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Chapter 5

From Superficial to Deep: Language
Bias driven Curriculum Learning for
Visual Question Answering

In the previous chapter, we proposed a loss-objective based approaches to alleviate
language bias. However, under the severe out-of-distribution settings where train
and test distributions are entirely different, the loss objective approach is not suffi-
cient to obtain significant anti-bias performance. Motivated by the human cognition
process, we propose a novel curriculum-learning based framework to alleviate bias
and improve out-of-distribution performance, which corresponds to RQ3.

In this chapter, we overcome the language prior problem by proposing a novel Lan-
guage Bias driven Curriculum Learning (LBCL) approach, which employs an easy-
to-hard learning strategy with a novel difficulty metric Visual Sensitive Coefficient
(VSC). Specifically, in the initial training stage, the VQA model mainly learns the
superficial textual correlations between questions and answers (easy concept) from
more-biased examples, and then progressively focuses on learning the multimodal
reasoning (hard concept) from less-biased examples in the following stages. The
curriculum selection of examples on different stages is according to our proposed
difficulty metric VSC, which is to evaluate the difficulty driven by the language
bias of each VQA sample. Furthermore, to avoid the catastrophic forgetting of
the learned concept during the multi-stage learning procedure, we propose to in-
tegrate knowledge distillation into the curriculum learning framework. Extensive
experiments show that our LBCL achieves remarkably better performance on the
VQA-CP v1 and v2 datasets, with an overall 20% accuracy boost over baselines.

This chapter is based on the following publication:

• Lao, M., Guo, Y., Liu, Y., Chen, W., Pu, N., and Lew, M. S. “From Superficial to Deep:
Language Bias driven Curriculum Learning for Visual Question Answering.” ACM Interna-
tional Conference on Multimedia, 2021.
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5. FROM SUPERFICIAL TO DEEP: LANGUAGE BIAS DRIVEN
CURRICULUM LEARNING FOR VISUAL QUESTION ANSWERING

5.1 Introduction

Vision and language are two fundamental modalities for human beings to explore and
understand the real world. Benefiting from the tremendous progress of deep learning
[270], Visual Question Answering (VQA) [30] at the intersection of computer vision
and natural language processing has become an attractive research over the past few
years. VQA is considered as an ‘AI-complete’ task that enables machines to answer a
natural language question about a given image. With the significant development of
techniques such as attention mechanisms [62] and multimodal fusion strategies [267],
current VQA models have shown rapid performance boost on common benchmark
datasets [30, 48], especially the datasets where the train and test splits have similar
answer distributions.

Despite the impressive performance improvement, recent works [85, 271] have pointed
out that, a majority of VQA models are suffering heavily from the language bias
(prior) problem caused by the dataset itself. Concretely, these models can easily
predict correct answers relying on the statistical co-occurrence patterns between the
given question and the prior answer candidate, instead of combining the image to
make an inference, such as overwhelmingly answering ‘what sport is ’ as ‘tennis ’ or
‘what color is the sky ’ as ‘blue’. Initially, VQA models are designed to achieve high-
level understanding of both visual scene and textual question, and predict correct
answer by exploiting multimodal information jointly and comprehensively. However,
the overdependence on the textual modality for question answering is not consis-
tent with the intention of VQA task, which severely limits the generalization and
applicability of VQA models.

The language bias problem is mainly derived from the label imbalance for a question
type in the train split, which also inherently exists in the real world. For instance, if
80% of the bananas are yellow in the train set, VQA models would easily achieve high
training accuracy by overwhelmingly selecting the prior answer ‘yellow ’ for the ques-
tion ‘what color is the banana? ’. Hence, the VQA example about ‘yellow banana’ is
considered as a more-biased instance, which heavily prevents the model from learn-
ing new and adequate knowledge from the visual data. On the contrary, the training
for less-biased instance like ‘green banana’ can hardly obtain benefits from language
bias, and they require more visual reasoning oriented by textual question to achieve
better performance for selecting the correct answer. Therefore, it is necessary to de-
velop a learning strategy to leverage various training instances with different levels
of language prior, and further overcome the inherent data biases.

In this chapter, we explore the idea of Curriculum Learning (CL) [272] for unbiased
VQA models, and propose a novel Language Bias driven Curriculum Learning
(LBCL) method. CL aims to embody the cognitive process of human being on the
training of machine learning models. Its core idea is to initially train with the easier
examples, and then progressively focus on the hard examples in accordance with
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Language Bias driven Curriculum Learning

Difficulty Metric

The answer distribution for questions ‘what sport …’ in the train split
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Figure 5.1: Conceptual illustration of our Language Bias driven Curriculum Leaning
(LBCL) for VQA. The yellow box depicts the imbalanced answer distribution for the
training of VQA model. We update the parameters ✓ of VQA model in accordance with
an easy-to-hard learning strategy on the selected dataset Si with a desired curriculum
difficulty.

a pre-defined training criteria. In our LBCL, on the one hand, the easy concept
refers to the superficial textual correlations between questions and answers,
which could be easily captured from more-biased training instances (e.g. answer
‘the color of banana’ with ’yellow ’). Although these spurious correlations play neg-
ative roles on the joint reasoning of multimodal information, they still contain some
basic elements for answer prediction (e.g. the intention of question and related an-
swer candidates for a question type), which would be beneficial for VQA models
to narrow the answer space in their initial learning phase. On the other hand, the
hard concept is the deep multimodal reasoning that adequately exploits both
visual and textual modalities. We declare that the hard concept is mainly acquired
from the training of less-biased examples (e.g. ‘green banana’), as they could not
regularize the training process with lower errors based on textual correlations, and
require more visual dependence for question answering.

The conceptual illustration of our LBCL is shown in Fig. 5.1. We take VQA
instances related to the question type about ‘what sport’ for example. As depicted
in the yellow box about answer distribution, ‘tennis’ is the most prior answer for
given question, while the proportions of some answers (e.g. ‘frisbee’ and ‘surfing ’)
are not sufficient in the train split. In the first stage of the LBCL, we train the VQA
model on the original training data. It is considered as the easy learning stage,
because the training is dominated by the prior ground truth answers, and the VQA
model tends to learn more about the textual correlation between the question and
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dominating answers (the question ‘what sport ’ can be probably answered by ‘tennis ’
or ‘baseball ’ as well ). Meanwhile, on the basis of the prediction in the first stage,
we can define the difficulty metric for curriculum learning based on a novel Visual
Sensitive Coefficient (VSC), which is proposed to evaluate a VQA sample about
how much the benefit obtained from visual modality under severe language bias. In
the following stages, we achieve the easy-to-hard transition by a curriculum selection
function to select examples with a desired difficulty. As the training stage proceeds,
the learning gradient for more-biased examples would be excluded, and VQA model
turns to concentrate on less-biased examples (‘skating ’ and ‘soccer ’). Furthermore,
we propose to incorporate knowledge distillation with the curriculum learning for
unbiased VQA, so as to alleviate the catastrophic forgetting problem through the
easy-to-hard learning.

To the best of our knowledge, this is the first attempt to introduce the curriculum
learning for overcoming language bias in VQA task. Our LBCL module is generic
and model-agnostic, which can be applied to various VQA models. In this paper, we
demonstrate the capacity of LBCL to alleviate the language prior on three recent top-
performing baseline models, i.e. UpDn [191], BAN [68] , and MCAN [74]. To prove
the generalizability and effectiveness of our LBCL method, we carry out extensive
ablation studies on VQA-CP v2 and v1 datasets, which are specially built to assess
the robustness of VQA models under severe language prior. Experimental results
show that our approach surpasses the baseline models by a significant gain of 20%,
and also obtains superior performance on the small-scale training datasets of VQA-
CP v1 and v2 described in Appendix. Finally, we compare LBCL with state-of-the-
art debiasing strategies, and our method achieves remakably better performance on
the VQA-CP v2 (60.74%) and v1 (61.57%) datasets.

5.2 Related work

Visual Question Answering: In most VQA models, the attention mechanism
and multi-modal fusion are two essential techniques to boost the performance. The
attention mechanism aims to measure relevant image regions or objects with different
importances based on the give question. It builds a crucial bridge for joint reasoning
between multimodal features. Some remarkable approaches (e.g. SAN [66], UpDn
[191], BAN [68], and MCAN [74]) significantly enhance accuracy and interpretability
of VQA models. Multimodal fusion is to achieve high-level and complex interactions
between visual and textual features for answer prediction. Most state-of-the-art
VQA models employ the advanced bilinear pooling approaches to fulfill effective
second-order interactions with less resources, such as MLB [81], MCB [273], MUTAN
[83], BLOCK [274], and MHEF [275].

Language Bias in VQA: In order to better evaluate the language bias in cur-
rent VQA models, Agrawal et al. [85] propose a new dataset VQA-CP for unbiased
training, where the distributions of answers per question between train and test
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splits are quite different. There are also many great efforts to overcome this prob-
lem, and we roughly divided these debiasing strategies into four categories: 1) The
annotation-based methods [92, 105] assume that the image feature is not sufficient
to tackle the VQA task, and attempt to utilize extra visual and textual annotations
to strength the visual grounding for VQA. 2) The fusion-based approaches [106, 107]
are to train VQA model with a question-only model, and combine the outputs of
two models as the final prediction for training. It effectively removes the excessive
dependence of language prior for VQA models. 3) The data rebalance-based meth-
ods [94, 110, 232, 236, 243] attempt to propose some data augmentation strategies
to generate counterfactual training instances automatically, thereby balancing the
answer distribution of training data. 4) The other methods: there are also many
impressive works to overcome language bias through adversarial learning [89], mod-
ifying language module [101, 268], and casual inference [88]. Among most of these
debiasing methods [88, 89, 106, 107], the question-only (unimodal) branch is crucial
for capturing spurious relationships between questions and answer candidates. In
our LBCL method, it is also an essential component for quantifying the difficulty
metric Visual Sensitive Coefficient (VSC) of each training instance in curriculum
learning.

Curriculum Leaning: Bengio et al. [272] first propose the concept of curricu-
lum learning (CL), which formalizes an easy-to-hard strategy for training machine
learning models inspired by human brains. One character in CL is that the defi-
nition of the difficulty metrics is task-specific. CL has been extensively exploited
to tackle various computer vision [276, 277] and natural language processing tasks
[278, 279, 280]. CL can also be combined with other machine learning methods to
solve the corresponding problems better, such as meta learning [281], reinforcement
learning [282] and active learning [283]. Based on the difficulty metric for CL, the
common strategies to select sub training dataset with a proper difficulty level are
sampling [284], weighting [285, 286] and batching [287]. In our LBCL, we employ
weighting method to dynamically distribute binary weights on training instances for
adjusting the training difficulty.

5.3 Language Bias driven Curriculum Learning

In this section, we first introduce the preliminary of VQA, and then describe the
overview learning framework of our Language Bias driven Curriculum Learning
(LBCL) method. In the following three subsections, we elaborate the central con-
cepts in the LBCL, including difficulty metric, curriculum selection function and
knowledge distillation. Finally, we conclude the algorithmic pipeline of LBCL.

The Paradigm of VQA Model: Given an image-question input, the classification-
based VQA model aims to generate a predicting distribution for answer dictionary.
A VQA dataset with N training instances is represented as S = {Ii, Qi, ai}Ni=1 ,
where Ii 2 I and Qi 2 Q are the image and question input of the ith instance, while
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ai 2 A is the correct answer in the answer dictionary. The VQA model is to utilize
multimodal inputs to learn a fusion function f : Q ⇥ I ! [0, 1]|A| for producing a
distribution over the answer space A. The function is denoted as:

P (A | Ii, Qi) = softmax (f (Ii, Qi; ✓)) , (5.1)

where ✓ implies the learning parameters in VQA model. We can train the VQA
model with standard cross-entropy loss, and optimize the network parameters ✓ to
minimize the formulation below,

Lce = �
1

N

NX

i

log (P (A | Ii, Qi)) [ai] . (5.2)

It is worth noting that, for some commonly-used VQA datasets [30, 48], an image-
question input is corresponding to many correct answers. Consequently, we can
employ the soft cross-entropy loss for multi-label classification to solve this task,
which is given as:

Lsce = �
1

N

NX

i

|A|X

j

a⇤ij log (P (aij | Ii, Qi)) , (5.3)

where aij denotes the jth answer candidate in dictionary for the ith training instance,
and a⇤ij is its value of the ground truth label.
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Figure 5.2: (a) Overview of our proposed LBCL method with training examples
related to ‘what color is the sky?’ . (b) The model architecture for defining difficulty
metric in the first learning stage. (c) The loss weights of answer candidates in different
training stages. (d) The framework of knowledge distillation approach.

Overview Framework: LBCL aims to train the VQA model with an easy-to-hard
strategy for overcoming language bias problem. The overview of LBCL architecture
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is shown in Fig. 5.2(a), and we take VQA training instances related to ‘what color
is the sky? ’ as an example to analyze our method. From the pie chart illustrated in
Fig. 5.2(a), the ground truth answers for the aforementioned question are dominated
by ‘blue’, whereas ‘red ’ and ‘yellow ’ are the rare labels. In the first learning stage,
the VQA model with an extra question-only model are trained on the raw biased
dataset. During this period, VQA model is prone to learning the easier VQA concept
(‘blue’ is usually used to describe the color of sky) due to the imbalanced training
answer distribution. Additionally, we exploit the predictions in this stage as the
prior knowledge, and further define the difficulty metric Visual Sensitive Coefficient
(VSC) as the training criteria for the next multi-stage easy-to-hard training stages
(the purple box in Fig. 5.2(b)).

The following training stages (from 2 to n) keep a sequence of training criteria based
on the difficulty metric VSC defined in the first stage. The easy-to-hard transition
is achieved by a curriculum selection function (the red box in Fig. 5.2(c)) that
dynamically adjusts the loss weights of training instances with a desired difficulty.
As the training proceeds, the backpropagated gradients from more-biased instances
(the ‘blue’ and ‘black ’ sky) would be removed, and the VQA model turns to learn
‘hard’ concepts by focusing on the less-biased instances progressively (the ‘red ’ and
‘yellow ’ sky). Furthermore, to avoid the catastrophic forgetting problem through
multi-stage learning, we exploit the knowledge distillation (the green box in Fig.
5.2(d)) to transfer knowledge from the previous learning stage to next stage.

5.3.1 Difficulty Metric

Difficulty Metric is an indispensable component for curriculum learning, which acts
as an evaluation indicator that represents the task-specific difficulty of a VQA ex-
ample. For the curriculum learning of overcoming language bias in VQA task, we
first introduce an intuitive difficulty metric based on the Training Error (TE), and
further propose a novel metric Visual Sensitive Coefficient (VSC) to evaluate a VQA
training instance about the visual dependence for question answering under language
prior.

Training Error (TE): TE-based difficulty is derived from the intuition that more-
biased examples tend to have less training error, as they can easily achieve higher
performance only according to the language prior. On the contrary, less-biased sam-
ples are rare in the imbalanced VQA dataset, and are usually trained insufficiently
for VQA model. Therefore, we propose a difficulty metric TE, and the difficulty TEij

for the jth answer candidate of the ith training instance aij is formulated as:

TEij = log
1

P (aij | Vi, Qi)
. (5.4)

However, the TE metric fails to reflect and measure the bias level and visual depen-
dence of each VQA training sample.
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Visual Sensitive Coefficient (VSC): To better evaluate the difficulty of examples
from a view of language bias, we propose a novel difficulty metric Visual Sensitive
Coefficient (VSC) for the LBCL method. In the VQA task under severe language
bias, the easy concept is textual correlations between questions and answers, whereas
the hard is the visual reasoning for answer prediction. Hence, the VSC is introduced
to evaluate how much the VQA model predicting answers rely on the visual modality
under strong language bias. Particularly, the difficulty metric VSC is defined based
on the pair-wise mutual information (pmi) [288], which measures the mutual depen-
dence between two discrete random variables. The mutual information of variables
x and y is as follows:

pmi(x; y) ⌘ log
P (x, y)

P (x)P (y)
= log

P (y | x)
P (y)

. (5.5)

On the basis of the pmi, we further define the difficulty metric VSC based on the
difference between the mutual correlation of (A; (Vi, Qi)) and (A;Qi). Specifically,
the V SCij for the aij is:

V SCij = pmi(aij; (Vi, Qi))� pmi(aij;Qi)

= log
P (aij | Vi, Qi)

P (aij)
� log

P (aij | Qi)

P (aij)
= log

P (aij | Vi, Qi)

P (aij | Qi)
.

(5.6)

If aij is the ground truth answer for the ith example, the higher V SCij value indicates
that VQA model acquires more visual reasoning for training this example when pre-
dicting answers. Conversely, V SCij < 0 illustrates the example excessively depends
on the question, and adding the image feature would impair its performance.

Discussion: The framework for defining difficulty metric in LBCL is depicted in
Fig. 5.2(b). Apart from the VQA model (Equ. 5.1), similar to other debiasing
strategies [88, 89, 106, 107], we additionally employ a question-only model. It is a
single-branch network to obtain the biased prediction only on the basis of question
features:

P (A | Qi) = softmax (g (Qi;�)) , (5.7)

where g(·) and � imply the mapping function and parameters of the question model.
For multi-label classification VQA (Equ. 5.3), to encourage the biased prediction
to be more non-uniform, we use the answer with largest label value as the sole
ground truth ai, and train the question-only model with the cross-entropy loss (Equ.
5.2).

5.3.2 Curriculum Selection Function

Curriculum selection function is to determine which examples should be utilized
for training at the current stage. In our LBCL, we adopt weighting method to
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dynamically select training examples based on the difficulty metric (VSC or TE)
defined in the first stage.

The core in the selection function is to determine the real-time model competence
(the difficulty threshold in the current stage) and the number of total training
stages. Given the pre-defined maximum model competence Cmax (the desired diffi-
culty threshold in the final training stage), a difficulty increment parameter � and
the initial difficult value d2 (first used in the second stage in LBCL), the real-time
model competence C(t) in the tth training stage and the total training stage T are
formatted as:

C(t) = d2 + (t� 2)�, (5.8)

T = d(Cmax � d2)/�e+ 2. (5.9)

Then, we dynamically select training examples by assigning a binary weight wi(t)

for the ith example on the cross-entropy loss in the tth learning stage:

Lce(t) = �
1

N

NX

i

wi(t) log (P (A | Ii, Qi)) [ai] . (5.10)

Specifically, the binary weight wi(t) is determined by the comparison between the
pre-defined difficulty (VSC) and the real-time model competence C(t) in the tth

learning stage:

wij(t) =

⇢
0, V SCij < C(t)
1, V SCij � C(t)

. (5.11)

For multi-label classification VQA task, the binary weight wij(t) is distributed to
the jth answer candidates of the ith example:

Lsce(t) = �
1

N

NX

i

|A|X

j

wij(t)a
⇤

ij log (P (aij | Ii, Qi)) , (5.12)

where wij(t) is similarly computed by the Equ. (5.11) based on V SCij and C(t).
Fig. 5.2(c) illustrates the change of loss weight from easy stage to hard stage. The
loss weight in the first stage is evenly distributed over each candidate answer, while
in the following stages the weights for answers of more-biased examples (‘blue’ and
‘black ’) are zeros, thereby benefiting VQA model from focusing on the hard examples
(‘red ’ and ‘yellow ’).
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5.3.3 Knowledge Distillation

The LBCL method is a multi-stage strategy learning the knowledge from easy to
hard. It is inevitable for VQA model to forget previous knowledge during the pro-
gressive training. To tackle this problem, we propose to combine the knowledge
distillation [289] approach with the curriculum learning to overcome the forgetting
issue.

The knowledge distillation framework is a teacher-student network [290] structure,
which is described in Fig. 5.2(d). Specifically, the teacher model is a frozen structure
pretrained from the previous stage. Before the training of current stage, the student
model is copied from the teacher model, whose parameters and network structure
are the same as its teacher. Then, we train the student model with the weighted
VQA instances based on the curriculum selection function in corresponding stage.
Meanwhile, we also feed the same training data into the detached teacher model,
and further exploit its predicting results as the supervision for student model. Prac-
tically, we adopt the common Kullback-Leibler divergence constraint as distillation
loss. Its formulation is defined as:

Lkd =
1

M

MX

i

KL
�
P t (A | Ii, Qi) kP s (A | Ii, Qi)

�

= � 1

M

MX

i

P t (A | Ii, Qi) log
P s (A | Ii, Qi)

P t (A | Ii, Qi)
,

(5.13)

where Lkd denotes the KL distance from the prediction of teacher model P t (A | Ii, Qi)

to the prediction of student model P s (A | Ii, Qi), and M is the number of samples
in a mini-batch. Consequently, the total loss Lall(t) in the tth training stage (t � 2)
is:

Lall(t) = Lsce(t) + �dLkd, (5.14)

where the �d is a trade-off factor applied to adjust the contributions of the loss terms
between VQA loss and knowledge distillation loss.

Algorithmic Pipeline: Based on the aforementioned crucial components in LBCL,
the detailed descriptions about how our method works are summarized in Algorithm
1. The testing phase is performed only once by using the final trained model. It is
worth noting that, LBCL is model-agnostic and can be applied to any classification-
based VQA models for alleviating language bias.

5.4 Experiments

5.4.1 Datasets and Baselines

Datasets: In this chapter, we train and evaluate the LBCL approach on the VQA-
CP v1 and v2 datasets [85]. They are the two most commonly used benchmark
datasets proposed to test the robustness of VQA models under severe language
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Algorithm 1: Language Bias driven Curriculum Learning
Input: Training set S = {Ii, Qi, ai}Ni=1, difficulty metric d(·),curriculum

selection function select(·),VQA model f✓,question-only model f� ,total
training stage T , and maximum model competence Cmax

Output: Trained VQA model
initialization;
for t = 1, 2, ..., T do

if t=1 then
✓  train (✓, S);
� train (�, S);
compute the difficulty di for each example 2 S
(section 3.1);

else
compute the real-time model competence C(t)
S⇤  select(S,C(t)) (section 3.2);
✓  train (✓, S⇤) with knowledge distillation
(section 3.3);

Table 5.1: Performance on three benchmark models and the models applied with our
LBCL approach.

Model VQA-CP v2 VQA-CP v1
Overall Yes/No Number Other Overall

UpDn 40.75 42.10 12.77 47.74 38.36
+Ours 60.74 88.28 45.77 50.14 61.57
BAN 40.69 43.49 13.66 46.64 38.91

+Ours 60.62 87.72 49.39 49.50 61.08
MCAN 42.48 48.27 14.70 47.06 39.20
+Ours 61.84 88.17 53.60 50.30 61.40

prior, which are constructed by re-organizing the train and val splits of VQA v1
[30] and v2 [48] datasets respectively. The train and test sets of VQA-CP dataset
have entirely different answer distributions. Consequently, a model strongly suf-
fering from the language bias in the train set will perform poorly on the test set.
Specifically, it consists of the overall accuracy on the whole dataset, and the per-
formance for VQA samples related to three different question categories (Yes/No,
Number, Other).

Baselines: To demonstrate that our LBCL is model-agnostic, we test it on top
of three VQA models: UpDn [191], BAN [68] and MCAN [74]. The UpDn model
is a baseline model that uses a bottom-up visual attention to assign weights for
different visual objects. The BAN model is proposed to achieve multi-hop reasoning
by stacking multiple bilinear attention layers with residual connections. MCAN
is a transformer-based VQA model that jointly achieves pairwise interactions for
inter-modal and intra-modal features.
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Table 5.2: Comparisons between difficulty metrics Training Error (TE) and Visual
Sentisive Coefficient (VSC) under two-stage LBCL with different settings of maximum
model competence Cmax (best results are in bold).

TE VSC
Cmax VQA-CP v2 VQA-CP v1 VQA-CP v2 VQA-CP v1

Overall Yes/No Number Other Overall Overall Yes/No Number Other Overall

0 41.15 43.13 12.33 48.02 38.47 55.34 86.87 13.76 50.21 56.58
0.25 52.91 79.42 18.57 48.44 51.00 56.64 89.55 18.40 49.89 58.62
0.5 55.34 86.17 25.60 47.35 55.91 58.26 88.84 30.25 49.92 59.15
0.75 55.09 86.10 29.41 45.88 56.11 58.06 85.20 37.20 49.57 59.75
1 55.45 86.34 29.42 44.76 57.48 58.97 82.81 46.69 49.90 60.27

1.25 54.28 86.20 33.35 43.29 58.21 58.87 80.38 51.87 49.52 59.87
1.5 54.47 84.83 41.23 42.20 58.35 58.59 79.72 54.22 48.86 58.44
1.75 54.16 81.91 49.92 40.79 57.90 57.56 76.81 55.32 48.09 57.13
2 53.29 79.92 51.80 39.75 57.20 56.78 76.08 54.40 47.32 55.58

5.4.2 Implementation Details

Network Architecture: For visual representation, we use the pre-trained Faster
R-CNN [246] to obtain object-level image features with no more than 100 proposals
with their 2048-d features. For question features, we adopt a Glove [247] to encode
the question as a word-level vector, and set the max length of words in question to
14. As for the architecture of the question-only model, we first exploit a LSTM [60]
to encode the word-level textual features, and then feed the output of LSTM into a
classifier including three fully connected layers to predict the correct answers.

Training strategy: As VQA examples tend to have several ground truth answers
in VQA-CP v1 and v2 datasets, we adopt soft cross-entropy loss (Equ. (5.3)) to train
VQA model as multi-label classification. In the first learning stage, we train VQA
model with a question-only branch for 12 epochs with the same setting in original
papers. After defining the difficulty metric based on the predictions in the first
stage, we progressively train the model with weighted training instances based on the
curriculum selection function. Specifically, for the optimal setting of the curriculum
selection function in LBCL, we set the initial difficulty value d2 = 0, the difficulty
increment parameter � = 0.25, the maximum model competence Cmax = 1.25, and
the number of total training stage T = 7, which can be computed with Equ. (5.9).
After the first stage, the number of epoch for each training stage is 2. In the final
stage, we additionally train VQA model for two epochs, where the learning rate is
decayed by 1/5. The initial learning rate is 1e-3 for UpDn and BAN models and
1e-4 for the MCAN model. We set the mini-batch to 256 for UpDn and BAN, and
64 for MCAN model.

5.4.3 Ablation Study

In this subsection, we carry out extensive ablation studies for the LBCL on VQA-
CP v1 and v2 datasets. For simplicity, we only show the overall accuracy on the
VQA-CP v1 test split. To be specific, we first make a general comparison between
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three baseline models and the models applied with our LBCL approach. Then, we
progressively validate the contributions of different components in the LBCL.

Curriculum Learning vs Non-Curriculum Learning: As depicted in Tab.
5.1, incorporating LBCL and VQA models can significantly improve the ‘overall’
performance, with average 22% and 20% accuracy boosts over three benchmark
models on VQA-CP v1 and v2 datasets, respectively. For different question types,
LBCL achieves remarkable improvements on biased types (‘Yes/No’ and ‘Number’),
and is also beneficial to the less-biased ‘other’ type with a gain of 2.5%. All these
results indicate that LBCL can effectively overcome language bias problem through
the easy-to-hard training strategy. The following content in this subsection validates
the effectiveness of several crucial components in our LBCL framework, which is
mainly implemented on the baseline UpDn model.

VSC vs TE: We compare proposed difficulty metrics Training Error (TE) and
Visual Sensitive Coefficient (VSC) under the two-stage LBCL. Specifically, after
the first-stage training, the real-time model competence is equal to the predefined
maximum model competence (C(2) = Cmax) in the second stage. The Cmax is set
from 0 to 2 for experimental analysis. As illustrated in Tab. 5.2, with the Cmax

rising from 0 to 1, the ‘overall’ accuracies of two difficulty metrics yield better results.
However, its higher values (Cmax > 1.25) may fail to fulfill further improvements. For
different question types, we can notice that the optimal maximum model competence
Cmax are different. Specifically, the appropriate Cmax for questions related ‘Yes/No’
and ‘Other’ are 0 and 0.25 evaluated by the VSC, while that for ‘Number’ type
is 1.5. It verifies that the levels of language bias for different question types are
different. In contrast to other types, the questions related to ‘Number’ are more
seriously suffered from the language bias problem. For the comparisons between
two difficulty metrics, VSC is remarkably superior to TE, as VSC achieves better
‘overall’ results, and also keeps more stable performance on ‘Other’ type with the
change of Cmax. It can be explained that, in contrast to TE, VSC have better
capacity to evaluate the language bias driven difficulty of each VQA sample by
measuring visual dependence. Thereby, we adopt VSC as the difficulty metric to
implement the following experiments.

The contribution of easy concept: In Tab. 5.3, we demonstrate the importance
of easy concept (textual correlation) under two-stage LBCL as well (the same as
that in ‘TE vs VSC’). Since the easy concept is mainly learned from the initial
learning stage, for VQA models without the easy concept, we directly train them
with the ‘hard’ VQA samples from scratch, instead of training them from the first
stage to second stage progressively. From the results with different maximum model
competence Cmax, training VQA model without the easy concept would severely
impair the model performance, especially for the accuracy of ‘Other’. This is due
to the fact that, compared with other question categories, the textual correlations
between questions and answers related to ‘Other’ are more complex. Hence, the
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Table 5.3: The effect of easy concept in the first stage under two-stage curriculum
learning.

Cmax
Easy

Concept
VQA-CP v2

Overall Yes/No Number Other

0.5 X 58.26 88.84 30.25 49.92
⇥ 52.88 88.13 20.87 43.19

0.75 X 58.06 85.17 37.20 49.57
⇥ 53.82 86.58 31.62 42.75

1 X 58.97 82.81 46.69 49.90
⇥ 54.36 85.91 43.80 40.74

1.25 X 58.87 80.83 51.87 49.52
⇥ 52.25 81.74 43.68 39.16

1.5 X 58.59 79.22 54.22 48.86
⇥ 50.69 79.53 43.19 37.63

easy concept (textual correlations) plays a positive role on the unbiased learning, and
benefits VQA models to narrow the answer space in their initial learning stage.

58.0

58.5

59.0

59.5

60.0

60.5

61.0

0.5 0.75 1 1.25 1.5 52

54

56

58

60

62

15 20 25
78

80

82

84

86

88

90

15 20 25

48.5

49.0

49.5

50.0

15 20 25

50

49

Overall Accuracy Accuracy on ‘Yes/No’ Accuracy on ‘Other’

Th
e 

ac
cu

ra
cy

 o
n 

VQ
A-

C
P 

v2

The training epochMaximum Model Competence

Th
e 

ov
er

al
l a

cc
ur

ac
y 

on
 V

Q
A-

C
P 

v2

(a) (b)

7
8

6
5

4 3
4

4 5
5

3

3
3

4 4

Figure 5.3: (a) Results of LBCL with different settings of difficulty increment pa-
rameter �, where the number above each bar represents the total training stage T for
LBCL with the corresponding setting. (b) Results (‘Overall’, ‘Yes/No’ and ‘Other’
accuracies ) of LBCL with different trade-off factor �d in knowledge distillation.

The variant of difficulty increment parameter: Fig. 5.3(a) depicts the com-
parisons for LBCL with different settings of difficulty increment parameters �, which
implies the increase of model competences C(t) from the tth stage to the (t + 1)th

stage. We can see that, the smaller setting of � (0.25) obtains better results in
contrast to the larger value (0.5 or 1), and reaches its best performance at 60.74,
when the maximum model competence Cmax is 1.25. This is because, based on a
fixed Cmax, the relative low difficulty increment divides the whole learning process
into more stages with different difficulty levels. For instance, when the Cmax = 1.25,
LBCL with � = 0.25 requires 7 training stages, whereas that with � = 1 only keeps
4 stages. This fine-grained easy-to-hard learning is more conducive for VQA model
to alleviate language bias progressively.

The contribution of knowledge distillation: Fig. 5.3(b) shows the advantage of
knowledge distillation in our approach, and all experiments are implemented under
LBCL with Cmax = 1.25 and � = 0.25 (the best result in Fig 5.3(a)). With the
training epoch increasing from 18 to 26, the LBCL without distillation (�d = 0)
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Table 5.4: Comparisons with the state-of-the-art based on the UpDn model on VQA-
CP v2 dataset. Best and second best numbers are in bold and underlined, respectively.

Method VQA-CP v2
Overall Yes/No Number Other

Baseline UpDn [191] 39.74 42.27 11.93 46.05

Annotation
Based

AttAlign [92] 39.37 43.02 11.89 45.00
HINT [92] 46.73 67.27 10.61 45.88
SCR [105] 49.45 72.36 10.93 48.02

Data
Rebalance

Based

SSL [243] 57.59 86.53 29.87 50.03
CSS [94] 58.95 84.37 49.42 48.21

CSS+CL [236] 59.18 86.99 49.89 47.16
Mutant [110] 61.72 88.90 49.68 50.78

Reducing
Language

Prior
Based

AdvReg [89] 41.17 65.49 15.48 35.48
RUBi [106] 47.11 68.65 20.28 43.18
DLR [268] 48.87 70.99 18.72 45.57

VGQE [101] 50.11 66.35 27.08 46.77
LM+H [107] 52.01 72.58 31.12 46.97
RMFE [99] 54.55 74.03 49.16 45.82

CF-VQA [88] 55.05 90.61 21.50 45.61
LBCL (Ours) 60.74 88.28 45.77 50.14

could hardly achieve further improvements on the overall accuracy, since the VQA
model encounters the catastrophic forgetting problem on the VQA examples related
to ‘Yes/No’ and ‘Other’. By integrating knowledge distillation into LBCL, the
VQA model (�d = 0.1) can effectively avoid the performance degradation caused
by forgetting problem for aforementioned two question types, and obtain superior
overall results, with an accuracy gain of 2.5%. The larger setting of the factor �d

(�d = 0.2) fails to fulfill further improvements.

5.4.4 State-of-the-art comparison

Performance on VQA-CP v2: We first compare the LBCL with state-of-the-
art methods proposed to alleviate language prior on the VQA-CP v2 dataset. We
roughly divide these debiasing strategies into three categories: annotation based,
data rebalance based and reducing language prior based approaches. Annotation
based methods attempt to use human explanations to enhance the visual grounding
for VQA models. The data rebalance based approaches tend to generate counter-
factual VQA examples, and further rebalance the training answer distribution. We
consider other debiasing approaches as the reducing language prior based methods.
As the UpDn model is the widely-used benchmark model for evaluating language
bias, we list the performance of state-of-the-art approaches implemented on the
UpDn model in the Tab. 5.4.

Overall, the data rebalance based methods tend to achieve better results than ap-
proaches belonging to other categories. However, this kind of methods aim to create
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Table 5.5: Comparisons with the state-of-the-art based on UpDn model on VQA-CP
v1 dataset (best results are in bold).

Method VQA-CP v1
Overall Yes/No Number Other

UpDn [191] 37.87 42.58 14.16 42.71
AdvReg [89] 45.69 77.64 13.21 26.97
GRL [291] 44.09 75.01 13.40 42.67
RUBi [106] 44.81 69.65 14.91 32.13
LM+H [107] 55.27 76.47 26.66 45.68
CF-VQA [88] 56.80 87.76 13.89 43.25

CSS [94] 59.63 86.62 28.93 45.12
CSS+GS [292] 58.05 78.50 37.24 46.08
CSS+CL [236] 61.27 88.14 34.43 46.08
LBCL (Ours) 61.57 84.48 42.84 46.32

more examples to change the training bias, instead of achieving jointly multimodal
reasoning under language prior. This behavior is not consistent to the intention of
VQA-CP dataset. Nevertheless, our method still outperforms most Data Rebalance
Based methods (SSL, CSS and CL), and obtains competitive results compared with
the state-of-the-art method Mutant [110]. In comparison to the baseline model, our
LBCL significantly enhances performance (+21% for ‘Overall’ accuracy), and is su-
perior to other reducing language prior based approaches. These results powerfully
support that our LBCL effectively alleviates language bias with curriculum learn-
ing, and further benefits VQA models to achieve unbiased reasoning for multimodal
information.

Performance on VQA-CP v1: Tab. 5.5 illustrates performance comparisons
with the existing competitive models on the VQA-CP v1 dataset. We achieve a
new state-of-the-art result on this dataset, with a significant accuracy boost (from
37.87% to 61.57%) over the UpDn model. In particular, the LBCL module obtains
highest accuracy of 42.84% on the hardest ‘Number’ question type . In addition,
the performance of our method also outperforms those impressive debiasing strate-
gies (such as CF-VQA [88], CSS[94] and CSS+CL [236]), which is consistent to
the performance on the VQA-CP v2 dataset. All these results further verify the
effectiveness of the LBCL for alleviating language bias in VQA task.

5.4.5 Experiments on small-scale datasets

To further demonstrate the generalizability of our method, we randomly sample dif-
ferent proportions of the train split from VQA-CP v1 and v2 datasets, and carry
out a series of experiments for verifying our method. In general, LBCL achieves
remarkable and stable improvements under different data scales, with overall 23%
and 20% performance boosts on VQA-CP v1 and v2 datasets. Particularly, even
trained with limited 20% training data, our method implemented on UpDn model
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Table 5.6: Results of our LBCL on the VQA-CP v1 and v2 datasets with different
percentages of training split.

Model
Per VQA-CP v1 VQA-CP v2

20% 40% 60% 80% 100% 20% 40% 60% 80% 100%

UpDn 30.85 32.33 34.97 37.12 38.36 34.85 36.98 38.23 40.07 40.75
UpDn+Ours 54.31 56.17 58.89 60.61 61.57 52.89 55.34 58.11 60.03 60.74

BAN 29.91 31.25 35.03 37.53 38.91 35.73 37.04 37.92 39.97 40.69
BAN+Ours 55.25 56.82 58.94 60.13 61.08 51.56 54.28 58.52 59.78 60.62

MCAN 31.56 33.46 36.85 38.87 39.20 36.89 38.14 39.21 41.22 42.48
MCAN+Ours 57.34 58.13 59.34 60.89 61.40 53.49 56.37 59.18 61.02 61.84

can still obtain 52.89% overall accuracy on the VQA-CP v2 dataset, which outper-
forms many impressive debiasing approaches trained with the whole dataset, such
as LM+H [107], VGQE [101] and DLR [268] in Tab. 5.4. These results strongly sup-
port the effectiveness of LBCL to overcome the language bias inherently existed in
raw data, and tend to show its great applicability to be exploited in more real-world
scenarios with data bias.

5.4.6 Qualitative Results

Fig. 5.4 reveals the qualitative results of VQA samples with different VSC (difficulty
metric) related to question types of ‘how many ’ and ‘what sport ’. To visualize the
utilization of training samples in different learning stages in our method, we set
the initial difficult value d2 = 0, maximum model competence Cmax = 1, and the
difficulty increment parameter � = 0.5 for LBCL with total four-stage learning.
From the answer distributions of aforementioned question types, ‘2 ’ and ‘tennis ’
are prior answers accounted for large proportions in answer candidates. Hence, the
VQA samples about ‘2 ’ and ‘tennis ’ are endowed with lower values of VSC, as they
are severely suffered from language bias, and can hardly earn benefits from visual
contents. By contrast, the VQA samples whose correct answers are rare (‘12 ’ and
‘frisbee’) tend to acquire high VSC, which are mainly exploited in the ‘Stage 4’ (the
stage for ‘hard’ concept) to explore multimodal reasoning for VQA models.

5.5 Case Study

In Fig. 5.5, we make case studies to qualitatively show the superiority of our ap-
proach, where the VQA examples are sampled from the VQA-CP v2 test split.
These examples cover a broad range of question categories (e.g. recognition, veri-
fication and number), and the corresponding visual content could be color or grey
images. In general, compared with the baseline model, our approach yields bet-
ter results, and is inclined to obtain higher prediction certainty. In the train split
of VQA-CP v2, ‘Yes ’ is a prior answer which has higher frequency in contrast to
other answer candidates. As a result, for either relevant question ‘Is there someone
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Figure 5.4: (a) The qualitative analysis for VQA samples related to ‘how many’.
(b) The training answer distributions for question categories ‘how many’ and ‘what
sport’. (c) The qualitative analysis for VQA samples related to ‘what sport’. The
abbreviations in (b) and (c) are tennis (TN), skiing (SK), baseball (BB), skateboarding
(SB), soccer (SC), surfing (SF) and frisbee (FB).

clean the floor? ’ or irrelevant question ‘Why this man be taking a break? ’, the base-
line model overwhelmingly selects ‘Yes ’ as the correct answer, instead of achieving
multimodal reasoning. For the same reason, when the questions are related to ‘num-
ber’ and ‘sport’, prior answers ‘tennis ’ and ‘2 ’ have higher predicted results from
baseline model. On the contrary, our LBCL method can effectively avoid the afore-
mentioned statistical prior, and predict correct answers more related to the visual
modality.
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Base LBCL
Window: 34.7%
Couch: 21.3%
Wall: 20.6%

Carpet: 14.6%
Pillow: 2.3%

Window: 31.8%
Desk: 25.8%

Couch: 17.7%
Plant: 13.7%
On left: 3.9%

Base LBCL
7: 34.4%
8: 14.5%
2: 7.9%
5: 5.4%
6: 4.7%

2: 11.2%
3: 8.2%
8: 7.4%
7: 6.9%
1: 6.2%

Base LBCL
No: 67.5%
Yes: 23.8%

Cleaning: 3.3%
Walking: 1.5%

None: 0.7%

Yes: 50.8%
No: 39.72%

Neither: 7.0%
Cleaning: 5.3%

Toilet: 3.4%

Base LBCL
Hungry: 30.5%

Fun: 21.3%
Eat: 20.6%

Safety: 14.6%
No: 2.3%

Yes: 29.4%
Old: 22.7%
No: 19.0%
Eat: 18.6%
Store: 3.9%

Base LBCL
Store: 50.1%
Living: 30.4%
Kitchen: 4.5%
Garage: 3.0%
Dining: 1.8%

Dining: 34.0%
Living: 8.0%

Kitchen: 7.3%
bar: 6.4%

Toilet: 6.2%

Base LBCL
Frisbee: 39.4%
Tennis: 24.6%

Baseball: 19.2%
Soccer: 6.4%
Skating: 4.2%

Tennis: 31.53%
Frisbee: 29.54%
Skating: 7.23%
Baseball: 5.35%

Surfing: 2.4%

Figure 5.5: The VQA examples of case study on the VQA-CP v2 dataset

5.6 Conclusion

We presented a novel Language Bias driven Curriculum Learning (LBCL) for unbi-
ased VQA model. Our approach enabled VQA model to overcome language prior
through an easy-to-hard training strategy. In the structure of our LBCL, we de-
fined a novel difficulty metric Visual Sensitive Coefficient (VSC) to evaluate the
difficulty for each VQA instance in accordance with language prior. We also inte-
grated knowledge distillation into LBCL to avoid catastrophic forgetting problem
through progressive training. Extensive experiments showed the effectiveness of our
method.

96



5.6 Conclusion

Future Works: In the future, from the theoretical aspect, we plan to integrate the
meta learning into the LBCL, so as to automatically design the training difficulty
and for curriculum learning. From the practical aspect, we try to put our LBCL into
other multimodal scenarios, where the uni-modal bias problem is severe to impair
model robustness.
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