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Chapter 1

General introduction

Colorectal cancer
Colorectal cancer (CRC; MIM 114500) is the third most commonly diagnosed 
cancer and the second leading cause of cancer death worldwide 1-3, with almost 
1.9 million new cases and 1 million deaths in 2020. CRC accounts for 10% of 
all cancer diagnoses and 9.4% of all cancer deaths 2, 4, 5. CRC results from the 
progressive accumulation of genetic and epigenetic alterations that lead to the 
transformation of normal colonic epithelium to colon adenocarcinoma 6. In the 
progression from colorectal adenoma to carcinoma, three major pathways are 
distinguished: chromosomal instability (CIN), microsatellite instability (MSI) and 
CpG island methylator phenotype (CIMP) 7. CIN is the most common type of 
genomic instability observed in CRC and occurs in 80%-85% of colorectal tumors 
6. While the majority of CRCs occur sporadically, an estimated 35% of CRCs are 
due to heritable factors 8, 9. Between 5% and 10% of all CRC cases are associated 
with well-characterized hereditary polyposis and/or CRC syndromes 9. The 
etiology of up to 30% of inherited CRCs is not completely understood, and the 
underlying genetic factors contributing to the risk of CRC remain undefined 10. 
Genome-wide association studies (GWAS) have successfully identified common, 
low-penetrance single nucleotide polymorphisms (SNPs) associated with the risk 
of CRC 11-17. In recent years, major efforts have been made to identify the genetic 
causes, as the identification of germline pathogenic variants substantially 
facilitates the clinical management of patients and their families.

Hereditary colorectal cancer syndromes
Hereditary CRC syndromes (Table 1), characterized by dramatic increases 
in the risk of colorectal neoplasia, are phenotypically divided into polyposis 
and nonpolyposis syndromes, based largely on the number and histology of 
the colorectal polyps. The polyposis syndromes can be further divided into 
adenomatous, hamartomatous, serrated and mixed polyposis syndromes 
according to the predominant type of polyps, e.g., adenomatous polyps, 
hamartomatous polyps or serrated polyps. Polyposis is defined by the 
constitutive development of multiple polyps in the colon and rectum. Polyps are 
benign outgrowths of tissue into the lumen of the colorectum, but they have the 
potential to evolve into an in situ carcinoma by the accumulation of additional 
somatic mutations 18. This phenomenon is known as the adenoma-to-carcinoma 
sequence, and it is accepted that more than 95% of colorectal cancers arise from 
adenomas. Syndromic nonpolyposis CRC is subdivided on the basis of molecular 
tumor phenotype as DNA mismatch repair-deficient (MMRD) or mismatch 
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repair-proficient (MMRP) CRC 19-21. The development of polyps in patients with 
a nonpolyposis CRC predisposition syndrome is rare, but these polyps evolve 
rapidly into carcinomas since the polyp-to-carcinoma sequence appears to be 
accelerated in these patients 22. Several high-penetrance genes with inherited 
germline variants, such as APC (MIM 611731), BMPR1A (MIM 601299), GREM1 
(MIM 603054), MLH1 (MIM 120436), MSH2 (MIM 609309), MSH3 (MIM 600887), 
MSH6 (MIM 600678), MUTYH (MIM 604933), NTHL1 (MIM 602656), PMS2 (MIM 
600259), POLD1 (MIM 174761), POLE (MIM 174762), PTEN (MIM 601728), RNF43 
(MIM 612482), SMAD4 (MIM 600993) and STK11 (MIM 602216), are known to be 
associated with CRC syndromes 23.

Table 1. CRC predisposition syndromes

Syndrome Genes Pattern of 
inheritance

Prevalence

Lynch syndrome MLH1, MSH2, MSH6, PMS2, 
EPCAM

Dominant 2% - 4%

Familial adenomatous polyposis APC Dominant < 1%
MUTYH-associated polyposis MUTYH Recessive < 1%
Polymerase proofreading-associated polyposis POLE, POLD1 Dominant Unknown
NTHL1-associated polyposis NTHL1 Recessive Unknown
MSH3-associated polyposis MSH3 Recessive Unknown
Serrated polyposis syndrome RNF43 Dominant Unknown
Constitutional MMR deficiency syndrome MLH1, MSH2, MSH6, PMS2 Recessive Unknown
Hereditary mixed polyposis syndrome GREM1 Dominant Unknown
Juvenile polyposis SMAD4, BMPR1A Dominant < 1%
Peutz-Jeghers Syndrome STK11 Dominant < 1%
PTEN hamartoma tumor syndrome PTEN Dominant < 1%

Nonpolyposis syndromes

Lynch syndrome
Lynch syndrome (LS; MIM 120435), previously referred to as hereditary 
nonpolyposis colorectal cancer (HNPCC), is the most common cause of hereditary 
CRC, accounting for approximately 2% - 4% of all CRCs 10, 24, 25. The lifetime CRC 
risk is estimated to be 50%-80% 10, 24. This syndrome also predisposes patients to 
extracolonic cancers, such as cancers of the endometrium, small bowel, ureter 
and renal pelvis, stomach, hepatobiliary tract and ovary 26-32. LS is inherited in an 
autosomal dominant pattern and is caused by germline pathogenic variants in 
one of the MMR genes (MLH1, MSH2, MSH6, PMS2) or 3’ end deletion of the EPCAM 
gene, leading to transcriptional read-through into and subsequent epigenetic 
silencing of MSH2 33-38. For LS, the lifetime risk for CRC is highly variable and 
dependent on the gene involved. The risk for CRC-associated MLH1 and MSH2 

1
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mutations is generally higher than the risks associated with mutations in the 
other LS-related genes 32, 39. The MMR system consists of several proteins that 
repair DNA damage during replication and maintain genome stability mainly 
by correcting base-base and small insertion‒deletion mismatches that are 
generated during DNA replication. MMR proteins function as heterodimers 
in two main complexes, MutS heterodimers (MSH2/MSH6 and MSH2/MSH3) 
and MutL heterodimers (MLH1/PMS2, MLH1/PMS1 and MLH1/MLH3). The MutS 
heterodimers recognize mismatches and small insertions/deletions (indels). The 
MutL heterodimers form a MutS/MutL/DNA complex for exonuclease activity 
and termination of mismatch-provoked excision 40, 41. MMR defects lead to 
genomic instability and the accumulation of secondary mutations, resulting in a 
strong mutator phenotype. Mutations occur especially in simple repetitive DNA 
sequences and microsatellites, resulting in microsatellite instability (MSI). MSI is 
a hallmark of MMRD cancers and is found in > 90% of LS colorectal cancers 42-44. 
In up to 15% of sporadic CRCs, MSI is caused by somatic hypermethylation of 
the MLH1 promoter and associated silencing of MLH1. These patients frequently 
also exhibit specific mutations in BRAF (V600E) 32.

Familial colorectal cancer type X
In a fraction of families fulfilling the Amsterdam 1 criteria for HNPCC 45, CRCs 
are microsatellite stable and without MMR gene mutations. These families 
are defined as having familial colorectal cancer type X (FCCTX) 46, 47. This 
heterogeneous group of families has an increased risk of developing CRC 
and other related tumors 48. Although the clinical identification of FCCTX has 
improved in recent years, its genetic etiology remains unknown 47, 49. Some 
genes, such as BMPR1A 50, BRCA2 51, FAN1 52, OGG1 53, RPS20 54, SEMA4A 55 and 
SETD6 56, have already been reported to be potentially associated with FCCXT. 
In addition, a review suggested a possible association with BCR, BMP4, CENPE, 
CDH18, GABBR2, GALNT12, GREM1, HABP4, KIF24 and ZNF367 57. Moreover, a review 
by Nejadtaghi et al. 58 identified APC, BMPR1A, BRAF, BRCA2, KRAS, MGMT, RPS20, 
SEMA4A, and hypermethylation of at least one gene of the MMR system as 
potentially related to FCCTX. Despite these studies, no defined set of genes is 
conclusively associated with FCCTX.

Polyposis syndromes

Familial adenomatous polyposis
Less than 1% of all CRCs occur due to familial adenomatous polyposis (FAP; MIM 
175100). FAP represents the most common gastrointestinal polyposis syndrome 
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and the second most common cause of hereditary CRC 59, 60, with an estimated 
incidence varying from 1:8000 to 1:37600 61. FAP is an autosomal dominant 
precancerous condition characterized by the development of colorectal 
adenomas, which inevitably progress to colorectal carcinoma unless detected 
early 10. In the classic form of FAP, patients develop hundreds to thousands of 
colorectal adenomas during adolescence or the third decade of life, and the 
lifetime risk of CRC is almost 100%. Attenuated FAP (AFAP) is a phenotypically 
distinct form of FAP in which patients have a milder manifestation than classic 
FAP. AFAP is characterized by fewer colorectal adenoma polyps (less than 100 
polyps), a later age of adenoma development and a lower lifetime risk of CRC 
(70%) 62, 63. FAP is caused by germline variants in the tumor suppressor gene 
APC 64-67. APC is located on chromosome 5q21-q22 and consists of 15 exons 
encoding a protein of 2845 amino acids (310 kDa). APC plays a major role in the 
Wnt signaling pathway by negatively regulating the β-catenin oncoprotein 68-70. 
Germline APC variants lead to the development of multiple adenomas as a result 
of inactivation of the remaining wild-type APC allele in the tumor, either through 
somatic mutations or through loss of heterozygosity of APC 59, 70, 71. Correlations 
between the FAP phenotype and the site of mutation in the APC gene have been 
reported; patients with AFAP generally have a mutation in the 5’ or 3’ region of 
the APC gene, whereas individuals with FAP carry mutations elsewhere in this 
gene 72. De novo variants are responsible for approximately 25% of FAP cases 
who lack a family history of the disease, and approximately 20% of these have 
somatic mosaicism 73-77.

MUTYH-associated polyposis
In 2002, Al Tassan et al. reported for the first time that inherited defects of 
the base excision repair gene MUTYH predispose patients to multiple colorectal 
adenomas and carcinoma 78, causing MUTYH-associated polyposis (MAP; MIM 
608456) 78-81. MAP is an autosomal recessive inherited syndrome caused by 
biallelic germline variants in the base excision repair gene MUTYH, characterized 
by a greatly increased lifetime risk of CRC (80%) 82 and accounting for less than 
1% of CRC cases 60, 83. An estimated 1 in every 20,000 European individuals 
have biallelic MUTYH variants 61. MUTYH encodes a DNA glycosylase involved in 
oxidative DNA damage repair, is located on chromosome 1 between p32.1 and 
p34.3 and consists of 16 exons 84. The enzyme excises adenine bases from the 
DNA backbone at sites where adenine is inappropriately paired with guanine, 
cytosine, or 8-oxo-7,8-dihydroguanine, a major oxidatively damaged DNA lesion 
85-87. Consequently, tumors from MAP patients with dysfunctional MUTYH protein 
display an excess of somatic mutations with a strong bias toward C:G > to A:T 

1
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transversions at NpCpA or NpCpT sites in multiple genes, including APC and 
KRAS 88-90. A molecular hallmark of cancers caused by MAP is the presence of the 
somatic KRAS c.34G>T mutation 91, 92. MAP patients show substantial variability 
in clinical features but usually present with an attenuated polyposis phenotype, 
showing fewer than 100 adenomas, although a few MAP patients with CRC 
without polyps have also been reported. The evidence that monoallelic variants 
confer an elevated CRC risk is somewhat controversial. In a large population-
based series, biallelic MUTYH variant carriers showed a 28-fold increased risk for 
CRC, while monoallelic MUTYH variants were not associated with an increased 
CRC risk 93. However, in other studies, a small increased risk for CRC was reported 
for MUTYH monoallelic variant carriers 94, 95. Win et al. reported that the CRC risk 
for monoallelic variant carriers depends on family history and can be sufficiently 
high to warrant consideration of more intensive CRC screening than for the 
general population. CRC risk is higher for monoallelic carriers of Y179C than 
for G396D 96. A previous study reported that biallelic MUTYH carriers have an 
increased risk of bladder and ovarian cancers, while MUTYH monoallelic carriers 
have an increased risk of gastric, liver, breast and endometrial cancers 97.

Polymerase proofreading-associated polyposis
Germline pathogenic variants affecting the exonuclease domain of POLE and 
POLD1 predispose patients to multiple colorectal adenomas and carcinomas, 
causing so-called polymerase proofreading-associated polyposis (PPAP; MIM 
615083, 612591) 98-102. PPAP is an autosomal dominant disease with a high 
penetrance 98. In addition to multiple adenomas and CRC, variant carriers 
also present with extra colonic cancers, such as endometrial, ovarian, brain, 
pancreatic, and small intestinal cancer and melanoma 103-106. A recent study 
indicated that PPAP constitutes 0.1-0.4% of familial cancer cases, reaching 0.3-
0.7% when only CRC and polyposis are considered 107. Although the precise risk 
and mean age of CRC development are not clear, a study found patients with 
variants in POLE to have a 28% risk and patients with POLD1 variants to have 
an 82% to 90% risk of CRC by the age of 70 years 108. POLE and POLD1 encode 
the catalytic subunits of DNA polymerases epsilon and delta, respectively. 
Polymerase epsilon and delta are involved in DNA replication of the leading 
and lagging strands and possess an accurate proofreading domain that removes 
incorrectly inserted nucleotides during DNA replication 109. While the majority of 
CRCs from POLE or POLD1 variant carriers are MMR proficient, a subset of CRCs 
in POLE variant carriers showed MMR deficiency without germline MMR gene 
variants 110. De novo variants in POLE have been identified in several singletons 99, 
but the prevalence of de novo POLE variants remains to be determined. Tumors 
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from POLE and POLD1 pathogenic variant carriers show an ultrahypermutated 
phenotype with the number of somatic mutations exceeding 100 mutations/
Mb 111, 112. POLE defects are associated with signature SBS10 and show an excess 
of C:G>A:T and C:G>T:A 113, 114. Thus far, no clear signature has been described 
for POLD1-mutated CRCs.

NTHL1-associated tumor syndrome
In 2015, a rare recessive inherited form of polyposis and CRC syndrome that 
is caused by biallelic pathogenic variants in the base excision repair gene 
NTHL1 was discovered 115. After the discovery, several additional families from 
different ethnic groups with biallelic germline variants in NTHL1 in a homozygous 
or compound heterozygous state were reported 116-122. Different extracolonic 
malignancies were observed in individuals with biallelic germline NTHL1 variants, 
including malignancies of the endometrium, breast and duodenum 115, 116, 

119. Based on the frequency of loss-of-function (LoF) variants in the publicly 
available database, the incidence of NTHL1 deficiency is estimated to be 
1:114,770, approximately fivefold lower than the incidence of MAP (1:19,079) 61. 
Endonuclease III-like protein 1, encoded by NTHL1, is a bifunctional glycosylase 
involved in base excision repair that recognizes and removes oxidized 
pyrimidines 123. Tumors from biallelic NTHL1 LoF variant carriers show a bias 
toward C>T transitions at non-CpG sites 115, 124 with a unique mutational signature 
referred to as signature SBS30 124. Signature 30 has previously been identified in 
one patient with breast cancer 125. Retrospective analysis of tumor and germline 
sequencing data of this breast cancer patient revealed a heterozygous germline 
NTHL1 variant with loss of heterozygosity in the tumor 124.

MSH3-associated polyposis
Another polyposis syndrome with a recessive inheritance pattern is referred to 
as MSH3-associated polyposis (MIM 617100) 126. After whole-exome sequencing 
(WES) of leukocyte DNA from 102 unrelated individuals with unexplained 
adenomatous polyposis, two unrelated individuals with compound heterozygous 
LoF germline variants in MSH3 were identified, suggesting that MSH3 mutations 
represent an additional recessive subtype of colorectal adenomatous polyposis 
126. The tumors from the carriers demonstrated high microsatellite instability 
of di- and tetranucleotides (Elevated Microsatellite Alterations at Selected 
Tetranucleotide repeats (EMAST) 127) and immunohistochemical loss of MSH3 
in normal and tumor tissues 126. The associated phenotype was characterized 
by the presence of colorectal and duodenal adenomas, CRC, gastric cancer and 
early-onset astrocytoma 126.

1
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Constitutional MMR deficiency syndrome
Constitutional MMR deficiency (CMMRD; MIM 276300) syndrome is a rare 
autosomal recessive childhood cancer predisposition syndrome caused by 
biallelic pathogenic germline variants in one MMR gene (MLH1, MSH2, MSH6 and 
PMS2). CMMRD is characterized by a high risk of developing a broad spectrum 
of malignancies during childhood and adolescence, including mainly T-cell non-
Hodgkin lymphomas, high-grade gliomas and gastrointestinal tumors, mainly 
CRC tumors. Another characteristic of CMMRD is café-au-lait maculae (CALM) 
128, 129. Remarkably, a large proportion of CMMRD patients develop multiple 
synchronous adenomas ranging from a few up to > 100 polyps, mimicking 
attenuated familial adenomatous polyposis 130-132. Polyps in CMMRD can also 
histologically resemble those in juvenile polyposis 131.

Serrated polyposis syndrome
Serrated polyposis syndrome (SPS; MIM 617108) was previously known as 
hyperplastic polyposis syndrome (HPS). SPS is characterized by the presence 
of multiple serrated polyps throughout the colon and rectum and is associated 
with an increased risk of CRC for affected individuals and their first-degree 
relatives 133-135. The prevalence of SPS is estimated to be 1:2000 in the general 
population 134. In 2014, Gala et al. reported the association between SPS and 
RNF43 by identifying a novel germline variant in two individuals with multiple 
serrated polyps 136. Subsequently, the role of RNF43 germline variants as the 
cause of multiple serrated polyps was supported by several other studies 
137-139. The study by Yan et al. showed loss of the remaining wild-type allele 
from carriers through somatic mutations or loss of heterozygosity, adding the 
potential role of RNF43 in the development of colonic serrated neoplasia 138. 
Buchanan et al. proposed that mutations in RNF43 might account for only a 
small proportion of SPS, and consequently, there is no need for routine germline 
testing of RNF43 in individuals who meet the criteria for SPS 140.

Hereditary mixed polyposis syndrome
Hereditary mixed polyposis syndrome (HMPS1 MIM 601228) is a rare autosomal 
dominant disorder that is associated with an increased risk of CRC, characterized 
by polyps of multiple and mixed morphologies, including serrated lesions, 
Peutz‒Jeghers polyps, juvenile polyps and conventional adenomas 141-144. The 
genetic etiology for HMPS1 was first described in 2012, when a 40-kb duplication 
in the 5’ regulatory region of GREM1 was identified as a causal mutation in 
families of Ashkenazi Jewish origin and was shown to lead to increased and 
ectopic expression of GREM1 in the colonic mucosa 144. Excess GREM1 protein 

169283_Elsayed_BNW_V7.indd   14169283_Elsayed_BNW_V7.indd   14 19-10-2023   15:5019-10-2023   15:50



15

General introduction and outline of this thesis

levels suppress bone morphogenetic protein 144, allowing epithelial cells to 
retain stem cell-like properties, form ectopic crypts and ultimately become 
neoplastic 145. The 40-Kb duplication has been identified in 1:184 Ashkenazi 
Jewish individuals with a personal or familial history of polyposis or CRC 146. In 
addition to the founder Ashkenazi duplication, several other GREM1 variants 
were identified in families with polyposis and CRC 147-149.

Hamartomatous polyposis syndromes
Hamartomatous polyposis syndromes (HPSs) are a rare heterozygous 
group of disorders that are inherited in an autosomal-dominant manner 
and are characterized by the development of hamartomatous polyps of the 
gastrointestinal tract. Hamartomatous polyposis syndromes have malignant 
potential for the development of CRC as well as extracolonic cancers 63. These 
conditions account for less than 1% of CRC cases and occur at approximately 
one-tenth of the frequency of adenomatous polyposis syndromes 150, 151. The 
hamartomatous polyposis syndromes include juvenile polyposis syndrome 
( JPS), Peutz-Jegher’s syndrome (PJS) and PTEN hamartoma tumor syndrome 
(PHTS).

Juvenile polyposis syndrome (JPS)
JPS is characterized by the development of multiple gastrointestinal polyps, 
the most common location of which is the colon (98%). Patients with JPS 
syndrome have a high risk of colon cancer, and there is also an increased risk 
of gastroduodenal cancer. Pathogenic germline variants in SMAD4 or BMPR1A 
are found in approximately 20-60% of JPS patients 63.

Peutz‒Jeghers syndrome (PJS)
PJS is caused by germline variants in STK11 (previously known as LKB1) and 
is characterized by multiple characteristic hamartomatous polyps in the 
gastrointestinal tract associated with mucocutaneous pigmentation. Patients 
with PJS have an increased risk for CRC and extra colonic cancers 63.

PTEN hamartoma tumor syndrome (PHTS)
Germline variants in the tumor suppressor gene PTEN are responsible for a group 
of phenotypically diverse conditions, which have collectively been called PTEN 
hamartoma syndrome (PHTS) 63, 134, 152. PHTS includes Cowden syndrome (CS) 
and Bannayan-Riley-Ruvalcaba syndrome (BRRS), both of which are inherited in 
an autosomal dominant pattern 151, 153, 154. CS is rarely identified before adulthood 
and is characterized by multiple developmentally disorganized benign growths, 

1
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or hamartomas, with an increased risk of both benign and malignant tumors 155. 
Individuals with CS are at risk for developing breast, thyroid, endometrial, colon, 
skin and renal cancers 156. BRRS patients show gastrointestinal hamartomatous 
polyps, lipomas, macrocephaly and developmental delay 152.

Missing heritable factors in CRC and polyposis
The exact contribution of heritable factors to CRC and polyposis is still not fully 
understood. Based on Nordic twin and family studies, it has been estimated 
that 12-35% of all CRCs are linked to genetic factors 8, 157. Later, estimates for 
heritability of CRC decreased to approximately 15% of all CRC cases 158, 159. The 
currently known high-penetrant Mendelian polyposis and/or CRC syndromes 
can only explain 5-10% of all CRC cases 8, 60, 160, 161. In the case of polyposis, the 
genetic causes remain unexplained in approximately 20% of polyposis cases 
162. In approximately 60% of MMRD CRCs without somatic MLH1 promoter 
hypermethylation, no underlying germline MMR variants are known. These 
patients are referred to as having suspected Lynch syndrome (sLS) or Lynch-
like syndrome (LLS) 163. Studies have shown that patients with double somatic 
MMR pathogenic variants can still have hereditary CRC caused by genes 
involved in DNA repair since they can lead to acquired pathogenic variants 
in the MMR genes 164-166. The genetic background is unknown for 50-60% of 
hereditary nonpolyposis colorectal cancer (HNPCC) families who fulfil the 
Amsterdam criteria 45 but do not have a mutation in one of the MMR genes 
(MMRP), referred to as familial colorectal cancer type X (FCCTX) 167. In addition to 
the identification of rare high-penetrant risk genes contributing to the heredity 
of CRC, it is estimated that common variants may explain approximately 12% 
of the relative risk for CRC 14, 16, 161, 168. In more than approximately one-third of 
CRC patients with a suspected hereditary cause, the underlying genetic factors 
remain unexplained 157. It is important to resolve this issue with heritability, and 
the identification of genetic factors has important implications for the carriers 
and their families, as it helps risk assessment, directs clinical management, and 
guides preventive and therapeutic options 10, 169.

Novel candidate genes for CRC and polyposis
Recently, different candidate genes have been identified but require further 
evidence to be implemented in routine genetic testing. New candidate genes 
have been proposed for predisposition to hereditary CRC and polyposis, such 
as BUB1 170, BUB3 170, FAN1 52, LRP6 171, RPS20 54, FOCAD 172, PTPN12 171, GALTN12 
173, 174, MIA3 175 and the constitutional epigenetic silencing of PTPRJ 176. Recently, 
MCM8 was proposed for predisposition to CRC with a recessive pattern of 
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inheritance 177. In a systematic review performed to validate the association 
between variants in RPS20, FANCM, FAN1, TP53, BUB1, BUB3, LRP6 and PTPN12 
and the development of CRC, the evidence supports the association between 
variants in RPS20 and CRC but not in the other candidate genes 178.

Outline of this thesis

The aim of this thesis is to study the underlying genetic causes of unexplained 
polyposis and CRC. In particular, the role of POLE, POLD1, APC and NTHL1 in 
unexplained cases was studied.
Chapter 2 describes the assessment of the prevalence of POLE p.(Leu424Val) 
and POLD1 p.(Ser478Asn) in a Dutch series of index patients with unexplained 
familial early onset CRC and polyposis. In this study, we analyzed phenotypes 
and tumor characteristics in POLE variant carriers. We proposed that MMR 
deficiency in the tumors from POLE p.(Leu424Val) carriers is due to secondary 
MMR somatic mutation resulting from the hypermutation phenotype caused 
by the POLE variants.
In Chapter 3, the sequencing of the exonuclease domains of POLE and POLD1 
in unexplained index patients with multiple colorectal polyps is described in 
search for novel germline variants in these genes.
Chapter 4 focuses on screening of APC for mosaic and deep intronic variants 
in unexplained colorectal polyposis patients to study their role as predisposing 
factors for polyposis and CRC in this cohort.
Chapter 5 shows the molecular and clinical characterization of the tumor 
spectrum of individuals with biallelic LoF germline variants in NTHL1. To establish 
the disease phenotype of individuals with NTHL1 deficiency, we identified 
individuals with biallelic LoF germline variants in NTHL1 and performed 
mutational signature analysis on different tumor types from these individuals to 
determine the association between NTHL1 deficiency and tumor development.
In Chapter 6, the role of monoallelic LoF germline variants in NTHL1 in the risk 
of polyposis and/or CRC is investigated. Finally, Chapter 7 provides a general 
discussion of the thesis and future perspectives.

1
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