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Abstract
Context. The study of disc kinematics has recently opened up as a promising

method to detect unseen planets. However, a systematic, statistically meaningful
analysis of such an approach remains missing in the field.

Aims. The aim of this work is to devise an automated, statistically robust
technique to identify and quantify kinematical perturbations induced by the pres-
ence of planets in a gas disc, and to accurately infer the location of the planets.

Methods. We produced hydrodynamical simulations of planet–disc interac-
tions with different planet masses, namely 0.3, 1.0, and 3.0MJup, at a radius of
Rp = 100 au in the disc, and performed radiative transfer calculations of CO to
simulate observables for a disc inclination of −45◦, and for 13 planet azimuths.
We then fitted the synthetic data cubes with a Keplerian model of the channel-by-
channel emission using the discminer package. Lastly, we compared the synthetic
cubes with the best-fit model to: extract deviations from Keplerian rotation; and
quantify both large-scale and localised intensity, line width, and velocity fluctua-
tions triggered by the embedded planets and provide strong constraints on their
location in the disc. We assess the statistical significance of the detections using
the peak and variance of the planet-driven velocity fluctuations.

Results. Our findings suggest that a careful inspection of line intensity pro-
files to analyse gas kinematics in discs is a robust method to reveal embedded,
otherwise unseen planets, as well as the location of gas gaps. We claim that
a simultaneous study of line-of-sight velocities and intensities is crucial to un-
derstanding the origin of the observed velocity perturbations. In particular, the
combined contribution of the upper and lower emitting surfaces of the disc plays
a central role in setting the observed gas velocities. This joint effect is especially
prominent and hard to predict at the location of a gap or cavity, which can lead to
artificial deviations from Keplerian rotation depending on how the disc velocities
are retrieved. Furthermore, regardless of their origin, gas gaps alone are capable of
producing kink-like features on intensity channel maps, which are often attributed
to the presence of planets. Our technique, based on line centroid differences, takes
all this into account to capture only the strongest, localised, planet-driven pertur-
bations. It does not get confused by axisymmetric velocity perturbations that may
result from non-planetary mechanisms. The method can detect all three simulated
planets, at all azimuths, with an average accuracy of ±3◦ in azimuth and ±8 au in
radius. As expected, velocity fluctuations driven by planets increase in magnitude
as a function of the planet mass. Furthermore, owing to disc structure and line-of-
sight projection effects, planets at azimuths close to ±45◦ yield the highest velocity
fluctuations, whereas those at limiting cases, 0◦ and ±90◦, drive the lowest. The
observed peak velocities typically range within 40−70 m s−1, 70−170 m s−1, and
130−450 m s−1 for 0.3, 1.0, and 3.0MJup planets, respectively. Our analysis in-
dicates that the variance of peak velocities is boosted near planets because of
organised gas motions prompted by the localised gravitational well of planets. We
propose an approach that exploits this velocity coherence to provide, for the first
time, statistically significant detections of localised planet-driven perturbations in
the gas disc kinematics.
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2.1 Introduction

In order to detect young planets, it is imperative to understand the footprints
they leave on protoplanetary discs, their place of formation. Recent observations
in concert with theoretical efforts suggest that dust substructures, mostly rings
and gaps but also cavities, spirals, and asymmetric features, are possibly ubiq-
uitous in protoplanetary discs (ALMA Partnership et al. 2015; Isella et al. 2016;
Pérez et al. 2016; Long et al. 2018; Andrews et al. 2018). In multiple cases, embed-
ded planets may play a key role in shaping some of these substructures observed
in infrared and (sub)millimetre wavelengths (see e.g. Benisty et al. 2015; Dipierro
et al. 2015; Pinilla et al. 2018; Zhang et al. 2018; Ubeira Gabellini et al. 2019; Fac-
chini et al. 2020). However, planet–disc interactions are far from being the only
driving mechanism behind dust signatures in young discs. Magnetic, hydrody-
namic, and gravitational instabilities can also lead to dust substructure (Armitage
2011; Andrews 2020), meaning that looking at the dust emission alone is generally
insufficient to unambiguously claim the presence of planets. On top of that, ther-
mal and accretion emission from young planets is hard to detect through direct
imaging, whose range of action is currently narrowed to massive planets and low-
dust-extinction scenarios (Testi et al. 2015; Sanchis et al. 2020). To date, PDS 70
is the only system in which forming planets have been convincingly detected by
direct imaging (PDS 70b and PDS 70c, Keppler et al. 2018; Haffert et al. 2019).

Luckily, not only dust but also gas stores valuable information that can help
disentangle the physical and chemical processes at work (and often coupled) in
planet-forming discs (Bruderer et al. 2012; Henning & Semenov 2013; Dutrey et al.
2014). The presence of deep gas cavities, smaller than those in dust at (sub)mm
wavelengths, is a clear diagnostic of the disc interaction with planet and stellar
companion(s) (Bruderer et al. 2014; Perez et al. 2015; van der Marel et al. 2015,
2016b). On the other hand, the rich molecular gas disc inventory has been meticu-
lously examined over recent years to reveal density and temperature structure, as
well as elemental abundances in a number of objects (Piétu et al. 2007; Rosenfeld
et al. 2013; Williams & Best 2014; Miotello et al. 2016; Dutrey et al. 2017; Pinte
et al. 2018a; Dullemond et al. 2020; Rosotti et al. 2020a; Teague et al. 2020; Fac-
chini et al. 2021). These are all crucial pieces in the vast puzzle of planet formation
(Benz et al. 2014; Johansen & Lambrechts 2017; Öberg & Bergin 2021). Moreover,
spectral lines from molecules provide a useful window onto gas velocities, and can
be ‘mined’ with appropriate modelling to understand the mechanisms driving the
disc dynamics (see e.g. Rosenfeld et al. 2013; Price et al. 2018; Teague et al. 2019a;
Wölfer et al. 2021; Paneque-Carreño et al. 2021), and in consequence, to better
constrain the presence of planets.

It is well known from previous theoretical works that hydrodynamical and
gravitational interactions between forming planets and gas discs produce particu-
lar signatures in molecular line observations (Pérez et al. 2015, 2018). Line Doppler
shifts due to localised deviations from Keplerian rotation are expected in circum-
planetary material and along spiral wakes launched from the planet. Furthermore,
embedded planets carve density gaps which induce pressure gradients in the gas
disc, producing azimuthally extended non-Keplerian velocities at the edges of the
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gaps (see e.g. Disk Dynamics Collaboration et al. 2020). In this context, and sup-
ported by the high angular and spectral resolution offered by the Atacama Large
(sub)Millimeter Array (ALMA), many are increasingly turning their attention to
spotting the kinematical clues left by planets in protoplanetary discs.

More specifically, Pinte et al. (2018b, 2019) claimed kinematical detections of
giant planets embedded in the discs around HD 163296 and HD97048 by empirical
comparison of planet-disc hydrodynamic simulations capable of producing kink-
like features similar to those observed in CO intensity channel maps. A handful
of new kinks in 12CO were reported later by Pinte et al. (2020) but most of
them await confirmation because of limitations in signal-to-noise ratio and spectral
resolution. The kink velocity can be linked to the driving planet mass through
simple relationships as recently theorised by Rabago & Zhu (2021) and Bollati
et al. (2021), yet both of these latter studies omit radiative transfer effects. On
the other hand, Teague et al. (2018a) proposed the presence of two other giant
planets in shorter orbits around HD 163296 by looking at azimuthally symmetric
gas velocity deviations from Keplerian rotation due to pressure gradients driven
by planet-induced gaps. However, this method is limited by the fact that gaps
opened by other mechanisms would drive similar kinematical signatures in the disc
(see e.g. Rabago & Zhu 2021). Using rotation curves on the disc of HD100546,
Casassus & Pérez (2019) detected a localised ‘Doppler flip’ in 12CO reminiscent
of the velocity perturbations expected along spiral wakes induced by a planet.
Nevertheless, although pivotal, these studies are still source-specific and some lack
statistical significance. In particular, the presence of kinks is currently assessed
by visual inspection of channel maps, which works fine in some clear cases, but
does not allow for an estimate of the significance of the detection, implying that
the method can be misleading in less apparent cases.

In this chapter, we introduce a statistical framework to overcome these limita-
tions and to robustly detect localised perturbations due to unseen planets using
molecular line observations. The technique is also applied to systematically extract
observable velocity perturbations driven by different planet masses at a number
of azimuths in a synthetic disc. The outline of the work is as follows. Section 2.2
describes the planet–disc interaction simulations and synthetic observations used
throughout the work. Section 4.2.1 introduces the discminer package and how we
use it to fit Keplerian intensity channel maps on the synthetic observations. Sec-
tion 3.3 presents the extraction and analysis of non-Keplerian velocities, as well as
the statistical framework designed to infer the location of planets as a function of
planet mass and azimuth in the disc. We expand on the advantages of our method
and discuss the observable signatures of planets in Section 5.5, and summarise the
main results in Section 5.6.

2.2 Simulations and radiative transfer

To simulate velocity perturbations triggered by planet–disc interactions, we use
the multifluid open source code fargo3d (Benítez-Llambay & Masset 2016) to
solve the hydrodynamic evolution of a gas disc, which responds to thermodynamic
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Figure 2.1: Left panel : Edge-on gas number density of one of our planet–disc simulation
snapshots (1.0MJup, ϕp = 0◦). The white contour encloses the CO freeze-out region
(T < 20K). The black lines correspond to z/R = 0.1, 0.2, 0.3, 0.4 scale heights, with
the solid line being the threshold adopted for photodissociation. Middle panel : Face-on
view of the gas number density in the midplane of the disc. Right panel : Azimuthal
(main panel) and radial (zoom-in) deviations from Keplerian velocity. The solid and
dashed contours in the zoomed-in panel are ±60 per cent peak azimuthal and peak
radial perturbations, respectively, and illustrate that both components do not necessarily
overlap and in turn contribute independently to the observed peak velocity perturbations.
Also shown is the planet Hill sphere, with a radius of 6.8 au. The green circle indicates
the current position of the planet, and the grey circles are additional planet azimuths
explored in this work.

variables via the Navier-Stokes and continuity equations, and to the gravitational
potential of point-like sources.

Assuming viscous accretion (Lynden-Bell & Pringle 1974b; Hartmann et al.
1998), we initialise the simulations with a gas disc surface density profile of the form
Σgas(R) = Σc(R/Rc)

−γ exp[−(R/Rc)
2−γ ], with Rc = 100 au as the characteristic

radius, Σc = 3.0 g cm−2 the density normalisation at Rc, and γ = 1.0 the viscous
power-law exponent. We adopt a uniform kinematic viscosity of α = 10−3, and
a 1 M⊙ point-like source at the centre of the mesh. The mesh spans from −π to
π in ϕ, 15 to 700 au in R, and −240 to 240 au in z. The number of cells is 2048,
1250, and 149, respectively, evenly spaced in ϕ and z, and logarithmically spaced
in R. The inner and outer radii are assumed to be Rin = 15 au and Rout = 400 au,
yielding a gas mass of 0.01 M⊙.

We ran three independent 2D simulations varying the mass of the embedded
planet (0.3, 1.0, and 3.0MJup) at a fixed radial location Rp = 100 au, and let
them evolve for 1000 orbits to reach a steady state. Even though the mesh of our
simulations is not adaptive, its spatial resolution guarantees that the Hill radius
of the planet is resolved (e.g. with ∼ 22 cells for the 1.0MJup planet). Also, the
planets are not treated as sink particles, so they are not accreting material. Their
gravitational potential is smoothed with 0.6 of the disc scale height, which is the
closest 2D approximation of 3D gravity (Müller et al. 2012). On the other hand,
we do not find fully developed vortices in any of the simulations at steady state.
This is a consequence of the kinematic viscosity being high enough to efficiently
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quench vortices (see e.g. Fu et al. 2014; Hammer et al. 2017).
To extend the simulations to three dimensions, we assume a cylindrical veloc-

ity field. Because of the planet gravity, it is not straightforward to calculate the
rotation velocity at different heights in the disc based on the midplane velocities
and the central force of the star only, let alone the radial and vertical velocity com-
ponents. Full 3D simulations are required to self-consistently tackle this. On the
other hand, we consider hydrostatic equilibrium to compute the gas volume den-
sity along the vertical direction, ρgas(R, z) =

(
Σgas(R)/

√
2π H

)
exp[−0.5(z/H)2],

where H(R) = H0(R/100 au)
ψ is the scale height of the disc, with a normalisation

H0 = 6.5 au, and a flaring index ψ = 1.25. Figure 2.1 shows edge-on and face-on
slices of the resulting gas number density and intrinsic deviations from Keplerian
rotation for the 1.0MJup simulation.

Based on the simulated gas densities and velocities, we perform radiative trans-
fer calculations to obtain synthetic emission maps of 12CO J = 2 − 1 assuming a
parametrised CO abundance (see below). Velocity binning, line-of-sight projec-
tion and optical depth effects are therefore considered in the analysis. These are
unavoidable factors that must be taken into account if one is to study any ob-
servable, especially when it is expected to be faint and confined to small scales as
is generally the case for planet-driven perturbations (Pérez et al. 2018). In real
data, additional sources of uncertainty such as noise in the signal, beam smearing,
and non-linear artefacts from image reconstruction algorithms are also important
(see e.g. Disk Dynamics Collaboration et al. 2020) and will be explored in future
releases of the Disc Miner series, which are more focused on observations.

We use the rt modules of the sf3dmodels package (Izquierdo et al. 2018) to
bridge our fargo3d simulation snapshots with the polaris radiative transfer code
(Reissl et al. 2016). We first run polaris to compute the three-dimensional dust
temperature, which is done by propagating photon packages semi-randomly from a
T Tauri star at the centre of the disc, with a luminosity of 1.9 L⊙ and a photosphere
at an effective temperature of 4000 K. We assume a standard Mathis radiation field
at a galactocentric distance of 10 kpc as an external source of radiation (Mathis
et al. 1983). The disc is located 100 pc away from the observer and inclined at
−45◦ with respect to the plane of the sky, with the north half being the side closest
to the observer. For simplicity, the position angle of the disc was fixed at 0◦. The
dust model consists only of silicate grains with an intrinsic density of 3.5 g cm−3

(with optical properties from Weingartner & Draine 2001). We use a standard
ISM gas-to-dust mass ratio of 100, and a grain size distribution n(a) = a−3.5,
between amin = 5nm and amax = 1mm. We consider a direct conversion of
temperatures Tgas = Tdust, which is a good assumption at scale-heights z/R < 0.3
where our analysis takes place (see e.g. Kamp & Dullemond 2004; Jonkheid et al.
2004; Miotello et al. 2014). Second, we use sf3dmodels again to read the output
temperatures and add simplified chemical processes such as CO freeze-out on dust
grains, where Tdust < 20K, and photodissociation, at scale heights z/R > 0.3. We
adopt a 12CO abundance of 5× 10−5 in the gas phase, and 5× 10−11 in freeze-out
and photodissociated regions. Lastly, sf3dmodels provides polaris with the gas
velocity, temperature, and the processed CO abundance distribution, which this
time are used to compute the ray-traced intensity channel maps of the simulations.
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In order to consider projection effects on the planet-driven perturbations, we
ran the ray-tracing 13 times per planet, each time rotating the input gas properties
along the vertical axis of the disc from –90◦ to 90◦, in steps of 15◦, so that the
planets can be observed at 13 different azimuths in the posterior analysis (see
Fig. 2.1). As such, we end up with 39 position-position-velocity (ppv) cubes, each
with 101 channel maps ranging from −5 to 5 km s−1, taking a channel width of
0.1 km s−1. We adopt a pixel size of 3.1 au which translates to 31 mas at 100 pc. A
selection of these channel maps is presented in Figure 2.2, where we also compare
some of the kinematical features triggered by the three planets in our sample.
There are many kinks evident to the eye in the channel maps, especially around
massive planets. However, we note that the gap alone can also produce kink-
like features, suggesting that empirical methods that rely on visual inspection are
prone to false positive detection of planets. Conversely, as explained in Sect. 3.3,
our statistical method does not get confused by these apparent features.

2.3 Fitting channel maps

2.3.1 The Discminer package
In this section we present the basic functionality of the discminer code, care-
fully designed to capture structural and kinematical features from circumstellar
discs using molecular line emission. discminer is freely available for download at
https://github.com/andizq/discminer .

As in previous fitting methods that dig into the kinematics of discs (e.g. Teague
et al. 2018b; Casassus & Pérez 2019), our package is based on parametric descrip-
tions of the physical and geometrical properties that make up a simplified disc of
gas1. However, the discminer provides for the first time a simultaneous represen-
tation of line profiles and velocities by fitting individual intensity channel maps
rather than projected velocity maps (see Fig. 2.3). To do so, the line intensity is
modelled considering the following attributes,

(i) We assume that the disc emission comes from two thin (upper and lower)
surfaces. Their vertical location is described by two parametric prescriptions
of the form z = f(R).

(ii) A Keplerian velocity field υk = f(R, z;M⋆, υsys), which is used to determine
the shift in velocity space of the emission from any given pixel.

(iii) A kernel to shape the line intensity profile as a function of the disc co-
ordinates. The kernel combines peak intensity (Ip), line-width (Lw) and
line-slope (Ls) information, which are also parametric prescriptions of the
form A = f(R, z). See further details in Sect. 2.3.2.

(iv) Inclination and position angle of the disc. These are used for geometrical
projection of intensities and line-of-sight velocities on the plane of the sky.

1The model is designed to be computationally cheap so that it is suitable for parameter space
exploration and for analysis of large datasets, while still possessing a reasonable degree of realism.
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kink

Planet

Figure 2.2: Selected 12CO J = 2 − 1 synthetic channel maps for the three simulation
snapshots (0.3, 1.0 and 3.0MJup, from top to bottom), with the planets at Rp = 100 au
radius, and ϕp = 45◦ azimuth, marked as green circles. The disc is inclined at −45◦ with
respect to the plane of the sky. The thin grey line is the projected circular orbit of the
planet. The solid lines are centroid velocity contours extracted from the simulations at
the velocity channel indicated on the top header; the dashed lines show the same but for
the Keplerian best-fit model. Small arrows indicate kink-like features identified by visual
inspection. In the bottom row a zoom-in around planets is shown for better comparison
of centroid velocities and their deviation from Keplerian rotation as a function of planet
mass.
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Figure 2.3: Summary of the main attributes making up the line emission of a disc in
the discminer. The left panel shows the projected intensity of the disc for a channel
centred on υch = −1.0 km s−1. The right panel is the line intensity profile extracted from
the marker on the left. The grey annotations indicate the role of each attribute listed in
Table 5.1.

The model is then coupled with a Markov chain Monte Carlo (MCMC) random
sampler, emcee (Foreman-Mackey et al. 2013), which efficiently walks over a vast
range of parameters to determine the subset of them that best reproduces the
projected line intensity of the input disc, often encoded in a three-dimensional ppv
cube. We configure the MCMC sampler to maximise a χ2 log-likelihood defined
as,

χ2 = −0.5

nch∑
j

npix∑
i

w−2
i [Im(ri, υj)− Id(ri, υj)]

2
, (2.1)

where the index i runs over the pixel location in (x, y)sky coordinates, and the
index j runs over the input velocity channels. The χ2 kernel is the difference
between the model intensity, Im, and the input intensity, Id, whose uncertainty is
encompassed in the weighting factor w which is computed using residual intensity
from line-free velocity channels.

2.3.2 Line intensity profile

In this work, we assume a generalised bell function for the line profile kernel,

Im(R, z; υch) = Ip

(
1 +

∣∣∣∣υch − υkl.o.s

Lw

∣∣∣∣2Ls
)−1

, (2.2)

where Ip is the peak intensity, υch is the channel velocity and υkl.o.s is the Keplerian
line-of-sight velocity. The choice of this kernel is motivated by the fact that at the
cost of only one additional parameter (Ls), it performs better than a Gaussian
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function at reproducing optically thick lines (such as those from 12CO transitions)
which are flat at the top and decay rapidly towards the wings. The line width
(Lw) of the generalised bell function is the half width of the profile at half power.
The additional (dimensionless) parameter, the line slope (Ls), controls how steep
the signal drops at the wings and in turn also determines the spectral extent of the
plateau at the top of the profile. It is easy to deduce from the first derivative of the
bell function that the slope of a line tangent to either points of the (normalised)
profile, at half power, is the ratio Ls/2Lw.

For simplicity, we parametrise the peak intensity (Ip) and line width (Lw) as
power laws of the disc cylindrical coordinates (R, z), which reproduce the overall
line profiles of the synthetic observations reasonably well (see Sect. 3.3). The
line slope (Ls) is allowed to vary but it is assumed uniform everywhere. We note
that the model attributes perform well at describing the observed emission on the
upper and lower surfaces of the input disc only, and hence any extrapolation to
other scale heights should be done with caution.

2.3.3 Best-fit model of the simulation

To reveal deviations from Keplerian rotation, we use the discminer to fit Kep-
lerian channel maps on the simulated synthetic observations. In particular, we
obtain three best-fit models, one for each planet mass (0.3, 1.0 and 3.0MJup) at
0◦ azimuth. To achieve this, we first use the prototyping tool2 of the discminer
to find a reasonable set of seeding parameters for emcee. We then let 256 walkers
evolve over 1000 steps in a first trial, and allow them to fully converge to the
final parameters over another 1500 steps. As our simulations are noise-free, the
weighting factor w in Eq. 2.1 is equal to one everywhere. Each run takes about
six hours on a 48-core machine with a clock rate of 2.3 GHz per core.

Table 5.1 presents a summary of the functional forms considered for the model
attributes and the best-fit parameters obtained for the three snapshots. Figure
3.2 shows the best-fit attributes computed for the 0.3MJup snapshot, deprojected
on the upper and lower emitting surfaces of the disc, and the vertical location
of both the surfaces (see parameter walkers in Appendix 4.A). We notice slight
variations in the best-fit parameters of the other two (1.0 and 3.0MJup snapshots
due to the combined effect of the planet mass and the depth of the gap it carves.
More specifically, the stellar mass (M⋆) retrieved by the model increases with
planet mass (M⋆ = 1.013, 1.025M⊙, respectively), while the emission surfaces are
shallower because of the increasingly deeper gaps (e.g. z0 = 15.59, 14.35 au for the
1.0 and 3.0MJup upper surfaces). Nevertheless, these variations have negligible
impact on the detection and quantification of planet perturbations.

Taken together, the parameters retrieved by the model converge notably well
to the features we knew beforehand from the input simulations. The mass of the
star (1M⊙), the disc inclination (−45◦), and the height of the lower surface tracing
the back side of the CO freeze-out region are all closely reproduced even when a

2This is an interactive tool which allows the user to compare in real time the input data
against the model channel maps given a set of attributes and parameters.
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Figure 2.4: Best-fit attributes obtained by the discminer for the 0.3MJup snapshot.
Left panel: Freeze-out and gas phase regions for 12CO. The coloured circles indicate the
height of the model emitting surfaces. Right panels: Model peak brightness temperature
and line width as a function of radius on both emitting surfaces.

planet is present. This means that the discminer is also well suited to future
studies of the three-dimensional structure of discs using molecular line emission.

2.4 Finding the kinematical footprints of planets

2.4.1 Intrinsic deviations from Keplerian rotation

Before analysing observables, it is worth looking at the pristine simulation veloc-
ities to understand the posterior effect of radiative transfer and disc structure on
the retrieved planet-driven perturbations. In Figure 2.5, we present peak line-
of-sight velocity deviations from Keplerian rotation (in magnitude) for all three
planet masses, varying planet azimuths from −90◦ to 90◦. We use the same disc
inclination (i = −45◦) adopted for the synthetic observations, and assume a line-
of-sight parallel to the vertical axis. There are two overall features that stand out
here. First, it is clear that the projected peak deviations are different for positive
and negative planet azimuths. This is because the outer and inner spiral wakes
launched from the planet, are geometrically different, and aside from direction,
perturbations along these spirals generally differ in magnitude as well. Hence one
or the other dominates depending on the planet mass (inner[outer] spiral pertur-
bations are higher for the 0.3[1.0, 3.0]MJup planet), and on the projected direction
of the fluctuations at each planet azimuth. Second, in all cases there is a sharp
turnover azimuth where the radial component of the perturbation starts dominat-
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Figure 2.5: Peak line-of-sight deviations from Keplerian rotation versus positive and
negative planet azimuths, for all three planet masses, extracted from the native simula-
tions (without radiative transfer effects). The diamonds highlight turnover points where
the radial velocity perturbations become important and eventually dominant over the
projected azimuthal perturbations.

ing over the azimuthal one. This is explained by the fact that, unlike azimuthal
perturbations, the highest radial perturbations do not necessarily occur along spi-
ral wakes but on circumplanetary material (see Fig. 2.1, right panel), implying
that the radial and azimuthal perturbations generally contribute independently to
the projected perturbation.

In the following sections, we perform a similar analysis on synthetic observa-
tions of the simulations and find that radiative transfer and disc structure can
strongly influence the observed velocity fluctuations as compared to the actual gas
velocities.

2.4.2 Residual maps
In order to extract observables and quantify any line profile differences between the
simulation and the smooth Keplerian (best-fit) model, we fit a Gaussian profile to
each pixel on both the simulation and model intensity cubes for each planet mass
and azimuth (see Appendix 2.A). The mean, amplitude, and standard deviation of
each Gaussian profile are assumed to be the line centroid, peak intensity, and line
width of the corresponding pixel. We then subtract the best-fit model line profile
properties from those of the simulations and produce residual maps as illustrated
in Figure 2.6. There, we conveniently present a full scan of residuals from one of
our snapshots as a function of azimuth along constant radii contours whose colours
represent their closeness to the actual radial distance of the planet (Rp = 100 au).
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Figure 2.6: Line centroid (top), peak intensity (middle), and line width (bottom)
residuals for the (1.0 MJup, ϕp = 45◦) snapshot. The azimuthal scans on the left run
along constant radii contours in disc coordinates; their colours represent their closeness
to the radial location of the planet, with blue being the closest. The solid black contour
runs along the projected distance of the planet (Rp = 100 au) and the dashed black line
shows the azimuth of the planet.
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A number of features of these residual maps are worthy of discussion. First, the
three types of residuals are all mostly uniform along the green and red contours
which correspond to the outermost parts of the disc, meaning that the simulation
and the model line profiles are close to identical in regions away from the planet.
Second, residuals along the blue contours are rather high and are mainly associated
with the gap carved by the planet (see Appendix 2.A), whose contribution is not
considered by the smooth Keplerian model. However, in all cases these residuals
are symmetric along the projected minor axis (hereafter the ‘symmetry axis’) of
the disc, ϕ = ±90◦. Unsurprisingly, this symmetry is notably disrupted by the
contribution of the embedded planet, whose strongest effect is localised both in
radius and azimuth. In Sect. 2.4.3, we exploit these (a)symmetries to isolate kine-
matical perturbations driven by planets as a function of their mass and azimuth
in the disc, and distinguish them from other perturbations.

2.4.3 Line centroid folding

Taking advantage of the fact that the strongest kinematical perturbations driven
by planets are spatially and spectrally localised, we propose a line centroid folding
method to remove any symmetric contribution to the velocity field arising from
the natural rotation of the disc and from the large-scale contribution of the gap.
The method consists of subtracting line centroid velocities from one half of the disc
from those of the other half, exactly as if the disc was folded along its symmetry
axis, ϕ = ±90◦.

We illustrate the outcome of folding line centroids in Figure 2.7, for all three
planet masses, namely 0.3, 1.0 and 3.0MJup, and three azimuthal locations, 0◦,
45◦ and 90◦. Unlike in the raw residual maps, the highest velocity residuals are
this time closely related to the embedded planet thanks to the localised nature
of the perturbation, whereas most of the contribution from the gap is cancelled
out. Of particular interest, the magnitude of the residuals, as well as their spa-
tial extent, appear to be tightly linked to the mass and azimuthal location of the
planet. Quantitatively, typical peak centroid residuals range within 40−70 m s−1,
70−170 m s−1, and 130−450 m s−1 for the 0.3, 1.0, and 3.0MJup planets, respec-
tively. At ϕp = 90◦ azimuth, all planets trigger the lowest velocity residuals, and
from ϕp = 30◦ to 60◦, the highest. The angular dependence of residuals can be
readily understood by noting that at ϕp = 90◦ and neighbouring angles, most of
the azimuthal component of the planet perturbation is cancelled out because it
is orthogonal to the line-of-sight. The equivalent occurs around ϕp = 0◦ azimuth
for the radial component of the perturbation. Nevertheless, interpreting the high-
velocity fluctuations observed at intermediate angles is less straightforward. The
observed fluctuations at these angles do not only depend on the intrinsic magni-
tude of the perturbation, but also on the scale height at which the perturbation
is measured and hence on the structure of the disc itself. This effect is further
discussed in Section 2.5.3.

Now, we discuss whether or not it is possible to determine not only the pres-
ence, but also the actual location of the planets from the information gathered
immediately above. From Fig. 2.7, this appears to be the case, especially for
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Figure 2.7: Folded (magnitude of) line centroid residuals as a function of azimuth,
varying the analysis radius (in colours), for different planet masses (0.3, 1.0 and 3.0MJup,
from left to right) and azimuths (0◦, 45◦, and 90◦ from top to bottom). The solid black
contour runs along the projected distance of the planet (Rp = 100 au), and the dashed
black line corresponds to the azimuth of the planet.
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those planets at azimuths smaller than 90◦, where the perturbation is obvious to
the eye. However, line centroid residuals from less massive planets, such as the
0.3MJup included in our analysis, may be particularly challenging to detect just by
visual inspection because the localised signature, intrinsic to the planet, is small
and can easily get confused with other asymmetric, though more extended pertur-
bations. Also, planets of any mass near the symmetry axis of the disc, ϕ = 90◦,
are equally challenging because their signature is no longer seen as localised to
the naked eye. In the following section, we provide two statistical methods that
conveniently examine line centroid residuals and do not rely on visual inspection
to robustly infer the location of embedded planets in discs.

2.4.4 Statistical methods to detect planets

In order to detect an embedded planet through kinematical analysis, one needs
to be able to spatially isolate the velocity fluctuations that the planet induces on
the gas disc, but also to provide a robust measurement of their magnitude. Here
we present two statistical methods to detect and quantify planet-driven kinemati-
cal perturbations using synthetic observations of simulations with different planet
masses and azimuths (see Sect. 2.2). Both methods make use of the folded centroid
residuals presented in Sect. 2.4.3.

From inspection of Fig. 2.7, a first natural approach would be to determine
the location of the global maximum centroid residual, which is apparently well
correlated with the azimuthal and radial location of the planet. Following this idea,
we extract the peak velocity residual for each radius in the disc as a function of
the azimuth where it occurs. From the resulting distribution of velocity residuals,
we compute a 3σ threshold below which residuals are discarded from the analysis.
The inferred location of the planet is assumed to be the median azimuth and the
median radius of the leftover peak residuals, as illustrated in Figure 2.8. This
procedure is what we call the Global Peak detection method. In Appendix 2.A.5,
we show the dependence of peak fluctuations as functions of planet mass by fitting
δυ = aM b powerlaws, for each planet azimuth, with a and b as free parameters.
We note that there are substantial differences between the observed fluctuations
at negative and positive planet azimuths. As explained later in Sect. 2.5.3, the
reason is that the disc vertical structure and the gap —combined with projection
effects— are important, and their contribution to the observed velocity fluctuations
depends on the location of the planet.

Typically, after comparing the inferred and the actual location of planets, the
Global Peak method is accurate within ±3◦ in azimuth and ±8 au in radius, but
its significance, which in all cases is between 3σ and 7σ, might be a weak spot in
noisy scenarios. This leads us to introduce a rather different method, based on
the assumption that the strongest velocity fluctuations driven by planets should
be simultaneously localised and coherent, which in other words implies that the
velocity field, as well as its observables, should vary smoothly as one approaches
the planet. If this is true, in addition to large velocity residuals there should
also be a higher density of peak velocity residuals around the planet compared
to undisturbed regions of the disc. This is pictured in Figure 2.9, where we find
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clusters of peak residuals, independently for each spatial coordinate (R, ϕ), using
a K-means clustering algorithm (MacQueen 1967; Lloyd 1982). The K-means
algorithm subdivides the input residuals into a predefined number of clusters in
such a way that the centre of each cluster is the closest centre to all the residuals in
the cluster. In other words, the input data are iteratively partitioned into Voronoi
cells until convergence is reached, which in this case means until the sum of squared
distances from the data to the centre of their clusters is minimised. We note that
the minimisation distance used by the iterative procedure to identify clusters in
the top panel of Fig. 2.9 is defined in 2D (azimuth, velocity residual) space, but in
practice the azimuthal distance dominates over the distance in velocity residuals
so that the clustering is similar to a binning in azimuth (the same applies for the
radial clustering). However, unlike simple manual binning, the bin boundaries are
in this case irregular, and the bin centres tend to be near the densest accumulation
of points, which is ideal for localising coherent velocities. We adopt ten clusters
such that the azimuthal and radial extent of the localised perturbation from the
planets (δϕp ≈ 20◦−50◦, δR ≈ 50 − 100 au, at a radius of 100 au) is always
within one to three clusters. Next, the cluster with the highest velocity variance
is attributed to the planet-driven perturbation as long as it meets the requirement
of being above the standard 3σ threshold, which refers to the variances of the
background clusters. In this case, the retrieved azimuthal location of the planet
is the azimuth of the centre of the cluster with the peak variance. The same
recipe is followed to infer the radial location of the planet3. This method, the
Variance Peak, is equally accurate to the Global Peak method when it comes to
determining the location of planets. However, it strikingly boosts the significance
of the detection thanks to the coherent nature of velocities around planets.

The absolute value of peak residuals in the Global Peak method, and the peak
variances in the Variance Peak method are presented in Figure 2.10. Unsurpris-
ingly, regardless of the planet azimuth, peak fluctuations and peak variances in-
crease steadily with the mass of the planet. Also, because of projection effects, the
highest peaks are reached at intermediate angles (30◦, 45◦, 60◦). Furthermore, all
of the detected radial locations are approximately within R = 100± 10 au except
for the ϕp = 90◦ snapshots where there is a higher dispersion of peak residuals,
making it more challenging for the technique to find the radial location of the
planet. Interestingly, we note that for the same ϕ = 90◦ snapshots, the azimuthal
location of all planets is reasonably well determined, as opposed to the first im-
pression left by the bottom row of Fig. 2.7, where velocity residuals were anything
but localised to the naked eye.

However, of greater interest is the statistical significance of both methods. Even
though both approaches work well at inferring the location of planets for all masses
and azimuths, the Variance Peak is far more robust than the Global Peak method.
As illustrated in Figure 2.11, the significance of the Variance Peak detections are
in almost all cases larger (or even much larger) than 10σ, whereas the Global Peak
detections are always between 3σ and 7σ. Again, this is thanks to the coherence
of the velocity field around planets leading to a significant accumulation of peak

3We note from Fig. 2.9 that, around planets, peak velocity residuals trace planet-driven spiral
wakes and part of the circumplanetary material.
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Figure 2.8: Left panel : Peak residuals and their azimuthal location for the (1.0MJup,
ϕp = 45◦) snapshot. Right panel : Peak residuals rearranged as a function of their radial
distance. The panel on the right shows the peak residual distribution (green line) and 1,
2, and 3σ significance thresholds (dotted lines). The solid black lines are the azimuthal
and radial location of the global peak, while the dashed black lines show the actual
location of the planet.

residuals to which the Variance Peak method is fairly sensitive. The Global Peak
method, on the other hand, is not sensitive to the bulk of velocity residuals around
planets, but is limited to only the highest of them.

We note that massive planets such as the 3.0MJup planet in our sample do not
always yield the highest detection significance. The reason behind this is mainly
that the velocity perturbation from massive planets is so spatially extended that
some of the velocity residuals associated with the planet are actually contributing
to the background residuals, which in turn reduces the significance of the detected
global and variance peaks. We softened this effect in the Variance Peak method by
allowing more than one cluster to be considered as part of the planet perturbation
so that the background is better constrained prior to calculation of the significance
of the detection. In any case, the fact that the least massive planets in our sample
(0.3, 1.0MJup) are in almost all cases robustly detected is encouraging, given that
such low masses are almost undetectable by empirical methods.

2.5 Discussion

2.5.1 Comparison with other methods

The fitting methods encompassed in the discminer have proven to be effective at
describing the large-scale structure of discs but also to be accurate when detecting
localised signatures on intensity and velocity driven by embedded planets. In par-
ticular, our fitting technique has a number of advantages over previous modelling
efforts. First, it can describe intensity, line width, and velocity field simultane-
ously. Second, it is able to reproduce the height and line properties of both the
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Figure 2.9: Top row. Left panel : KDE contours derived from K-means clusters of peak
velocity residuals for the (1.0MJup, ϕp = 45◦) snapshot. The contours enclose 33 and 95
per cent of the peak residuals. The white crosses are the cluster centres retrieved by the
K-means algorithm. Right panel : Spectral variance of peak residuals for each cluster on
the left. In the panel attached on the right we show 1, 2, and 3σ significance thresholds.
The yellow line highlights the azimuthal location of the peak variance and the dashed
line the actual location of the planet. The green cross is the peak variance significant
enough to be attributed to the planet perturbation. Bottom row: 2D visualisation of
the detection using the Variance Peak method for three planets (0.3, 1.0 and 3.0MJup),
all at ϕp = 45◦ azimuth and Rp = 100 au radius. The green circles and crosses are the
actual and inferred location of the planets, respectively. The highlighted sectors are the
azimuthal and radial clusters with the highest spectral variance extracted by the method.
The boundaries of the sectors mark the maximum spatial coverage of the clusters. The
circles show the location of the observed peak velocity residuals, whose magnitude is
indicated by their size. The red circles are residuals within the azimuthal or radial peak
variance clusters. The solid (δυϕ) and dashed (υR) contours trace spiral wakes and radial
planet perturbations, and correspond to 60 per cent peak velocity fluctuations extracted
from the simulation velocities.
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Figure 2.10: Peak variance and peak velocity fluctuations extracted with the Variance
and Global peak methods as a function of the detected planet azimuth for all three
planet masses. The detected radial distance is shown in the bottom panels. Empty
circles indicate the actual locations of planets.
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Figure 2.11: Significance of planet detections using the Variance and Global peak meth-
ods as a function of planet azimuth for all three planet masses. The red line highlights
the 3σ threshold considered to validate a detection. Empty circles indicate the actual
location of planets.
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upper and lower emitting surfaces of the disc independently, which is essential to
properly assessing the flux and kinematics of discs. Third, it consistently gains ve-
locity accuracy by fitting multiple channel maps at once, allowing for subspectral
measurements of small-scale perturbations even on cubes with standard spectral
resolutions (e.g. ∆chan = 100m s−1).

Modelling all these ingredients together is key to understanding the actual con-
tribution from embedded planets to the velocity perturbations, whose observables
are secondary products that depend on the underlying intensity of the disc. To
illustrate this, in Appendix 2.A we manually removed the planet from one of our
simulations and imposed the gas velocities to be either fully Keplerian or non-
Keplerian but azimuthally symmetric. We then noticed that the wavy behaviour
of the velocity residuals displayed in Fig. 2.6 is mostly driven by the gap, or more
specifically, by the fact that the differences between simulation and model line in-
tensities on the upper and lower emitting surfaces of the disc are more prominent
at the location of the gap. This discrepancy causes the resulting line centroids
to be red- or blueshifted in relation to one other depending on their projected
location only. One way to work around this is by comparing velocities at peak
intensities (namely on the upper surface of the disc only), but at the cost of a
substantial loss of velocity accuracy as this method is closely dependent on the
channel width of the data. Additionally, as explained in Sect. 2.5.3, the observed
velocity perturbations may be stronger and more clearly projected on the lower
surface of the disc depending on the planet location, in which case they would go
unnoticed by peak intensity methods. Our line centroid folding procedure gets rid
of the unwanted contribution of the gap while keeping both (sub)spectral resolu-
tion and information from the lower surface of the disc. Equivalently, as illustrated
in Appendix 2.A, this procedure allows us to distinguish between azimuthally lo-
calised planet-driven fluctuations and axisymmetric non-planet-induced velocity
perturbations, with the second scenario effectively leading to non-detections.

On the other hand, previous techniques that rely on visual inspection of kink-
like features (e.g. Pinte et al. 2018b, 2020) are unable to find low-mass planets
(< 1MJup) or planets of any mass near the projected minor axis of the disc,
because kinks are camouflaged with the background velocities in both of those
contexts. Our statistical method can instead capture localised, coherent veloci-
ties, and therefore detect planets even when kinks are not visually manifest. This
also implies that even though random noise or large-scale fluctuations may be com-
parable in magnitude to the localised planet-driven velocity fluctuations, the latter
are more densely assembled and therefore more easily detected by our technique.

2.5.2 Robustness of the spectral resolution of the method

We assessed the robustness of the spectral resolution of our method by performing
synthetic observations with the same setup as in Sect. 2.2 but using half the
original channel width this time (i.e. ∆chan = 50m s−1). The detected planets
and the significance of the measurements remained almost the same except for a
single snapshot (0.3MJup, ϕp = 75◦), where the detection was indeed closer to the
actual location of the planet. This suggests that our analysis is already very close
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to measuring velocity fluctuations without suffering from channelisation effects.

2.5.3 Magnitude of observed planet-driven perturbations

Our findings suggest that the observable velocity fluctuations driven by planets
depend on the intrinsic magnitude of the perturbations, given by Fig. 2.5, but
also on the disc vertical structure and the depth of the gap carved by the planet.

Figure 2.12 demonstrates the impact of disc structure on the observed velocity
fluctuations for a 3.0MJupplanet at ϕp = +30◦ and ϕp = −30◦ azimuths. De-
spite the fact that the intrinsic peak fluctuations are almost the same for both
angles, the observed peak fluctuations differ significantly. To understand this, we
first highlight the fact that the emission height of the perturbation determines
the background velocity (at the other side of the disc) against which it will be
compared to compute the magnitude of the perturbation. If the test background
velocity falls within the gap, it will trace a different Keplerian velocity from the
one it would trace at the same emitting surface of the perturbation. More specifi-
cally, perturbations projected outside the orbit of the planet will be overestimated,
whereas those projected inside the orbit will be underestimated, by a factor that
depends on the depth of the gap. For a similar reason, the observed peak fluctu-
ations are generally dominated by one of the emitting surfaces of the disc, which
at the same time determines how much the line profile centroid can be shifted. In
particular, the brighter, upper surface of the disc shifts line centroids more than
the fainter, lower surface. This effect is especially prominent for massive plan-
ets, which carve deeper gaps, and for intermediate planet azimuths, where the
projected perturbation is more extended and the observed line profiles are clearly
shaped by both emitting surfaces. No less important is the role of the disc incli-
nation, which determines how much of the lower surface can be observed and how
far apart the emission from both surfaces is in the velocity space.

With this example as background information, it is worth discussing some of
the trends obtained for the observed peak velocity fluctuations. As illustrated in
Fig. 2.10, planets at intermediate angles are better detected and yield the highest
velocity residuals, δυ = 70, 170, 450m s−1 for 0.3, 1.0, and 3.0MJup, respectively.
The retrieved velocity fluctuations are enhanced in those cases by the combined
contribution of the gap and projection effects on the upper and lower emitting
surfaces of the disc, as explained above. Overall, the retrievable velocity fluctua-
tions from planets seem periodic as a function of azimuth, and the amplitude of
such a pattern correlates well with the mass of the planet. It is also interesting
to analyse the limiting planet azimuths ϕp = 0◦, 90◦ because they provide con-
straints on the orthogonal components of the perturbation by cancelling out one
of them by line-of-sight projection. For the ϕp = 0◦ case, we obtain peak residuals
δυϕ = 40, 120, 220m s−1 for each planet mass, where the subscript ϕ indicates that
the observed perturbation is nearly fully azimuthal. Similarly, for the ϕp = 90◦

snapshot we find peak residuals δυr = 50, 75, 130m s−1. These limiting cases bet-
ter match the trend of the intrinsic peak deviations from Keplerian presented in
Fig. 2.5, where the azimuthal perturbations are often stronger than the radial
ones. However, we note that the observed peak perturbations tend to be lower
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Figure 2.12: Illustrating how line centroids are shifted towards faster velocities around
a 3.0MJup planet, at two azimuths ϕp = ±30◦. The crosses on the left indicate the
location of the line profiles with the same colours on the right. The blue cross is the
location of the observed peak perturbation, and the pink cross is the mirror pixel at
the other side of the disc. We note that depending on the planet azimuth, the peak
perturbation is projected either on the upper or on the lower emitting surface, which
contribute differently to the observed line profiles. This contrast leads to variations in
the observed line centroids (vertical black lines on the right) and the retrieved velocity
fluctuations (in red).
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than the intrinsic ones. This is because most of the background reference gas at
the opposite side of the perturbation stands on the non-Keplerian edges of the
gap, which in turn softens the magnitude of the observed perturbation around the
planet.

2.5.4 Caveats

We warn the reader that we do not claim to present a full characterisation of
planet-driven perturbations, nor do we include an exhaustive list of all variables
that real discs encompass. Instead, the goal of this chapter is to provide a new
methodology for detecting embedded planets through careful inspection of line
emission profiles under certain disc conditions. Nevertheless, the technique can
potentially be extrapolated to other disc scenarios. As such, to keep degeneracy
at its lowest level, we did not include a full three-dimensional treatment of the gas
velocities. We assumed simple cylindrical rotation implying that the central force
from the star, per unit mass, is simply fR = GM⋆/R

2. This means that there is no
differential rotation along the vertical coordinate of the disc, which leads to errors
of between ∼ 40 − 60m s−1 in the rotation velocities as measured on the model
emitting surfaces. However, because of the axisymmetric nature of this effect, it
does not have any impact on the detection of planet-driven perturbations with our
method. On the other hand, the vertical gravitational pull from the planet and
hydrodynamic meridional flows driven by the carved gap are not considered either.
Also, some observational biases such as noise and beam smearing are excluded from
the analysis. Future releases of the Disc Miner series more focused on observations
will incorporate these effects.

2.6 Conclusions

We introduce a novel statistical technique to detect kinematical perturbations
driven by embedded planets in discs. The method is sensitive to localised devia-
tions from Keplerian rotation by examining line centroid differences using intensity
channel maps, which allows us to locate and quantify velocity fluctuations around
planets with high accuracy, all while preserving line width and intensity informa-
tion. Our approach is powered by the discminer package, which aims to model
channel maps by simultaneously fitting the intensity, rotation velocity, and height
of the upper and lower emitting surfaces of the disc. The package was originally
developed for kinematical analyses, but it is also well suited to studying the three-
dimensional structure of discs.

We tested this new method on synthetic observations of the 12CO J = 3 − 2
line from simulations of planet–disc interactions to explore variations in the disc
kinematics as a function of the planet mass (0.3, 1.0 and 3.0MJup) and planet
azimuth (from −90◦ to 90◦ in steps of 15◦) for a disc inclination of −45◦. As
expected, the observed velocity fluctuations increase with planet mass. In all
cases, the highest deviations from Keplerian rotation are found at intermediate
azimuths, ϕp = ±(30◦, 45◦, 60◦), which are strongly enhanced by the influence
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of the gap and the vertical structure of the disc combined with projection effects.
The lowest velocity fluctuations are obtained for planets on or near the projected
main axes of the disc (i.e. along ϕ = 0◦ or ϕ = ±90◦). The method can detect
all planets at all azimuths, despite the fact that some of them do not exhibit clear
kinks in the channel maps, such as the 0.3MJup planet, or planets of any mass
near the projected minor axis of the disc, ϕ = ±90◦. Likewise, our approach does
not get confused by apparent kinks triggered by gaps in the gas disc or, more
generally, by any axisymmetric velocity perturbation field, regardless of its origin.

Our technique takes advantage of the coherence of velocity fluctuations around
planets to boost the detection of planet-driven kinematical perturbations in gas
discs. We find this to be a substantial improvement to the previous methods
for determining whether or not localised velocity fluctuations are unambiguously
manufactured by embedded planets.
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Appendix

2.A Impact of the gap and emitting surfaces on the
observed gas velocities and supporting figures

Our analysis indicates that gaps and emitting surfaces must be taken into ac-
count to fully understand kinematical observables. In particular, the gap and the
uneven intensity contribution of the upper and lower surfaces of the disc can trig-
ger artificial deviations from Keplerian rotation, which might appear similar to
the perturbations on the gap edges (see Fig. 2.1, right panel) but should not be
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OBSERVED GAS VELOCITIES AND SUPPORTING FIGURES

Figure 2.A.1: Line centroid (top), peak intensity (middle), and line width (bottom)
residuals for the 1.0MJup snapshot. The planet was removed and the gas velocity set
to be fully Keplerian in order to analyse the contribution of the gas gap alone. The az-
imuthal scans on the left run along constant radii contours, whose colours represent their
closeness to the gap, centred at R = 100 au. Although the velocities are Keplerian, the
high (symmetric) centroid velocity residuals remain due to intensity differences between
simulation and model at the location of the gap (see Fig. 2.A.2). By simple comparison
with Fig. 2.6, it is easy to identify the impact of the planet on the intensity and velocity
residuals.
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Upper surface

Lower surface

Figure 2.A.2: Comparison between simulation (dashed black) and model intensity pro-
files (dashed grey) extracted from different azimuths in the gap. Asymmetric line profiles
are due to the contribution of both upper and lower emitting surfaces as indicated in the
top right panel, whereas symmetric profiles are shaped by the upper surface only. The
solid black and grey lines are the Gaussian fits of the profiles and the vertical lines are the
associated line centroids. The middle panel shows centroid velocity residuals, in km s−1,
zoomed-in on the central region of the Keplerian disc of Fig. 2.A.1. The crosses are all
at R = 100 au, and indicate the exact location of the intensity profiles in the surrounding
panels. The gap was initially carved by a 1.0MJup planet; then the planet was removed
and the gas velocity set to be fully Keplerian for this analysis. The model, on the other
hand, does not contain a gap, and so it systematically overestimates peak intensities
there. Even though the disc rotation is Keplerian, there are high centroid velocity resid-
uals due to differences between the simulation and model intensities. This effect appears
all over the gap where the line profiles are asymmetric due to the contribution of the
lower surface of the disc.
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2.A. IMPACT OF THE GAP AND EMITTING SURFACES ON THE

OBSERVED GAS VELOCITIES AND SUPPORTING FIGURES

Figure 2.A.3: Same as Figs. 2.7 and 2.9 but for azimuthally symmetric velocity per-
turbations. Unlike planet-driven perturbations, such a scenario leads to non-localised ve-
locity fluctuations and hence to non-detections according to our Variance Peak method.

confused with these latter. For instance, from Figure 2.A.1 we notice that even
after forcing the gas motions to be Keplerian, our line centroid method overesti-
mates(underestimates) velocities on the gap at negative(positive) azimuths of the
disc. As illustrated in Figure 2.A.2, this is due to the drop of intensity at the
gap which abruptly alters the upper-to-lower surface intensity ratio, shifting the
observed line centroids to non-Keplerian velocities. Another more direct observa-
tional consequence is that gaps alone are also able to produce kinks (see e.g. Fig.
2.2, middle rows) which may lead empirical methods to false positive inference of
planets.

A proper model of the gap intensity would help reproduce the Keplerian pat-
tern of the gap and in turn would facilitate the extraction of velocity fluctuations
within it. Unfortunately, even a simple prescription of a gap implies at least three
more model parameters (gap location, width, and depth), making our main goal
of detecting planet-driven perturbations unnecessarily complex. Alternatively, one
could simply study gas velocities at peak intensities (namely on the upper surface
of the disc) only, instead of using full intensity profiles as our method does. How-
ever, this approach affects the accuracy of the retrieved velocities and omits any
information coming from the lower surface of the disc, which we proved to be cru-
cial for extracting velocity perturbations of planets at certain azimuths (see Sect.
2.5.3 and Fig. 2.12). Instead, we propose a simpler solution. The contribution
of the gap can be readily excluded from the analysis by exploiting its symmetry
around the projected minor axis, which we do in Sect. 2.4.3 by subtracting line
centroids on the east from those on the west side of the disc.

In addition, we conducted an experiment to study the impact of non-planet-
induced zonal flows on our detection analysis. To do this, instead of forcing the
disc velocity field to be fully Keplerian, we smoothed it out by taking azimuthally
averaged velocities across all pixels. This step eliminates any localised planet
perturbation while keeping high-velocity fluctuations at the gap edges. We then
applied the same analysis detailed in Sect. 3.3. Such a scenario effectively leads to
non-detection of planets, with both azimuthal and radial peak velocity variances
barely reaching a level of 1σ (see Fig. 2.A.3). Again, this is because our line
centroid folding procedure cancels any contribution from an azimuthally symmetric
velocity field, regardless of its origin.
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Figure 2.A.4: Converging parameter walkers obtained with the discminer for the
0.3MJup snapshot, using 256 walkers and 1500 steps. This execution is preceded by an
initial 1000-step run which is useful to find the seeding parameters before convergence.
The dashed red line highlights the last quarter of walkers whose median corresponds to
the reported best-fit parameters (in blue).

Figure 2.A.5: Peak velocity fluctuations against planet mass for different planet az-
imuths (coloured lines, left : negative, right : positive azimuths). A power-law fit of the
form δυ = aMb is shown in colour according to each planet azimuth.




