supplemental table 4a shows cohort-specific effect estimates and 95% CIs 
of the associations with AES from linear regression models adjusted for age, sex, 
and genetic ancestry-informative principal components. GRS-MUA was specifically 
associated with higher AES (per SD) 0.03 (95% CI: 0.01;0.05); in contrast, GRS-
MHA was not associated with AES -0.01 (-0.03;0.01). Supplemental Table 6 shows 
the results of the association between GRS-MUA, GRS-MHA and individual atypical 
energy-related symptoms that showed profiles of associations similar to the overall 
score of AES. This may suggest that the selected symptoms may have converging 
biology and that the overall AES association is not driven by a particular individual 
symptom. Adding increased sleepiness to the AES yielded similar results indicating 
that a substantial proportion of genetic co-variance between GRS-MUA and AES 
was already captured by the four symptoms of increased appetite, increased 
weight, low energy level, and leaden paralysis. Figure 4 and Supplemental Table 
5a show that neither GRS-MUA nor GRS-MHA were associated with melancholic 
symptom profile. This finding suggests that the detected link between GRS-MUA 
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and AES is specific for this symptom profile. Finally, we repeated this step (B) 
using BMI-weighted analyses in the NEO study. Since NEO is a population-based 
study with oversampling of individuals with a BMI > 27 kg/m2, a weighted analyses 
were performed as sensitivity analyses. The weighting factor is based on BMI 
distribution in the general Dutch population to make our results generalizable 
to the Dutch population. This procedure did not substantially change the results 
(Supplemental Table 4b and 5b).

Figure 4. Pooled results of effect estimate of the linear regressions between the genetic 
instruments (GRS-MUA, GRS-MHA) and atypical energy related symptoms and melancholic 
symptoms profile, model adjusted for age, sex, and genetic ancestry-informative principal 
components.
GRS-MUA: Genetic risk score metabolically unhealthy adiposity, GRS-MHA: Genetic risk score 
metabolically healthy adiposity. SD: standard deviation. Atypical energy-related symptom 
profile: a sum score of the four depressive symptoms, increased appetite, increased weight, low 
energy level, and leaden paralysis. Melancholic depressive symptoms profile: a sum score of the 
symptoms, decreased appetite, decreased weight, early morning awakening, mood variation in 
relation to the time of the day, distinct quality of mood, excessive guilt, psychomotor agitation, 
and psychomotor retardation

DISCUSSION

This study investigated whether the established link between adiposity and 
AES of depression is rooted in underlying metabolic dysregulations. For that, 
we uncoupled the effect of adiposity from that of metabolic dysregulations. 
We studied the relationships between two adiposity increasing genetic risk 
scores (i.e., GRS-MUA and GRS-MHA) and AES. Both genetic instruments used 
in this study increased the predisposition to high adiposity. The discrepancy 
between them is that GRS-MUA also increases the predisposition to metabolic 
dysregulations, and GRS-MHA associates with a favourable metabolic profile. 
We firstly validated the two GRS by estimating their associations with the traits 
they were trained to capture: GRS-MUA and GRS-MHA both predicted a high total 
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body fat level and were divergently associated with metabolic dysregulations. 
In a subsequent step we tested our main hypothesis by showing that AES was 
specifically associated with GRS-MUA indexing the liability for increased total 
body fat accompanied by metabolic dysregulations. GRS-MUA and GRS-MHA were 
divergently associated with metabolic dysregulations and AES. In particular, GRS-
MUA was specifically associated with higher AES scores. Overall, these results 
suggest that the established link between adiposity and atypical energy-related 
depressive symptoms emerges in the presence of metabolic dysregulations, which 
may represent the connecting substrate between the two conditions.

The mechanisms underlying this relationship between adiposity and this specific 
depression profile are unknown. The recently introduced transdiagnostic model of 
immuno-metabolic depression (IMD) [26] suggests that metabolic dysregulations 
and inflammation act as a shared substrate influencing the development of 
specific behavioural symptoms common to depression and obesity. For instance, 
alterations in central signalling of leptin and insulin may associate with shifting 
body energy balance from expenditure to accumulation, favouring the development 
of hyperphagia, present in both obesity and atypical form of depression. Finally, 
these metabolic dysregulations have been hypothesised to be the link between 
depression and cardiovascular diseases. For example, immuno-metabolic 
dysregulations commonly linked to CVD, such as triglyceride, IL-6, and CRP, 
were causally related to depression [27]. It was recently reported that adiposity-
related inflammation can be dissociated from metabolic dysregulation and that it 
represents the main predictor of depressive symptoms independently of metabolic 
dysregulation [28]. Interestingly, a recent study showed that higher inflammation 
measured by IL-6 activity is a potential causal for a specific symptom profile of 
depression, such as sleep problems or fatigue [29]. In the present study, using 
genetic instruments related to metabolic health, we identified a potential role for 
metabolic dysregulation in the link between obesity and atypical energy-related 
symptoms profile. This role may be independent and complementary as compare 
to that of inflammatory alterations. The two GRS were not consistently associated 
with inflammatory biomarkers commonly linked to AES. This may suggest that 
inflammatory biomarkers levels may depend on underlying pathways independent 
from those of metabolic dysregulations tagged by our specific GRS, although both 
convergent on atypical, energy-related depressive symptoms [15]. Alternatively, 
the lack of association may be due to the limited power of GRS composed of a 
reduced set of SNPs to capture different traits with limited genetic covariance 
with those on which they were trained.

Other mechanisms related to body fat but not associated with immuno-metabolic 
biological alterations (e.g., weight shame [30], body image dissatisfaction [31]) 
may play a role in developing and experiencing depression. However, considering 
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that in our results, GRS-MHA was not related to higher AES, these alternative 
mechanisms seem less likely. A previous individual-participants meta-analysis 
study [32] pooled data from 8 studies (n>30000) to test the relationship between 
metabolically healthy adiposity and depression. They divided individuals into four 
groups, non-obese metabolically healthy (reference), non-obese metabolically 
unhealthy, obese metabolically healthy, and obese metabolically unhealthy. They 
found an increased risk of depression in all three categories in comparison to the 
reference [32]. This might mean that the body image dissatisfaction explanation 
may be still valid for the other types of depression.

The present findings highlight the importance of resolving depression 
heterogeneity when examining its biology. Tyrrell et al. [7] and Marten et al. 
[33] inspected the causal role of adiposity (via two instrumental variables, 
metabolically unhealthy adiposity GRS and metabolically healthy adiposity GRS) 
in the development of depression in the UK Biobank. For example, Tyrrell et al. 
[7] hypothesised that the GRS-MUA would be associated with depression due to 
the underlying metabolic dysregulation and GRS-MHA would not be associated 
with depression for the link with the favourable metabolic profile. Instead, they 
found that both GRS-MUA and GRS-MHA were associated with depression. The 
results of [7] and [33] exemplify how depression heterogeneity hinders efforts to 
identify its biological underpinnings. In this work, we found a positive association 
between GRS-MHU and AES and a negative association between GRS-MHA and 
AES, which was in the direction initially hypothesised by Tyrrell et al. by focusing 
on a specific depressive symptom profile. The present findings are consistent with 
previous genetic studies that showed the AES was associated with the genetic risk 
scores that related to a higher risk of adiposity and its related immuno-metabolic 
dysregulations such as GRS of BMI [34]. Moreover, two large scale genetics studies 
in > 30000 individuals from the UK Biobank [35] and >26000 individuals from 
Psychiatric Genomics Consortium [13] found a genetics overlap between adiposity 
related traits such as BMI, and leptin levels and AES (e.g., increased weight). 
Overall, evidence from those previous studies and the present one support the 
hypothesis that the link between adiposity and AES is driven by immune-metabolic 
dysregulation [26].

The strengths of the present study are, first, we used a large sample size (n> 
7000) by combining participants from two cohorts. Second, both the NEO study 
(i.e., a population-based study that focuses on obesity) and the NESDA cohort 
(i.e., a clinical cohort study that focuses on depression) have similar genetics and 
symptoms instruments and detailed biomarkers of metabolic health. However, 
some limitations need to be addressed. First, based on the different sample sizes 
between NEO and NESDA, the meta-analysed results of the pooled analyses are 
driven by the largest study. Nonetheless, the results in both studies were similar. 

6

168239_Alshehri_BNW-def.indd   137168239_Alshehri_BNW-def.indd   137 13-10-2023   13:06:2113-10-2023   13:06:21



138

Chapter 6

Second, considering the observational design of the study, causality questions 
about the association between the two genetic risk scores and AES cannot be 
answered in this study. Third, GRS were derived using summary genotype data and 
GWAS summary statistics obtained from subjects of European ancestry GWASs, 
which make our results not fully generalizable to other ethnicities.

This study showed that the established link between adiposity and atypical energy-
related depressive symptoms emerges in the presence of metabolic dysregulation. 
This supports the hypothesis that metabolic dysregulation represents a key 
connecting mechanism between adiposity and a specific form of depression. 
Albeit health care providers shift from assessing adiposity based on BMI solely by 
incorporating waist circumference and lipid profile to diagnose the overall health 
profile, less has been done regarding the depression heterogeneity. Monitoring the 
metabolic health of patients who express atypical energy-related symptomatology 
could be beneficial to prevent the development of cardiometabolic disorders.
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SUPPLEMENTARY MATERIAL

Full version of supplementary materials can be found through the following link:
https://ars.els-cdn.com/content/image/1-s2.0-S0889159122004627-mmc1.doc
https://ars.els-cdn.com/content/image/1-s2.0-S0889159122004627-mmc2.xlsx

Appendix 1. Genetic risk scores
In each cohort (i.e., NESDA and NEO), we created two genetic risk scores (GRS): 
the first one is metabolically healthy adiposity (GRS-MHA) included the 14 SNPs 
[1] that associated with higher total body fat but a favourable metabolic profile. 
Ji et al [1] identified these 14 SNPs in three steps analyses. First, SNPs related 
to increase total body fat were identified based on a GWAS of total body fat in 
more than 442,000 individuals in the UK Biobank. Second, multivariate GWAS of 
metabolic biomarkers performed based on the summary statistics of the GWASs 
of the following metabolic biomarkers: total body fat (n=120000) [2], HDL-
cholesterol (n=99900) [3], adiponectin (n = 29,400) [4], sex hormone-binding 
globulin (n=21800) [5], triglyceride (n=96600) [3], fasting insulin (n=51800) [6] 
and alanine transaminase (n=55500) [7]. Third, genetic variants associated with 
step 1 and step 2 were selected (SNPs related to metabolically healthy adiposity). 
The second GRS was linked to higher adiposity and unfavourable metabolic 
profile (metabolically unhealthy adiposity (GRS-MUA)) based on a GWAS of 
BMI in 339,224 individuals [8, 9], where 76 SNPs associated with metabolically 
unhealthy adiposity were identified. Following the procedure previously proposed 
by Tyrrell et al [9], we calculated GRS-MUA based on 76 SNPs (i.e., 75 SNPs were 
available in NEO and 72 SNPs in NESDA) [8, 9]. GRS were calculated as follows: 
each individual variants were recoded as 0, 1 and 2, according to the number 
of adiposity increasing alleles. Each variant was weighted by its effect size 
(β-coefficient) obtained from the primary GWAS [8], then a sum of the weighted 
variants was derived as previously done by Ji et al and Tyrrell et al [1, 9]. In each 
cohort, the two GRS were standardized to a mean of zero and a standard deviation 
of one, allowing interpretability.

Appendix 2. Genetic data technical report (genotyping and imputation)
Genotyping, quality control, and imputation of GWAS data for NEO and NESDA 
cohorts were previously described in detail [10, 11].

Genotyping and Imputation in NEO study
DNA was extracted from venous blood samples obtained from the antecubital vein. 
Genotyping was performed in Centre National de Génotypage (Evry Cedex, France), 
using the Illumina HumanCoreExome-24 BeadChip (Illumina, San Diego, CA). The 
detailed quality-control process has previously been described [10]. Genotypes 
were further imputed to the 1000 Genome Project reference panel (version 3, 
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2011) [12] using IMPUTE (version 2.2) software [13]. No genetic variants with an 
imputation quality <0.4 or a minor allele frequency (MAF) <0.01 were considered 
for the analyses in the current study (Supplemental Table 7).

Genotyping and Imputation in NESDA
Methods for biological sample collection and DNA extraction have been described 
previously [14]. Quality control and imputation pipelines were also previously 
described [11]. Briefly, 95% of the samples were genotyped on the Affymetrix 
6.0 Human SNP array and the remaining on the Perlegen-Affymetrix 5.0 array. 
After platform-specific QC the missing SNP genotypes between each platform were 
imputed using the GONL (Genome of the Netherlands) [15-17] reference panel 
and then merged, followed by additional more stringent QC. This cross-platform 
GONL imputed dataset was used to identify ancestry outliers, defined based on 
Principal Components Analysis (PCA) by projecting 10 PCs from 1000G reference 
set populations on the cross-platform imputed data using the SMARTPCA program 
as described earlier [18, 19]. Individuals with PC values located outside of the range 
of European and/or British populations were defined as outliers. Upon exclusion of 
outliers, 10 PCs were recomputed for cross-platform imputed data to capture the 
variation within the Netherlands. The SNPs from the cross-platform GONL imputed 
dataset (~1.3M) were used for a second round of imputations to the Haplotype 
Reference Consortium [20] reference panel using the Michigan Imputation Server 
[21]. The cross-platform imputed dataset was used to build a relationship matrix 
measuring genetic similarity using GCTA [22], which was pruned at 0.05 threshold 
in order to retain unrelated participants. After application of additional post-
imputation QC (MAF > 0.01, HWE-p > 1e-6) 87 SNPs were extracted for the present 
analyses (Supplemental Table 7). All the selected SNPs had high imputation quality 
(<0.6).

Appendix 3. Total body fat and biomarkers of metabolic health
To confirm the relationship between the two GRS and the total body fat and 
blood biomarkers of metabolic health, we used measurements of total body 
fat (i.e., total body fat was only available in NEO study), and triglyceride, LDL-
cholesterol, HDL-cholesterol (i.e., lipid profile), and fasting glucose (i.e., glucose 
profile). We additionally used HOMA of beta-cell function (HOMA-1B), Homeostasis 
Model Assessment for Insulin Resistance (HOMA-IR), and HbA1c (%) that were 
only available in the NEO study. Finally, we used two inflammatory biomarkers 
(C-reactive protein (CRP) and Interleukin-6 (IL-6). IL-6 was only available in 
NESDA. Total body fat was measured by Tanita bioelectrical impedance balance 
(TBF-310, Tanita International Division, UK) [23]. Lipid and glucose profile were 
measured from fasting plasma samples by using standard clinical laboratory 
techniques [24, 25]. From fasting glucose and insulin concentrations, we calculated 
the HOMA-IR and HOMA-1B as markers of hepatic insulin resistance and steady-

6

168239_Alshehri_BNW-def.indd   143168239_Alshehri_BNW-def.indd   143 13-10-2023   13:06:2113-10-2023   13:06:21



144

Chapter 6

state insulin secretion [26]. HOMA-IR was calculated as fasting insulin (µU/mL) x 
fasting glucose (mmol/L)/22.5 and HOMA-1B% as 20 x fasting glucose (mmol/l)-
3.5 [26, 27]. Concentrations of C-reactive protein (CRP) were determined using 
a high sensitivity CRP assay (TINA-Quant CRP HS system, Roche, Germany and 
Modular P800, Roche, Germany) in NEO study [28]. In NESDA, plasma levels of CRP 
were measured by an in-house high-sensitivity enzyme-linked immunosorbent 
assay (ELISA) based on purified protein and polyclonal anti-CRP antibodies (Dako, 
Glostrup, Denmark) [29]. IL-6 in NESDA was measured by a high-sensitivity solid-
phase ELISA (Human IL-6 Quantikine HS kit, R&D Systems, Minneapolis, MN, 
USA) [29]. In each cohort, all biomarkers of metabolic health were standardized 
to a mean of zero and a standard deviation for each variable of interest of one, 
allowing interpretability. Additionally, CRP and Il-6 were loge transformed before 
standardization.

Supplemental Table 4a. Results of the linear regression analysis of the association 
between the genetic instruments (GRS-MUA, GRS-MHA) and atypical energy-related 
depressive symptoms.

GRS-MUA GRS-MHA
β(95% CI) p-value β(95% CI) p-value

AES NEO 0.02 (0.00;0.05) 1.11 X 10-01 -0.02 (-0.05;0.01) 1.17 X 10-01

NESDA 0.05 (0.01;0.09) 2.27 X 10-02 0.01 (-0.03;0.05) 7.02 X 10-01

Pooled 0.03 (0.01;0.05) 1.06 X 10-02 -0.01 (-0.03;0.01) 2.56 X 10-01

AES
(sensitivity)

NEO 0.02 (-0.01;0.04) 2.39 X 10-01 -0.02 (-0.04;0.01) 2.35 X 10-01

NESDA 0.04 (0.00;0.09) 3.71 X 10-02 0.00 (-0.04;0.04) 9.61 X 10-01

Pooled 0.02 (0.00;0.05) 3.59 X 10-02 -0.01 (-0.03;0.01) 3.25 X 10-01

AES: Atypical energy-related symptom profile: a sum score of the four symptoms, increased 
appetite, increased weight, low energy level, leaden paralysis. AES (sensitivity): a sum 
score of the five symptoms, increased sleepiness, increased appetite, increased weight, 
low energy level, leaden paralysis.

Supplemental Table 5a. Results of the linear regression analysis of the association 
between the genetic instruments (GRS-MUA, GRS-MHA) and melancholic depressive 
symptoms.

GRS-MUA GRS-MHA
β(95% CI) p-value β(95% CI) p-value

Melancholic 
symptoms 
profile
(sensitivity)

NEO 0.00 (-0.02;0.03) 9.40 X 10-01 -0.02 (-0.04;0.01) 1.71 X 10-01

NESDA 0.02 (-0.02;0.06) 3.95 X 10-01 0.02 (-0.03;0.06) 4.71 X 10-01

Pooled 0.01 (-0.02;0.03) 6.07 X 10-01 -0.01 (-0.03;0.01) 4.34 X 10-01

Melancholic symptoms profile (sensitivity): a sum score of the symptoms, decreased 
appetite, decreased weight, early morning awakening, mood variation in relation to 
the time of the day, distinct quality of mood, excessive guilt, psychomotor agitation, 
psychomotor retardation.
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ABSTRACT

Background
Depression is associated with an increased risk of developing cardiometabolic 
diseases (i.e., a composite of type 2 diabetes and cardiovascular disease). This 
association may vary for different depressive symptom profiles and individual 
cardiometabolic diseases. We examined the association between depression 
and specific depressive symptom profiles with individual and composite 
cardiometabolic diseases.

Method
In 6561 participants from the Netherlands Epidemiology of Obesity (NEO) 
study, depressive symptoms were measured with the Inventory of Depressive 
Symptomatology (IDS-SR30) and two dimensional profiles were created: 
atypical energy-related symptom (AES) and melancholic symptom profiles. 
Participants were followed for 41 896 person-years, and incidents of type 2 
diabetes and cardiovascular disease were extracted from medical records at 
general practitioners. The Cox proportional-hazard model was used to examine 
the relationships of overall, atypical energy-related symptoms and melancholic 
depression scores with overall cardiometabolic diseases and individual 
components of type 2 diabetes, and cardiovascular disease.

Results
The median follow-up time for type 2 diabetes and cardiovascular disease was 
seven years (8% developed a cardiometabolic disease, 5% type 2 diabetes, 5% 
cardiovascular disease). A one SD increase of IDS-SR30 at baseline was associated 
with an increased risk of cardiometabolic diseases (HR:1.20 CI 95% (1.10-1.31)). 
For the specific symptom profiles, atypical energy-related symptoms profile was 
associated with an increased risk of type 2 diabetes (HR 1.26 (95 % CI (1.14-
1.42)), while melancholic symptom profile was associated with an increased risk 
of cardiovascular disease (HR 1.15 CI 95% (1.03-1.28)).

Conclusion
Depressive symptoms were associated with the onset of type 2 diabetes and 
cardiovascular disease (median follow-up of seven years). This association 
varied for different depressive symptom profiles and cardiometabolic diseases. 
Considering a more personalized approach that takes into account differential 
depression symptomatology may be beneficial to prevent or delay the development 
of cardiometabolic diseases.
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INTRODUCTION

The relation between depression and cardiometabolic diseases (i.e., type 2 diabetes 
and cardiovascular disease) is complex, multifactorial, and not fully understood. 
The two conditions negatively impact individual health and well-being and burden 
the healthcare system. Large meta-analyses of longitudinal studies [1-3] indicate 
that depression is associated with a 30-60% increased risk of cardiometabolic 
diseases (i.e., heart disease, myocardial infarction, type 2 diabetes, and stroke). 
Interestingly, for all these cardiometabolic outcomes, bidirectional associations 
with depression have also been suggested showing that heart disease [4], diabetes 
[1] and stroke [5] are associated with an increased risk of developing depression.

Depression’s heterogeneity likely contributes to variability in its link with 
cardiometabolic diseases. Patients with depression report different symptom 
profiles that, in turn, may represent the expression of different underlying 
pathophysiological processes. It is, therefore, likely that the association with 
cardiometabolic diseases may be stronger in individuals with specific symptom 
profiles. Emerging evidence suggests that inflammatory and metabolic 
dysregulation, commonly accompanying cardiometabolic diseases, tend to cluster 
with “atypical” depressive symptoms characterized by altered energy intake and 
expenditure balance [6]. For instance, recent studies showed that an atypical 
energy-related symptom (AES) profile characterized by increased sleepiness, 
increased appetite, increased weight, low energy level and leaden paralysis was 
associated with altered inflammatory and metabolic markers (i.e., fasting glucose, 
HDL-cholesterol, triglycerides, blood pressure, waist circumference, CRP, and IL-6) 
and inflammation-related tryptophan catabolites (i.e., kynurenine and quinolinic 
acid) [7, 8]. In contrast, these markers were not associated with a melancholic 
symptom profile characterized by early morning awakening, worse mood in the 
morning, distinct quality of mood, decreased appetite, weight loss, negative self-
outlook, psychomotor retardation, and psychomotor agitation [7]. Based on this 
evidence, it is hypothesized that individuals expressing atypical energy-related 
depressive symptoms have a higher risk of cardiometabolic diseases than those 
mainly reporting melancholic symptoms.

This hypothesis is partially in line with results from two recent follow-up studies. 
In the first one [9], among 2522 individuals with at least one cardiovascular 
risk factor, 506 had relevant depressive symptoms based on Beck’s Depression 
Inventory (BDI) questionnaire then melancholic and non-melancholic depressive 
symptoms groups were created [10]. The participant is classified into the 
melancholic group if the score of adding the following symptoms: the feeling of 
sadness, failure, anhedonia, guilt, being punished, irritability, loss of interest, and 
changes in sleeping and appetite is equal or higher than the score of the rest of BDI 

7
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symptoms (if the score is lower than the score above then participant is classified 
into the non-melancholic group) [9]. In both groups, the incidence of cardiovascular 
disease extracted from national registers over 8 years of follow-up was higher 
than in controls, with the largest effect size for the non-melancholic group. In the 
second study [11], among 28,726 individuals from the general population, 4711 
had a lifetime diagnosis of major depressive disorder and were classified as either 
atypical or non-atypical based only on the presence or absence of hyperphagia 
and hypersomnia symptoms extracted from Alcohol Use Disorder and Associated 
Disabilities Interview Schedule-IV (AUDADIS-IV). Again, as compared with 
individuals without depression, both these groups had a higher risk of incident 
cardiovascular disorders over 3 years, with the largest effect size for the atypical 
subgroup.

In the present study, we further expanded the examination of the association 
between depressive symptoms and incident cardiometabolic diseases, including 
both type 2 diabetes and cardiovascular disease recorded in general practitioner 
registries followed up for seven years. Furthermore, we refined the examination 
of different clinical manifestations of depression by using dimensional profilers 
for AES and melancholic symptoms rather than binary subtypes, as in previous 
studies [9, 11]. As a result, we were better able to capture the variability of a 
wider array of depressive symptomatology. We hypothesize that overall depressive 
symptoms are associated with cardiometabolic diseases. Furthermore, we expect 
this association to be driven by the AES profile, previously associated with markers 
of cardiometabolic risk.

METHODS

Study design and population
The Netherlands Epidemiology of Obesity (NEO) study is a population-based cohort 
study including 6671 men and women aged 45 to 65 years [12]. All inhabitants aged 
between 45 and 65 years with a self-reported body mass index (BMI) of 27 kg/m2 
or higher and living in the greater area of Leiden, the Netherlands, were eligible to 
participate in the NEO study. In addition, all inhabitants aged between 45 and 65 
years from one adjacent municipality (Leiderdorp, the Netherlands) were invited 
to participate irrespective of their BMI. Prior to the study visit (2008-2012), 
participants completed questionnaires at home with respect to demographic, 
lifestyle, and clinical information. Participants visited the NEO study center after 
an overnight fast for an extensive physical examination.

Participants were followed over time (median = 6.7 years) for the occurrence of 
type 2 diabetes and cardiovascular disease via their electronic medical records 
at the general practitioners (see outcome and censoring). The present study is a 
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prospective analysis of the relationship between depressive symptoms (overall 
depression) and depressive symptom profiles measured by the Inventory of 
Depressive Symptomatology (self-report) IDS-SR30 at the baseline and 1) 
cardiometabolic diseases (i.e., merged type 2 diabetes and cardiovascular disease), 
2) type 2 diabetes, and 3) cardiovascular disease. We excluded participants 
without IDS-SR30 total score data (n=16) or follow-up information (n=94), leaving 
6561 participants for the main analyses. The NEO study was approved by the 
medical ethics committee of Leiden University Medical Center (LUMC) and all 
participants gave written informed consent.

Assessment of depressive symptoms and profiles
At baseline, we asked all participants to complete the Dutch version of the IDS-
SR30 questionnaire [13], which assesses specific depressive symptoms during the 
past week and their severity. The IDS-SR30 rates (via a 4-level response system) 
the presence of a wide array of depressive symptoms, including core symptoms 
of major depressive episodes, melancholic (e.g., anhedonia, nonreactive mood, 
psychomotor retardation/agitation, appetite or weight decrease, early morning 
awakening, and self-outlook) and atypical energy-related (e.g., hypersomnia, 
increased appetite, weight gain, low energy level, and leaden paralysis (physical 
exhaustion)) features, and commonly associated symptoms (e.g., irritability, 
anxiety, somatic complaints). We used the total score ranges from 0 to 84, with 
higher scores indicating higher severity as a continuous variable. Furthermore, 
we categorized the total score in the secondary analyses. For that, we grouped 
the participant according to the clinically predefined severity cut-offs as follow: 
score ≤ 13 as “no depressive mood” status (n = 4625, reference), 14–25 as “mild 
depressive mood” (n = 1413), 26–84 as “severe depressive mood” (n = 523) [13].

We derived depressive profiles in line with previous studies [7, 14] using items 
from IDS-SR30. The AES profile was based on the sum score of the following items: 
increased sleepiness, increased appetite, weight gain, low energy level, and leaden 
paralysis. Then, we also used a melancholic depressive profile as another clinically 
established symptom profile for comparison with AES, as it also reflects severity 
[7, 15]. This symptom profile was created by summing the score of the following 
items: early morning awakening, mood worse in the morning, distinct quality of 
mood, decreased appetite, weight loss, self-outlook, psychomotor retardation, and 
psychomotor agitation. Additionally, in order to better illustrate the shape of the 
association between symptom profiles and cardiometabolic diseases, for each 
symptom profile, we grouped the participant into four severity score groups: no 
symptoms: 0 (reference), mild symptoms:1-2, moderate symptoms: 3-4 and severe 
symptoms: ≥5.

7
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Ascertainment and definition of outcomes
Diagnoses of type 2 diabetes and cardiovascular disease incidence were extracted 
from electronic medical records of general practitioners (GPs). This record covers 
all medical information of the patients regarding prescriptions, GP consultations, 
and reports from laboratories and specialist visits available at the GP office. Data 
extraction was performed based on three criteria: (1) the diagnostic coding by 
the GPs to indicate the health problems or type of care, based on the International 
Classification of Primary Care (ICPC) [16], (2) finding of predefined type 2 diabetes 
and cardiovascular disease related keywords in the descriptions of the GP 
database, and (3) prescription of specific medication, registered according to the 
Anatomical Therapeutic Chemical (ATC) codes or by screening medication names 
[17]. The date of diagnosis was defined as the first date of an ICPC-coded diagnosis, 
a strong indication for the diagnosis based on keywords in the medical records, 
or prescription of relevant medication. In case only a keyword was found without 
a confirmed ICPC code, we confirmed the diagnoses using the laboratory values 
and reading the free text in the medical records. If it remained unclear whether 
a particular participant was diagnosed with type 2 diabetes or cardiovascular 
disease, the general practitioner was contacted. A participant was considered as 
having an incidence of type 2 diabetes or cardiovascular disease when the date of 
diagnosis occurred after the baseline visit date.

In the present analysis, we used the preliminary follow-up data, as the extraction 
of information from the GP medical records is still ongoing. Our analyses were 
focused on the development of three outcomes: (1) cardiometabolic diseases 
(i.e., having either type 2 diabetes or/and cardiovascular disease), (2) type 2 
diabetes, and (3) cardiovascular disease. For each outcome of interest, we excluded 
participants who had the prevalent condition of interest at baseline based on 
information extracted from the GP medical records (Figure 1). For this reason, the 
sample sizes for our analyses differ based on the studied outcome of interest (i.e., 
type 2 diabetes, cardiovascular disease, both type 2 diabetes and cardiovascular 
disease). Participants were coded as having type 2 diabetes when the extracted 
data from GP registration in 2018 indicated 1) the diagnosis of type 2 diabetes 
(i.e., ICPC codes T90 or T90.02). In addition, the medication list of participants 
was checked for the use of insulin, metformin and sulfonylurea derivative, and 
participants using these medications were considered to have type 2 diabetes (n of 
participants who developed the outcome=276). Similarly, participants were coded 
as having cardiovascular disease if the extracted data from GP registration in 2018 
indicated any of the following diagnoses of 1) myocardial infarction (ICPC Code: 
K75 or K76.02), 2) transient ischemic attack (K89), or 3) stroke/cerebrovascular 
accident (K90 or its subtypes: K90.01, subarachnoid haemorrhage; K90.02, 
intracerebellar haemorrhage; or K90.03, cerebral infarction. 
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Keywords included synonyms of myocardial infarction, chest pain, cardiovascular 
surgery procedures such as coronary artery bypass grafting (CABG) or angioplasty, 
and synonyms of cerebrovascular accident or haemorrhage. The medication list of 
participants was checked for the use of specific anticoagulants. In this preliminary 
data, other types of cardiovascular disease were not yet included (n of participants 
who developed the outcome=285). We merged the two outcomes (i.e., type 2 
diabetes and cardiovascular disease) into a new outcome called cardiometabolic 
diseases if the participants had either or both diseases (n of participants who 
developed the outcome=483).

Time of follow-up was defined as the number of days between the baseline of the 
study and the date of diagnosis or censoring due to death, loss to follow-up (move 
to another GP or outside of the Netherlands), or the end of the follow-up (extraction 
date at the GP in 2018), whichever comes first. However, not all participants were 
followed from start to finish.

Statistical analysis
Characteristics of the study population were expressed as a mean with standard 
deviation (SD), a median (25th, 75th percentiles) or percentages (%). The incidence 
rates per 1000 person-years for each outcome were estimated as: (new cases of 
outcome/ person-years of the population at risk) x 1000.

Cox regression analyses
We performed Cox proportional-hazard models to investigate the relationship 
between the depressive symptoms at the baseline and the outcomes using 3 steps. 
In step 1, we performed adjusted Cox proportional-hazard models to investigate 
the relationships between depressive symptoms and cardiometabolic outcome. In 
step 2, we explored the relationship between the baseline depressive symptoms 
and (1) type 2 diabetes and (2) cardiovascular disease as individual outcomes. 
In step 3, to take the heterogeneity of depressive symptomatology into account, 
we conducted adjusted Cox proportional-hazard models to investigate the 
relationships between two depressive symptom profiles (atypical energy-related 
and melancholic) with type 2 diabetes and cardiovascular disease.

Analyses of the three steps were adjusted for age, sex (model 1) and further BMI 
adjustment (model 2). Model 2 is important because BMI is a strong risk factor 
for type 2 diabetes and is related to depression. Finally, in model 3 we further 
adjusted for type 2 diabetes at baseline when applicable (i.e., in analyses with 
cardiovascular disease as outcome). All analyses were done using R version 4.0.5, 
and for the Cox proportional-hazard model analysis “survival” package was used.
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RESULTS

For cardiometabolic diseases as the outcome, some participants were lost to follow-
up (n=45), died (n= 58), or only had data from an intermediate data extraction 
in 2012-2013 (n=306). For type 2 diabetes and cardiovascular disease as the 
outcomes of interest, 46 and 50 were lost to follow-up, 60 and 75 participants 
died, and 321 and 342 participants only had data from intermediate extraction 
in 2012-2013, respectively. For participants who did not develop the outcome of 
interest, data were censored at the known follow-up time or date of death or the 
last known follow-up time before death.

Table 1 shows the characteristics of the NEO population (mean age 56.0), men 
and women (52.0% women). For the cardiometabolic diseases as the outcome, 
the population at risk was 5734, the median (25th, 75th percentiles) follow-up 
time was 6.7 years (5.9, 7.9), and the incidence rate (IR) was 13/1000 person-
years. For type 2 diabetes as the outcome, the population at risk was 5957, and the 
median (25th, 75th percentiles) follow-up time was 6.8 (6.0, 7.9). 5% developed the 
outcome, IR 7/1000 person-years. For cardiovascular disease, the population at 
risk was 6295, the median (25th, 75th percentiles) follow-up time was 6.7 (5.9,7.8). 
5% developed the outcome, IR 7/1000 person-years. The Pearson’s correlation 
between the two symptom profiles was 0.4, indicating that they are capturing 
partially different dimensions of depressive symptomatology.

Table 1. Baseline characteristics for 6561 men and women aged 45 to 65 years included 
in the analysis from Netherlands Epidemiology of Obesity study

Characteristic N=6561
Age (years) Mean (sd) 56.0 (6.0)
Sex (women) (n(%)) 3443 (52.0)
BMI Mean (sd) 30.1 (4.8)
Ethnicity (White) (n(%)) 6227 (95.0)
Education (High) (n(%)) 2452 (38.0)
Smoking (n(%))

No 2274 (35.0)
Former 3217 (49.0)
Current 1067 (16.0)

Alcohol consumption (g/day)
Median (25th, 75th percentiles).

9.0 (2.0, 22.0)

Type 2 diabetes incidence (outcome) (n(%)) 276 (4.2%)
Type 2 diabetes prevalence (baseline) (n(%)) 604 (9.2%)
Cardiovascular diseases incidence (outcome) (n(%)) 285 (4.3%)

7

168239_Alshehri_BNW-def.indd   157168239_Alshehri_BNW-def.indd   157 13-10-2023   13:06:2213-10-2023   13:06:22



158

Chapter 7

Table 1. Continued.

Characteristic N=6561

Cardiovascular diseases prevalence (baseline) (n(%)) 266 (4.1%)
Atypical energy-related symptom profile
Median (25th, 75th percentiles)

1.0 (0.0, 3.0)

Atypical energy-related symptom profile
(Categorized) (n(%))

None (≤0) 1994 (30.0)
Mild (>0 and <3) 2560 (39.0)
Moderate (≥3 and <5) 1553 (24.0)
Severe (≥5) 454 (6.9)

Melancholic symptom profile
Median (25th, 75th percentiles)

1.0 (0.0, 3.0)

Melancholic symptom profile
(Categorized) (n(%))

None (≤0) 2597 (40.0)
Mild (>0 and <3) 1940 (30.0)
Moderate (≥3 and <5) 1394 (21.0)
Severe (≥5) 630 (9.6)

IDS-SR30 total score
Median (25th, 75th percentiles)

9 (5, 15)

Depressive mood (Categorized) (n(%))
None (≤ 13) 4625 (70.0)
Mild (14–25) 1413 (22.0)
Moderate to severe (26–84) 523 (8.0)

Step 1: Overall depressive symptoms and cardiometabolic diseases
Table 2 shows the results of the Cox proportional-hazard model of the continuous 
and categorized total score of IDS-SR30 and cardiometabolic diseases. We 
found that a one SD increase of IDS-SR30 in the baseline was associated with an 
increased risk of cardiometabolic diseases (HR:1.20 CI 95% (1.10-1.31)) for model 
1 (adjusted for age and sex). In particular, compared to those without depressive 
mood, individuals in the severe depressive mood group had the highest risk of 
cardiometabolic diseases (HR:1.67 CI 95% (1.23-2.27) (Figure 2A). Additional 
adjustment for BMI (model 2) slightly reduced the strength of the associations; 
the HR of cardiometabolic diseases in individuals with severe depressive mood, as 
compared to those without depressive mood, was 1.47 CI (95% 1.08-2.00) (Figure 
2B).
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Figure 2. Cox proportional-hazard regressions for the depressive mood, atypical ener-
gy-related and melancholic symptoms profile and all three outcomes

Depressive mood: we grouped the participant according to the clinically predefined severity 
cut-offs as follow: score ≤ 13 as “no depressive mood” status (n = 4625, reference), 14–25 as “mild 
depressive mood” (n = 1413), 26–84 as “severe depressive mood” (n = 523). Atypical energy-
related symptom profile (a sum score of the five symptoms, increased sleepiness, increased 
appetite, increased weight, low energy level, leaden paralysis). Melancholic symptoms profile: 
a sum score of the symptoms, decreased appetite, decreased weight, early morning awakening, 
mood variation in relation to the time of the day, distinct quality of mood, excessive guilt, 
psychomotor agitation, psychomotor retardation. For each symptom profile, we grouped the 
participant in four severity score groups: no symptoms: 0 (reference), mild symptoms:1-2, 
moderate symptoms: 3-4 and severe symptoms: ≥5.

7
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Table 2. Cox proportional-hazard regressions for IDS-SR30 total score, atypical energy-
related and melancholic symptoms profiles with cardiometabolic diseases.

Model 1 HR 
(95% CI)

Model 2 HR 
(95% CI)

Cardiometabolic 
diseases

(n= 5734, 483 
events)

IDS-SR30 total score 
(continuous)

1.20 (1.10-1.31) 1.14 (1.04-1.25)

Depressive mood 
(categorical)

None Reference Reference

Mild 1.12 (0.89-1.41) 1.01 (0.81-1.27)
Severe 1.67 (1.23-2.27) 1.47 (1.08-2.00)

Cardiometabolic 
diseases

(n= 5734, 483 
events)

AES (continuous) 1.15 (1.06-1.26) 1.07 (0.97-1.17)
AES (categorical)

None Reference Reference

Mild 1.10 (0.88-1.37) 1.03 (0.82-1.29)
Moderate 1.34 (1.05-1.71) 1.11 (0.86-1.42)

Severe 1.83 (1.29-2.59) 1.41 (0.99-2.02)

Cardiometabolic 
diseases

(n= 5734, 483 
events)

Melancholic (continuous) 1.14 (1.05-1.24) 1.11 (1.02-1.21)
Melancholic (categorical)

None Reference Reference

Mild 1.04 (0.84-1.30) 1.03 (0.82-1.28)
Moderate 1.22 (0.96-1.54) 1.12 (0.88-1.43)

Severe 1.51 (1.11-2.04) 1.39 (1.03-1.89)
Model 1: Adjusted for age and sex. Model 2: Adjusted for age, sex, and BMI. IDS-SR30: 
Inventory of depressive symptomatology-self report (standardized). None group was set as 
the reference group throughout the analyses. AES: Atypical energy-related symptom profile 
(a sum score of the five symptoms, increased sleepiness, increased appetite, increased 
weight, low energy level, leaden paralysis) (standardized). Melancholic symptoms profile: 
a sum score of the symptoms, decreased appetite, decreased weight, early morning 
awakening, mood variation in relation to the time of the day, distinct quality of mood, 
excessive guilt, psychomotor agitation, psychomotor retardation (standardized). For each 
symptom profile, we grouped the participant in four severity score groups: no symptoms: 
0 (reference), mild symptoms:1-2, moderate symptoms: 3-4 and severe symptoms: ≥5.

Step 2: Overall depressive symptoms and (1) type 2 diabetes and (2) 
cardiovascular disease)
Table 3 shows the results of the Cox proportional-hazard models of the continuous 
and categorized total score of IDS-SR30, atypical energy-related and melancholic 
symptom profiles and individual cardiometabolic diseases. We found that a one SD 
increase of IDS-SR30 in the baseline is associated with an increased risk of type 
2 diabetes (HR:1.26 CI 95% (1.14-1.41)) for model 1. As compared to individuals 
without depressive mood, individuals in the severe depressive mood group had 
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the highest risk of type 2 diabetes (HR: 1.99 CI 95% (1.38-2.89) (Figure 2C), also 
after adjusting for BMI (HR: 1.59 CI 95% (1.09-2.31) (Figure 2D). Furthermore, 
a one SD increase of IDS-SR30 in the baseline is associated with an increased 
risk of developing cardiovascular disease (HR:1.15 CI 95% (1.03-1.29)) in model 
1. Individuals in the severe depressive mood group, compared to those without 
depressive mood, had the highest risk of cardiovascular disease (HR: 1.36 CI 
95% (0.88-2.08) for model 1 (Figure 2E). Additionally, adjusting for BMI or type 
2 diabetes at baseline did not change the hazard ratios.

Table 3. Cox proportional-hazard regressions for IDS-SR30 total score, atypical energy-
related and melancholic symptoms profiles with type 2 diabetes and cardiovascular 
disease.

Model 1 HR 
(95% CI)

Model 2 HR 
(95% CI)

Type 2 diabetes
(n= 5957, 276 

events)

IDS-SR30 total score 
(continuous)

1.26 (1.14-1.41) 1.16 (1.04-1.30)

Depressive mood 
(categorical)

Mild 1.04 (0.76-1.41) 0.89 (0.66-1.21)
Severe 1.99 (1.38-2.89) 1.59 (1.09-2.31)

Type 2 diabetes
(n= 5957, 276 

events)

AES (continuous) 1.27 (1.14-1.42) 1.14 (1.02-1.27)
AES (categorical)

Mild 1.31 (0.96-1.78) 1.20 (0.88-1.64)
Moderate 1.57 (1.12-2.20) 1.16 (0.82-1.64)

Severe 2.90 (1.90-4.41) 1.98 (1.29-3.04)

Type 2 diabetes
(n= 5957, 276 

events)

Melancholic (continuous) 1.13 (1.01-1.26) 1.07 (0.95-1.20)
Melancholic (categorical)

Mild 1.06 (0.79-1.42) 1.02 (0.76-1.37)
Moderate 1.29 (0.95-1.77) 1.15 (0.84-1.57)

Severe 1.40 (0.93-2.11) 1.23 (0.82-1.86)

Cardiovascular 
disease

(n=6295, 285 
events)

IDS-SR30 total score 
(continuous)

1.15 (1.03-1.29) 1.13 (1.00-1.26)

Depressive mood
Mild 1.35 (1.02-1.80) 1.30 (0.98-1.73)

Severe 1.36 (0.88-2.08) 1.27 (0.83-1.96)

Cardiovascular 
disease

(n=6295, 285 
events)

AES (continuous) 1.08 (0.96-1.22) 1.05 (0.93-1.18)
AES (categorical)

Mild 0.97 (0.73-1.29) 0.94 (0.71-1.25)
Moderate 1.37 (1.01-1.86) 1.28 (0.93-1.75)

Severe 1.04 (0.61-1.79) 0.93 (0.54-1.60)
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Table 3. Continued.

Model 1 HR 
(95% CI)

Model 2 HR 
(95% CI)

Cardiovascular 
disease

(n=6295, 285 
events)

Melancholic (continuous) 1.15 (1.03-1.28) 1.13 (1.01-1.26)
Melancholic (categorical)

Mild 0.95 (0.71-1.27) 0.94 (0.70-1.26)
Moderate 1.16 (0.85-1.58) 1.13 (0.82-1.54)

Severe 1.57 (1.08-2.30) 1.51 (1.03-2.21)
Model 1: Adjusted for age and sex. Model 2: Adjusted for age, sex, and BMI. IDS-SR30: 
Inventory of depressive symptomatology-self report (standardized). None group was set as 
the reference group throughout the analyses. AES: Atypical energy-related symptom profile 
(a sum score of the five symptoms, increased sleepiness, increased appetite, increased 
weight, low energy level, leaden paralysis) (standardized). Melancholic symptoms profile: 
a sum score of the symptoms, decreased appetite, decreased weight, early morning 
awakening, mood variation in relation to the time of the day, distinct quality of mood, 
excessive guilt, psychomotor agitation, psychomotor retardation (standardized). For each 
symptom profile, we grouped the participant in four severity score groups: no symptoms: 
0 (reference), mild symptoms:1-2, moderate symptoms: 3-4 and severe symptoms: ≥5.

Step 3: Depressive profiles and type 2 diabetes and cardiovascular 
disease
Table 3 shows Cox proportional-hazard model results for the continuous and 
categorized depressive profiles (atypical energy-related and melancholic 
symptom profiles) and type 2 diabetes, and cardiovascular disease. We found 
that the atypical energy-related symptom profile and melancholic symptom profile 
had a different pattern of association with type 2 diabetes and cardiovascular 
disease. One SD increase in the atypical energy-related symptom profile was 
associated with an increased risk of type 2 diabetes HR 1.27 (95 % CI (1.14-1.42)) 
in model 1. As compared to those without AES, results showed an increased risk 
of type 2 diabetes for individuals with moderate ((HR: 1.57 CI 95% (1.12-2.20)) 
and severe depressive AES (HR: 2.90 CI 95% (1.90-4.41) (Figure 2C). In Model 2, 
further adjustment for BMI decreased the strength of the association: the HR of 
individuals with severe AES, when compared with those without AES, was 1.98 (CI 
95% 1.29-3.04) (Figure 2D). The same symptom profile was not associated with 
cardiovascular disease in any of the adjusted Cox proportional-hazard models.

For melancholic symptom profile, one SD increase in the score was associated 
with an increased risk of type 2 diabetes (HR 1.13 CI 95% (1.01-1.26)) for model 
1. Nevertheless, adding BMI to the model substantially decreased the hazard ratio 
(HR 1.07 CI 95% (0.95-1.20)). For cardiovascular disease, one SD increase in the 
melancholic symptom profile was associated with an increased risk of the outcome 
(HR 1.15 CI 95% (1.03-1.29)) for the model adjusted for age and sex. As compared 
to participants without melancholic symptoms, participants with the severe 
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melancholic symptoms have an increased risk of cardiovascular disease (HR: 1.57 
CI 95% (1.08-2.30)) (Figure 2E). All further adjustments for type 2 diabetes at the 
baseline and BMI did not change the hazard ratio.

DISCUSSION

This study explored the association between depressive symptoms and the risk 
of developing cardiometabolic diseases in large population-based cohort with a 
median follow-up of seven years. We were able to disentangle the heterogeneity 
of the exposure (i.e., depressive symptoms) and the outcome (i.e., cardiometabolic 
diseases) by examining the association of two specific depressive symptom 
profiles, atypical energy-related symptom and melancholic profiles, with type 
2 diabetes and cardiovascular disease. We found that having higher overall 
depressive symptoms at the baseline is associated with an increased risk of 
developing cardiometabolic diseases over time. When zooming in the atypical 
energy-related symptom profile, we found that it was specifically associated with 
a higher risk of developing type 2 diabetes, while the melancholic was associated 
with a higher risk of developing cardiovascular disease.

The incidence rate of type 2 diabetes was 2.5 times higher in cohort of this study 
compared to the general Dutch population [18]. This was expected because of the 
oversampling of obese and overweight individuals (i.e., higher BMI individuals 
are at higher risk of developing type 2 diabetes) in the NEO study. However, 
the incidence rate of cardiovascular disease was similar to the general Dutch 
population [19]. Moreover, our finding that depressive symptoms increased the risk 
of developing cardiometabolic diseases and its component (i.e., type 2 diabetes and 
cardiovascular disease) are in line with the previous knowledge. Meta-analyses 
of longitudinal studies showed that depression (both clinical depression and 
depressive symptoms) increased the risk of developing type 2 diabetes (relative 
risk= 1.37 -1.67) [1, 20-22]. Similarly, another recent meta-analysis that included 
twenty-one follow-up studies reported that depression (i.e., combined depressive 
scales and depression diagnosis) increased the risk of type 2 diabetes (risk ratio 
1.18) [23]. Additionally, depression was also reported as a risk factor for developing 
cardiovascular disease (i.e., myocardial infarction (MI), stroke, or coronary death) 
in meta-analyses of longitudinal studies (hazard ratio= 1.31-2.6) [2, 3, 24, 25]. 
The direction of this association is in agreement with a Mendelian Randomization 
(MR) study that suggested that genetic predisposition to depression is associated 
with increased risk of cardiovascular disease (i.e., coronary artery disease (14%) 
and myocardial infarction (21%)) [26]. Additionally, data from another MR study 
[27] suggest that obesity, type 2 diabetes, smoking, and high lipid level mediate 
this causal relationship.

7
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Many mechanisms were studied earlier and described as potential links between 
depressive symptoms with cardiometabolic diseases. These mechanisms are 
behavioral (i.e., physical inactivity, unbalanced diet, smoking, alcohol abuse, 
and low level of medical/lifestyle adherence), biological (i.e., HPA, immuno-
metabolic, autonomic dysregulations), and iatrogenic (i.e., the pharmacological 
impact of depression medication on cardiometabolic diseases) [28]. Furthermore, 
possible common causes for the independent expression of both depression and 
cardiometabolic diseases include childhood trauma, personality, and genetic 
pleiotropy [28]. A recent study [29] identified 24 pleiotropic genes likely to be 
shared between depression and cardiometabolic diseases (i.e., defined in this study 
as type 2 diabetes, cardiovascular disease, and their risk factors such as obesity, 
hypertension, HDL and LDL cholesterol, triglycerides, and fasting glucose and 
insulin). Four of these genes were shared between depression with type 2 diabetes 
or cardiovascular disease and regulate neurogenesis, appetite, neurotransmitters, 
and melatonin receptor [29].

To deepen our understanding, we investigated the association between specific 
depressive symptom profiles and individual cardiometabolic diseases. Our study 
suggests that atypical energy-related symptom profile was the main driver for 
the association between depression and increased risk of type 2 diabetes. This 
noted link could be explained by interconnected behavior factors and biological 
mechanisms such as surplus calorie intake and immuno-metabolic dysregulation 
(i.e., low-grade inflammation and adipokines over secretion), which may later 
manifest as type 2 diabetes [6, 30]. The hemostatic shift toward positive energy 
balance, which distinguishes AES, may lead to lipid accumulation in ectopic organs, 
a known risk factor for insulin resistance and type 2 diabetes [31, 32]. This positive 
energy balance also creates cellular nutrient stress, especially on the site of 
protein folding (i.e., endoplasmic reticulum) [33]. This cellular stress triggers the 
“metaflammation” response. The “metaflammation” describes the situation when 
the low-grade inflammation alters the function of insulin in metabolic tissues such 
as the liver and brain [33]. Accumulated white adipose tissue secrete adipokines 
(e.g., leptin) that play a significant role in inhibition of insulin secretion from 
pancreatic β cells [34]. This aligns with the previous work that confirmed the 
increased pro-inflammatory markers and metabolic dysregulation (e.g., CRP and 
IL-6, high BMI and total body fat, insulin resistance, leptin resistance, dyslipidemia, 
and hyperglycemia) in individuals with depression reporting AES profile [6, 7, 
35-41]. Additionally, pro-inflammatory markers may trigger neuroinflammation 
associated with decreased tryptophan and increased catabolites associated with 
the atypical energy-related symptom profile and worse health outcomes such as 
type 2 diabetes [8, 42]. Furthermore, chronic low-grade inflammation, has been 
suggested to mediate the relationship between atypical energy-related symptoms 
and type 2 diabetes [43]. Several genetic studies converged in showing that MDD 
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patients reporting AES symptoms carried a higher number of genetic risk variants 
for the following metabolic traits such as increased obesity, CRP, triglycerides and 
leptin [44-46].

In contrast to that atypical energy-related symptoms, the melancholic symptoms 
profile was specifically associated with cardiovascular disorders. Different 
potentially shared risk factors or mechanisms may explain this association. For 
instance, depressed individuals expressing a melancholic symptom profiles have 
been shown to be more likely smokers as compared to other patients [44, 45]. 
Biologically, individuals with depression who reported insomnia, early morning 
awakening, and decreased appetite were also experiencing HPA and locus 
ceruleus-norepinephrine LC-NE systems hyperactivation [46]. Hyperactivation 
of both systems was also linked to an imbalance in the autonomic tone (i.e., 
sympathetic and parasympathetic nervous systems). Not only activation of the 
sympathetic system, but the withdrawal of vagal tone (i.e., decreased activity 
of parasympathetic nervous system) was also associated with the melancholic 
subtype [47]. Researchers found that decreased heart rate variability (HRV) 
accompanied by increased resting heart rate were associated with this subtype 
of MDD compared to control [47]. This hyperactivation of the sympathetic 
and decreased parasympathetic nervous systems was associated with pro-
inflammatory factors and heart rate variability associated with cardiovascular 
disease [48-50]. It is plausible that the differential association between the two 
depressive profiles (i.e., AES and melancholic) with the incidence of the two 
cardiometabolic profiles is rooted in partially distinct complex network of the 
underlying biological pathways and behavioral lifestyles. In addition to the 
abovementioned evidence, this explanation is supported by the recent postulation 
of possible distinct symptoms specific psychopathological pathways that links 
depression with cardiac risk, one through BMI and inflammation and the other 
through dysregulation of HPA and the autonomic nervous system [51]. Nonetheless, 
the exact nature of this specific associations is still unknown and requires further 
investigation in future research including mechanistic studies.

Several methodological aspects of this study should be addressed. The large 
sample size, the detailed information of the depressive symptomatology, the 
follow-up and the detailed information about cardiometabolic outcomes allowed 
us to investigate the heterogeneity of depression and cardiometabolic diseases. 
However, there were some limitations. For example, depressive symptoms were 
evaluated via a self-report questionnaire. Nonetheless, IDS-SR30 is time and 
cost-efficient for research purposes and showed high concordance with clinical 
diagnosis of depression [52]. Second, depressive symptomatology data was only 
available at the baseline, so we were unable to evaluate the depressive symptoms 
at the time of the occurrence of the cardiometabolic diseases. However, a recent 

7
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study [53] showed a remarkable stability of depressive symptoms measured with 
IDS-SR30 over nine years follow-up in 1941 participants of the NESDA study. Third, 
we cannot rule out the possibility of reverse causality. We do however consider 
this highly unlikely, especially due to the fact that we excluded participants with 
cardiometabolic diseases at the baseline.

In conclusion, we confirmed the previous association between depressive 
symptoms and increased risk of developing cardiometabolic diseases. Additionally, 
disaggregating depressive symptoms in different profiles showed a specific trend 
of associations with cardiometabolic risk. Following up on patients with depression 
for developing cardiometabolic diseases and measuring depressive symptoms in 
individuals at risk for cardiometabolic diseases could be beneficial in primary and 
secondary preventive efforts. Our findings suggest that such preventive efforts 
may benefit from a more personalized approach taking into account differential 
symptom manifestations.
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DISCUSSION

Brief introduction of the main aims and findings
Obesity, depression and cardiometabolic diseases are complex phenotypes [1, 2]. 
Their heterogeneity complicates studying them individually and hinders efforts to 
understand the links between them. This thesis aimed to elucidate the relationship 
between obesity and depression and possible mechanisms linking both conditions 
together and with cardiometabolic diseases.

Figure 1 in chapter 1 illustrates the outline of this thesis. First, our aim in chapter 
two of this thesis was to examine the relationship between obesity and depression 
in N=6459 participants. We uniquely dissected both obesity and depression in our 
analysis. Instead of relying only on body mass index (BMI), we used it together 
with three other adiposity measures. Two of the four measures reflect the overall 
adiposity (BMI and total body fat), and the other two reflect the abdominal 
adiposity (waist circumference and visceral adipose tissue). For the depression 
side, we assessed 30 depressive symptoms (IDS-SR30). We found that all four 
measures of adiposity were positively associated with depressive mood and 
individual symptoms of depression. Furthermore, this link between measures of 
adiposity (particularly total body fat) and depressive symptoms appeared to be 
more robust for atypical energy-related depressive symptoms (increased weight, 
increased appetite, low energy level and leaden paralysis).

Second, to identify plasma metabolites associated with depression, in chapters 
three and four, we performed two studies with two different metabolomics 
platforms measuring more than 1000 metabolites with a limited cross-platform 
overlap (N=18 metabolites). The first and the second metabolomics studies 
used data from, respectively, nine (total N=15 428) and five (total N= 13 596) 
Dutch and European cohorts from the general population and clinical settings. 
In chapter three, by using a targeted lipid-based metabolomics platform, we 
found a metabolic signature for depression characterized by twenty-one lipids, 
fatty acids, and low-molecular-weight metabolites: as compared to non-depressed 
controls, participants with depressed mood had lower levels of high-density 
lipoprotein (HDL), short-chain fatty acid and ketone body acetate and higher 
levels of very low-density lipoprotein (VLDL), triglyceride particles, glycoprotein 
acetyls, tyrosine and isoleucine. Associations were generally consistent across 
sex, age, and BMI strata and across cohorts assessing depression diagnoses with 
psychiatric interview versus those assessing depressive symptoms with self-
report instruments. Furthermore, in chapter four, leveraging a wide untargeted 
metabolomic platform, we identified 53 metabolites associated with depression, 
including those in the monoamine and neurotransmitter pathways (serotonin, 
kynurenate and glutamate). These associations were partially explained by 
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antidepressant use (i.e., a possible proxy for depression severity). We also 
identified novel associations for retinol (vitamin A), 1-palmitoyl-2-palmitoleoyl-
GPC (16:0/16:1) (lecithin), and lower levels of 2-aminooctanoate, 10-undecenoate 
(11:1n1), 1-linoleoyl-GPA (18:2) with depression. These novel associations were not 
explained by antidepressant use, cardiovascular medication and lifestyle factors.

Next, in chapter five, we extended the use of the same metabolomic platform 
applied in chapter three to investigate depression heterogeneity. We performed a 
data-driven clustering analysis based on depressive symptoms and metabolomics 
in N=1094 participants diagnosed with clinical Major Depressive Disorder (MDD) 
(i.e., in the last six months) from the Netherlands Study of Depression and Anxiety 
(NESDA). We aimed to identify depression dimensions associated with an adverse 
metabolic profile. Clustering analysis identified the following two metabolite-
depression dimensions. The first dimension was characterized by a substantially 
uniform endorsement of mood, cognitive, and somatic depressive symptoms 
and lower levels of metabolic dysregulations. The second is a dimension with 
relatively stronger contribution from energy-related behavioral symptoms (such 
as sleeping too much, increased appetite, and low energy levels) and increased 
levels of metabolic dysregulations. After the clustering step, we examined the 
association between these dimensions and the same metabolomics panel and 
individual components of cardiometabolic diseases (fasting glucose levels, insulin 
resistance, total body fat, and visceral adipose tissue) in N=6572 participants 
from the NEO study. The first depression dimension was associated with a lower 
cardiometabolic risk profile. In contrast, the dimension with relevance for energy-
related depressive symptoms was associated with higher visceral adipose tissue, 
triglyceride levels, branched-chain amino acids, glycoprotein acetylase, insulin 
resistance and lower HDL-cholesterol levels.

In chapter six, we investigated whether the established link between adiposity 
and atypical energy-related symptoms of depression is rooted in underlying 
metabolic dysregulations. In this analysis, we uncoupled the effect of adiposity 
from that of metabolic dysregulations in relation to atypical energy-related 
symptoms profile by studying the relationships between two previously defined 
adiposity increasing genetic risk scores (GRS) and atypical energy-related 
symptoms profile. Both genetic instruments used in this study were associated 
with increased body fat. The difference between them was that one genetic risk 
score was associated with the predisposition to an unfavorable metabolic profile 
(i.e., metabolic dysregulations), whereas the other was associated with a favorable 
metabolic profile. We meta-analyzed results from two individual studies; the NEO 
study (N= 5734) and NESDA (N= 2238). We found that higher atypical energy-
related depressive symptoms was positively and specifically associated with GRS 
that increased the risk of adiposity accompanied by metabolic dysregulations, 
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but not with the GRS of obesity with a favorable metabolic profile; these findings 
suggest that metabolic dysregulation represents a connecting mechanism between 
adiposity and atypical energy related symptoms of depression.

Finally, in chapter seven, we explored the association between different depressive 
symptom profiles and the risk of development of cardiometabolic diseases in 
N= 6561 individuals from the NEO study, over a median follow-up of seven years. 
We were able to disentangle the components of the exposure (depressive symptoms 
categorized in overall depression and atypical energy-related symptoms profile) 
and the outcome (cardiometabolic diseases categorized as type 2 diabetes and 
cardiovascular disease). We found that overall depression was associated with an 
increased risk of cardiometabolic disease. More specifically, the atypical energy-
related symptoms profile was significantly associated with an increased risk of 
type 2 diabetes onset.

Insights based on the main findings
The results of this thesis render two major insights. First, the interrelatedness 
between obesity and depression goes deeper than distal factors such as social 
stigma, self-image, or the use of medication and lifestyle, since our analysis 
reported an overlap between metabolic signatures in depression and obesity 
that was not fully explained by these factors. We hypothesized that metabolic 
dysregulation is a potential biological candidate that could (at least partially) 
explain the comorbidity between obesity and depression (see The potential role 
of metabolic dysregulation in the link between obesity and depression section). 
Second, the connection between depression, metabolic dysregulation and 
obesity varied due to depression heterogeneity and was strongest for a specific 
depressive symptom profile. We found that metabolic dysregulations correlated 
more consistently with atypical energy-related symptoms profile. This symptoms 
profile was positively associated with adiposity only in the presence of metabolic 
dysregulations. Depression heterogeneity also impacted the link between 
depression and cardiometabolic diseases with atypical energy-related symptoms 
profile increasing specifically the risk of type 2 diabetes.

The potential role of metabolic dysregulation in the link between 
obesity and depression
Many interconnected biological pathways can explain how metabolic dysregulation 
links obesity and depression and how the two conditions can further lead to 
cardiometabolic diseases. Firstly, it is possible that obesity causes depression, 
mediated through inflammation, insulin resistance, and metabolic dysregulation. 
Previous molecular epidemiological studies (i.e., Mendelian Randomization) 
suggested a causal role of obesity in developing depression [3]. Similarly, 
another recent Mendelian randomization suggested a causal role of obesity in 

168239_Alshehri_BNW-def.indd   176168239_Alshehri_BNW-def.indd   176 13-10-2023   13:06:2413-10-2023   13:06:24



177

Discussion

increased C-reactive protein (CRP) levels [4]. Inflammation has been shown to 
impact on psychopathological processes relevant for depression, alterations in 
monoaminergic neurotransmission, tryptophan degradation towards neurotoxic 
end-products, glutamate-related increased excitotoxicity, decreased neurotrophic 
factors synthesis or hypothalamic-pituitary-adrenal(HPA)-axis activity disruption 
[5]. Inflammation may also alter the function of two closely connected hormones 
(leptin and insulin) giving rise to insulin resistance [6] and leptin resistance 
[7]. Leptin is secreted proportional to the body’s adiposity and is known, along 
with insulin, as the “fed state” hormones [8, 9]. Both hormones have receptors 
in the hypothalamus, the area of the brain responsible for maintaining the 
overall body homeostasis, which, if compromised, is linked with depression [10, 
11]. Longitudinally, elevated acute phase cytokines and proteins in the baseline 
increased the risk of developing depressive symptoms [12, 13]. Also, CRP interferes 
with leptin binding with its receptor leading to leptin resistance [14]. Leptin 
resistance causes elevated leptin concentrations, which in turn inhibits insulin 
secretion from pancreatic β cells [15].

Impairment of insulin function is linked to metabolic dysregulation that may lead 
to depression. A wide range of metabolic dysregulations, such as disrupted lipid 
and glucose metabolism, has frequently been reported in obesity and depression 
[10, 16-18]. This is in line with results from our metabolomic-depression analysis 
(chapters three and four), where we used two large scales metabolomic platforms 
to investigate the metabolic signature of depression. For example, we reported 
increased VLDL, triglyceride, and lower HDL cholesterol. These findings show an 
overlap between metabolic signatures in both obesity [19] and depression.

Secondly, another possibility is the reverse, i.e., that depression causes obesity, 
mediated by metabolic dysregulation. Adulthood and early life stress cause 
depression that may intervene with food choices, physical activity, and metabolic 
homeostasis leading to dyslipidemia, inflammation, and metabolic dysregulation. 
Alterations in circulating lipid concentrations may be linked to pathophysiological 
pathways related to depression and obesity, such as chronic activation of the 
hypothalamic-pituitary-adrenal (HPA) axis or chronic low-grade inflammation 
[20]. Glucocorticoid-induced hypercortisolemia is known to result in lipolysis, 
the release of fatty acids and synthesis of very-low density lipoprotein (VLDL) 
[21]. Similarly, activation of the pro-inflammatory response leads to a reduction 
in HDL cholesterol and phospholipids, and an increase in triglyceride, caused by 
the compensatory production and accumulation of phospholipid-rich VLDL [22]. 
From metabolomic-depression analysis (chapters three and four), we found that 
lower levels of high-density lipoprotein (HDL), short-chain fatty acid and ketone 
body acetate and higher levels of very low-density lipoprotein (VLDL), triglyceride 
particles, glycoprotein acetyls, tyrosine, and vitamin A were associated with 
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depression. Vitamin A has previously been suggested as a cause of dyslipidemia by 
increasing the synthesis of triglyceride-rich very-low-density lipoproteins (VLDLs), 
inhibiting fatty acid degradation, and affecting the synthesis of apolipoproteins 
in the liver [23, 24].

Lastly, a common cause could influence both depression and obesity. Carrying 
a genetic disposition to leptin and insulin resistance independently or with a 
genetic predisposition for inflammation may precede and give rise to metabolic 
dysregulation, leading to both obesity and depression. Leptin stimulates the 
appetite-suppressing [25] proopiomelanocortin (POMC) neuron in the nucleus of 
the hypothalamus that activates the transcription of the melanocortin peptides 
(i.e., α, β, and γ MSH, and Mc3r and Mc4r) [26]. It has been proposed [27] that 
alterations of the leptin–melanocortin pathway impair not only its anorexigenic 
effect, leading to obesity, but also its effect on mood regulation, potentially leading 
to the development of depression. A recent study [28] identified five shared genetic 
risks between depression (or its treatment) and obesity. Two of these genes are 
components of the leptin-melanocortin pathway (i.e., proopiomelanocortin 
(POMC) and brain-derived neurotrophic factor (BDNF)). The link between obesity 
and metabolic dysregulation through leptin resistance and further depression 
may explain our findings from chapter two. We reported a positive association 
between depression and total body fat. Symptoms of depression related to 
disturbance of energy homeostasis were associated with total body fat (see below 
‘Heterogeneity of depression and obesity’). This result is in line with the previous 
work that examined the relationship between adiposity and depression (by using 
BMI as a proxy for total body fat) in epidemiological studies [10, 29-31]. Thus, 
metabolic dysregulation may act in two non-mutually exclusive ways: as a common 
underlying factor influencing the liability to both depression and obesity or as 
mediating mechanism in causal relationships between these conditions [10].

Heterogeneity of depression and obesity
We confirmed the existence of different dimensions within the construct of 
depression rooted in partially divergent underlying biological and genetic 
mechanisms. In this thesis, we observed that the link between obesity and 
depression was more apparent when considering the heterogeneity of depression 
and obesity. Similarly, the association of depression with cardiometabolic diseases 
changed as a function of depression heterogeneity. We found from the results 
of chapter two that depressive symptoms related to energy homeostasis were 
relatively more strongly linked to total body fat (i.e., adiposity) as compared to 
other symptoms. From the results of chapter six, we found that atypical energy-
related symptoms profile was positively associated with the genetic variants 
that increased the predisposition to increase total body fat with metabolic 
dysregulation but not with the genetic variants that increased the predisposition to 
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obesity without metabolic dysregulation. This aligns with the recently introduced 
transdiagnostic model of immuno-metabolic depression (IMD) [32], suggesting that 
inflammatory and metabolic dysregulations act as a shared substrate influencing 
the development of specific behavioral symptoms common to depression and 
obesity. For instance, as mentioned above, alterations in central signaling of leptin 
and insulin may associate with shifting body energy balance from expenditure to 
accumulation. This shift favors the development of hyperphagia, present in both 
obesity and atypical energy-related form of depression. Previous research [33] 
has shown that among patients with a current diagnosis of depression, higher 
leptin concentration in the blood is associated with depressive symptoms related 
to energy metabolism like hyperphagia, fatigability and physical exhaustion, 
independently from BMI. This agrees with our results from chapter two, where we 
reported that the effect estimates for symptoms of this cluster were the top-ranked 
for the associations between individual depressive symptoms with total body fat 
(i.e., closely linked to leptin concentration). Additionally, our results from chapter 
five, where we performed a data-driven clustering analysis between metabolites 
commonly associated with cardiovascular health and depressive symptoms, show 
the presence of a specific dimension with higher relative relevance for symptoms 
like difficulty falling asleep, sleeping too much, increased appetite, and low energy 
level correlates with metabolic dysregulations. These metabolic dysregulations 
have been hypothesized to link depression and cardiometabolic diseases. For 
example, immuno-metabolic dysregulations such as marked by elevated plasma 
concentrations of triglycerides, IL-6, and CRP, were causally related to depression 
[34]. Interestingly, a recent study has shown that inflammation as measured by 
IL-6 activity but not CRP is a potential cause for a specific symptoms profile of 
depression, such as sleep problems or fatigue [35]. Finally, our findings suggest 
that metabolic dysregulation links obesity and depression with some but not 
all elements of cardiometabolic diseases. For example, atypical energy-related 
symptoms profile was specifically related to an increased risk of type 2 diabetes 
but not cardiovascular disease.

Future work
We suggest three important areas of research in this field for the coming years. 
Firstly, more longitudinal studies that aim to study the relationship between 
depression symptoms profile and obesity and cardiometabolic diseases are 
needed to understand the directionality of the reported associations. Second, 
experimental mechanistic studies and genetically informed designs such 
as Mendelian Randomization may identify the presence of causal processes 
underlying these associations. Finally, future randomized control trials aiming 
to target the underlying immuno-metabolic dysregulations via pharmacological or 
behavioral interventions (such as exercising, dieting and sleep hygiene) in patients 
with depression expressing atypical energy-related symptoms are needed to help 

8

168239_Alshehri_BNW-def.indd   179168239_Alshehri_BNW-def.indd   179 13-10-2023   13:06:2513-10-2023   13:06:25



180

Chapter 8

us understand to what extent treating underlying metabolic dysregulation will 
contribute to mitigate this symptoms profile adversity.

Methodological considerations
Several methodological aspects of this thesis should be considered. The main 
strength of the analysis of this thesis is using data from two large and deeply 
phenotyped cohorts. The NEO study has detailed information about obesity 
phenotype with additional information about depression, and the NESDA has 
detailed depression phenotype with additional information about obesity. 
Both cohorts have the same depressive symptoms instruments, lipid-related 
metabolomic data, and obesity-related genetics that allowed us to perform 
discovery-replication and pooled analysis in the two cohorts. However, some 
methodological limitations should be acknowledged. First, the observational 
nature of the analyses in this thesis does not allow us to completely rule out the 
possibility of residual confounding. However, due to the design of the cohorts, we 
could adjust for a broad set of relevant confounding factors related to the studies’ 
associations, including age, sex, educational level, smoking, alcohol consumption, 
physical activity, antidepressants, lipid-lowering drugs, and ethnicity. Second, most 
of the studies of this thesis were performed in a cross-sectional design which does 
not allow us to infer causality in the detected associations. Third, we cannot rule 
out the possibility of reverse causality due to the nature of observational studies 
in chapter seven, where we performed a longitudinal analysis between baseline 
depressive symptoms profiles and developing type 2 diabetes and cardiovascular 
disease. However, we consider this highly unlikely, mainly because we removed 
participants with cardiometabolic diseases at the baseline. Fourth, in the NEO 
study, the depressive symptoms were assessed only via the self-report IDS-SR30 
without a clinical diagnosis of depression. Nonetheless, IDS-SR30 is time and cost-
efficient for research purposes and showed high concordance with the clinical 
diagnosis of depression [36].

The implication of this work
This thesis adds to the existing knowledge that encourages the consideration 
of a more refined classification for depression based on depressive symptoms 
profiles and their possible biological underpinnings. Albeit healthcare providers 
are shifting from assessing adiposity solely based on BMI by incorporating waist 
circumference and lipid profile to diagnose the overall health profile, less has 
been done so far regarding depression heterogeneity. It is essential to increase 
awareness about the different manifestations of depression symptomatology, 
which may arise from potentially divergent pathophysiological pathways. Two 
individuals with the same DSM-5 scores could have completely different symptoms 
profiles, biological vulnerabilities and disease trajectory or prognosis. Thus, it is 
important that healthcare providers become aware of the link between depressive 
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symptom profiles and their associations with biological biomarkers related to 
other health problems such as obesity, insulin resistance, type 2 diabetes and 
cardiovascular disease. Target screening of specific symptom profiles can 
provide better healthcare for patients with depression. This screening can also 
be used to protect from, or delay, the manifestation of metabolic dysregulations 
to cardiometabolic diseases (i.e., type 2 diabetes and cardiovascular disease). 
When patients with depression are expressing atypical energy-related symptoms 
profile, it may be useful to monitor their metabolic health biomarkers to prevent 
the development of cardiometabolic diseases. Our results highlight the importance 
of considering the instruments to assess depressive symptoms in research and 
clinical practice. In most studies, psychometric instruments are used to ask about 
changes in neurovegetative symptoms such as appetite and sleep, but not about the 
direction of that change. The overwhelming majority of questionnaires assessing 
depressive symptoms conflate opposite changes in neurogenerative symptoms 
(example: one question conflating decreased and increased appetite: “Poor 
appetite or overeating” from UK Biobank mental health questionnaire (MHQ) [37, 
38] and another question from the UK Biobank computerized touchscreen interface 
questionnaire [39] evaluating the presence of a change in the weight but not the 
direction of that change, such as loss or gain weight: “Compared with one year ago, 
has your weight changed?” with the following multiple choices No - weigh about 
the same, Yes - gained weight, Yes - lost weight, Do not know, Prefer not to answer). 
However, based on the results of this thesis, the connection between changes in 
appetite and metabolic dysregulation seems stronger for one specific direction 
of the changes (i.e., increased appetite and weight gain). Adding to that, refining 
the depression phenotype will increase the precision of the genetic studies that 
aim to comprehend depression genetic architecture [40]. In the clinical setting, 
we also should increase awareness about the correlation between depressive 
symptoms profiles with distinct biological and clinical manifestations when 
treating patients with depression. It is crucial to take a close look at the symptoms 
expressed in each patient. Based on the results of this thesis, we demonstrated 
that participants with depression expressing atypical energy-related depressive 
symptoms might carry genetic and clinical vulnerability to insulin-resistance 
related illness (i.e., adiposity, metabolic dysregulations, and type 2 diabetes). 
Similarly, diseases that are usually put under the label of cardiometabolic diseases 
should be studied separately as research has shown that each may have a partially 
distinct pathophysiology. The original definition of cardiometabolic diseases was 
used to describe the elements of metabolic syndrome and the diseases that they 
predict (i.e., stroke, heart disease, and type 2 diabetes). However, the definition of 
cardiometabolic diseases has expanded recently to include cardiovascular diseases, 
insulin resistance-related diseases, and renal function related diseases (example 
[28, 41]). Although all these conditions are closely related, it may be beneficial 
to distinguish groups of diseases that share similar underlying pathophysiology. 

8
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In chapter seven, we found that atypical energy-related depressive symptoms 
were associated with an increased risk of type 2 diabetes but not cardiovascular 
disease (i.e., both labelled as cardiometabolic diseases). The 2016 guidelines on 
cardiovascular disease prevention from The European Society of Cardiology’s 
(ESC) [42] recommend active screening for increased cardiometabolic risk factors 
such as obesity, type 2 diabetes and depression starting from age 40 for men and 
age 50 for women at least once every five years. We argue that following up on 
patients with depression for cardiometabolic diseases and measuring specific 
depressive symptoms in individuals at risk for cardiometabolic diseases could be 
beneficial in primary and secondary preventive efforts. Additionally, preventive 
and treatment efforts may benefit from a more personalized approach taking into 
account differential depressive symptoms manifestations. Very recently, clinical 
trials [43-45] have started testing the efficacy of targeting immuno-metabolic 
pathways in the treatment of specific subgroups of depressed patients selected 
based on their bio-clinical profile. Among these clinical studies, the INFLAMED 
trial [45] is currently testing the efficacy of an anti-inflammatory add-on to 
standard antidepressants in the treatment of MDD patients expressing atypical 
energy-related symptoms and with sign of low-grade inflammation.

Conclusion
Our findings highlight the importance of considering the heterogeneity of 
adiposity, depression, and cardiometabolic diseases. The complex nature of 
the relationship between the three conditions makes it challenging to draw a 
one-size-fits-all conclusion. Our results suggest that metabolic dysregulation 
is a potential biological mechanism that links specific forms of depression 
with obesity. This proposed mechanism could lead to the development of 
cardiometabolic diseases. In this thesis, we found that the atypical energy-related 
symptoms profile - characterized by behavioral symptoms reflecting altered 
energy intake and expenditure (i.e., increased appetite, increased sleepiness, 
low energy level, leaden paralysis, increased weight) - is the main driver of the 
relationship between depression, adiposity, immune-metabolic dysregulation 
and their later manifestation (type 2 diabetes). It is important to raise awareness 
about the depression heterogeneity and how distinct symptoms profile such as 
atypical energy-related symptoms profile could further correlate with clinical 
manifestation of metabolic dysregulation and increase the risk of debilitating 
diseases such as type 2 diabetes. Future detailed genetics and experimental 
studies that aim to answer the causation question are needed in order to move 
forward to better precise and personalize diagnosis and treatment for all patients 
with depression, obesity and cardiometabolic diseases.
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De relatie tussen obesitas en depressie blijkt complex te zijn en wordt niet volledig 
begrepen. Obesitas en depressie zijn in twee richtingen met elkaar verbonden: 
enerzijds verhoogt depressie het risico op obesitas, terwijl obesitas op zijn 
beurt het risico op depressie verhoogt. Echter, niet elk persoon met depressie 
heeft obesitas en niet elk persoon met obesitas is depressief. Zowel obesitas als 
depressie zijn geassocieerd met een verhoogd risico op cardiometabole ziekten. 
Hieronder vallen hart- en vaatziekten en diabetes mellitus type 2. Het verrichten 
van onderzoek naar de associatie tussen obesitas, depressie en cardiometabole 
ziekten wordt bemoeilijkt door hun complexiteit en heterogeniteit. Bovendien is 
aangetoond dat deze associatie slechts gedeeltelijk wordt verklaard door leefstijl, 
medicatie en de aanwezigheid van comorbiditeiten. De hypothese luidt derhalve dat 
er mogelijk sprake is van biologische verbindingen tussen de drie ziektebeelden.

Obesitas wordt gekenmerkt door een verschuiving van de energiebalans naar 
overmatige vetopslag, dat over het algemeen plaatsvindt in het gehele lichaam en 
voornamelijk in de buikholte. Dit teveel aan vet is geassocieerd met verstoringen 
van het immuunsysteem als gevolg van laaggradige inflammatie. Daarnaast is er 
sprake van metabole ontregeling die verstoringen veroorzaakt in het transport 
van essentiële stoffen door het lichaam, die nodig zijn voor de energiebalans 
(bekend als ‘homeostase’). Volgens de World Health Organization (WHO) wordt 
obesitas gedefinieerd als een body mass index (BMI) groter dan of gelijk aan 
30 kg/m2, waarbij BMI wordt berekend als gewicht gedeeld door lengte in het 
kwadraat. Alhoewel BMI een hoge correlatie heeft met de hoeveelheid vet die in 
het lichaam is opgeslagen als vetweefsel, wordt hierbij geen onderscheid gemaakt 
met hoge vetvrije massa, oftewel spiermassa. Bovendien kan het gebruik van BMI 
problematisch zijn wanneer etniciteiten met elkaar worden vergeleken, aangezien 
daarbij sprake is van verschillende lichaamsstructuren en -samenstellingen. Dit 
kan tot onjuiste conclusies leiden als BMI-afkappunten zonder correctie voor de 
verschillende etniciteiten worden gebruikt. Daarom meten wij in dit proefschrift 
zowel het totale lichaamsvet als de vetverdeling in het lichaam. Naast de 
heterogeniteit van meeteenheden en definities van obesitas, zijn er vele subtypes 
van obesitas. Twee subtypen zijn tegengesteld aan elkaar en zullen in het kader van 
dit proefschrift hier beschreven worden: a) ‘metabolisch ongezonde obesitas’, die 
geassocieerd wordt met overtollig lichaamsvet en de aanwezigheid van ontsteking 
en metabole ontregeling; b) ‘metabolisch gezonde obesitas’ die geassocieerd wordt 
met overtollig lichaamsvet en een gezond (of gunstig) metabool profiel.

Depressie uit zich in aanhoudende neerslachtigheid en/of het onvermogen om 
plezier te voelen. Dit treedt op in combinatie met cognitieve symptomen (zoals 
verminderde concentratie of besluiteloosheid) en somatische symptomen (zoals 
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vermoeidheid, pijn, toe- of afname van gewicht en eetlust). De diagnose depressie 
wordt gesteld volgens de criteria van de Diagnostic and Statistical Manual of Mental 
Disorders (DSM-V). Iemand dient dan gedurende meer dan twee weken aanzienlijke 
functionele beperkingen hebben met vijf van de negen symptomen, twee daarvan 
moeten fundamentele symptomen van depressieve stemming en anhedonie 
zijn. Depressie kan worden vastgesteld middels een gestructureerd klinisch 
diagnostisch interview, zoals het Composite International Diagnostic Interview 
(CIDI, versie 2.1), of middels gevalideerde zelfrapportagevragenlijsten, zoals de 
Inventory of Depressive Symptomatology (IDS-SR30). De IDS-SR30 evalueert op 
een 4-puntenschaal de aanwezigheid van 30 depressieve symptomen tijdens de 
laatste week en scoort de ernst van deze symptomen. Doordat op vele verschillende 
manieren aan de DSM-criteria voor depressie kan worden voldaan, kwam er 
recentelijk meer aandacht voor depressie heterogeniteit. Verschillende subtypes 
en dimensies van depressie zijn reeds beschreven. De meest cruciale dimensie 
van depressie voor dit proefschrift is een cluster van somatische symptomen die 
gerelateerd zijn aan de beschikbaarheid en het verbruik van energie in het lichaam. 
Deze symptomen zijn toegenomen slaperigheid, toegenomen eetlust, toegenomen 
gewicht, laag energieniveau en fysieke uitputting. Dit symptomenprofiel werd 
consequent in verband gebracht met obesitas, ontsteking, metabole ontregeling 
en cardiometabole ziekten. 

Aanvankelijk werd de term ‘cardiometabole ziekten’ geï�ntroduceerd om alle 
metabole ontregelingen ten gevolge van insulineresistentie te beschrijven; 
zoals eerder vermeld betreffen dit het metabool syndroom, hart- en vaatziekten 
en diabetes mellitus type 2. Echter, momenteel heeft de term geen duidelijke 
definitie. Het wordt gebruikt om diabetes mellitus type 2 en hart- en vaatziekten 
te beschrijven, maar ook hun risicofactoren zoals insulineresistentie, hypertensie, 
hyperglykemie, dyslipidemie en soms ook nierziekten. Dit impliceert een 
heterogeen karakter van de term cardiometabole ziekten, met name door het 
feit dat factoren die enerzijds diabetes voorspellen, zoals componenten van het 
metabool syndroom, niet altijd (of maar zwak) hart- en vaatziekten voorspellen.

In dit proefschrift streefden we ernaar om de aard van de relatie tussen obesitas, 
depressie en cardiometabole ziekten te ontrafelen. We karakteriseerden de 
associatie tussen verschillende maten van obesitas en metabole dysregulaties (die 
gewoonlijk gelinkt worden aan obesitas), en depressie. Verder onderzochten we of 
deze associatie varieerde tussen verschillende depressieve symptoomprofielen. 
Ook wilden we de rol van metabole ontregeling onderzoeken als mogelijk 
verbindingsmechanisme tussen obesitas en een depressief profiel, dat gekenmerkt 
wordt door atypische symptomen die de energiehomeostase weerspiegelen. Ten 
slotte wilden we het risico van algemene depressie en specifieke depressieve 

A
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symptoomprofielen op het ontwikkelen van cardiometabole ziekten nader 
bestuderen. 

Het doel van hoofdstuk 2 van dit proefschrift was om meer kennis te vergaren over 
de relatie tussen obesitas en depressie. De associatie tussen obesitas en depressie 
was al eerder bestudeerd, maar wij bekeken de definitie van obesitas op unieke 
wijze vanuit verschillende invalshoeken. In plaats van ons alleen te baseren op 
het BMI, die bekend staat als een beperkte maat voor obesitas, gebruikten we 
het samen met drie andere adipositasmaten. Twee van de vier maten (BMI en 
totaal lichaamsvet) geven de totale adipositas weer, terwijl de andere twee maten 
(tailleomtrek en visceraal vetweefsel) de abdominale adipositas weergeven. Het 
totale lichaamsvet werd geschat middels bio-elektrische impedantieanalyse. 
Voor het meten van visceraal vetweefsel werd beeldvormend onderzoek verricht 
middels MRI-scan. Voor het onderzoeken van depressie werd de IDS-SR30 
vragenlijst gebruikt. Wij vonden dat alle vier de maten van adipositas (BMI, 
totaal lichaamsvet, middelomtrek, visceraal vetweefsel) positief samenhingen 
met depressieve stemming en individuele symptomen van depressie. Bovendien 
bleek het verband tussen adipositasmaten (met name totaal lichaamsvet) en 
depressieve symptomen sterker te zijn voor atypische energie-gerelateerde 
depressieve symptomen; oftewel toegenomen gewicht, toegenomen eetlust, laag 
energieniveau en loodzware verlamming (fysieke uitputting). 

In de hoofdstukken 3 en 4 trachtten we plasmametabolieten te identificeren die 
geassocieerd zijn met depressie. Metabolieten zijn kleine moleculen die voortkomen 
uit biochemische processen in het lichaam. Dit werd onderzocht in twee 
grootschalige analyses met twee verschillende metabolomics-platforms waarbij 
meer dan 1000 metabolieten werden gemeten met een beperkte overlap tussen de 
platforms (N=18 metabolieten), in negen Nederlandse en vijf Europese cohorten uit 
de algemene bevolking en klinische populaties. In de eerste metabolomics studie 
vonden we een metabole signatuur voor depressie die vergelijkbaar is met dat van 
cardiometabole ziekten: lagere niveaus van HDL-cholesterol en hogere niveaus 
van VLDL-cholesterol, triglyceriden en de ontstekingsmarker glycoproteï�ne 
acetyls. De associaties werden niet beï�nvloed door geslacht, leeftijd en BMI, en 
waren gelijk voor cohorten met depressie-diagnoses en cohorten met depressieve 
symptomen. Daarnaast identificeerden we in de tweede metabolomics studie ook 
nieuwe associaties tussen retinol (vitamine A) en depressie. 

In hoofdstuk 5 beoogden we depressiedimensies te identificeren die samenhangen 
met een verhoogd risico op een ongunstig metabool profiel, door gegevens van 
metabolomics en depressieve symptomen te combineren. We voerden data-driven 
clustering uit op basis van zowel symptomen als metabolomics bij deelnemers met 
de diagnose klinische depressie. Om onze bevindingen naar aanleiding van de 
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clustering te repliceren, onderzochten we in een onafhankelijk bevolkingscohort 
de associatie van de geï�dentificeerde dimensies met hetzelfde metabolomics-
panel en individuele cardiometabole ziekten (zoals concentraties van nuchtere 
glucose, insulineresistentie, totaal lichaamsvet en visceraal vetweefsel). Middels 
clusteringanalyse werden twee metaboliet-depressiedimensies geï�dentificeerd. 
De eerste dimensie werd gekenmerkt door een vrijwel uniforme bevestiging van 
een reeks stemmings-, cognitieve en somatische depressieve symptomen en lagere 
niveaus van metabole disregulaties. De dimensie met vertoonde een relatief sterke 
bijdrage van energie-gerelateerde symptomen (zoals slaapzucht, verhoogde eetlust 
en lage energieniveaus) en een verhoogde mate van metabole ontregelingen. Uit de 
replicatieanalyses bleek dat de dimensie met relevantie voor energie-gerelateerde 
depressieve symptomen geassocieerd was met meer visceraal vetweefsel, insuline 
resistentie en hogere concentraties van triglyceriden, vertakte-keten aminozuren, 
glycoproteï�ne acetylase en lagere concentraties van HDL-cholesterol dan de 
dimensie van algemene depressie. 

In hoofdstuk 6 gebruikten we genetica (genetics risk score analyse) om het effect 
van adipositas te onderscheiden van dat van metabole dysregulaties, om na te 
gaan of het verband tussen obesitas en atypische energie-gerelateerde depressieve 
symptomen afhankelijk is van de aanwezigheid van metabole dysregulaties. 
In deze analyse hebben wij het effect van adipositas losgekoppeld van dat van 
metabole dysregulaties door twee genetische risicoscores (GRS) te creëren die 
beide geassocieerd waren met adipositas. De ene GRS was ook geassocieerd met 
de aanleg voor een ongunstig metabool profiel (oftewel metabole dysregulaties), 
terwijl de andere GRS geassocieerd was met een gunstig metabool profiel. We 
hebben de resultaten van twee afzonderlijke studies gemeta-analyseerd, namelijk 
van de NEO-studie en de NESDA. We observeerden dat de GRS dat het risico op 
adipositas in combinatie met metabole disregulaties verhoogde, geassocieerd 
was met een verhoogd atypisch energie-gerelateerd depressie profiel. De GRS 
die gepaard gaat met obesitas met een gunstig metabool profiel was echter niet 
geassocieerd met een atypisch energie-gerelateerd symptoomprofiel.

Ten slotte onderzochten we in hoofdstuk 7 de associatie van algemene depressie en 
atypisch energie-gerelateerd symptoomprofiel met het risico op cardiometabole 
ziekten. We voerden een time-to-event analyse (mediane follow-up periode van 
7 jaar) uit om het risico op cardiometabole ziekten en de componenten daarvan 
(diabetes mellitus type 2 en hart- en vaatziekten) en koppelden deze uitkomsten 
aan depressie en een atypisch energie-gerelateerd symptoomprofiel van depressie. 
De uitkomst hiervan was dat algehele depressie samenhing met een verhoogd 
risico op cardiometabole ziekten. In het bijzonder was het profiel van atypische 
energie-gerelateerde symptomen geassocieerd met een verhoogd risico op 
diabetes mellitus type 2.

A
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De uitkomsten beschreven in dit proefschrift dragen bij aan de bestaande 
overtuiging dat een verfijndere classificatie voor depressie, op basis van 
symptoomprofielen en hun mogelijke biologische onderbouwing, overwogen 
dient te worden. Inmiddels wordt adipositas in de dagelijkse praktijk op meer 
dan alleen het BMI beoordeeld, namelijk ook de tailleomtrek en het lipidenprofiel. 
Echter, dergelijke aandacht bestaat nog niet voor de heterogeniteit van depressie. 
Een grotere bewustwording van de verschillende manifestaties van depressie-
symptomatologie, die het gevolg kunnen zijn van uiteenlopende pathofysiologische 
mechanismen, is van essentieel belang. Wanneer een patiënt met depressie 
een atypisch energie-gerelateerd symptoomprofiel heeft, kan het nuttig zijn 
om diens metabole biomarkers te controleren om mogelijke ontwikkeling van 
cardiometabole ziekten te voorkomen. In de klinische praktijk moeten wij 
ons bij de behandeling van patiënten met depressie ook meer bewust worden 
van de correlatie tussen symptoomprofielen van depressie en afzonderlijke 
biologische en klinische manifestaties. Het is cruciaal om goed te kijken naar de 
symptomen die bij elke patiënt tot uiting komen. De resultaten van dit proefschrift 
tonen aan dat patiënten met een depressie die atypische energie-gerelateerde 
depressieve symptomen vertonen, genetisch en klinisch kwetsbaar zijn voor 
aan insulineresistentie gerelateerde ziekten (namelijk adipositas, metabole 
ontregelingen en diabetes mellitus type 2). Een gepersonaliseerde aanpak kan 
behulpzaam zijn in preventie van deze chronische en complexe ziekten. Hierbij 
dient er rekening gehouden worden met de heterogeniteit van depressie en de 
associatie tussen atypische energie-gerelateerde symptomen van depressie en 
deze ziekten.
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