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Abstract

The remarkable electrical, optical and mechanical properties of graphene
make it a desirable material for electronics, optoelectronics and quantum
applications. A fundamental understanding of the electrical conductivity
of graphene across a wide frequency range is required for the development
of such technologies. In this study, we use terahertz (THz) time-domain
spectroscopy to measure the complex dynamic conductivity of electro-
statically gated graphene, in a broad ∼0.1 - 7 THz frequency range.
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The conductivity of doped graphene follows the conventional Drude
model, and is predominantly governed by intraband processes. In con-
trast, undoped charge-neutral graphene exhibits a THz conductivity
that significantly deviates from Drude-type models. Via quantum kinetic
equations and density matrix theory, we show that this discrepancy
can be explained by additional interband processes, that can be exacer-
bated by electron backscattering. We propose a mechanism where such
backscattering – which involves flipping of the electron pseudo-spin – is
mediated by the substantial vector scattering potentials that are associ-
ated with structural deformations of graphene. Our findings highlight the
significant impact that structural distortions and resulting electrostatic
vector scattering potentials can have on the THz conductivity of charge-
neutral graphene. Our results emphasise the importance of the planar
morphology of graphene for its broadband THz electronic response.

Keywords: graphene, THz conductivity, THz time-domain spectroscopy,
Dirac electrons, quantum kinetic equations, pseudo-magnetic field

Atomically thin, single-layer graphene can host a profusion of exotic elec-

tronic phenomena, owing to its two-dimensional (2D) morphology and unique

gapless electronic band structure composed of two overlapping, linearly dis-

persive Dirac bands [1, 2]. Large-scale manufacturing processes [3, 4] (e.g.,

chemical vapour deposition (CVD), epitaxial growth), and the ability to tune

charge carrier density and electrical conductivity by an applied gate voltage [1],

have enabled graphene as an active material in many solid-state technologies,

such as high-mobility flexible electronic devices, spintronic systems and super-

capacitors for energy storage [5–7]. In particular, its zero-energy bandgap and

tunable carrier density make graphene suitable for applications in optics and

optoelectronics, within an extensive spectral range from the visible [8] (wave-

lengths ∼380− 750 nm) to the far infrared [9] (∼1 mm). Notably, its tunable

electronic response to an external electromagnetic field oscillating at frequen-

cies in the terahertz (THz) spectral window (∼0.1−10 THz, with wavelengths

∼0.01 − 1 mm), makes graphene attractive for THz technologies, i.e., THz

modulators, detectors, sensors and biomedical imaging systems [10, 11].
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The electrical response of graphene to an incident electric field, F
(inc)
THz (t) =

1√
2π

∫
F̃

(inc)
THz (ω)e

iωtdω, oscillating at THz frequencies is encoded in its

frequency-dependent complex dynamic conductivity σ̃(ω), which is governed

by the frequency-dependent polarisation and absorption of the material, with

the resulting complex current density (assuming the medium is isotropic)

J̃(ω) = σ̃(ω) · F̃(inc)
THz (ω). Conventionally, σ̃(ω) can be approximated within the

few-THz spectral range (i.e., ∼0.1 − 2 THz) [12–17] – and even up to the

infrared when only the real part of σ̃(ω) is considered [18, 19] – by the Drude

model, as σ̃Drude(ω) = σ0/(1− iωτ), where σ0 is the zero-frequency (DC) con-

ductivity and τ is the average time between electron scattering events in the

material (due to, e.g., defects, impurities, phonons, other charge carriers). In

this Drude model, it is assumed that σ̃(ω) is determined solely by intraband

transitions of free electrons, that is, within a quadratically dispersive conduc-

tion band [12–16]. The Drude model omits the actual band structure of the

material – in the case of graphene, its linearly dispersive Dirac bands – and

transitions between different bands (i.e., interband). Extensions to the Drude

model, such as the Drude-Smith [20–22], Drude-Lorentz [23, 24] or localisation-

modified Drude models [25, 26], include phenomenological corrections. These

corrections can account for carrier backscattering due to disorder in the case of

Drude-Smith and localisation-modified Drude models (where disorder causes

weak localisation, and the suppression of both long-range carrier transport and

low-frequency conductivity), or for resonances at specific frequencies (due to,

e.g., phonons, interband transitions) in the case of the Drude-Lorentz model.

Further modifications to the Drude model can also take into account the spe-

cific graphene band structure [27]. These Drude-type models can describe the

dynamic conductivity of graphene in specific cases, e.g., metallic graphene
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(i.e., significantly doped, with the Fermi level Ef within the valence or con-

duction bands, far from the Dirac point), when only the real part of σ̃(ω) is

considered [12–14, 18, 19], or when full complex conductivity is measured but

within a narrow THz bandwidth (typically not larger than ∼2 THz) [15–17].

However, they do not provide accurate predictions for the full complex conduc-

tivity (i.e., real and imaginary components) of charge-neutral graphene (i.e.,

with Ef at the Dirac point) within a broad THz spectral window (see Sup-

plementary Note 4 in Supplementary Information [SI]). It is specifically with

Ef at the Dirac point that the actual band structure of graphene (i.e., linear

Dirac dispersion instead of free-electron quadratic dispersion) and interband

transitions play a significant role [28–30]. To our knowledge, both the real and

imaginary parts of graphene’s σ̃(ω), within the full ∼0.1 − 10 THz range, for

different charge carrier densities (i.e., from doped to charge neutral), have not

yet been measured or quantitatively modelled.

In this work, we retrieved σ̃ (ω) – both real and imaginary parts – of

graphene at room temperature, for different Fermi levels Ef, i.e., from n−

to p−doped metallic behaviour via the charge neutrality Dirac point (CNP),

within the broad ∼0.1 − 7 THz spectral range (i.e., characteristic energies

ℏω ≈ 1− 30 meV). To do so, we measured via THz time-domain spectroscopy

[31, 32] (THz-TDS; see Methods and SI Supplementary Note 2) the time-

dependent THz waveform F
(trans)
THz (t) transmitted through a sample consisting

of CVD-grown single-layer graphene on a SiO2/p−doped Si substrate. We con-

trolled the graphene Fermi level Ef (and hence the carrier density) by a gate

voltage Vg applied between graphene and doped Si (Fig. 1a). We found that

when graphene is substantially doped, with Ef far from the CNP (i.e., metal-

lic behaviour), σ̃ (ω) follows the conventional Drude model. Conversely, when

graphene is charge-neutral with Ef at the CNP, σ̃ (ω) exhibits a very significant
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deviation from Drude-type models, with a notable suppression of its imagi-

nary part, Im[σ̃ (ω)]. To explain this deviation, we developed a model for σ̃ (ω)

based on density matrix theory [33] and quantum kinetic equations [34–36],

including both intraband and interband electronic processes, with the latter

being accentuated by scattering of carriers. We propose a mechanism where

such scattering – involving flipping of the electron pseudo-spin – is mediated

by the substantial electrostatic vector scattering potentials that originate from

structural deformations of graphene. The very good agreement between theory

and experiment, for both Re[σ̃ (ω)] and Im[σ̃ (ω)], within a broad ∼0.1−7 THz

frequency range, highlights the impact that structural distortions can have

on the broadband THz conductivity of charge-neutral graphene. Our results

provide compelling evidence of a previously unreported phenomenon, whose

observation and understanding are enabled by our ability to combine both

tuning of graphene’s Fermi level and full retrieval of σ̃ (ω) within the broad

∼0.1− 7 THz window.

Results

Retrieval of complex THz conductivity σ̃ (ω) of graphene

The spectra, |F̃ (trans)
THz (ω)|2, and spectral phases, arg

[
F̃

(trans)
THz (ω)

]
, of the

time-domain THz waveform F
(trans)
THz (t) transmitted through SiO2/Si (bare sub-

strate reference) or graphene/SiO2/Si areas are shown in Fig. 1b (see Methods

and SI Supplementary Note 1 for sample fabrication and characterisation).

These measurements rely on THz waveforms generated via optical rectifica-

tion [37] in lithium niobate (LiNbO3) and gallium phosphide (GaP) nonlinear

crystals, resulting in electric field Fourier components within the frequency

range ∼0.1− 1.5 THz and up to ∼7 THz, respectively. By using both LiNbO3

and GaP THz generation configurations in turn, we can measure the complex
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transmission T̃ (ω) of the incident THz waveform F
(inc)
THz (t) through graphene

within a broad continuous ∼0.1 − 7 THz band. The measurement of T̃ (ω)

allows for the calculation of σ̃ (ω) for different values of Ef controlled via Vg

(see Methods).

Gate-voltage-dependence of σ̃ (ω): from Drude to non-Drude

behaviour

The real, Re [σ̃ (ω)], and imaginary, Im [σ̃ (ω)], components of σ̃ (ω) of

graphene are shown in Fig. 2, within the spectral range ∼0.1 − 7 THz. We

applied different gate voltages, varying from heavily p−doped (Vg = −40 V,

i.e., Ef ≈ −50 meV) to charge-neutral (Vg = 10 V; Ef ≈ 0 meV) to heavily

n−doped (Vg = 40 V; Ef ≈ 30 meV) graphene (Ef given relative to CNP; see

SI Supplementary Note 1 for the relationship between Vg and Ef). Note that,

the values of Re [σ̃ (ω)] and Im [σ̃ (ω)] in this frequency range are consistent

with previous THz-TDs studies of graphene [21, 38].

We first fit Re [σ̃ (ω)] and Im [σ̃ (ω)] simultaneously with σ̃Drude(ω) (Drude

model; black dashed curves in Fig. 2), with σ0 and τ as fitting parameters (see

Fig. 3a, b). When graphene is significantly p− or n−doped (i.e., |EF| ≳ 10

meV with |Vg − VCNP| ≳ 10 V), σ̃ (ω) is well described by the conventional

Drude model: Re [σ̃ (ω)] decreases monotonically with ω; Im [σ̃ (ω)] increases

for ∼0.1 < ω/2π ≲ 2 THz, then plateaus and decreases for ω/2π ≳ 2 THz. This

is consistent with previous studies [16, 22, 29, 39]. For Ef close to the Dirac

point (i.e., Vg ≈ VCNP), while the retrieved Re [σ̃ (ω)] remains qualitatively

similar, Im [σ̃ (ω)] is significantly suppressed (see SI Supplementary Note 7 for

similar trend on additional devices). The Drude fit fails to adequately capture

both Re [σ̃ (ω)] and Im [σ̃ (ω)] simultaneously, underestimating the former and

overestimating the latter (see Fig. 2). That is, for charge-neutral graphene, the
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Drude model fails to accurately describe the full complex conductivity σ̃(ω)

within ∼0.1− 7 THz spectral range.

The inadequacy of the Drude model to explain σ̃(ω) for charge-neutral

graphene is further corroborated by the Pearson’s χ2 test and the coefficient

of determination R2 of these Drude fits (Fig. 3c, d). Indeed, χ2 increases

and R2 decreases significantly for Vg ≈ VCNP (EF ≈ 0) in comparison with

doped graphene, with χ2[Vg ≈ VCNP]/χ
2[|Vg − VCNP| ≳ 20 V] > 400%, and

R2 dropping from ≥ 0.9 to < 0.6. Note that modified versions of the Drude

model – accounting for, e.g., disorder-induced localisation [24–26], molecular

vibrations [40], electrons scattering off defects [20, 21] or charged impurities

[27]) – also fail at quantitatively explaining our measurements of σ̃(ω) for

charge-neutral graphene within the full broad ∼0.1−7 THz spectral range (see

SI Supplementary Note 4).

Two-component quantum model of graphene THz conductivity

The dynamic complex conductivity of pristine graphene is governed by

intra- and interband electronic transitions [2, 28]. The former involves the

optically induced acceleration of charge carriers (Fig. 1c). The latter is associ-

ated with the optically induced creation or annihilation of electron-hole pairs,

and with displacement currents of bound charges (Fig. 1d). Note that, in the

linear regime, intra- and interband transitions are uncorrelated, resulting in

independent contributions to the linear optical response of pristine graphene

[41, 42].

We, therefore, developed a two-component model (see Methods and SI

Supplementary Note 5 for more details) of the linear optical response of

graphene using density matrix theory [33] and quantum kinetic equations [34–

36], accounting quantitatively for both intra- and interband transitions, and

allowing us to calculate σ̃ (ω):
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σ̃2-comp (ω) = σ̃intra (ω) + σ̃inter (ω) (1)

Here, σ̃intra (ω) and σ̃inter (ω) are the contributions to σ̃ (ω) given by intra-

and interband electronic transitions, with:

σ̃intra (ω) =
e2vF
4πℏ

∞∫

0

dk
kτ

1− iωτ

(
∂kf̄

(0)
c,k − ∂kf̄

(0)
v,k

)
(2)

where e is the electron charge, vF is the graphene Fermi velocity, ℏ is the

reduced Planck’s constant, τ is the carrier population intraband relaxation

time constant (resulting from scattering of electrons off, e.g., defects, impuri-

ties, as defined in the Drude model), f̄
(0)
n,k are the zeroth-order diagonal density

matrix elements given by the Fermi-Dirac distribution for the valence (n = v)

and conduction (n = c) bands, and k = |k| is the electron wavevector modulus.

The interband contribution is given by:

σ̃inter (ω) = σ̃
(o)
inter(ω) + σ̃

(s)
inter(ω) (3)

where σ̃
(o)
inter(ω) and σ̃

(s)
inter(ω) are attributed to direct (momentum-conserving;

Fig. 1d) and scattering-assisted indirect (involving momentum transfer) inter-

band transitions (Fig. 4b), respectively. The contribution of direct interband

transitions to the dynamic conductivity of pristine graphene has an upper limit

of e2/4ℏ [42], significantly smaller than the THz intraband conductivity, and

only accounting for direct interband transitions – that is, where σ̃
(s)
inter(ω) = 0

– is not able to reproduce our experimental σ̃(ω) (see SI Supplementary Note

6). We, therefore, hypothesise that additional indirect interband processes,

mediated by scattering of electrons, contribute to σ̃ (ω), with:

σ̃
(o)
inter(ω) =

ie2v2F
4πℏ

∞∫

0

dk k

(
f̄
(0)
c,k − f̄

(0)
v,k

)

∆ω2
k − (ω + iγ)

2 (4)
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σ̃
(s)
inter(ω) =

ie2v2F
4πℏ

∞∫

0

dk k2
v̄2 · Γ(ω, k, τ) ·

(
∂kf̄

(0)
c,k − ∂kf̄

(0)
v,k

)

∆ω2
k − (ω + iγ)

2 (5)

Here, ∆ωk = 2vFk is the transition angular frequency between valence

and conduction bands, γ is the interband polarisation dephasing rate, v̄ is an

energy associated with the spatially averaged square of the scattering potential

of disordered graphene, and Γ (ω, k, τ) is defined as:

Γ (ω, k, τ) =
kL2

ℏ2vF
Im

(
τ

1− iωτ

)
(6)

where L2 is the graphene area irradiated by the THz waveform. Note that the

aforementioned scattering-assisted interband processes do not affect the DC

conductivity, i.e., σ̃
(s)
inter(ω = 0) = 0.

We fit the measured Re [σ̃ (ω)] and Im [σ̃ (ω)] with σ̃2-comp (ω) given by Eqs.

(1)-(6), for different gate voltages Vg (solid black curves in Fig. 2). We assumed

τ(Vg) = α
√

n(Vg) [43], where n(Vg) is the Vg-dependent carrier concentration

measured by four-point-probe. We used v̄ and α as global fit parameters (i.e.,

same for all Vg), and γ as a local fit parameter (i.e., varying as a function of Vg);

see Methods for details. The proposed two-component model is in excellent

agreement with our measurements, for all considered gate voltages, and within

the full ∼0.1− 7 THz spectral range. In particular, it provides a significantly

better fit than all Drude-type models at the CNP (see SI Supplementary Notes

4, 6), as shown by the fit goodness coefficients χ2 and R2 in Fig. 3c, yielding

χ2
2-comp/χ

2
Drude ≲ 20% and R2

2-comp ≳ 90% for Vg ≈ VCNP.

The intra- and interband components σ̃intra (ω) and σ̃inter (ω) of σ̃2-comp (ω)

vary for different gate voltages Vg (Fig. 2). This is emphasised by param-

eters βintra(Vg) and βinter(Vg) in Fig. 3d, defined as βinter; intra(Vg) =
∫ ω2

ω1
|σ̃inter; intra (ω) | dω/

∫ ω2

ω1
|σ̃2-comp (ω) | dω (with ω1/2π = 0.1 THz and
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ω2/2π = 7 THz). For doped graphene, βintra >> βinter; the intraband compo-

nent dominates σ̃2-comp(ω) and the dynamic conductivity is Drude-like (Fig.

2a, e, f, j). As |Vg − VCNP| decreases and graphene approaches the CNP,

βinter increases and reaches a maximum; the dynamic conductivity differs

substantially from a Drude-like behaviour.

The DC conductivity, σ0 = Re [σ̃2-comp (ω = 0)], retrieved from the two-

component fit (Fig. 3a) is minimum at the CNP, similar to the Drude fit, and

consistent with four-point-probe measurements (see SI Supplementary Note 1).

Moreover, the two-component model agrees with experiments while assuming

a Drude-like τ(Vg) (Fig. 3b). That is, the non-Drude behaviour of σ̃ (ω) at the

CNP manifests itself mostly at non-zero frequencies, via the two-component

model parameters γ and v̄.

Discussion

The Drude-type time constant τ is associated with the intraband relaxation of

electron momentum via scattering processes. In the proposed two-component

model, τ affects σ̃
(s)
inter(ω) via the Γ (ω, k, τ) function [see Eqs. (5)-(6)]; that is,

energy dissipated via scattering can lead to supplementary interband transi-

tions, linked to σ̃
(s)
inter(ω). A scalar scattering potential, however, cannot give

rise to – though they affect (via the interband polarisation dephasing rate γ)

– such scattering-assisted interband transitions (see SI Supplementary Note

5). That is, the two-component model is in agreement with our experimen-

tal observations when σ̃
(s)
inter(ω) is associated with scattering given by a vector

potential, characterised by parameter v̄.

Structural deformations of strained graphene on a substrate can lead

to effective electrostatic vector potentials arising from changes in amplitude

of electron-hopping between carbon atoms [44–46]. These vector potentials
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are associated with pseudo-magnetic fields that can be very substantial

(∼100 T). In particular, the transfer of CVD-grown graphene onto SiO2 can

result in significant structural deformations [21, 47–49], such as bumps or

even crumpled areas, resulting in significant vector scattering potentials and

intravalley backscattering of carriers [47]. Raman spectroscopy measurements

of our graphene/SiO2/Si samples revealed significant structural deformations

of graphene [47] (see SI Supplementary Note 1), consistent with pseudo-

magnetic fields that can be on the order of ∼200 T (see SI Supplementary

Note 5). We therefore propose a plausible explanation of our measurements

of σ̃(ω) at the CNP, differing from a Drude-type behaviour, as the result of

strain-induced vector scattering potentials associated with pseudo-magnetic

fields. These pseudo-magnetic fields can couple to the graphene pseudo-spin

(sub-lattice degree of freedom), enabling backscattering of Dirac electrons

(forbidden for scalar scattering potentials) [47], and potentially leading to

enhanced interband transitions encoded in σ̃
(s)
inter(ω) (Fig. 4). Notably, the

amount of structural deformations potentially associated with such substantial

pseudo-magnetic fields (e.g., crumpled areas) – amount that we estimated via

Raman spectroscopy mapping and optical microscopy of our graphene sample

– is consistent with the value of v̄ determined via the two-component model

fit (see SI Supplementary Note 5); this agreement further validates our pro-

posal. Moreover, vector scattering potentials and pseudo-magnetic fields can

arise from a wide range of structural deformations, such as those resulting from

the SiO2 substrate roughness[21, 47–49]; we therefore expect that the effect is

ubiquitous in graphene on rough substrates.

We assert that the deviation of our measurements from the Drude model

cannot be interpreted within the framework of a Dirac fluid [29, 50–52]; this

phenomenon has been observed in ultra-clean exfoliated graphene encapsulated



12

in hexagonal boron nitride and vanishes in CVD-grown graphene on SiO2 due

to impurities and disorder [51]. We also emphasise that we attempted – without

success – to explain such deviation through an effective medium approximation

modelling accounting for conductor-dielectric inhomogeneities (that is, charge

puddles) of our sample [53].

Our work underscores the significant impact that structural deformations

can have on the THz conductivity of charge-neutral graphene, in particular

via the emergence of electrostatic vector scattering potentials (associated with

pseudo-magnetic fields). Both the real and imaginary parts of σ̃(ω) in the

∼0.1 − 7 THz range (Fig. 2) cannot be simultaneously explained by solely

invoking Drude-like intraband transitions; it requires the consideration of inter-

band excitations which can be further enhanced by scattering of electrons due

to such vector scattering potentials. It is remarkable that the effects of such

interband transitions, here with characteristic energies ℏω ≈ 1− 30 meV, are

observable at room temperature (kBT ≈ 25 meV). Our findings have important

implications for the development of graphene-based THz technologies. Fur-

ther studies can be envisioned to establish a quantitative relationship between

specific structural deformations, vector scattering potentials, associated local

pseudo-magnetic fields and broadband THz conductivity of charge-neutral

graphene.

Methods

Sample fabrication and electrical characterisation

The samples were prepared following the procedure reported previously

[54]. Briefly, we spin-coated a thin layer of polymethyl methacrylate (PMMA,

6%wt in anisole from Microchem) onto a commercial single-layer graphene

sample (Graphene Supermarket), grown on copper foil via chemical vapour
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deposition (CVD). We subsequently placed the graphene sample in a 0.1 M

ammonium persulfate (APS) solution to dissolve the copper. We then col-

lected the hydrophobic PMMA-coated graphene, floating at the surface of the

solution, with a SiO2/p-doped-Si(100) substrate (SiO2 layer thickness: 300

nm; resistivity > 10 Ω·cm; MTI Corporation). After the transfer, the sam-

ple was soaked in acetone and was then annealed in argon/hydrogen (900:100

sccm in 3 hours at 3400C) to remove PMMA and any polymer residue. We

fabricated electrical contacts, necessary for four-point-probe measurements of

DC electrical conductivity of graphene, via photo-lithography: we spin-coated

(3000 rpm in 1 minute, per layer) two layers of positive photoresist (LOR-

1A and AZ1512HS, which have different sensitivities to the photolithography

process, to create an undercut effect [55]) onto the graphene/SiO2/Si sample,

exposed the electrode areas to UV light with a mask and then removed the

exposed photoresist with a developer solvent (AZ400K). Photoresist residue

was removed via a UV/ozone treatment. We then deposited a 5-nm-thick tita-

nium (Ti) adhesion layer and 50 nm of gold (Au) via e-beam deposition. The

unexposed photoresist area was removed from the substrate with dimethyl sul-

foxide (DMSO, at 600C), leaving only the desired Ti/Au contacts. The sample

was finally attached to a chip carrier with silver epoxy and wire-bonded with

aluminium-silicon (AlSi) thin wires. The prepared samples were further char-

acterised via Raman spectroscopy (details in SI Supplementary Note 1). In the

experiments, we tuned graphene’s Fermi level Ef by applying a gate voltage Vg

between graphene and the Si(100) substrate (see SI Supplementary Note 1 for

further details, including the relationship between Vg and Ef). Throughout the

text we report the graphene Ef relative to the Dirac point (charge neutrality

point).

Terahertz time-domain spectroscopy (THz-TDS)
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We generated THz waveforms (with instantaneous electric field F
(inc)
THz (t) in

Fig. 1a) in a LiNbO3 (0.4 % MgO-doped, purchased from Egorov Scientific)

nonlinear crystal via optical rectification [37], using laser pulses produced by

a ytterbium-doped potassium gadolinium tungstate (Yb:KGW) laser system

(Carbide, Light Conversion; central wavelength: 1030 nm central wavelength;

duration: ∼290 fs; maximum pulse energy: 400 µJ), at an effective repetition

rate of 200/3 kHz (i.e., laser repetition rate 200 kHz, used with a pulse picker

3). We also generated THz waveforms via optical rectification in a GaP non-

linear crystal (400 µm thick), using laser pulses (central wavelength: 870 nm

central wavelength; duration: ∼44 fs; pulse energy: 0.1 µJ; repetition rate:

200 kHz, pulse picker 1) generated by an optical parametric amplifier (OPA;

Orpheus-F, Light Conversion) pumped by the Yb:KGW laser. Both types of

THz waveforms were detected via electro-optical sampling [56] using another

similar GaP crystal (see SI Supplementary Note 2). Waveforms generated with

LiNbO3 (GaP) had a duration of ∼0.7 ps (∼0.2 ps), a spectral bandwidth

of ∼0.1 − 2 THz (∼1.5 − 7 THz), and a maximum peak electric field of ∼10

kV/cm (∼ 2 kV/cm, respectively). Note that for these THz peak electric fields

we can omit nonlinear THz processes in graphene.

The THz waveform F
(trans)
THz (t) transmitted through the sample generally

consists of a directly transmitted transient, F
(dir)
THz (t), followed by subsequent

transients F
(nth)
THz (t) resulting from reflections within the substrate (see SI Fig.

S9b). Based on the transmission T̃ (ω) = F̃
(trans)
graphene/SiO2/Si

(ω) /F̃
(trans)
SiO2/Si

(ω)

of the THz waveform through graphene – where F̃
(trans)
graphene/SiO2/Si

(ω) and

F̃
(trans)
SiO2/Si

(ω) are the Fourier transforms of the THz waveforms transmitted,

respectively, through the graphene-covered and bare Si/SiO2 areas – we can

calculate the complex dynamic conductivity of graphene, σ̃ (ω) [38, 57]. Note

that, when referring to experimental conductivity, we mean sheet conductivity,

which has units of conductance.
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In the case of THz generation with LiNbO3 (spectral range of ∼0.1 − 1.5

THz), where strong THz peak electric fields can be obtained and the trans-

mitted transient F
(1st)
THz (t) resulting from the 1st reflection within the substrate

can be measured with good signal-to-noise ratio (see SI Supplementary Note

8 for more detail), we obtained σ̃ (ω) via [38, 57]:

σ̃(1st) (ω) =
ñA

√
ñ2
A + 4ñB (ñA + ñB) T̃ (1st) (ω)− ñ2

A − 2ñAñBT̃
(1st) (ω)

2ñBZ0T̃ (1st) (ω)
(7)

where T̃ (1st) (ω) is the transmission based on the measurement of F
(1st)
THz (t)

through graphene/SiO2/Si and SiO2/Si, Z0 = 377 Ω is the vacuum impedance,

ñA = ñSiO2/Si (ω)+1 and ñB = ñSiO2/Si (ω)−1, with ñSiO2/Si (ω) being the bare

SiO2/Si substrate complex index of refraction (see SI Supplementary Note 3).

Note that, in general, the calculation of σ̃ (ω) via transients F
(nth)
THz (t) resulting

from reflections within the substrate is more accurate [57, 58] than via directly

transmitted transients F
(dir)
THz (t).

In the case of THz generation with GaP (spectral range of ∼1.5− 7 THz),

where THz peak electric fields are weaker than in the LiNbO3 configuration

and F
(1st)
THz (t) cannot be resolved reliably, we obtained σ̃ (ω) via [38, 57]:

σ̃(dir) (ω) =
ñA

Z0

[
1

T̃ (dir) (ω)
− 1

]
(8)

where T̃ (dir) (ω) is the transmission based on the measurement of F
(dir)
THz (t).

All THz-TDS measurements were performed in a nitrogen environment

with the sample at room temperature.

Two-component dynamic conductivity model
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We consider a two-band model for a single Dirac cone, with the Hamiltonian

is given by:

H = H0 +HI +Hscatt (9)

where H0 is the equilibrium Hamiltonian for pristine graphene, which in the

low-energy regime in the vicinity of the Dirac cone is given by H0 = vF (σ · p),

where vF is the Fermi velocity, σ is the Pauli matrix vector and p is the kinetic

momentum operator. The eigenstates of H0 are [42]:

φk,n(r) = ⟨r|k, n⟩ = 1√
2

1√
L2



e−iθ

λ


 eik·r (10)

where L2 is the real-space area of graphene considered (i.e., irradiated by the

THz waveform), n ∈ {v, c} is the band index (v: valence band; c: conduction

band), k = k cos θ κx + k sin θ κy is the wavevector, {κx,κy} are unit vectors

defining a 2D Cartesian coordinate system of the reciprocal space with the

origin at the Dirac point K, θ represents the polar angle, and λ = 1 if n = c

and λ = −1 if n = v.

We employ the basis set given by Eq. (10) to express H in second-

quantisation representation, where H0 =
∑

n,k En,ka
†
n,kan,k, with En,k =

λℏvFk, and where a†n,k and an,k are creation and annihilation operators.

In Eq. (9), HI and Hscatt, account for interactions between graphene

electrons and an incident electromagnetic field (in our specific case, a THz

waveform), and for the scattering of electrons given by a (here, both scalar

and vector) scattering potential with matrix elements V
(n,m)
k,k′ :

HI =
∑

n,m,k

D
(n,m)
k (t)a†m,kan,k (11)
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Hscatt =
∑

n,m,k,k′

V
(n,m)
k,k′ a†m,k′an,k (12)

Here, the scattering potential can result from the combination of, e.g.,

defects, impurities. In the length gauge, the optical transition matrix element

D
(n,m)
k (t) can be written as:

D
(n,m)
k (t) = F (t) [ieδnm (e · ∇k) + (1− δnm) (e · dk)] (13)

where F (t) = F
(inc)
THz (t) is the incident THz waveform electric field, e =

exκx + eyκy is the polarisation vector, e is the electron charge and δnm is

the Kronecker delta. The scalar product between e and the interband dipole

moment dk can be expressed as [59]:

e · dk = (e/k) (ex sin θ + ey cos θ) (14)

The surface current density in the time domain can be expressed in terms

of the density matrix ρ and velocity operator v (with matrix elements defined

in SI Supplementary Note 5):

J(t) =
e√
2π

∫
dω eiωt F̃ (ω) σ̃(ω) = −(e/L2)Tr [ρ v] (15)

The two-component model of complex dynamic conductivity, Eqs. (2)-

(5), is based on the time evolution of ρ given by the Liouville-von-Neumann

equation, iℏ∂tρ = [H, ρ]. The density matrix can be split into diagonal terms

f̄ corresponding to carrier populations of valence and conduction bands, non-

diagonal terms f accounting for intraband polarisations, and non-diagonal

terms π accounting for interband polarisations: ρ = f̄ + f + π. Under the

assumption of a weak applied electromagnetic field (i.e., linear regime), while



18

considering a relatively strong scattering potential, the Liouville-von-Neumann

equation results in the following set of quantum kinetic equations (see SI

Supplementary Note 5 for more details):

∂tfn,k =
eF (t)

ℏ
(e · ∇kfn,k) + Π

(n,n)
k,k (16a)

∂tπk = i∆ωkπk + i
(
f̄c,k − f̄v,k

) eF (t) (e · dk)

ℏ
+Π

(c,v)
k,k (16b)

f̄n,k = Im [fn,k] (16c)

where ∆ωk = (Ec,k − Ev,k′) /ℏ is the transition angular frequency, and Π
(n,m)
k′,k

is the scattering term associated with the scattering potential V :

Π
(n,m)
k′,k = − i

ℏ
∑

j,k′′

V
(n,j)
k′,k′′π

(j,m)
k′′,k − V

(j,n)
k′′,k π

(m,j)
k′,k′′ . (17)

The scattering term Π
(n,n)
k,k in Eq. (16)a can be approximated [34, 60] as

Π
(n,n)
k,k ≈ −fn,k/τ , where τ is the intraband momentum relaxation time con-

stant. Note that, with this approximation, solutions to Eq. (16)a give rise to

the conventional Drude model.

The non-diagonal scattering term Π
(c,v)
k,k in Eq. (16)b can be approximated

as (see SI Supplementary Note 5 for more details):

Π
(c,v)
k,k ≈ − i

ℏ
∑

k′

[
V

(c,c)
k,k′ πk′,k − V

(v,v)
k′,k πk,k′

]
− γπk,k, (18)

where γ is the dephasing rate of the interband polarisation [33].

The sum in Eq. (18) describes coupling between non-momentum-conserving

interband processes and direct momentum-conserving interband transitions.

We show in the SI Supplementary Note 5 that such coupling does not take

place in graphene in which there are no vector scattering potentials.
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Solutions of Eqs. (16)a-c with the aforementioned approximations of Π
(n,n)
k,k

and Π
(c,v)
k,k , together with Eq. (15), result in the complex dynamic conductivity:

σ̃(ω) = σ̃intra (ω) + σ̃
(o)
inter (ω) + σ̃

(s)
inter (ω) (19)

where

σ̃intra(ω) =
e2vF
2ℏL2

∑

n,k

τ∂kf̄
(0)
n,k

1− iωτ
cos2 θ (20)

σ̃
(o)
inter(ω) =

ie2vF
2ℏL2

∑

k,η=±1

η
(
f̄
(0)
c,k − f̄

(0)
v,k

)

k (ω − η∆ωk + iγ)
sin2 θ (21)

σ̃
(s)
inter(ω) =

ie2vF
2ℏL2

∑

k,η=±1

ηv̄2Γ(ω, k, τ)
(
∂kf̄

(0)
c,k − ∂kf̄

(0)
v,k

)

(ω − η∆ωk + iγ)
sin2 θ (22)

with

Γ(ω, k, τ) =
kL2

ℏ2vF
Im

[
τ

1− iωτ

]
(23)

Here, f̄
(0)
n,k is the thermal equilibrium Fermi-Dirac distribution, the sum

for η = +1 and η = −1 accounts for the complex-conjugate of the density

matrix non-diagonal elements, and v̄ corresponds to an energy associated with

the spatially averaged square of the vector scattering potential in disordered

graphene. We hypothesise that such vector scattering potential can be the

result of severe structural deformations of graphene giving rise to substantial

pseudo-magnetic fields; see SI Supplementary Note 5 for details.

The final expressions of Eqs. (2)-(5) are obtained from Eqs. (20)-(23) by

transforming sums over wavevectors into integrals using the transformation:
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∑

k

→ L2

(2π)2

2π∫

0

dθ

∞∫

0

dk k, (24)

We fit our experimental measurements of σ̃(ω) with Eqs. (1)-(6), with

the Fermi-Dirac distribution f̄
(0)
n,k at room temperature determined using the

Fermi level Ef obtained from four-point-probe measurements for different gate

voltages Vg (see SI Supplementary Note 1; we allowed for a 10% variation of Ef

across different values of Vg to obtain a best fit). We assumed τ(Vg) = α
√

n(Vg)

[43], where n(Vg) is the Vg-dependent carrier concentration determined via

four-point-probe measurements. We used v̄ and α as global fit parameters (i.e.,

same for all Vg, allowing for a 10% variation of α across different values of Vg),

and γ as a local fit parameter (i.e., varying as a function of Vg). A best fit was

obtained for v̄ ≈ 4.63 × 10−6 eV, consistent with the estimate of the overall

effective perimeter of severely distorted graphene areas (see SI Supplementary

Note 5).

Acknowledgements

This work was supported by the ARC Centre of Excellence in Future Low-

Energy Electronics Technologies (FLEET, CE170100039), the ARC Centre

of Excellence in Exciton Science (CE170100026) and the Australian Govern-

ment Research Training Program (RTP) Scholarship. This work was performed

in part at the Melbourne Centre for Nanofabrication (MCN) in the Victo-

rian Node of the Australian National Fabrication Facility (ANFF). T-P.N.,

M.O. and M.G. acknowledge partial financial support from FLEET via PhD

top-up scholarship. K.X. and M.S.F. acknowledge support from ARC grant

DP200101345. M.K. and J.H.C acknowledge the support of the National

Computational Infrastructure (NCI), which is supported by the Australian



21

Government. We thank Dimi Culcer, Meera M. Parish and Shaffique Adam

for fruitful discussions.

Additional Information

Competing financial interests: The authors declare no competing financial

interests.

Data availability: The codes corresponding to numerical computations are

available at https://gitlab.com/freude1/linear-thz-response-in-graphene.

References

[1] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films.

Science 306 (5696), 666–669 (2004) .

[2] Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim,

A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162

(2009) .

[3] Kim, K. S. et al. Large-scale pattern growth of graphene films for

stretchable transparent electrodes. Nature 457, 706–710 (2009) .

[4] Bae, S. et al. Roll-to-roll production of 30-inch graphene films for

transparent electrodes. Nature Nanotechnology 5, 574–578 (2010) .

[5] Chen, J.-H. et al. Printed graphene circuits. Advanced Materials 19 (21)

(2007) .

[6] Long distance spin communication in chemical vapour deposited

graphene. Nature Communications 6, 6766 (2015) .

https://gitlab.com/freude1/linear-thz-response-in-graphene


22

[7] El-Kady, M. F., Shao, Y. & Kaner, R. B. Graphene for batteries,

supercapacitors and beyond. Nature Reviews Materials 1, 16033 (2016) .

[8] Falkovsky, L. A. Optical properties of graphene. Journal of Physics:

Conference Series 129, 012004 (2008) .

[9] Hendry, E., Hale, P. J., Moger, J., Savchenko, A. K. & Mikhailov, S. A.

Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105,

097401 (2010) .

[10] Zheng, Q., Xia, L., Tang, L., Du, C. & Cui, H. Low voltage graphene-

based amplitude modulator for high efficiency terahertz modulation.

Nanomaterials 10 (3) (2020) .

[11] Jin, M. et al. Terahertz detectors based on carbon nanomaterials.

Advanced Functional Materials 32 (11), 2107499 .

[12] Buron, J. D. et al. Graphene conductance uniformity mapping. Nano

Letters 12, 5074–5081 (2012) .

[13] Buron, J. D. et al. Terahertz wafer-scale mobility mapping of graphene on

insulating substrates without a gate. Opt. Express 23 (24), 30721–30729

(2015) .

[14] Systematic thz study of the substrate effect in limiting the mobility of

graphene. Scientific Reports 11, 8729 (2021) .

[15] Frenzel, A. J. et al. Observation of suppressed terahertz absorption in

photoexcited graphene. Applied Physics Letters 102 (11), 113111 (2013) .

[16] Jnawali, G., Rao, Y., Yan, H. & Heinz, T. F. Observation of a transient

decrease in terahertz conductivity of single-layer graphene induced by



23

ultrafast optical excitation. Nano Letters 13 (2), 524–530 (2013) .

[17] Pistore, V. et al. Mapping the complex refractive index of single

layer graphene on semiconductor or polymeric substrates at terahertz

frequencies. 2D Materials 9 (2), 025018 (2022) .

[18] Horng, J. et al. Drude conductivity of dirac fermions in graphene. Phys.

Rev. B 83, 165113 (2011) .

[19] Ren, L. et al. Terahertz and infrared spectroscopy of gated large-area

graphene. Nano Letters 12 (7), 3711–3715 (2012) .

[20] Smith, N. V. Classical generalization of the drude formula for the optical

conductivity. Phys. Rev. B 64, 155106 (2001) .

[21] Buron, J. D. et al. Electrically continuous graphene from single crystal

copper verified by terahertz conductance spectroscopy and micro four-

point probe. Nano Letters 14, 6348–6355 (2014) .

[22] Cocker, T. L. et al. Microscopic origin of the drude-smith model. Phys.

Rev. B 96, 205439 (2017) .

[23] Infrared ellipsometry characterization of conducting thin organic films.

Thin Solid Films 455-456, 295–300 (2004). The 3rd International

Conference on Spectroscopic Ellipsometry .

[24] Chen, S. et al. On the anomalous optical conductivity dispersion of

electrically conducting polymers: ultra-wide spectral range ellipsometry

combined with a drude–lorentz model. J. Mater. Chem. C 7, 4350–4362

(2019) .



24

[25] Lee, K., Heeger, A. J. & Cao, Y. Reflectance of polyaniline protonated

with camphor sulfonic acid: Disordered metal on the metal-insulator

boundary. Phys. Rev. B 48, 14884–14891 (1993) .

[26] Lee, K., Menon, R., Yoon, C. O. & Heeger, A. J. Reflectance of conduct-

ing polypyrrole: Observation of the metal-insulator transition driven by

disorder. Phys. Rev. B 52, 4779–4787 (1995) .

[27] Ando, T. Screening effect and impurity scattering in monolayer graphene.

Journal of the Physical Society of Japan 75 (7), 074716 (2006) .

[28] Hafez, H. A. et al. Terahertz nonlinear optics of graphene: From saturable

absorption to high-harmonics generation. Advanced Optical Materials

8 (3), 1900771 .

[29] Gallagher, P. et al. Quantum-critical conductivity of the dirac fluid in

graphene. Science 364 (6436), 158–162 (2019) .
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Fig. 1 THz time-domain spectroscopy of gated graphene. a, Schematic of device
consisting of single-layer CVD-grown graphene on 300 nm thick SiO2 on p−doped Si, irradi-

ated with a THz waveform with instantaneous electric field F
(inc)
THz (t) (generated via optical

rectification, here in LiNbO3; pulse duration τP ≈ 0.7 ps; period τL ≈ 1.35 ps). Gold
electrodes allow for tuning of the graphene Fermi level Ef by a gate voltage Vg, and for
DC electrical conductivity characterisation via four-point-probe measurements. b, Spec-

tra |F̃ (trans)
THz (ω)|2 and spectral phases arg

[
F̃

(trans)
THz (ω)

]
[F̃

(trans)
THz (ω): Fourier transform of

F
(trans)
THz (t)] of THz waveforms transmitted through SiO2/Si (bare substrate; reference) or

graphene/SiO2/Si heterostructure areas, for both LiNbO3- and GaP-generated THz. These
spectra enable the retrieval of the complex THz conductivity, σ̃(ω), as a function of ω and
Vg. c, d, Schematic of graphene band structure (Dirac cones) at K and K’ points in recip-
rocal space, for different values of Ef tuned via Vg: Ef(Vg) < ECNP [i.e., p−doped; (c)] and
Ef(Vg) = ECNP [i.e., charge neutrality point (CNP) with charge carrier density n(Vg) ≈ 0;
(d)]. Different THz-induced electronic excitations (e.g., intraband and/or interband) affect-
ing σ̃(ω) can occur depending on Ef.
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Fig. 2 Gate-controlled complex THz conductivity of graphene: from Drude to
non-Drude behaviour. a - e, Real part of complex THz conductivity, σ̃(ω), for differ-
ent gate voltages Vg tuning the Fermi level Ef. f - j, Imaginary part of σ̃(ω), for different
gate voltages Vg. Square and circle markers: experimental data from LiNbO3 and GaP
THz generation configurations, respectively. Solid curves: two-component model fit including
contributions from intra- (dotted blue) and interband (dash-dotted red) transitions. Black
dashed curves: Drude model fit. Filled areas: ± experimental standard deviation. Insets:
schematic of graphene Dirac cones with different Ef values, with intra- and interband tran-
sitions triggered by incident THz waveform. As Ef approaches the charge neutrality point
(i.e., |Vg − VCNP| → 0), contributions of interband transitions to σ̃(ω) increase: graphene’s
behaviour changes from metal- (Drude) to semiconductor (non-Drude)-like.
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a
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d

Fig. 3 Two-component model: substantial contribution of interband transitions
at the CNP. a, b, DC conductivity, σ0 (left axis), and carrier intraband relaxation time
constant, τ , as a function of Vg, determined from fitting experimental σ̃(ω) with σ̃Drude(ω)
(circles) and σ̃2-comp(ω) (squares). Error bars: ± fit standard deviation. Solid grey curve:
σ0 measured via four-point-probe configuration (right axis). c, χ2 (left axis) and R2 (right
axis) as a function of Vg, for Drude (circles) and two-component (squares) model fits. d,
βintra (blue) and βinter (red) as a function of Vg, quantifying the relative contributions of
intra- and interband transitions to σ̃(ω).



31

f

a b

e-Bpseudo

e-

Fig. 4 Interband transitions in charge-neutral graphene enhanced by scattering
of electrons due to structural deformations. a, Real-space schematic of graphene,
with structural deformations inducing substantial electrostatic vector scattering potentials
associated with pseudo-magnetic fields (purple arrows). b, Interband transitions (solid red
arrow) can be enhanced via acceleration of electrons (dashed red arrow) by the incident
THz electric field and subsequent intravalley backscattering (oscillating red double arrow)
flipping the electron pseudo-spin (black arrows).
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Supplementary Note 1. Sample Characterisation

Prior to our terahertz (THz) time-domain spectroscopy (THz-TDS) mea-

surements, we characterised our graphene/SiO2/Si samples via Raman spec-

troscopy and electrical measurements. We performed Raman spectroscopy on

graphene at room temperature using a continuous-wave 532-nm-wavelength

solid-state laser (with a 100× optical objective, power at sample ∼0.1 mW),

and a Princeton Instruments Acton Spectra Pro SP-2750 spectrometer. Figure

S1a shows a Raman spectrum, corresponding to the average of ∼100 spectra

acquired at different sample locations. This average Raman spectrum exhibits

two prominent G (∼1690 cm−1) and 2D (∼2700 cm−1) peaks, characteris-

tic of graphene. The full-width at half-maximum (FWHM) of the 2D peak

is Γ2D ≈ 29 ± 2 cm−1, confirming that our sample consists mainly of single-

layer graphene [1–4]. We also observe a small a small D peak (∼1350 cm−1),

indicative of some amount of disorder in the sample [1].

Figure S1b shows Raman spectra acquired at different locations of the

graphene sample. In particular, spectra acquired at regions that appear darker

in optical microscopy image (Fig. S1b inset) exhibit an additional D’ peak at

∼1620 cm−1. Also, the 2D peak for these darker regions is broader than for

clearer regions (Γ2D ≈ 35 cm−1 for the yellow and green spectra compared to

Γ2D ≈ 25 cm−1 for the black spectrum in Fig. S1b). We therefore attribute the

clear regions in the optical microscopy image to clean single-layer graphene,

and the darker region – with the additional D’ peak and broader 2D peak in

the Raman spectra – to a crumpled strained graphene area (that is, effectively

bilayer; see Fig. S8a for schematic of crumpled graphene region) [5–8]. Such

crumpled areas may originate in the graphene growth process and/or during

the transfer of graphene from the etching solution onto the substrate [9–12].
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a b

Fig. S1 Sample characterisation: Raman spectroscopy. a, Raman spectrum consist-
ing of an average of ∼100 spectra acquired at different graphene sample locations. b, Raman
spectra acquired at different regions of graphene, showing G and 2D peaks, as well as D’
peak in the crumpled area (green and yellow). Inset: optical microscopy image of graphene,
showing clear clean single-layer (black circle) and darker crumpled bilayer (green and yel-
low circles) areas; circles indicate locations where Raman spectra were acquired. Scalebar:
10 µm.

Notably, these severely strained, crumpled graphene areas are associated with

pseudo-magnetic fields that can be on the order of ∼100 T [5–7].

We measured the electrical DC conductivity of graphene, σ0, as a function

of gate voltage Vg, via a conventional four-point-probe configuration (Fig. S2;

see Fig. 1a in the main text for sample schematic). As Vg varies from -60 to

60 V, σ0 decreases, reaches a non-zero minimum at Vg = VCNP = 10 V – that

is, the charge neutrality point (CNP) – and then increases again. VCNP = 10

V indicates graphene is intrinsically p-doped.

The DC conductivity of graphene σ0 (Vg) can be expressed as [13]:

σ0 (Vg) =





eµe,h

[
δn
4 +

n2(Vg)
δn

]
, for |n (Vg) | < δn/2

eµe,hn (Vg) , for |n (Vg) | > δn/2

(S1)
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Fig. S2 Sample characterisation: four-point-probe measurement. The electrical
DC sheet conductivity, σ0, as a function of gate voltage Vg, measured in a four-point-probe
configuration. Orange curve: fit curve based on Eq. S1.

where µe,h is the electron/hole mobility, δn is a parameter accounting for the

non-zero conductivity at the CNP, and n (Vg) is the effective carrier density

given by:

n (Vg) =

∣∣∣∣∣

[
1

nc (Vg)
+

eµe,h

ρs

]−1

+ n0

∣∣∣∣∣ (S2)

Here, n0 is the carrier density of graphene at Vg = 0 V (that is, intrinsic

doping), ρs is a Vg-independent resistivity given by short-range scattering in

graphene [14], and nc (Vg) = CVg/e is the geometrical carrier concentration.

We estimated nc (Vg) using a parallel plate capacitor model, that is, with

capacitance C = ϵϵ0A/d, where ϵ = 3.9 is the dielectric constant of SiO2, and

A = 7× 7 mm2 and d = 300 nm are the area and thickness of the SiO2 layer,

respectively.

We fit our measured σ0 (Vg) in Fig. S2 to Eq. (S1), separately for Vg < VCNP

(i.e., p-doped, with µ = µh) and for Vg > VCNP (i.e., n-doped, with µ = µe),
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with µh, µe, δn and ρs as fitting parameters. This fitting procedure yielded (see

orange curve in Fig. S2) µh = 2700± 25 cm2/Vs and µe = 2200± 15 cm2/Vs.

We can then estimate the Fermi level Ef of graphene at a given Vg as:

Ef (Vg) = ℏvF

√
πσ0 (Vg)

eµ
(S3)

where vF is the graphene Fermi velocity, and with µ = µh for Vg < VCNP and

µ = µe for Vg > VCNP.

Supplementary Note 2. Terahertz time-domain

spectroscopy

The THz-TDS experimental setup used to determine the complex dynamic

sheet conductivity of graphene, σ̃(ω), is illustrated in Fig. S3a. We generated

THz waveforms via optical rectification [15] of fundamental laser pulses in both

lithium niobate (LiNbO3) and gallium phosphide (GaP) nonlinear crystals.

In the LiNbO3 configuration, the fundamental laser pulses were generated

by a Yb:KGW laser (Carbide from Light Conversion; laser repetition rate

200 kHz; effective repetition rate 200/3 kHz,i.e., pulse picker 3 was used). In

the GaP configuration, the fundamental laser pulses were generated by an

optical parametric amplifier (OPA; Orpheus-F from Light Conversion, effective

repetition rate 200 kHz,i.e., pulse picker 1 was used) pumped by the Yb:KGW

laser.

The generated THz pulses, with instantaneous electric field F
(inc)
THz (t), were

collimated and focused onto the sample by two off-axis parabolic mirrors (PM2,

3). The transmitted THz pulses, with instantaneous electric field F
(trans)
THz (t),

were then focused on another GaP crystal and detected via electro-optic sam-

pling [16]. A linearly polarised gate pulse (from the Yb:KGW laser in the
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PM3

LiNbO3  Generation Beam
(λ = 1030 nm, τP ≈ 290 fs)

LiNbO3 

GaP

PM1
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PM3

PM4

PM5GaPQWP

WP

Balanced 
Photodiodes

Gate Pulse
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GaP  Generation Beam
(λ ≈ 870 nm, τP ≈ 44 fs)

Optical 
chopper
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tro
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a

Fig. S3 THz time-domain spectroscopy (THz-TDS): experimental setup and
time-domain THz waveforms. a, Schematic of experimental setup for generation and
detection of few-cycle THz waveforms. PM: off-axis parabolic mirror. QWP: quarter-wave
plate. WP: Wollaston prism. b, Instantaneous time-dependent electric field of THz wave-
forms transmitted through graphene/SiO2/Si (dashed) and reference SiO2/Si sample areas
(solid). These THz waveforms were generated via optical rectification of fundamental laser
pulses in LiNbO3 and GaP nonlinear crystals, and electro-optically sampled with another
GaP crystal. See main text Fig. 1b for spectra of these waveforms.

LiNbO3 configuration, or from the OPA in the GaP configuration) propa-

gated through a second GaP crystal, which is birefringent when exposed to

the THz electric field. The gate pulse was then transmitted through a quarter-

wave plate (QWP), which converted it to circularly or elliptically polarised,

depending on the time delay between THz and gate pulses. A Wollaston prism

(WP) separated the gate pulse components propagating along the ordinary

and extraordinary axes. The difference between the two components, which is

proportional to the THz electric field, is detected by two balanced photodi-

odes and measured using a lock-in amplifier locked at a frequency of 6 kHz of

an optical chopper.

Figure S3b illustrates the instantaneous, time-dependent electric field,

F
(trans)
THz (t), of the THz waveforms generated with LiNbO3 and GaP, trans-

mitted through the graphene/SiO2/Si sample, and retrieved via electro-optic

sampling. It contains a directly transmitted transient F
(dir)
THz (t), and a transient
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F
(1st)
THz (t) given by the first internal reflection inside the substrate. We derived

the complex dynamic conductivity σ̃ (ω) of graphene from these transients (see

Methods in the main text). All THz-TDS measurements were performed in a

nitrogen environment with the sample at room temperature.

Supplementary Note 3. Substrate’s complex

refractive index

The complex refractive index of the SiO2/Si substrate, ñSiO2/Si (ω), is required

to calculate graphene’s complex dynamic conductivity σ̃ (ω). We calculated

ñSiO2/Si (ω) = Re[ñSiO2/Si (ω)] + iIm[ñSiO2/Si (ω)] via:

Re[ñSiO2/Si (ω)] = 1 +
c∆ϕ(ω)

ωd
(S4)

Im[ñSiO2/Si (ω)] = − c

ωd
ln

{[
Re[ñSiO2/Si (ω)] + 1

]2

4Re[ñSiO2/Si (ω)]

∣∣∣T̃ (trans)
SiO2/Si

(ω)
∣∣∣
}

(S5)

Here, T̃
(trans)
SiO2/Si

(ω) = F̃
(trans)
SiO2/Si

(ω) /F̃
(inc)
THz (ω) is the SiO2/Si substrate transmis-

sion function, where F̃
(trans)
SiO2/Si

(ω) and F̃
(inc)
THz (ω) are the Fourier transforms of

the THz waveforms transmitted through and incident onto the SiO2/Si sub-

strate, respectively, measured by THz-TDS; c is the speed of light, d is the

SiO2/Si substrate thickness and ∆ϕ(ω) = arg[F̃
(trans)
SiO2/Si

(ω)] − arg[F̃
(inc)
THz (ω)]

is the difference between the spectral phases of F̃
(trans)
SiO2/Si

(ω) and F̃
(inc)
THz (ω)

(computationally unwrapped by applying the technique reported in Ref. [17]).

Figure S4 shows Re[ñSiO2/Si (ω)] and Im[ñSiO2/Si (ω)] obtained using

LiNbO3 and GaP THz-generation configurations. The real part of the refrac-

tive index is frequency-independent while the imaginary part has infinitesimal

values in the entire ∼0.1−7 THz range. That is, ñSiO2/Si (ω) ≈ nSiO2/Si ≈ 3.45.

It is worth noting that the remarkable agreement and consistency between

the retrieved values of ñSiO2/Si (ω) obtained from the two different LiNbO3 and
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Fig. S4 Complex refractive index of SiO2/Si substrate. The Re[ñSiO2/Si (ω)] and
Im[ñSiO2/Si (ω)] components of the substrate refractive index as a function of frequency,
obtained from LiNbO3 (square) and GaP (circle markers) THz-generation configurations.

GaP THz-generation configurations demonstrate the reliability of using these

two setups for the accurate retrieval of graphene’s THz conductivity σ̃(ω).

Supplementary Note 4. Extended Drude-type

models

In the main text, we show that the conventional Drude model, with

σ̃Drude (ω) = σ0/(1 − iωτ), cannot explain our measurements of σ̃ (ω) for

charge-neutral graphene. In this section, we consider other extensions of the

Drude model, i.e., localisation-modified Drude (LMD) model [18, 19], Drude-

Smith (DS) model [20, 21], Drude-Lorentz (DL) model [22], and a microscopic

graphene-specific model developed by Ando et al. [23].

The LMD model takes into account charge transport restriction due

to disorder-induced weak localisation [18, 19], with the complex dynamic

conductivity given by [24]:

Re [σ̃LMD (ω)] =
σ0

1 + ω2τ2

[
1− C

(kFvF)2τ2

(
1−

√
3ωτ

)]
(S6)
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Im [σ̃LMD (ω)] =
σ0ωτ

1 + ω2τ2

[
1 +

C

(kFvF)
2
τ2

(
√
6− 1−

√
3

ωτ

)]
(S7)

where C is a constant on the order of unity, kF is the Fermi wave vector and

vF is the Fermi velocity, with C/ (kFvF)
2
denoting the impact of the charge

carrier localisation [18]. In this model, σ0, τ and C are fitting parameters.

The DS model assumes that a fraction of the initial carrier velocity – rep-

resented by phenomenological coefficients Cn – is retained after the nth elastic

scattering event (with Cn ∈ [−1; 0]) [20, 21]. In this DS model, the negative

values of Cn can result in the suppression of the low-frequency conductivity.

Taking only the first scattering event into account (i.e., Cn = 0 for n > 1), the

DS dynamic conductivity is expressed as:

σ̃DS (ω) =
σ0

1− iωτ

[
1 +

C1

1− iωτ

]
. (S8)

When C1 = 0, the DS model reverts to the original Drude model. Note that

the physical origin of the phenomenological parameter C1 can be attributed to,

e.g., significant backscattering, and/or diffusive restoring currents; however,

its exact physical cause remains unclear [25]. In this DS model, σ0, τ and C1

are treated as fitting parameters.

Structural vibrations can affect the conductivity of the material, yet they

are not taken into consideration by either the LMD or the DS models. The

DL model is an extension of the Drude model that takes into account such

vibrations phenomenologically, via Lorentz oscillators [22]:

σ̃DL (ω) =
σ0

1− iωτ
+
∑

j

iϵ0ωA
(j)
L

ω2 − ω
(j)
L

2
+ iωγ

(j)
L

(S9)
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where ϵ0 is vacuum permittivity, and A
(j)
L , ω

(j)
L and γ

(j)
L are amplitude, reso-

nance frequency and broadening of the Lorentz oscillator j [26], respectively.

In this DL model, σ0, τ , A
(j)
L , ω

(j)
L and γ

(j)
L serve as fitting parameters. We con-

sidered j = 1, 2, 3, without significant differences of the fit for these different

oscillator numbers.

Ando et al. [23] further proposed a microscopic model of the graphene

dynamic conductivity taking into account carrier scattering by screened

charged impurities:

σ̃Ando (ω) =
e2v2F
2

+∞∫

0

dϵD(E)
τ(E)

1− iωτ(E)

df(Ef, Tel)

dE
(S10)

where e is the electron charge, D(E) = 2E/
(
πℏ2v2F

)
is the graphene density

of states, f(Ef, Tel) is the Fermi-Dirac distribution as a function of Fermi level

Ef and electronic temperature Tel, and τ(E) is the energy-dependent carrier

relaxation time (governed by scattering due to screened charged impurities,

with τ ∝ E) [23, 27]. In this model, the value of Ef as a function of Vg was

determined from the four-point-probe measurements, allowing for a 10% vari-

ation across different Vg values to obtain a best fit (similar to two-component

model fit in main text).

For comparison, we fit simultaneously the real and imaginary parts of the

THz conductivity of graphene, σ̃ (ω), with the Drude, LMD, DS, DL and Ando

models using the respective fitting parameters listed above for each model.

Figure S5 shows the experimental Re [σ̃ (ω)] and Im [σ̃ (ω)], as well as the

corresponding curves resulting from the Drude-type model fits, for different

values of Vg and Ef. All Drude-type models are in good agreement with the

experimentally measured σ̃(ω) for p-doped (Ef ≲ −15 meV; see Fig. S5a-c, i-

k) and n-doped (Ef ≳ 20 meV; see Fig. S5g-h, o-p) graphene. This agreement
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a b c d e f g h

i j k l m n o p

Fig. S5 Gate-dependent complex THz conductivity of graphene: comparison
between Drude-type fits. a - h, Real part of σ̃ (ω) for different Vg values. i - p, Imaginary
part of σ̃ (ω). Square and circle markers: experimental data from LiNbO3 and GaP THz-
generation configurations, respectively. Shaded areas: ± standard deviation. Dashed green
curves: fit by localisation-modified Drude (LMD) model. Solid magenta curves: fit by Drude-
Smith (DS) model. Dashed blue curves: fit by Drude-Lorentz (DL) model. Solid red curves:
fit by Ando model [23]. Dashed black curves: fit by Drude model. All Drude-typde models
result in very similar fit curves.

a

b

c

d

Fig. S6 Drude-type DC conductivity, carrier relaxation time constant and good-
ness of fit. a, DC conductivity σ0, b, carrier relaxation time τ , c, Pearson’s χ2 test and d,
coefficient of determination R2 as a function of Vg and Ef, determined from fitting the mea-
sured σ̃ (ω) with the conventional Drude (black circles), localisation-modified Drude (LMD,
green diamonds), Drude-Smith (DS, magenta triangles), Drude-Lorentz (DL, blue pentagon)
and Ando (red circles) models. All Drude-type models yield very similar fit results.
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d e f

Fig. S7 Drude-type fit residuals near the charge neutrality point. a-c, Residuals
of Re[σ̃(ω)] fits given by Drude-type models. d-f, Residuals of Im[σ̃(ω)] fits. All Drude-type
fits yield similar residuals.

is further evidenced by the small Pearson’s test values (χ2 < 50) and high

coefficients of determination (R2 > 0.9), as depicted in Fig. S6c-d.

In the case of charge-neutral graphene (−5 ≲ Ef ≲ 10 meV), none of the

considered Drude-type models are able to accurately reproduce both Re [σ̃ (ω)]

and Im [σ̃ (ω)] simultaneously (see Fig. S5d-f, l-n). Note that all extended

Drude-type models yield fitting curves, as well as values of σ0 and τ , that are

comparable to the conventional Drude model (Fig. S5a-b).

The inadequacy of the Drude-type models in explaining σ̃(ω) for charge-

neutral graphene is further evidenced by the substantial increase in χ2 (with

χ2
CNP/χ

2
doped > 400%), by the decrease of R2 from > 0.9 to < 0.6 (Fig. S6c-d),

and by the large fit residuals (Fig. S7).

Supplementary Note 5. Derivation of the

two-component model

In this section we present a full derivation of the two-component model for

graphene’s complex dynamic conductivity. The model is derived based on the
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time evolution of the density matrix ρ given by the Liouville-von-Neumann

equation, iℏ∂tρ = [H, ρ]. Here, a two-band model for a single Dirac cone is

considered. Under the irradiation of a THz waveform with instantaneous elec-

tric field F (t), the surface current density in the time domain can be expressed

by using the density matrix formalism as:

J(t) =
e√
2π

∫
dω eiωt F̃ (ω) σ̃(ω) = −(e/L2)Tr [ρ v] (S11)

where e is the polarisation vector (e = exκx + eyκy, with {κx,κy} being

unit vectors defining a 2D Cartesian coordinate system), F̃ (ω) is the Fourier

transform of the THz waveform electric field, σ̃(ω) is the graphene sheet con-

ductivity (as in the experiment, i.e., in units of conductance e2/h), e is the

electron charge, and L2 is the effective area of graphene exposed to the THz

waveform. In the vicinity of the Dirac cone and in polar coordinates, the matrix

elements of the velocity operator v read as:

v
(m,n)
k′,k = vFδ (k− k′)





λ(n) (κx cos θ + κy sin θ) , n = m,

iλ(n) (κx sin θ + κy cos θ) , n ̸= m,

(S12)

Here, vF is graphene’s Fermi velocity, n,m ∈ {c, v} are band indices (c:

conduction, v: valence band), λ(n) = 1 if n = c and λ(n) = −1 if n = v, k and

k′ are electron wavevectors, and θ represent polar angles.

We consider graphene’s electronic density matrix ρ, whose (unitless) ele-

ments are associated with the occupation probability and polarisation of

graphene’s electronic states |k, n⟩. By decomposing ρ into diagonal (f̄), non-

diagonal intraband (f) and non-diagonal interband (π) components, ρ =
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f̄ +f +π, and considering the system’s Hamiltonian (see Methods in the main

text), the quantum kinetic equations can be written as:

∂tfn,k′,k = i∆ω
(n,n)
k,k′ fn,k′,k + i

(
f̄n,k′ − f̄n,k

)
Ω

(n,n)
k′,k +Π

(n,n)
k′,k , (S13a)

∂tπk′,k = i∆ω
(c,v)
k,k′ πk′,k + i

(
f̄c,k′ − f̄v,k

)
Ω

(c,v)
k′,k +Π

(c,v)
k′,k , (S13b)

∂tf̄n,k = λ(n)
∑

k′

Im
[
Ω

(c,v)
k π∗

k

]
+ λ(n)

∑

k′

Im
[
Ω

(n,n)
k,k′ f∗

n,k′,k

]
+Π

(n,n)
k,k ,

(S13c)

Here, Ω
(n,m)
k′,k = eF (t)

[
e · d(n,m)

k′,k

]
/ℏ is the Rabi frequency, d

(n,m)
k′,k is the

dipole moment matrix element, ∆ωk,k′ = (Ec,k − Ev,k′) /ℏ is the transi-

tion angular frequency, and Π
(n,m)
k′,k is the scattering term associated with a

scattering potential V :

Π
(n,m)
k′,k = − i

ℏ
[V, ρ] = − i

ℏ
∑

j,k′′

[
V

(n,j)
k′,k′′ρ

(j,m)
k′′,k − V

(j,m)
k′′,k ρ

(n,j)
k′,k′′

]
, (S14)

Assuming that the perturbation from the incident THz electric field is

sufficiently weak to maintain the carrier distribution in the Dirac cone near its

thermal equilibrium value, the density matrix ρ(t) can be expressed as:

ρ(t) = ρ(0) + ρ(1)(t) (S15)

where ρ(0) = f̄ (0) represents the thermal equilibrium Fermi-Dirac distribution,

while ρ(1)(t) = f̄ (1)(t) + f (1)(t) + π(1)(t) corresponds to the first-order time-

dependent density matrix. We neglect higher-order perturbations; that is, we

assume we are in the linear regime. The time evolution of ρ(t) becomes [28]:
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iℏ∂tρ(1)(t) =
[
H(0), ρ(1)(t)

]
+
[
H(1), ρ(0)

]
. (S16)

where H(0) is zeroth-order Hamiltonian (independent of incident field) and

H(1) = HI is the first-order Hamiltonian describing the interaction between

graphene and incident THz electric field (Hamiltonian is defined in the Meth-

ods of the main text). Note that H(0) ̸= H0, and that H(0) contains Hscatt

accounting for scattering of electrons by the scattering potential V .

In Eq. (S13)c, the first two terms are of second-order with respect to the

incident field, thus they do not contribute to the linear response of the system

and can be neglected [29]. The system of Eqs. (S13)a-c can be rewritten as:

∂tf
(1)
n,k′,k = i∆ω

(n,n)
k,k′ f

(1)
n,k′,k + i

(
f̄
(0)
n,k′ − f̄

(0)
n,k

)
Ω

(n,n)
k′,k +Π

(n,n)(1)
k′,k , (S17a)

∂tπ
(1)
k′,k = i∆ω

(c,v)
k,k′ π

(1)
k′,k + i

(
f̄
(0)
c,k′ − f̄

(0)
v,k

)
Ω

(c,v)
k,k +Π

(c,v)(1)
k′,k , (S17b)

∂tf̄
(1)
n,k = Π

(n,n)(1)
k,k . (S17c)

where Π
(n,m)(1)
k′,k is defined by Eq. (S14) where ρ is replaced by ρ(1).

Note that the applied field does not induce changes in the density matrix

diagonal elements in Eq. (S17)c in the first order, however, it can contribute

here indirectly via the scattering terms.

The second term in Eq. (S17)a reads:

i
(
f̄
(0)
n,k′ − f̄

(0)
n,k

)
Ω

(n,n)
k′,k =

ieF (t)

ℏ

vF

(
f̄
(0)
n,k′ − f̄

(0)
n,k

)

∆ω
(n,n)
k,k′

e · k
|k| (S18)

In the linear regime, and without considering scattering, the incident THz

electric field itself is not capable of providing significant momentum transfer.
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Therefore, the first-order microscopic intraband polarisation f
(1)
n,k′,k is non-zero

only when k′ → k. Taking this limit, we obtain:

lim
k′→k

vF

(
f̄
(0)
n,k′ − f̄

(0)
n,k

)

∆ω
(n,n)
k,k′

= lim
k′→k

vF

(
f̄
(0)
n,k′ − f̄

(0)
n,k

)

vF (|k| − |k′|) = ∇kf̄
(0)
n,k. (S19)

Therefore,

i
(
f̄
(0)
n,k′ − f̄

(0)
n,k

)
Ω

(n,n)
k′,k ≈ eF (t)

(
e · ∇kf̄

(0)
n,k

)
(S20)

The third term in Eq. (S17)a can be approximated as [30]:

lim
k′→k

Π
(n,n)(1)
k′,k = −

f
(1)
n,k

τ
(S21)

where constant τ is the intraband carrier momentum relaxation time constant.

The scattering term in Eq. (S17)c reads:

Π
(n,n)(1)
k,k = − i

ℏ
∑

j,k′

[
V

(n,j)
k,k′ ρ

(j,n)(1)
k′,k − V

(j,n)
k′,k ρ

(n,j)(1)
k,k′

]
=

− 1

ℏ
Im
[
V

(n,n)
k,k f̄

(1)
n,k

]
− 1

ℏ
Im
[
V

(n,n)
k,k f

(1)
n,k

]
− 1

ℏ
Im
[
V

(c,v)
k,k π

(1)
k,k

]

− i

ℏ
∑

j,k′ ̸=k

[
V

(n,j)
k,k′ ρ

(j,n)(1)
k′,k − V

(j,n)
k′,k ρ

(n,j)(1)
k,k′

]
(S22)

Note that the product V
(n,n)
k,k f̄

(1)
n,k is real, i.e. Im

[
V

(n,n)
k,k f̄

(1)
n,k

]
= 0. Also, we

assume that: (i) scattering involving electronic transitions within a same band

is significantly more probable than scattering involving interband transitions,

i.e., V
(n,n)
k,k ≫ V

(c,v)
k,k ; (ii) in the considered few-THz frequency range, the intra-

band response remains larger than the interband response, i.e., f
(1)
n,k > π

(1)
k,k

[31]. This leads to:
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Π
(n,n)(1)
k,k = −1

ℏ
Im
[
V

(n,n)
k,k f

(1)
n,k

]
− i

ℏ
∑

j,k′ ̸=k

[
V

(n,j)
k,k′ ρ

(j,n)
k′,k − V

(j,n)
k′,k ρ

(n,j)
k,k′

]
(S23)

It has been previously shown in Ref. [30] that the sum in the last term

in the right-hand side of Eq. (S23) can be neglected when scattering remains

moderate. With these approximations, the kinetic equations Eqs. (S17)a-c

become:

∂tf
(1)
n,k =

eF (t)

ℏ

(
e · ∇kf̄

(0)
n,k

)
−

f
(1)
n,k

τ
, (S24a)

∂tπ
(1)
k′,k = i∆ω

(c,v)
k,k′ π

(1)
k′,k + i

(
f̄
(0)
c,k′ − f̄

(0)
v,k

)
Ω

(c,v)
k,k +Π

(c,v)(1)
k′,k , (S24b)

∂tf̄
(1)
n,k = −1

ℏ
Im
[
V

(n,n)
k,k f

(1)
n,k

]
. (S24c)

The scattering potential V causes the relaxation of the non-equilibrium

distribution function. As an ansatz, we therefore propose a solution for f̄
(1)
n,k(t)

in Eq. (S24)c in the form of f̄
(1)
n,k(t) = a(t)e−αt:

−αa(t)e−αt + [∂ta(t)] e
−αt = −1

ℏ
Im
[
V

(n,n)
k,k f

(1)
n,k

]
. (S25)

Assuming that a(t) varies slowly in comparison to the fast decay of the

first-order distribution function f̄
(1)
n,k (where an out-of-equilibrium first-order

distribution f̄
(1)
n,k decays to equilibrium typically on timescales of 10-100 fs [32–

34], i.e., typical characteristic frequencies of 10-100 THz) – that is, with α

larger than ∼7 THz, the frequency of the fastest oscillating Fourier component
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of the incident THz waveform – the second term in the left-hand side of Eq.

(S25) can be neglected. As a result, α = V
(n,n)
k,k /ℏ, and we obtain:

∂tf
(1)
n,k =

eF (t)

ℏ

(
e · ∇kf̄

(0)
n,k

)
−

f
(1)
n,k

τ
, (S26a)

∂tπ
(1)
k′,k = i∆ω

(c,v)
k,k′ π

(1)
k′,k + i

(
f̄
(0)
c,k′ − f̄

(0)
v,k

)
Ω

(c,v)
k,k +Π

(c,v)(1)
k′,k , (S26b)

f̄
(1)
n,k = Im

[
f
(1)
n,k

]
. (S26c)

Note that Eq. (S26)c is reminiscent of the relationship between the retarded

Green’s function and the lesser Green’s function (electron correlation function)

according to Lehmann’s representation [35].

Equation (S26)a can be solved analytically:

f
(1)
n,k(t) =

e

ℏ

(
e · ∇kf̄

(0)
n,k

) t∫

−∞

dt′F (t′)e
t′−t
τ (S27)

In the frequency domain, Eq. (S27) reads:

f
(1)
n,k(ω) =

τeF̃ (ω)
(
e · ∇kf̄

(0)
n,k

)

ℏ (1− iωτ)
(S28)

Assuming that the electromagnetic field is linearly polarised along the x-

axis, this expression can be rewritten in the polar coordinates as follows:

f
(1)
n,k(ω) =

τeF̃ (ω)∂kf̄
(0)
c,k cos θ

ℏ (1− iωτ)
. (S29)

Let us now consider Eq. (S26)b when k′ → k. The scattering term can be

decomposed as:
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Π
(c,v)(1)
k,k = − i

ℏ

[
V

(c,v)
k,k f̄

(1)
v,k − f̄

(1)
c,kV

(c,v)
k,k

]
(S30a)

− i

ℏ
∑

k′

[
V

(c,c)
k,k′ π

(1)
k′,k − π

(1)
k,k′V

(v,v)
k′,k

]
(S30b)

− i

ℏ
∑

k′

[
V

(c,v)
k,k′ ρ

(v,v)(1)
k′,k − ρ

(c,c)(1)
k,k′ V

(c,v)
k′,k

]
(S30c)

The first term, (S30)a, depends linearly on the scattering potential V .

For disordered graphene, the spatial variation of this scattering potential is

random, and can take both positive and positive values, i.e., its real-space

integral is close to zero. The second term, (S30)b, is of second-order with

respect to the scattering potential and can result in constructive or destructive

interference with coherent interband processes. The term (S30)c contributes

to dephasing and can be accounted for via the dephasing time approximation:

Π
(c,v)(1)
k,k ≈ − i

ℏ
∑

k′

[
V

(c,c)
k,k′ π

(1)
k′,k − π

(1)
k,k′V

(v,v)
k′,k

]
− γπ

(1)
k,k, (S31)

where γ is a phenomenological quantity describing the dephasing rate of

the interband polarisation [36]. With this approximation, the solution of Eq.

(S26)b in the frequency domain for k = k′ reads:

π
(1)
k (ω) =

ieF̃ (ω) (e · dk)
(
f̄
(0)
c,k − f̄

(0)
v,k

)

ℏ (ω −∆ωk,k + iγ)
−

i
∑

k′

[
V

(c,c)
k,k′ π

(1)
k′,k(ω)− π

(1)
k,k′(ω)V

(v,v)
k′,k

]

ℏ (ω −∆ωk,k + iγ)

(S32)

where e · dk = (e/k) (ex sin θ + ey cos θ).
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The second term on the right-hand side of Eq. (S32) is dependent on

π
(1)
k′,k(ω), which is yet to be determined. For this calculation of π

(1)
k′,k(ω) [given

by Eq. (S26)b], we simplify the scattering term Π
(c,v)(1)
k′,k by just keeping the

term Eq. (S30)a, which depends linearly on the scattering potential V [30].

From this approximation and from Eq. (S26)b, we obtain in the frequency

domain for k ̸= k′:

π
(1)
k′,k(ω) = −

iV
(c,v)
k′,k

[
f̄
(1)
c,k′(ω)− f̄

(1)
v,k(ω)

]

ℏ (ω −∆ωk′,k + iγ′)
(S33)

where γ′ is the dephasing rate for non-momentum-conserving interband

coherences. Note that γ ̸= γ′.

Substituting Eq. (S28) into Eq. (S26)c and then into Eq. (S33), we obtain:

π
(1)
k′,k(ω) =

eF̃ (ω)V
(c,v)
k′,k

(
∂kf̄

(0)
c,k′ cos θ − ∂kf̄

(0)
v,k cos θ

)

ℏ2 (ω −∆ωk′,k + iγ′)
Im

[
τ

1− iωτ

]
(S34)

We simplify Eq. (S32) by defining the factor

Θ =
∑

k′

[
V

(c,c)
k,k′ π

(1)
k′,k − π

(1)
k,k′V

(v,v)
k′,k

]

The sum over k can be transformed into an integral via:

∑

k

→ L2

(2π)2

2π∫

0

dθ

∞∫

0

dk k (S35)

This leads to the following expression for Θ:
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Θ = F̃ (ω)Im

[
τ

1− iωτ

]
L2

(2π)2

2π∫

0

dθ′
∞∫

0

dk′k′×





eV
(c,c)
k,k′ V

(c,v)
k′,k

ℏ2

[
∂k′ f̄

(0)
c,k′ cos θ′ − ∂kf̄

(0)
v,k cos θ

]

ω −∆ωk,k′ + iγ′ −

eV
(c,v)
k,k′ V

(v,v)
k′,k

ℏ2

[
∂kf̄

(0)
c,k cos θ − ∂k′ f̄

(0)
v,k′ cos θ′

]

ω −∆ωk′,k + iγ′





(S36)

We assume that, in real space, the scattering potential V varies very

abruptly as a function of position (i.e., within ∼1 nm, i.e., several times the

lattice constant of graphene), that is, in reciprocal space, it varies smoothly

as a function of k in the vicinity of the Dirac cone (maintaining, however, the

angular dependence given by the Bloch functions in graphene):

Θ = F̃ (ω)Im

[
τ

1− iωτ

]
L2

(2π)2
e

ℏ2
×





2π∫

0

dθ′V (c,c)
θ,θ′ V

(c,v)
θ′,θ′

∞∫

0

dk′k′

[
∂k′ f̄

(0)
c,k′ cos θ′ − ∂kf̄

(0)
v,k cos θ

]

ω −∆ωk,k′ + iγ′

−
2π∫

0

dθ′V (c,v)
θ,θ′ V

(v,v)
θ′,θ

∞∫

0

dk′k′

[
∂kf̄

(0)
c,k cos θ − ∂k′ f̄

(0)
v,k′ cos θ′

]

ω −∆ωk′,k + iγ′





(S37)

The scattering potential matrix elements in Eq. (S37) can be associated

with either a scalar scattering potential or vector scattering potential. For any

scalar potential V (r), e.g., given by charged impurities [23], these scattering

potential matrix elements are:
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V
(n,m)
k,k′ = ⟨λ′,k′|V (r)I|λ,k⟩ =

[
ei(θ

′−θ) + λ(n)λ(m)
]
Vk,k′ (S38)

where I is the 2 × 2 identity matrix and Vk,k′ = (1/L2)
∫
drV (r)ei(k−k′)r.

Note that the expression

V
(n,m)
k,k′ V

(m,m)
k′,k = iV 2

k,k′ (sin θ′ cos θ − cos θ′ sin θ) (S39)

is symmetric with respect to the exchange of band indices.

Conversely, for interactions of electrons with a vector scattering potential

A(r) = A(x)(r) κx + A(y)(r) κy (for example, associated with out-of-plane

pseudo-magnetic fields in graphene caused by significant strain or structural

deformations such as folds, bumps, crumpled areas [6]), the scattering potential

matrix elements are given by:

V
(n,m)
k,k′ = evF⟨n,k′|σ ·A|m,k⟩

=
evF
2

[
λ(m)eiθ

(
A

(x)
k,k′ − iA

(y)
k,k′

)
+ λ(n)e−iθ′

(
A

(x)
k,k′ + iA

(y)
k,k′

)]

(S40)

where σ is the vector of Pauli matrices, and

A
(x,y)
k,k′ =

1

L2

∫
drA(x,y)(r)ei(k−k′)r. (S41)

In this case, the products V
(n,m)
k,k′ V

(m,m)
k′,k become:
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V
(n,m)
k,k′ V

(m,m)
k′,k = λ(n)

ie2v2F
2

×
[(

|A(x)
k,k′ |2 − |A(y)

k,k′ |2
)
(sin θ′ cos θ + cos θ′ sin θ)−

2A
(x)
k,k′A

(y)
k,k′ (cos θ

′ cos θ − sin θ′ sin θ)
]
.

(S42)

This product V
(n,m)
k,k′ V

(m,m)
k′,k is antisymmetrical with respect to the inter-

change of the band indices.

In the case of scalar scattering potentials, Eq. (S39), where V
(c,c)
k,k′ V

(c,v)
k′,k =

V
(v,v)
k′,k V

(v,c)
k,k′ , the subtraction in the curly brackets in Eq. (S37) is close to zero

at the CNP due to symmetry between electrons and holes. Conversely, for

vector scattering potentials, V
(c,c)
k,k′ V

(c,v)
k′,k = −V

(v,v)
k′,k V

(v,c)
k,k′ , which leads to the

flip of the sign of one of the terms in the curly brackets in Eq. (S37). There-

fore, only scattering given by a vector scattering potential can significantly

affect the interband transition probability, and hence the dynamic conductivity

associated with such transitions, in the vicinity of the CNP.

For a vector scattering potential, the product V
(n,m)
k,k′ V

(m,m)
k′,k depends on

a factor of either cos θ′ or sin θ′, see Eq. (S42). The integrant in Eq. (S37)

contains terms either with cos θ′ or cos θ . Consequently, terms in the curly

brackets of Eq. (S37) can be either proportional to cos θ′ or to cos2 θ′. When

integrating over θ′, the former case results in zero. Hence, Eq. (S37) can be

rewritten as:
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Θ = F̃ (ω)Im

[
τ

1− iωτ

]
L2

(2π)2
e

ℏ2
×





2π∫

0

dθ′V (c,c)
θ,θ′ V

(c,v)
θ′,θ

∞∫

0

dk′k′
∂k′ f̄

(0)
c,k′ cos θ′

ω −∆ωk,k′ + iγ′

+

2π∫

0

dθ′V (c,v)
θ,θ′ V

(v,v)
θ′,θ

∞∫

0

dk′k′
∂k′ f̄

(0)
v,k′ cos θ′

ω −∆ωk′,k + iγ′





(S43)

Taking the symmetry of the scattering vector potential, Eq. (S42), into

account, Eq. (S43) becomes:

Θ =
F̃ (ω)L2

(2π)2
e

ℏ2
Im

[
τ

1− iωτ

] 2π∫

0

dθ′V (c,c)
θ,θ′ V

(c,v)
θ′,θ cos θ′

∞∫

0

dk′k′
∂k′ f̄

(0)
c,k′ − ∂k′ f̄

(0)
v,k′

ω −∆ωk,k′ + iγ′

(S44)

Assuming γ′ → 0 [30, 36], we obtain

lim
γ→0

i

(ω −∆ωk,k′ + iγ)
= iP

1

ω −∆ωk,k′
+ δ (ω −∆ωk,k′) (S45)

where P denotes the principal value of an integral under which this relation is

used. Only considering the real part [30, 36] Eq. (S44) becomes:

Θ =
eπkF̃ (ω)

vFℏ2
Im

[
τ

1− iωτ

] [
∂kf̄

(0)
c,k − ∂kf̄

(0)
v,k

] 2π∫

0

dθ′V (c,c)
θ,θ′ V

(c,v)
θ′,θ cos θ′ (S46)
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Substituting Eq. (S46) into Eq. (S32), and then Eq. (S28) and Eq. (S32)

into Eq. (S11), we obtain the following conductivity:

σ̃(ω) = σ̃intra (ω) + σ̃
(o)
inter (ω) + σ̃

(s)
inter (ω) (S47)

where σ̃intra (ω) is the intraband dynamic conductivity, σ̃
(o)
inter (ω) is the direct

(i.e., momentum-conserving) interband dynamic conductivity, and σ̃
(s)
inter (ω)

is the indirect (i.e., non-momentum-conserving) scattering-assisted interband

dynamic conductivity. The first two can be obtained by assuming that the

incident THz waveform electric field is linearly polarised along the x-axis; using

Eqs. (S11)-(S12) we get:

σ̃intra(ω) =
e2vF
2ℏL2

∑

n,k

τ∂kf̄
(0)
n,k

1− iωτ
cos2 θ (S48)

σ̃
(o)
inter(ω) =

ie2vF
2ℏL2

∑

k,η=±1

η
(
f̄
(0)
c,k − f̄

(0)
v,k

)

k (ω − η∆ωk + iγ)
sin2 θ (S49)

σ̃
(s)
inter(ω) =

ie2

ℏ2
Im

[
τ

1− iωτ

]

×
∑

k,η=±1



ηk
(
∂kf̄

(0)
c,k − ∂kf̄

(0)
v,k

)

ℏ (ω − η∆ωk + iγ)




2π∫

0

dθ′V (c,c)
θ,θ′ V

(c,v)
θ′,θ cos θ′ sin θ

(S50)

The integral over θ′ in (S50) results in:

σ̃
(s)
inter(ω) =

ie2vF
ℏL2

v̄2L2

ℏvF
Im

[
τ

1− iωτ

] ∑

k,η=±1



ηk
(
∂kf̄

(0)
c,k − ∂kf̄

(0)
v,k

)

ℏ (ω − η∆ωk + iγ)


 sin2 θ

(S51)
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where

v̄2 =
e2v2F
2

[
|A(x)

k=k′=0|2 − |A(y)
k=k′=0|2

]
. (S52)

The quantity v̄ has units of energy and is associated with the spatially

averaged square of the vector scattering potential of disordered graphene. This

interpretation provides a connection with the autocorrelation function of the

vector potential via the Wiener–Khinchin theorem [37].

By using polar coordinates [36] and again transforming discrete sums over

k into integrals:

σ̃intra (ω) =
e2vF
4πℏ

∞∫

0

dk
kτ

1− iωτ

(
∂kf̄

(0)
c,k − ∂kf̄

(0)
v,k

)
(S53a)

σ̃
(o)
inter(ω) =

ie2v2F
4πℏ

∞∫

0

dk k

(
f̄
(0)
c,k − f̄

(0)
v,k

)

∆ω2
k − (ω + iγ)

2 (S53b)

σ̃
(s)
inter(ω) =

ie2v2F
4πℏ

∞∫

0

dk k2
v̄2 · Γ(ω, k, τ) ·

(
∂kf̄

(0)
c,k − ∂kf̄

(0)
v,k

)

∆ω2
k − (ω + iγ)

2 (S53c)

Here,

Γ(ω, k, τ) =
kL2

ℏ2vF
Im

[
τ

1− iωτ

]
(S54)

is the self-energy associated with scattering-assisted interband transitions.

We used Eqs. (S53)a-c to fit our experimental measurements of σ̃(ω) (see

Figs. 2, 3 of main text), with the Fermi-Dirac distribution f̄
(0)
n,k at room tem-

perature determined using the Fermi level Ef obtained from four-point-probe

measurements for different gate voltages Vg (see SI Supplementary Note 1; we

allowed for a 10% variation of Ef across different values of Vg to obtain a best

fit). We assumed τ(Vg) = α
√

n(Vg) [27], where n(Vg) is the Vg-dependent car-

rier concentration determined via four-point-probe measurements. We used v̄
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and α as global fit parameters (i.e., same for all Vg, allowing for a 10% vari-

ation of α across different values of Vg), and γ as a local fit parameter (i.e.,

varying as a function of Vg). Note that σ̃intra (ω) follows a Drude-like trend

(see Fig. 2 of main text).

Equation (S53)a represents Drude-type intraband conductivity. The posi-

tion of poles in Eq. (S53)b coincides with the positions of poles for Eq. (S53)c.

For both equations, they are located in the lower complex half-plane. There-

fore, the expression of σ̃(ω) given by Eq. (S53)a-c satisfies the Kramers-Kronig

relations.

The scattering-assisted interband transitions in graphene are attributed

to the presence of a vector scattering potential A. The Γ (ω, k, τ) function

describes the interplay between intra- and interband dynamics that result from

the presence of such a vector scattering potential, and which cannot be asso-

ciated with a scalar potential (see above). Such a coherent coupling between

intra- and interband transitions is enabled in the linear regime by the vector

scattering potential which hybridises states that possess different pseudo-spins.

Note that this process is characteristic of semimetals and narrow-gap semicon-

ductors, where interband transition energies are on the order of h/τ . It has been

established [6] that a vector scattering potential enables intravalley backscat-

tering involving flipping of the electron pseudo-spin; such pseudo-spin-flipping

intravalley backscattering is forbidden in graphene in which vector potentials

are absent. Additionally, we have established that such processes involving

a vector potential driving intravalley backscattering affect and hence can

enhance effectively interband transitions. Note that the quantity v̄2Γ is unit-

less, and can be considered as a vertex correction [35, 38] to the electron-photon

coupling given by the scattering of electrons by the vector potential.
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Now, where can such a vector scattering potential arise from in the specific

case of graphene, in particular when no external magnetic field is applied? In

the case of graphene, significant strain and structural deformations (e.g., fold-

ing, crumples, wrinkles, ripples, point defects), which can occur during growth

or transfer [9–12, 39], can give rise to significant gauge fields A, associated

with pseudo-magnetic fields B = ∇×A [6, 40]. That is, we hypothesise that

such pseudo-magnetic fields in graphene, resulting from significant structural

deformations, can affect σ̃(ω) via scattering driven by A.

As an example of such a structural deformation, here we consider the spe-

cific case of the effect of a crumpled area on graphene’s σ̃(ω). We model such

a crumpled area as a pair of half-circular folds (see Fig. S8a). Such folding can

give rise to a gauge field A(r) = A(x)(y) ex, with [6, 40]:

A(x) (y) =
3ϵππ
8evF

a2

R2 (y)
, (S55)

where, for the sake of this example, we use parameters ϵππ = 3 eV, C-C bond

length a = 1.42 Å, and a maximum fold radius of curvature R(y) ≈ Rmax ≈ 4

Å [6, 40–42]. In this case, A(x) (y) = 0 except for y coordinates associated with

the location of the folds; at these locations, we assume that A(x) (y) ∝ 1/R2
max

is constant, for y within a real-space span of πRmax (see Fig. S8b).

It is important to note that in real systems, R(y) varies smoothly as a

function of y; otherwise, B = ∇ ×A is ill-defined. The assumption of a con-

stant R(y) at the fold is an approximation that simplifies computations of the

scattering potential. We can estimate the maximum magnitude of B, B
(z)
max

(along direction z orthogonal to the graphene sheet), by assuming that R(y)

goes from Rmax to zero at the fold edge within one lattice constant
√
3a. By

applying a finite difference approximation for ∇×A, we obtain:
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Fig. S8 Example of crumpled graphene area. a, Schematic of crumpled area of
graphene, with two folds with a radius of curvature ∼Rmax. b, Magnitude of gauge field
A(r) as a function of coordinate y: the gauge field is non-null and constant within a y-span
of πRmax. c, Squared modulus of the Fourier decomposition of A(x) (y) as a function of
wave vector k, proportional to sinc2(πRmaxk).

B(z)
max =

√
3ϵππ

8evF

a

R2
max

= 192 T. (S56)

This estimated value of B
(z)
max is consistent with previous studies on

graphene [6].

Assuming a random distribution of folds in our graphene sample, with folds

aligned with equal probability along any axis, the vector potential Fourier

components can be averaged over angles θ and θ′, and expressed (i.e., Taylor-

expanded) around k, k′ = 0 as follows:

A
(x)
k,k′ =

1

L2

∫
drA(x)(r)ei(k−k′)r =

3π2

4L2

ϵππa
2l

Rmax
sinc(πRmax|k− k′|) ≈ 3π2

4L2

ϵππa
2l

Rmax
,

(S57)

where l is the overall effective fold length throughout the considered graphene

area.
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By substituting this expression in Eq. (S52), we can establish a relationship

between the effective length of folds in our graphene sample, l, and parameter

v̄. From the fitting of our experimental σ̃(ω) for charge-neutral graphene with

the expression of σ̃(ω) given by our two-component model [Eqs. (S53)a-c], we

estimated v̄ ≈ 4.63 · 10−6 eV, which gives us an estimate of l ≈ 8.28 mm. We

can also estimate l experimentally via optical microscopy and Raman spec-

troscopy of our graphene sample (Fig. S1), for an area of graphene of ∼1 mm2

irradiated by the THz waveforms in our THz-TDS experiments; we obtain an

experimental estimate of l ≈ 2.7 mm. We assert that the qualitative agree-

ment between these estimates of l validates our two-component model, and

that the latter provides a plausible physical explanation of our experiments.

Importantly, note that this considered case of a graphene fold is an arbitrary

example of a plausible cause for the vector scattering potential A; as men-

tioned above, this vector scattering potential A could be the result of many

other types of deformations or defects.

To provide further validation for the two-component model, we calculated

σ̃(ω) using Eqs. (S53)a-c with values of τ , v̄ and γ obtained by fitting our

experimental data (see above), for Vg = -40, 10 and 40V, for sub-THz to optical

(∼103 THz) frequencies. Figure S9 shows the calculated Re[σ̃(ω)]. Indepen-

dently of the Fermi level Ef , Re[σ̃(ω)] converges to a constant value of πe2/2h

for ω/2π ≳ 100 THz, that is, in the optical region, where direct interband

transitions dominate, consistent with previous studies [27, 43–45]. Note that

this calculated Re[σ̃(ω)] is also consistent with measurements in the mid- and

far-IR [46, 47]. This further corroborates the validity and reliability of the two-

component model in describing the complex dynamic conductivity of graphene

for a broad range of doping levels and frequencies.
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π/2

Fig. S9 Real part of two-component model dynamic conductivity: from sub-
THz to optical frequencies. for different gate voltages (Vg). Curves calculated by using
the two-component model Eqs. S53a-c, for different gate voltages Vg, for parameters τ , v̄ and
γ obtained from fitting of experimental data. Regardless of Vg values, Re[σ̃(ω)]converges to
constant optical value of πe2/2h.

Supplementary Note 6. Contribution of

scattering-assisted interband transitions to

complex dynamic conductivity

In the main text and Supplementary Note 4, we concluded that Drude-type

models cannot fully describe the measured σ̃(ω) in the ∼0.1 - 7 THz range

for charge-neutral graphene. As discussed in the main text and above, the

complex dynamic conductivity of graphene is given by contributions of intra-

band, σ̃intra(ω), and interband, σ̃inter(ω), electronic transitions. As outlined

in the two-component model section above, the interband transitions include

direct (momentum-conserving) transitions [with contribution σ̃
(o)
inter(ω)] and

scattering-assisted indirect transitions [involving momentum transfer, with

contribution σ̃
(s)
inter(ω)]; see Eqs. (S53)a-c.
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Here we show that only accounting for direct interband transitions, i.e.,

σ̃
(s)
inter(ω) = 0 with v̄ = 0, is not able to reproduce our experimental data.

Figure S10 shows the experimental Re [σ̃ (ω)] and Im [σ̃ (ω)] for different gate

voltages Vg, as well as fit curves given by the conventional Drude model

and the two-component model (with both v̄ = 0 and v̄ ̸= 0, i.e., without

and with contributions from scattering-assisted interband transitions, respec-

tively). See above for details on fitting procedure. Residuals, DC conductivities

σ0, intraband relaxation time constants τ , Pearson’s χ2 test and coefficient of

determination R2 resulting from these fits are shown in Figs. S11, S12.

a b c d e f g h

i j k l m n o p

Fig. S10 Gate-dependent complex THz conductivity of graphene: comparison
between Drude model and two-component model. a - h, Real part of σ̃ (ω) for differ-
ent Vg values. i - p, Imaginary part of σ̃ (ω). Square and circle markers: experimental data
from LiNbO3 and GaP THz-generation configurations, respectively. Shaded areas: ± stan-
dard deviation. Dashed black curves: fit by conventional Drude model. Solid green curves:
fit by two-component model without contribution of indirect scattering-assisted interband
transitions (v̄ = 0). Black curves: fit by complete two-component model with contribution of
indirect scattering-assisted interband transitions (v̄ ̸= 0). Complete two-component model
provides a better fit.

For doped graphene, all considered models provide similar fits (see Fig.

S10a-c, g-h, i-k and o-p). For charge-neutral graphene (Fig. S10d-f, l-n), the

Drude model and the incomplete two-component model with σ̃
(s)
inter(ω) = 0
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Fig. S11 Residuals of fits near the charge neutrality point. a-c, Residuals of
Re[σ̃(ω)] fits. d-f, Residuals of Im[σ̃(ω)] fits. Dashed black curves: fit by conventional
Drude model. Solid green curves: fit by two-component model without contribution of
indirect scattering-assisted interband transitions (v̄ = 0). Black curves: fit by complete
two-component model with contribution of indirect scattering-assisted interband transitions
(v̄ ̸= 0).

a

b

c

d

Fig. S12 DC conductivity, carrier relaxation time constant and goodness of fit.
a, DC conductivity σ0, b, carrier relaxation time constant τ , c, Pearson’s χ2 test and d,
coefficient of determination R2 as a function of Vg and Ef, determined from fitting the mea-
sured σ̃ (ω) with the conventional Drude (black circles) and two-component models (without
and with contribution of the scattering-assisted interband transitions; green triangles and-
black squares, respectively).
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(i.e., v̄ = 0) cannot precisely capture both Re [σ̃ (ω)] and Im [σ̃ (ω)] simultane-

ously; only the complete two-component including indirect scattering-assisted

interband transitions (i.e., v̄ ̸= 0 and σ̃
(s)
inter(ω) ̸= 0). This is evident from the

larger fit residuals for the Drude and incomplete two-component models in

comparison to the full two-component model (Fig. S11), as well as from the

values of Pearson’s χ2 test and coefficient of determination R2 near the CNP

(Fig. S12c-d).

Supplementary Note 7. Consistency of complex

dynamic conductivity measurements

In Fig. 2 of the main text, we show the complex dynamic conductivity of

graphene σ̃ (ω), for five representative gate voltages Vg and corresponding

Fermi levels Ef. Figure S13 shows σ̃ (ω) for the full Vg range considered. The

DC conductivity σ0, electron intraband relaxation time constant τ , Pearson’s

χ2 test and coefficient of determination R2 resulting from the two-component

model fit of these σ̃ (ω) data are shown in Figs. 3a-c of the main text. We then

calculated parameters βintra and βinter (main text Fig. 3d) for gate voltages Vg

at which σ̃ (ω) in Fig. S13 were acquired.

For consistency, we performed THz time-domain spectroscopy (THz-TDS)

and retrieved σ̃ (ω) for other graphene/SiO2/Si devices, in addition to the

device for which data are reported in the main text. These additional devices

2 (Dev. 2) and 3 (Dev. 3) were fabricated by the same method, and showed

similar carrier mobilities (∼2000 cm2/Vs), as device 1 (Dev. 1) of the main

text (see Methods). As for Dev. 1 in Fig. 2 of the main text, we observed for

these Devs. 2 and 3 the suppression of Im[σ̃ (ω)] when Ef ≈ 0 (Figs. S14, S15),

with the two-component model providing a better fit of the experimental data

for charge-neutral graphene (significantly smaller χ2 and larger R2 in Fig.
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a b c d e f g h
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Fig. S13 Gate-dependent complex THz conductivity of graphene. a - h, Real part
of σ̃ (ω) for full Vg range considered. i - p, Imaginary part of σ̃ (ω). Square and circle markers:
experimental data from LiNbO3 and GaP THz-generation configurations, respectively. Solid
curve: fit by two-component model. Dotted (dashed-dotted) curve: intraband (interband)
contribution. Dashed curve: fit by Drude model. Shaded areas: ± standard deviation. Panels
a, d-f, h-i, l-n, p are shown in Fig. 2 of the main text.

a b c d e

f g h i j

Fig. S14 Same as Fig. S13, for additional device Dev. 2.

S16) than Drude-type models . Therefore, we conclude that our experimental

observations and their explanation by the two-component model shed light on

general physical properties of gate-controlled graphene, that are not specific

to a particular device.
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Fig. S15 Same as Fig. S13, for Dev.3.

a

b

c

d

e

f

Fig. S16 Two-component fit vs. Drude fit for devices Dev. 2 and 3. a, b, DC
conductivity σ0 and intraband relaxation time constant τ as a function of Vg for Dev.
2, determined from fitting experimental σ̃ (ω) (Fig. S14) with σ̃Drude (ω) (circles) and
σ̃2-comp. (ω) (squares). Error bars: ± standard deviation of fits. c, Pearson’s χ2 test (left-
axis) and coefficient of determination R2 (right-axis) as a function of Vg, for Drude (circles)
and two-component (squares) model fits. d - f, Same as (a - c), for Dev. 3 (Fig. S15). Near
the charge neutrality point (i.e., Vg ≈ VCNP), the two-component model yields better fits,
with smaller χ2 and larger R2.
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Supplementary Note 8. Complex dynamic

conductivity retrieved with LiNbO3

THz-generation configuration: direct vs.

1st-reflection retrieval

In the ∼0.1 − 1.5 THz range, with THz waveforms generated with the

LiNbO3 configuration, the graphene complex dynamic conductivity σ̃(ω) can

be retrieved by measuring either the directly transmitted or the first-reflected

THz transient, as discussed in the Methods of the main text. This section

compares these two retrieval methods.

Figure S17 shows the real and imaginary parts of σ̃(ω) in the frequency

range of ∼0.1 − 1.5 THz for different gate voltages Vg and Fermi levels Ef

(p-doped to charge-neutral to n-doped graphene), retrieved via the LiNbO3

THz-generation configuration (see SI Supplementary Note 2).

The values of Re[σ̃(ω)] and Im[σ̃(ω)] retrieved from both methods are

very comparable, with values obtained from the directly transmitted THz

transient falling within the standard deviation of σ̃(ω) retrieved via the first-

reflection method. Notably, the standard deviation of σ̃(ω) retrieved via the

first-reflection technique is significantly smaller than that obtained from mea-

suring the directly transmitted THz waveform, within the full ∼0.1− 1.5 THz

range and for all considered gate voltages. Consequently, the retrieval based

on the first-reflection THz transient was chosen for determining σ̃(ω) within

the ∼0.1− 1.5 THz range, as discussed in the Methods section.
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a b c

d e f

Fig. S17 Complex dynamic conductivity in the ∼0.1 - 1.5 THz range: direct
vs. 1st-reflection retrieval. a-c, Re[σ̃(ω)] and d-f, Im[σ̃(ω)] of graphene for different
gate voltages Vg and corresponding Fermi levels Ef, retrieved via LiNbO3 THz-generation
configuration measuring either the directly transmitted (grey dashed curve) or first-reflected
(white circles) THz transient. Grey shaded areas and error bars: ± standard deviation. The
two retrieval techniques result in comparable values of σ̃(ω), with 1st-reflection technique
showing significantly smaller standard deviation.
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