

Mining the kinematics of discs to hunt for planets in formation

Izquierdo Cartagena, A.F.

Citation

Izquierdo Cartagena, A. F. (2023, December 1). *Mining the kinematics of discs to hunt for planets in formation*. Retrieved from https://hdl.handle.net/1887/3665447

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral</u> <u>thesis in the Institutional Repository of the University</u> <u>of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/3665447

Note: To cite this publication please use the final published version (if applicable).

Mining the kinematics of discs to hunt for planets in formation

Proefschrift

ter verkrijging van de graad van doctor aan de Universiteit Leiden, op gezag van rector magnificus prof. dr. ir. H. Bijl, volgens besluit van het college voor promoties te verdedigen op vrijdag 01 december 2023 klokke 11.15 uur door

Andrés Felipe Izquierdo Cartagena

geboren te Palmira, Colombia in 1996

Promotores:

Prof. dr. E. F. van Dishoeck	
Prof. dr. L. Testi	Università di Bologna
Co-promotor:	
Dr. S. Facchini	Università degli Studi di Milano
Promotiecommissie:	
Prof. dr. I. A. G. Snellen	
Prof. dr. M. R. Hogerheijde	Universiteit Leiden
	Universiteit van Amsterdam
Prof. dr. L. Hartmann	University of Michigan
Prof. dr. C. P. Dullemond	Ruprecht-Karls-Universität Heidelberg
Prof. dr. T. Birnstiel	Ludwig-Maximilians-Universität München
Dr. P. Pinilla	University College London

ISBN: 978-94-6419-981-9

Cover description: The coloured map represents azimuthal deviations from Keplerian rotation in a simulated disc perturbed by a planet like Jupiter. The grey lines follow a Voronoi mesh constructed so that its cells are more densely clustered around high values of the radial component of the velocity field.

Cover design: Andrés & Laila – Simulation credits: Giovanni Rosotti

Those who can imagine anything, can create the impossible. - Alan Turing

Table of contents

1	Intr	oduction	1
	1.1	Young Stellar Objects	2
		1.1.1 Low-mass star formation	2
		1.1.2 Physical and dynamical structure of discs	4
		1.1.2.1 Density and temperature structure	4
		1.1.2.2 Dynamical structure	6
		1.1.3 Disc observations	8
		1.1.3.1 Historical remarks	8
		1.1.3.2 The ALMA era	9
	1.2	The hunt for planets in formation	10
		1.2.1 Planet signatures in gas discs: Theory	12
		1.2.1.1 Analytical development	12
		1.2.1.2 Semi-analytic theory and the need for numerical	
		$models \dots \dots \dots \dots \dots \dots \dots \dots \dots $	14
		1.2.1.3 Numerical simulations and observational predictions	16
		1.2.2 Planet signatures in gas discs: ALMA Observations	18
	1.3	This thesis	21
	1.4	Future prospects	24
•	T I		
2	The	Disc Miner I.	
	A SI	atistical framework to detect and quantify kinematical per-	0 7
		ations driven by young planets in discs	27
	2.1	Cincillations and and intime to an effective	29
	2.2	Simulations and radiative transfer	30
	2.3	Fitting channel maps	33
		2.3.1 The Discminer package	33
		2.3.2 Line intensity profile	30
	9.4	2.3.3 Best-nt model of the simulation	30
	Z.4	Pinding the kinematical footprints of planets	37
		2.4.1 Intrinsic deviations from Keplerian rotation	31
		2.4.2 Residual maps	39 41
		2.4.5 Life centrold folding	41
	0 5	2.4.4 Statistical methods to detect planets	43
	2.5	Discussion	45

		2.5.1	Comparison with other methods	45
		2.5.2	Robustness of the spectral resolution of the method	49
		2.5.3	Magnitude of observed planet-driven perturbations	50
		2.5.4	Caveats	52
	2.6	Conclu	usions	52
	App	endices		53
	2 A	Impac	t of the gap and emitting surfaces on the observed gas veloc-	00
	2.11	ities a	nd supporting figures	53
3 A new planet candidate detected in a dust gap			anet candidate detected in a dust gap of the disk	
	arou	and H	D 163296 through localized kinematic signatures	59
	3.1	Introd	uction	61
	3.2	Line ii	ntensity model of the HD 163296 disc	62
		3.2.1	Dataset	62
		3.2.2	Discminer model setup	62
		3.2.3	Parameter search with EMCEE	63
	3.3	Result	ïS	66
		3.3.1	Physical attributes of the 12 CO disc $\ldots \ldots \ldots \ldots \ldots$	66
			3.3.1.1 Emission height \ldots	66
			3.3.1.2 Line width and Brightness temperature	68
		3.3.2	Residual maps	69
		3.3.3	Gas gaps	71
			3.3.3.1 Azimuthally averaged residuals	73
			3.3.3.2 Non-axisymmetric gas substructure	74
		3.3.4	Detection of planets	74
			3.3.4.1 P94 perturbation	76
			3.3.4.2 P261 perturbation	77
			3.3.4.3 Detection significance of the localised perturbations	79
			3.3.4.4 Non-detections	79
	3.4	Conclu	usions	79
	App	endices		81
	3.A	Analy	tic propagation of errors	81
	3.B	Suppo	rting figures	85
4	The	Disc 1	Miner II.	
	Rev	realing	gas substructures and kinematic signatures from planet	-
	disc	intera	action through line profile analysis	89
	4.1	Introd	uction	91
	4.2	Obser	vations and models	93
		4.2.1	Discminer models	93
			4.2.1.1 Model parameters and attributes	95
			4.2.1.2 Data versus model channel maps	96
		4.2.2	Line profile observables to compare data and models	98
			4.2.2.1 Upper and lower emission surfaces	99
			4.2.2.2 Decomposition method to extract azimuthal and	
			meridional velocities	100

	4.3	Kinem	natic signatures	102
		4.3.1	Localised velocity and line width perturbations	105
			4.3.1.1 Detections in the disc of HD 163296: Velocity	105
			4.3.1.2 Detections in the disc of HD 163296: Line width .	107
			4.3.1.3 Non-detections	109
		4.3.2	Extended velocity and line width perturbations	110
	4.4	Gas si	ibstructures as sites to search for planets	118
		4.4.1	Azimuthal and meridional velocity flows	119
		4.4.2	Surface density gaps traced by azimuthal velocity modula-	
			tions and line widths	124
		4.4.3	Strong vertical dependence of radial pressure in the disc of	
			HD 163296, around the planet candidate P94	128
		4.4.4	Non-axisymmetric variations in the radial profiles of the disc	
			around MWC 480	129
	4.5	Discus	ssion	131
	-	4.5.1	Morphology of the P94 perturbation in HD 163296	131
		4.5.2	Line broadening as a tracer of massive planets	131
		4.5.3	Localised velocity perturbations are not so common	132
		4.5.4	Correlation between pressure bumps and mm dust rings	132
	4.6	Conclu	usions	133
		4.6.1	Giant planets around HD 163296, MWC 480, AS 209	133
		4.6.2	Non-detections in the discs of IM Lup and GM Aur	134
		4.6.3	Gas gaps, and relationship between pressure bumps and dust	101
		11010	substructures	135
	App	endices	*	136
	4.A	Suppo	rting tables and figures	136
	$4.\mathrm{B}$	Azimu	thal average of absolute velocity residuals	161
5	Line	e profi	le tomography of protoplanetary discs	163
	5.1	Introd	luction	165
	5.2	Model	ling channel maps	166
	5.3	Extrac	ction of moment maps from line profile observables	169
		5.3.1	Single-peaked sources	170
		5.3.2	Double-peaked sources	173
		5.3.3	Velocity and intensity profiles	176
	5.4	Residu	1al maps	179
		5.4.1	Localised signatures in residual maps	180
		5.4.2	Line width increments as signposts of planet-forming sites .	186
		5.4.3	Coherent large-scale signatures in residuals	189
	5.5	Discus	ssion	192
		5.5.1	Planets in the disc of HD 135344B	192
		5.5.2	Planet-driven spirals in MWC 758?	194
	5.6	Conch	usions	195
	App	pendices		
	5.A	Suppo	orting figures	197

Bibliography	197
Nederlandse samenvatting	211
English summary	219
Resumen de la tesis	227
Publications	235
Curriculum Vitae	239
Acknowledgements	241