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Chapter 8

FedVQA: Personalized Federated
Visual Question Answering over
Heterogeneous Scenes

In the previous chapter, we consider VQA algorithms in the multi-domain lifelong
learning scenario. In this chapter, we turn to concentrate on training VQA models
in the other practical scenario about sensitive-data privacy, and seek to answer the
last research question about federated VQA (RQ 6).

This chapter presents a new task for VQA called personalized federated VQA (Fed-
VQA). FedVQA requires clients to learn well-personalized models on scene-specific
datasets with severe feature/label distribution skews. These models then collaborate
to optimize a generic global model on a central server, which is desired to generalize
well on both seen and unseen scenes without sharing raw data with the server and
other clients. The primary challenge of FedVQA is that, client models tend to forget
the global knowledge initialized from central server during the personalized training,
which impairs their personalized capacity due to the potential overfitting issue on
local data. To address the challenge, we propose a novel federated pairwise prefer-
ence preserving (FedP3) framework to improve personalized learning via preserving
generic knowledge under FedVQA constraints. Specifically, we first design a differ-
entiable pairwise preference (DPP) to improve knowledge preserving by formulating
a flexible yet effective global knowledge. Then, we introduce a forgotten-knowledge
filter (FKF) to encourage the clients to selectively review easily-forgotten knowledge.
We construct a multi-scene FedVQA benchmark to evaluate models on both seen
personalized and unseen scenes. Extensive experiments demonstrate that FedP3

surpasses the competitors in FedVQA task, especially for the unseen scenes.
This chapter is based on the following publication:

• Lao, M., Pu, N., Zhong, Z. , Sebe, N., Lew, M. S. “FedVQA: Personalized Federated
Visual Question Answering over Heterogeneous Scenes.” ACM International Conference on
Multimedia, 2023.
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8. FEDVQA: PERSONALIZED FEDERATED VISUAL QUESTION
ANSWERING OVER HETEROGENEOUS SCENES

8.1 Introduction

In recent years, the field of visual question answering (VQA) has attracted significant
attention due to its ability to comprehend textual queries based on images and
deduce accurate answers [30, 52]. State-of-the-art VQA models [73, 74, 191, 344]
have achieved superior performance across various scenes via large-scale centralized
training [354]. However, the utilization of such training paradigms poses a significant
challenge to privacy constraints in practical VQA applications [355]. For example,
sensitive data obtained from educational settings cannot be shared with other clients
or a central server, as shown in Fig. 8.1. Hence, a decentralized training paradigm
is necessary for real-world VQA systems to address this challenge.

Recently, federated learning (FL) [140, 356] has been proposed as a privacy-aware
and distributed framework for training models without sharing data with a central
server or other clients [142]. To the best of our knowledge, however, there have been
limited studies focusing on federated VQA tasks. In addition, compared with the
conventional FL on identically distributed (iid) data, the VQA samples collected
from different local clients typically involves heterogeneous feature and label distri-
butions, including diverse visual content captured from various realistic scenes (e.g.,
Fig. 8.1), as well as inconsistent answer distributions caused by different scene-
specific questions. Considering this, we propose a challenging yet practical VQA
task, namely personalized federated VQA (FedVQA). The goal of FedVQA task is
to train personalized VQA client models for distinct visual scenes, while optimizing
a generic model to generalize well on unseen scenes, through client collaboration un-
der the privacy constraint. This target leads to two main challenges. Firstly, local
VQA models are prone to forget the generic knowledge aggregated from server dur-
ing the personalized training, thereby encountering the potential overfitting issue,
and performing worse on local data. Secondly, since the training data distributed at
local clients includes scene-specific images and label distributions, the potential con-
flicts among personalized knowledge are unfavorable for efficient global knowledge
aggregation, resulting in the central server with a degraded ability to generalize on
unseen visual scenes.

To overcome these challenges, we introduce a novel federated pairwise preference
preserving (FedP3) framework that prevents clients models from forgetting global
knowledge when learning from local data, so as to collaboratively optimize both
generic and personalized models. Based on the commonly-used FedAvg [142] pipeline
(detailed in Sec. 3.2), FedP3 follows a knowledge preserving (KP) strategy that ex-
ploits the soft logits from global model as the generic knowledge, and transfer it
to the local model as the regularization during the personalized training. However,
we declare that the logits-based constraint achieved by Kullback-Leibler (KL) di-
vergence is overly strict in knowledge preserving, and even disturbs clients’ balance
between consolidating generic knowledge and acquiring personalized knowledge. To
alleviate this issue, we propose a novel differentiable pairwise preference (DPP)
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Figure 8.1: The personalized federated setting for VQA over heterogeneous visual
scenes. Given a pre-trained VQA model, we require each participated clients to train
personalized models to perform well on their local data (e.g., transports, sports, natural
and educational scenes). Meanwhile, the central server is expected to aggregate a
generic global model to generalize on the testing data in unseen scenes (e.g., shopping
and home).

method that formulates the distilled knowledge as the pairwise binary comparisons
among significance of answer prediction, instead of the absolute value of predictive
probabilities, which reveals the reasoning behaviour of global model in a relaxed
yet effective manner. Furthermore, we introduce a forgotten-knowledge filter (FKF)
that seeks to generate a forgotten-knowledge driven label distribution to capture
the easily-forgotten classes during local training, and then adaptively filters a signif-
icant answer subset involved in pairwise preference. Benefited from FKF in DPP, our
FedP3 not only further enhances the performance of both local and global models,
but also remarkably reduces the computational complexity in terms of knowledge
preserving.

After the last round of global-local communication, the aggregated model serves as
the generic global model, which iteratively accumulates abundant knowledge over
diverse scenes from local clients. Meanwhile, we consider the final-round local model
before weighted average as the final personalized VQA model in each client. By
integrating the DPP and FKF, our FedP3 framework coordinates the generic and
the personalized knowledge, thereby achieving state-of-the-art performance on our
MS-FedVQA benchmark, especially for the evaluation on unseen scenes.

The contributions of this work are summarized as:

• Task contribution: We propose a new yet practical personalized federated
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VQA task. Beyond conventional PFL that concerns the performances of per-
sonalized models, our FedVQA additionally considers the global model’s gen-
eralization ability on unseen scenes.

• Technical contribution: We propose a novel pairwise preference preserving
approach to coordinate the generic and personalized knowledge, thereby im-
proving the model’s representative ability on both seen and unseen scenes.

• Experimental contribution: We construct a new FedVQA setting tailor-made
for personalized FedVQA. Extensive experimental results show that FedP3

achieves competitive performance with the state-of-the-art competitors.

8.2 Related Work

8.2.1 Visual Question Answering

Visual Question Answering (VQA) is a prevalent vision-language task, which con-
centrates on answering natural language question according to the given image,
necessitating the comprehensive understanding and reasoning over both visual and
textual modalities [30, 52]. Most of earlier VQA works seek to establish efficient
model architectures to achieve fine-grained vision-language interactions for answer
prediction, such as multimodal fusion [80, 82], attention [30, 73, 74, 357, 358], and
large-scale pre-training models [39, 344, 359]. Recently, increasing amount of re-
searches [88, 90, 360] focus on improving reasoning robustness in VQA task, thereby
alleviating some undesired model behaviour, such as language bias [85, 91, 361] and
multimodal inputs variations [162, 193]. The remarkable performance achieved by
these methods is attributed to the centralized training [354] over large-scale and
well-collected datasets [48, 49, 57].

However, such a training paradigm is inefficient for real VQA application scenes,
due to the growth of the privacy awareness. To investigate this overlooked issue
and address additional technical bottleneck, we propose a new Fed-VQA task and
accordingly introduce a new FedP3 approach.

8.2.2 Personalized Federated Learning

Federated Learning (FL) is a learning paradigm that enables the training of a model
across multiple client devices while maintaining local data privacy [140, 141]. The
most widely adopted FL algorithm is FedAvg [142], which averages weight parame-
ters across local models trained on private client datasets to learn a global model.
Recent research efforts have focused on improving FedAvg from various perspectives,
including model convergence [143, 144], robustness [145], communication [146], and
non-IID clients [147, 148].
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Figure 8.2: The scene-specific answers (in dark blue) from each local dataset repre-
sented in a specific visual scene, and some general answers (in red and green) co-exist
in several scenes.

To further handle the heterogeneity of data and models, personalized FL (PFL)
has been introduced [149]. In contrast to traditional FL, PFL aims to learn a
customized model for each client, tailored to their specific objectives. This method
acknowledges the diversity of data among clients by constructing a “personalized”
model that fits each client’s needs. One group of techniques [148, 150] has leveraged
multi-task learning (MTL) methods to incorporate clients’ task objectives into the
FL framework. The other group contains post-processing techniques [151, 152].
[152] with meta-learning to learn an initial model that can be adapted to each client
through local fine-tuning. [152] indicates that fine-tuning can achieve comparable
results to other personalized methods. In our framework, we use an MTL-based
approach that can optimize generic and personalized VQA models simultaneously.
While the benchmarks for conventional FL are well-established, few studies have
focused on federated VQA. The most closely related work [153] proposes a vision-
and-language FL framework with shareable networks, but only considers the scenario
where clients learn different tasks (e.g., VQA and image captioning) rather than
personalized federated VQA across different scenes.

We argue that the proposed Fed-VQA is a practical and challenging task for two
reasons. Firstly, our FedVQA not only aims to improve individual personalized mod-
els through collaborative training, but also considers the model’s ability to directly
deploy on unseen scenes. Secondly, since the heterogeneous data collected from
different scenes include scene-specific characteristics (e.g., distinct high-frequency
words in Fig. 8.2), the model trained on our FedVQA has a high risk of failing to
converge. To the best of our knowledge, this work is the first attempt to explore
VQA tasks in personalized federated learning.
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Figure 8.3: Conceptual illustration of Fed3 in FedVQA benchmark, which contains
three indispensable concepts: (a) knowledge preserving: the global model aggregated
by FedAvg from central server act as a frozen teacher, so as to transfer generic knowl-
edge to the local model (student) during personalized training. (b) pairwise pref-
erence: modelling transferred knowledge via relative comparisons among the answer
significance (answer with higher probability in red wins the pairwise matchup). (c)
forgotten-knowledge filter: selecting the easily-forgotten answer candidates into pair-
wise preference for knowledge preserving.

8.2.3 Forgetting Issue in Personalized Learning

In the PFL pipeline, models often suffer from a forgetting problem on global knowl-
edge. To cope this issue, FedProx [362] proposes to punish overlarge parameter
changes during local training. MOON [363] introduces a model-level contrastive
learning to reduce feature discrepancy between the global and local models. Then,
FedDyn [364] adopts the averaging of dual variables under partial participation set-
tings to improve convergence. Recently, FedDC [365] proposes drift correction terms
as penalized losses on original local objective functions with global gradient estima-
tion. Another typical way to achieve this goal is via knowledge distillation (KD).
FedMD [366] aggregates local predictions over a public dataset at the server and
transfers the consensus of predictions back to clients for distilling client models. KT-
pFL [367] enables each client to maintain a personalized prediction at the server to
guide other clients. Recently, FedKD [368] has proposed a communication-efficient
federated knowledge distillation approach to enhance only personalized models by
leveraging the assist of global model. However, this may impair the generalization
ability of the global model, inconsistent with the objectives of our FedVQA. We
experimentally validate this assumption in Tab. 8.2.

In contrast to these methods that directly adopt entropy-based distillation loss, we
propose a novel pairwise preferece preserving approach based on relative compar-
isons, which flexibly reflects a model’s reasoning behavior and coordinates global-
local knowledge without requiring a public dataset.

144



8.3 Methodology

8.3 Methodology

In this paper, we present a novel Federated Pairwise Preference Preserving (FedP3)
tailored to the proposed FedVQA benchmarks over heterogeneous scenes. In the
following, we first elaborate the benchmark setup, which contains task definition,
distribution skews, and training target, respectively. Then, we describe the ba-
sic learning pipeline to adapt the typical VQA model into the federated learning
scenarios. Finally, we explicitly introduce the proposed FedP3 strategy.

8.3.1 Benchmark Formulation

Task Definition: VQA algorithm typically refers to a classification function Fvqa to
learn a mapping: I ⇥Q! [0, 1]|A| based on a centralized dataset D = {Ii, Qi, ai}Ni ,
where Ii 2 I, Qi 2 Q and ai 2 A denote image, question and answer respectively.
In our FedVQA, there are n clients C = {C1, C2, . . . , Cn}, each Ci equipped with
a local training dataset Di with personalized image-question training pairs, as well
as a target test split Ti. The local clients are to minimize the training loss of the
personalized VQA models, i.e., min L (✓i; Ti), where ✓i refers to the model parameters
for the i-th client. As a result, the final learning objective is to acquire the optimal
parameters of local models:

n
e✓1, e✓2, . . . , e✓n

o
= argmin

nX

i=1

L (✓i; Ti) , (8.1)

where e✓i denotes the optimal setting of personalized VQA model from the i-th in-
volved client, i 2 {1, 2, . . . , n}.

Distribution Skews: As depicted in Fig. 8.2, FedVQA exists severe feature and
label distribution skews among the VQA samples across different clients. To be
specific, on the one hand, the training images derived from different local datasets
are represented in different visual scenes (e.g., shopping, home, and transports),
which leads to the visual domain shifts among the multiple local datasets. On the
other hand, for a client responsible to tackle the questions over images in a specific
scene (e.g., sports), its label distribution would be inclined to the scene-related
answer candidates (e.g., tennis, frisbee, and badminton), which potentially forms
the heterogeneous label distribution over participated clients.

Targets:: We summarize two learning targets in FedVQA benchmark, among which
one for the personalized models in local clients, and the other for the global model
in the central server. 1) The local clients attempt to acquire knowledge from their
own private data, and we target on training an efficient personalized VQA model to
perform well on private data represented a specific visual scene. 2) The central server
seeks to aggregate the local models to accumulate knowledge from personalized
private datasets, and send the updated global models to each participated client.
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On the side of server, we focus on establishing a generic global model with strong
generalizability to the VQA samples in unseen scenes. To our best knowledge,
this work is the first attempt to explore the personalized federated setting in VQA
task.

8.3.2 Training Pipeline

To fulfill FedVQA, we use the intuitive and commonly-used FL algorithm FedAvg
as the baseline strategy for collaborative training between central server and clients.
We define the hyper-parameters C, T and E as the number of clients in the feder-
ation, the total communication rounds, and the epochs required for local training,
respectively. At the beginning of the global-local communication, the global model is
initialized by loading the parameters from the large-scale pre-trained vision-language
model. Afterward, according to the pre-defined T and E, the server and participated
clients cooperatively accumulate knowledge from distributed data in an iterative
learning manner (multiple communication rounds). Specifically, in each round, the
server first sends the global model to each client as the initial local model for person-
alized data training. Then, the client (e.g., the i-th client) locally updates the model
using its own private data Di = {Ij, Qj, aj}Ni

j , where Ni implies the total number of
training instances. In FedVQA, we adopt the standard cross-entropy loss function
to train the parameters of local personalized model ✓i in the i-th client:

Lce = �
1

Ni

NiX

j

log (Fvqa (Ij, Qj; ✓i)) [ai] . (8.2)

After finishing E-epoch local training, clients are required to return their optimized
models back to the central server. Sequentially, the server will integrate a new
global model ✓g by conducting a weighted average of uploaded personalized models
as follows:

✓g =
1

N

CX

i

Ni · ✓i, (8.3)

where N refers to the total amount of image-question pairs across all available private
datasets. Particularly, we exploit the aggregated model in the last communication
round as the generic global model, which iteratively accumulates abundant knowl-
edge over diverse scenes from local clients. Furthermore, we consider the final-round
local model before weighted average as the final personalized VQA model in each
client.

Restrictions: Intuitively, the integration of model parameters in FedAvg could
effectively accumulate knowledge from decentralized training data. Nevertheless,
in FedVQA, or other real-world VQA applications involving federated learning, the

146



8.3 Methodology

statistical heterogeneity inevitably exists among the data across local clients, which
significantly impairs the performance of both local and global models. The main
reasons are twofold. 1) After obtaining global model, clients attempt to acquire
knowledge from private datasets with severe label and feature distribution shifts,
which optimizes the model parameters to the local optima and deviates from the
global target. 2) The global aggregation process achieved by weighted average often
leads to an unwanted drift for the initialization of local clients, which plays a negative
role on the model convergence.

8.3.3 FedP3: Pairwise Preference Preserving

In this section, built upon the basic FedAvg strategy, we propose a novel feder-
ated pairwise preference preserving (FedP3) for FedVQA benchmark, which contains
three indispensable concepts: knowledge preserving (KP), differentiable pairwise
preference (DPP), and forgotten-knowledge filter (FKF).

Knowledge Preserving

Motivation: In FedVQA scenarios over heterogeneous scenes, the optimization di-
rection in each local model is typically inconsistent with that in the central server,
which potentially leads the clients to forget the aggregated generic knowledge ini-
tialized from global model. Particularly, for several classes whose samples do not
exist in a specific client, the local training tends to gradually eliminate the pre-
dictive probabilities of such classes for local optima, thereby forgetting the general
knowledge from global model. To prevent from the overfitting on local data and
alleviate the forgetting issue, we introduce an intuitive KP pipeline to preserve the
knowledge learned from other participants. Specifically, we store a frozen global
model to regularize the local training on each client, and add a distillation term to
the local task loss objective (Equ. (8.2)).

In the beginning of the communication round t (t  T ), the i-th client updates its
local model (✓ti) from the central server as the trainable student, and meanwhile
copies a complete global model (g✓t�1

g ) as the frozen teacher to store the aggregated
global knowledge in the last communication round. The anti-forgetting process
is to exploit the output logits (pT = Fvqa

⇣
Ij, Qj; g✓t�1

g

⌘
) from teacher model to

regularize the student’s response (pS = Fvqa (Ij, Qj; ✓ti)), thereby preventing student
from forgetting the previous-learned global knowledge. Specifically, we achieve the
aforementioned KP via Kullback-Leibler divergence loss LKP:

LKP

�
pS, pT

�
= �

|A|X

a=1

pT (a) log


pS(a)

pT (a)

�
, (8.4)

where |A| denotes the total number of candidates for answer prediction, and pS(a),
pT (a) refers to the a-th value of pS and pT , respectively.
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Differentiable Pairwise Preference

Motivation: Although using KL divergence in KP pipeline can constrain knowledge
discrepancy, it might be a “hard” constraint for the probabilities in the label space.
To be specific, the personalized model would encounter the plasticity issue when
acquiring new knowledge from local data, due to the regularization of absolute value
for answer prediction. On the contrary, DPP focuses on the relative comparisons
among the predictions yielded from different answer candidates (e.g., whether the
answer ‘baseball ’ is more important than ‘swimming ’ for the training sample labeled
by ‘tennis ’). It reveals the reasoning behavior of teacher model in a relaxed yet
effective manner. In FedVQA, we seek to fulfill KP by leveraging the DPP, which
encourages the local models efficiently to learn from local data with less forgetting
of global knowledge.

Given the teacher’s prediction pT = [pT (0), pT (1), ..., pT (|A|)] as PT , we define DPP
by:

PT =

2

64
M

�
pT (1), pT (1)

�
. . . M

�
pT (N), pT (1)

�

... . . . ...
M

�
pT (1), pT (N)

�
. . . M

�
pT (N), pT (N)

�

3

75 , (8.5)

where M(·) implies the function of pairwise matchup to compare the significance
between two answer candidates. Specifically, given the predictive probabilities of
the i-th and j-th answer, the function is:

M(pT (i), pT (j)) =

(
1 if pT (i) � pT (j),

0 if pT (j) � pT (i).
(8.6)

Analogously, we can obtain the pairwise preference on the side of student model as
PS. Then, the loss objective of pairwise preference driven knowledge preserving Lpp

could be achieved through punishing the inconsistency between PT and PS:

Lpp =
X

i

X

j

��M
�
pT (i), pT (j)

�
�M

�
pS(i), pS(j)

��� . (8.7)

One practical difficulty for pairwise preference is that the matchup function M(·)
is discontinuous, which is not compatible with the general deep neural network
optimization, such as SGD [345] and AdamW optimizer [369]. To enable the PP to
perform the gradients back-propagation in neural networks, we propose to adopt a
sigmoid-like function g(·) to approximate the matchup function:

g(x) =
1

1 + e�2x
, (8.8)

Therefore, we reformulate the Equ. (8.6) as the a differentiable counterpart:
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M
�
pT (i), pT (j)

�
= g

�
pT (i)� pT (j)

�
=

1

1 + e�2(pT (i)�pT (j))
, (8.9)

and the derivative of M(·) can be formulated as:

@M
�
pT (i), pT (j)

�

@pT (j)
=
�2e�2(pT (i)�pT (j))

⇥
1 + e�2(pT (i)�pT (j))

⇤2 , j 6= i. (8.10)

Forgotten-Knowledge Filter

Motivation: DPP produces a high-dimensional binary matrix of quadratic expansion
(Equ. (8.5)), which leads to a non-negligible O(n2) computational complexity. An
intuitive solution to mitigate this issue is to select a subset of answer candidates
for DPP, instead of taking all answer pairs into consideration. To achieve this goal,
we propose a novel forgotten-knolwedge filter (FKF) strategy, which concentrates
on creating a rectified label distribution to capture the easily-forgotten knowledge
during local training.

In FKF, we assume the selected answers for pairwise preference should be strongly
related to the forgotten global knowledge in each local client. Specifically, as illus-
trated in Fig. 8.3(c), for the client tailed to sports scenes, its personalized model
typically learns from samples labeled by sports-related answers (e.g., tennis and
baseball), while gradually ignoring the learned knowledge involved in some general
or label-irrelevant classes (e.g., people and field). The answer selection for the latter
is capable of improving the efficacy of knowledge preserving, and meanwhile reducing
the computational complexity caused by pairwise comparisons.

To this end, as shown in Fig. 8.3(c), we propose to establish a forgotten-knowledge
driven label distribution to describe the forgotten knowledge during local training,
which is mainly determined by the comparison between predictions from the student
and teacher. Specifically, the probability of the i-th class (r(i)) in the distribution
r can be represented as:

r(i) = softmax
�
log

�
pT (i)

�
� log

�
pS(i)

��
. (8.11)

During the local training, the trainable local model unavoidably forgets the scene-
irrelevant knowledge on unrelated classes (e.g., the k-th answer) with lower proba-
bility (e.g., pS(k)). According to the Equ. (8.11), the probability of easily-forgotten
class k in the forgotten knowledge driven distribution r(k) would be higher than
those of scene-relevant classes. Considering the parameters in local and global mod-
els are the same in the beginning of the communication round (pT = pS), we add
an information gain based function into the Equ. (8.11), and the final distribution
r can be defined as follows:
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Algorithm 2: FedP3

Input: Decentralized datasets {Di}Ni=1 from N local clients
N clients’ datasets {Di}Ni=1, Total communication round T ,Epochs for each
communication rounds E, learning rate ⌘, batch size b
Output: The global model ✓Tg , local models ✓T1 , ✓T2 ,..., ✓TN in the final (T-th)

communication round.
ServerExecute:
Initialize the global model ✓0g in the server
for t = 0, . . . , T � 1 do

for i 2 N in parallel do
✓ti  ClientUpdate

�
i, ✓tg, Di

�

end
✓t+1
g  1

|N |

P
|Di| ✓ti . Eq.(8.3)

end
return ✓Tg
ClientUpdate: (i, ✓tg, Di)
✓ti  ✓tg
for epoch e = 1, . . . , E do

for batch b = {v, q, a} 2 Di do
Lp3,i  |PT � PS| . Eq.(8.14)
Lce,i  log (Fvqa (v, q; ✓ti)) [a] . Eq.(8.2)
Li  Lce,i + Lp3,i . Eq.(8.15)
✓ti  ✓ti � ⌘rL (✓ti , b)

end
end
return ✓tito the server

r(i) = softmax

✓
log

�
pT (i)

�
� log(

HT

HS
) · log

�
pS(i)

�◆
, (8.12)

HT =
|A|X

i

PT (i) logPT (i), (8.13)

where HT and HS are the information entropies of the teacher’s and student’s pre-
dictions, and HT/HS refers to the information gain for local model to accumulate
knowledge from decentralized data on the basis of the initialization of global model.
For instance, when the client optimizes the model parameters to the local optima, its
predictive uncertainty for answer candidates would be gradually decreased, and the
influence of student’s prediction should be considered more to build the forgotten
knowledge based distribution r(i).

Then, we fulfill the FKF via choosing the Top-N most influenced answers in the
established distribution r(i), where we formulate the selected answer subset as S ✓
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Table 8.1: The statistics of decentralized datasets over six different visual scenes in
FedVQA benchmark.

Scenes Train Test Involved sub-categories of scenes

Commercial 19573 6473 restaurant, market, pharmacy, bakery...
Educational 13472 4225 campus, art gallery , music studio...
Transport 12384 4160 airport, subway , crosswalk, galley...
Natural 14820 4512 forest, mountain, marsh, underwater...
Sports 14784 5120 ballroom, arena, gymnasium, ski slope...
Home 14498 4353 kitchen, bedroom, bathroom, closet...

Table 8.2: Comparisons with state-of-the-art methods for federated learning in Fed-
VQA, where the four datasets (transports, sports, educational, and natural scenes)
participate the federated training, and the other two datasets are utilized (home and
commercial scenes) for the generalization of unseen scenes. Best and second best num-
bers are in bold and underlined, respectively.

Scene
method DT FedAvg

[142]
FedProx

[362]
MOON
[363]

FedKD
[368]

FedDC
[365]

ST
[289]

SP
[142]

CRD
[370]

DKD
[371]

FedP3

(Ours) CT

Transport 42.97 45.37 45.21 45.83 45.53 45.45 45.24 45.88 45.37 45.57 46.06 49.27
Sports 43.19 44.87 45.13 45.97 45.35 45.86 44.66 45.76 45.11 44.91 46.39 51.12

Educational 37.56 40.95 41.13 40.85 41.78 41.23 41.41 41.51 41.78 41.83 42.21 46.84
Natural 50.29 51.48 51.27 51.41 51.35 51.66 51.52 51.38 51.75 51.54 52.00 56.11

Generalization over unseen scenes
Home - 35.01 34.89 35.91 34.75 36.18 34.11 35.13 35.49 35.88 36.76 41.85

Commercial - 29.46 30.04 31.13 29.11 31.37 30.60 29.81 30.71 31.17 32.01 34.88

A. Finally, the loss function of our propose FedP 3 for knowledge preserving Lp3 can
be defined as:

Lp3 =
|S|X

i

|S|X

j

��M
�
pT (i), pT (j)

�
�M

�
pS(i), pS(j)

��� . (8.14)

Algorithmic Pipeline: Based on the aforementioned crucial concepts in our pro-
posed FedP3, the total loss function in the t-th communication( t � 2 due to the
updating process of server) is:

Ltotal = Lce + �Lp3 , (8.15)

where the � is a trade-off factor applied to adjust the contributions of the loss terms
between acquiring new knowledge in local data, and preserving previous knowledge
from central server. The detailed descriptions about how our method works are
summarized in Algorithm 2. The testing phase is performed only once by using
aggregated global model and personalized local models obtained in the final com-
munication round.
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8.4 Experiments

8.4.1 Datasets

To build the decentralized datasets for different participated clients under het-
erogeneous visual scenes, we follow the widely-exploited scene-centric Places365
database [155] and use the pre-trained model to classify the images in GQA [49],
which is a large-scale VQA datasets asking about images in realistic scenes. Based
on the referenced taxonomy in Place365 [155], we divide the GQA dataset into six
personalized datasets, among which each dataset tailored to answer questions about
a specific visual scenes (e.g. transportation, sport, natural, home, educational, and
commercial scenes). The detailed information including the amount of training and
test samples, as well as the involved scene subcategories contained in each decen-
tralized dataset are described in Tab. 8.1. It is noteworthy that each VQA instance
selected in a specific category is computed by a high classification confidence score
by pre-trained scene recognition model.

8.4.2 Implementation Details

For the setting of federated learning, we define the number of participated clients
N = 4, and the amount of datasets represented in unseen visual scenes for general-
izability testing is M = 2. The total communication rounds T = 5, and the epochs
for local training in each communication round is E = 2. To train the personalized
model over local dataset, we optimize model parameters via the AdamW optimizer
[345] with a learning rate of e�4. The minibatch size is set to 32 distributed on two
GPUs, respectively. On the side of model architecture, we conduct the federated
experiments on the widely-used pretrained ViLT models. For the structure of task
classifier, it contains two layers of non-linear MLP with LayerNorm [345] to pre-
dict the probabilities over 1642 answer candidates. Finally, we select the trade-off
factor � = 1 to adjust contributions between personalized training and knowledge
preserving.

8.4.3 Comparative Approaches

To verify the effectiveness of our proposed method, we compare FedP3 with 9 state-
of-the-art methods in FedVQA benchmark, and we mainly divided them in two
groups. The first group of approaches are specially-designed for federated learning:
1) FedAvg [142]: the baseline strategy to aggregate trained local models by averag-
ing their parameters 2) FedProx [362]: restricts the local updates by proposing a
regularization of L2-norm distance. 3) MOON [363]: utilizes the similarity between
model representations to correct the local training of individual clients. 4) FedKD
[368]: focuses on training efficient personalized models via mutual knowledge dis-
tillation without parameter communication between client and server. 5) FedDC
[365]: exploits a learned local drift variable to bridge the gap between local and
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global models. The approaches in the other group follow the technical route of the
aforementioned knowledge preserving, and form the global knowledge from different
perspectives: 6) ST [289]: soft targets. 7) SP [342]: semantic correlations 8) CRD
[370]: contrastive representation, and 9) DKD [371]: target and non-target logits-
based knowledge. Furthermore, we take the the Decentralized Training (DT) and
Centralized Training (CT) as the references for lower and upper bounds of predictive
accuracy.

Table 8.3: Comparisons with state-of-the-art methods for federated learning in Fed-
VQA, where the four datasets (sports, home, natural, and commercial scenes) par-
ticipate the federated training, and the other two datasets are utilized (transports
and educational scenes) for the generalization of unseen scenes. Best and second best
numbers are in bold and underlined, respectively.

Scene
method DT FedAvg

[142]
FedProx

[362]
MOON
[363]

FedKD
[368]

FedDC
[365]

ST
[289]

SP
[142]

CRD
[370]

DKD
[371]

FedP3

(Ours) CT

Sports 43.19 43.62 43.89 44.21 43.71 44.41 44.42 44.01 44.67 44.51 44.55 51.10
Home 38.53 39.18 39.01 39.27 39.22 39.07 38.60 39.27 39.28 39.23 39.43 46.73

Natural 50.29 50.51 50.24 50.79 50.67 50.97 50.48 51.23 51.03 51.45 51.65 56.84
Commercial 37.26 38.37 38.41 38.93 38.95 38.92 38.76 39.15 38.87 39.29 39.40 44.74

generalization over unseen scenes
Transport - 35.23 35.28 35.88 34.81 36.42 35.51 35.98 35.95 35.63 37.07 41.21

Educational - 34.74 34.84 35.36 34.69 35.48 34.11 34.43 35.19 35.27 36.03 39.15

8.4.4 State-of-the-art Comparisons

In this section, we aim to compare our propose method with aforementioned state-
of-the-art strategies in FedVQA benchmark over six heterogeneous scenes. To si-
multaneously evaluate the performance for both personalized and generic models,
we exploit four datasets to participate the federated training, while the other two
datasets only available for generalization over unseen scenes. Furthermore, to vali-
date the robustness of our method towards scene variations in federated learning, we
build two scenarios where involved datasets for generalizability testing are entirely
different. From the federated scenarios in Tab. 8.2 and Tab. 8.3, we have following
observations:

1) Even though FedAvg improves the performance over the lower bound DT, there
is still a hugh accuracy gap towards the centralized learning (CT ) in both scenar-
ios. It verifies that the label and feature distribution skews are severe in FedVQA
benchmark. We can also notice that, the clients for sports and natural scenes co-
existed in both two federated training perform worse in the second scenario (Tab.
3). It can explained by the fact that, compared with transports and educational
scenes, federated learning with clients in home and commercial datasets involves
more significant distribution shifts.

2) Among methods specialized for federated learning, FedProx yields comparative
accuracy with FedAvg, and the other three approaches produce better results in
terms of local personalization on the first four datasets. For generlizability, FedKD
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Table 8.4: Ablation studies of three concepts in our proposed FedP3 according to
different settings, based on the first federated scenario in Tab. 8.2.

Component Setting Avg.(Loc) Avg.(Glo)
FedAvg Baseline 45.67 32.24

+Knowledge
Preserving

T=1 45.85 31.52
T=2 45.71 32.36
T=3 44.42 30.62

+Pairwise
Preference

all
answers 46.16 33.58

+Forgotten-
Knowledge

Filter

r(i) = µ(i) 45.97 32.85
r(i) = pS(i) 46.31 32.05
r(i) = pT (i) 46.41 33.25
Equ. (8.10) 46.50 34.18
Equ. (8.11) 46.67 34.57

slightly impair the performance due to the negligence of global knowledge preserving,
while FedDC achieves remarkable accuracy boost benefited from the learned local
drift variable. Following the idea of knowledge preserving, three advanced knowledge
distillation (SP, CRD and DKD) achieve better results than transferring soft logits
(ST ) to local models, mainly because the proposed batch-wise similarity, contrastive
learning, and target-based prediction decomposition establish better representations
of global knowledge in central server.

3) From results in two scenarios, our proposed FedP3 is remarkably superior to the
baseline FedAvg strategy, whose performance occupies all the first places for four
participated clients in personalized learning. It powerfully supports that preserving
global knowledge in our method facilitates local models to accumulate knowledge
from their own private datasets, instead of suppressing their personalization. Fur-
thermore, the global model trained by FedP3 demonstrates strong generalizability
over unseen visual scenes (last two rows), which reveals that proposed pairwise
preference could effectively form the generic knowledge aggregated from central
server.

8.4.5 Ablation Study

We perform extensive ablation studies on the federated scenarios depicted in Tab.
8.5, where Avg.(Loc) is the average accuracy obtained from four local models in
transports, sports, educational, and natural scenes, while Avg.(Glo) denotes the gen-
eralization results from global model over unseen home and commercial scenes.

Effectiveness of Different Concepts: We validate the contributions for different
concepts in FedP3 built upon the baseline FedAvg approach. From the rows 2-4
in Tab. 8.4, exploiting soft prediction (T = 2) from global model for knowledge
preserving would slightly improve the average accuracy, while the other settings
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Table 8.5: Ablation studies of three concepts in our proposed FedP3 according to
different settings, based on the second federated scenario in Tab. 8.3.

Component Setting Avg.(Loc) Avg.(Glo)
FedAvg Baseline 42.92 34.99

+Knowledge
Preserving

T=1 42.81 34.33
T=2 43.07 34.81
T=3 41.98 32.72

+Pairwise
Preference

all
answers 43.41 35.71

+Forgotten-
Knowledge

Filter

r(i) = µ(i) 43.35 35.46
r(i) = pS(i) 43.28 35.23
r(i) = pT (i) 43.66 35.98
Equ. (10) 43.73 36.21
Equ. (11) 43.76 36.55

Top30

(a) (b)

Ours

KP

Ours

KP
Top10

Top5

Top20
Top10

Top20 Top30

Top5

Figure 8.4: The relationship between computational complexity in terms of knowl-
edge distillation, and the accuracy of local (a) and global (b) training.

(T = 1, 3) degrade the performance of FedAvg. This is because the predictive
value based regularization tends to restrict the local models (student) to obtain
personalized knowledge when reviewing global knowledge. In contrast, pairwise
preference alleviates this issue via modeling the relative comparisons on the sides of
answer significance. The last five rows depict the answer subset selection for pairwise
preference according to different label distributions r(i). We can notice that using
the distribution from global model performs better than the random (µ(i)) and
local distributions (pS(i)), while it fails to reveal the forgotten knowledge during
personalized training. Compared with the Equ. (8.10), leveraging the information
gain HT/HS in Equ. (8.11) consistently enhances performance on both personalized
and generic models, with accuracy boosts of 1% and 2.5% over FedAvg.

Accuracy vs Complexity: For the personalized answer selection, we seek to ex-
plore the trade-off between the computational complexity based on the amount of
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field

park
road

ocean

Q: where is the plane?

GT: airport

GT: computer mouse

keyboard

laptop

screen
phone

Q: What device is left of the phone? 

Q:What color is the shirt she is wearing?

GT:Blue

orange

Red white

standing

lying
sitting

GT:Sleeping

Q:What is the animal doing?

Figure 8.5: Four VQA training examples of case study from transports, educational,
sports and natural scenes, respectively. Their corresponding forgotten-knowledge
based distributions r(i) is marked by answer candidates with Top-3 probabilities.

to-be-selected answer candidates, and the performance of global (Avg.(Glo)) and
local (Avg.(Loc)) models. As illustrated in Fig. 8.4, we compared the knowledge
preserving with soft targets (KP), whose the complexity is equal to the total number
of classes (1642), with our FedP3 with different settings. Benefited from proposed
forgotten-knowledge based distribution for answer subset selection, our method not
only yields better performance than KP, but also remarkably reduce the complexity
via discarding the non-forgotten answer candidates. Furthermore, when considering
20 most easily-forgotten answers, FedP3 reaches its highest performance on both
generic and personalized learning, with less than one-third the complexity of the
standard KP.

8.4.6 Case Study

Fig. 8.5 reveals fourtwo VQA training samples in the first federated scenario (Tab.
8.2, accompanied with different forgotten-knowledge based distributions for answer
subset selection. In the first example labeled by high-frequency answer ‘airport ’ in
the transports dataset, the classes with high probabilities are some easily-forgotten
general answers (e.g., field and road), or some answers mainly exiting in other scenes
(e.g., park and ocean). For the second sample answered by rare label ‘computer
mouse’ in the educational scene, the selected answers turn to be the visual concepts
involved in the image (e.g., keyboard, screen and laptop), which encourages the
global model to transfer more informative knowledge for personalized learning.
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8.5 Conclusion

In this chapter, we introduce a relatively unexplored personalized federated visual
question answering (FedVQA) task. To tackle this task, we propose a novel fed-
erated pairwise preference preserving framework that enables joint optimization of
generic and personalized models, leveraging distributed local data in a collaborative
manner. Additionally, we construct a multi-scene FedVQA benchmark to facili-
tate the investigation of FedVQA. The experimental results demonstrate that our
proposed method achieves competitive performance compared to state-of-the-art
approaches.

Future work: Moving forward, we seek to construct more challenging federated
learning scenarios, which contains more than 20 clients accompanied with severe
distribution skews from visual scenes. Moreover, we will also consider to attach the
deep unlearning problem into our FedVQA setting, so as to promote the FedVQA
task to be more complicate yet practical. For our proposed FedP3 approach, we
attempt to further improve the differentiable pairwise preference via exploiting more
efficient approximate functions.
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