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ABSTRACT

In cancer immunotherapy, a patient’s own immune system is harnessed against 
cancer. Immune checkpoint inhibitors release the brakes on tumor-reactive T cells and 
therefore are particularly effective in treating certain immune-infiltrated solid tumors. In 
contrast, solid tumors with immune-silent profiles show limited efficacy of checkpoint 
blockers due to several barriers. Recent discoveries highlight transforming growth 
factor-β (TGF-β)-induced immune exclusion and a lack of immunogenicity as examples 
of these barriers. In this review, we summarize preclinical and clinical evidence that 
illustrates how the inhibition of TGF-β signaling and the use of oncolytic viruses (OVs) 
can increase the efficacy of immunotherapy and discuss the promise and challenges 
of combining these approaches with immune checkpoint blockade.

HIGHLIGHTS

•	 Immune checkpoint blockade is not effective in immune-excluded and immune-
desert tumors due to an immunosuppressive tumor microenvironment and the 
absence of activated T cells.

•	 TGF-β is a pleiotropic cytokine that contributes to immune exclusion and evasion 
in various cancer types.

•	 The therapeutic efficacy of oncolytic viruses is built on the recruitment of T cells 
and the induction of tumor-reactive immunity.

•	 Oncolytic virotherapy and inhibition of TGF-β signaling, either alone or in 
combination, are two emerging approaches to increase the susceptibility of 
immune-silent tumors to immune checkpoint therapy.

THE IMMUNE PROFILE OF SOLID TUMORS CAN DETERMINE 
THE EFFICACY OF IMMUNOTHERAPY

Our immune system is able to respond to invading pathogens and initiate a protective 
immune response. Although malignant cells are much more similar to the host than 
pathogens are, they still differ genetically, metabolically, and morphologically from 
normal cells and can therefore be recognized by the adaptive immune system, a trait 
called immunogenicity (see Glossary). In Box 1 we provide more information about 
processes involved in antitumor immunity. Immunotherapy is being extensively 
studied as a new modality of cancer treatment for a wide variety of tumors. In contrast 
to conventional therapies that directly target the proliferation, survival, or metabolic 
activity of tumor cells, cancer immunotherapy is directed towards immune cells with 
the purpose of eliciting a durable and effective anticancer immune response.
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Box 1: Priming of tumor-specific T cells
Recognition of tumors by T cells requires the expression of tumor antigens (TAs), 
aberrant proteins, or peptides beyond the normal repertoire that alert the adaptive 
immune system that the tumor cell is no longer healthy. Different classes of tumor 
antigens have been identified, of which neoantigens are the most tumor-specific. 
Neoantigens arise from genetic mutations in a tumor cell that give rise to a novel 
protein or peptide sequence. The number of mutations varies significantly per 
tumor type and it is believed that tumors with a high mutational burden are more 
immunogenic, display a higher immune infiltrate, and are more responsive to 
immune checkpoint inhibitors than tumors with a low mutational burden (1).

Whereas CTLs are believed to be the main T-cell subset responsible for eliminating 
cancer cells, CD4+ T helper cells are of vital importance in shaping the tumor-
specific T-cell response (2). Priming of naive CD4+ and CD8+ T cells towards effective 
tumor-specific CD4+ helper and CD8+ cytotoxic T cells, respectively, is a multifaceted 
process that requires uptake, processing, and presentation of TAs by dendritic 
cells (DCs) in the context of inflammation (3). The sensing of inflammatory signals, 
derived from pathogen-associated molecular patterns (PAMPs) or damage-
associated molecular patterns (DAMPs) by a DC induces a differentiation 
process called maturation. DC maturation is characterized by upregulated amounts 
of costimulatory molecules, antigen processing, and presentation pathways, and 
the production of type 1 helper T cell (Th1) skewing cytokines.

The tumor microenvironment (TME) is usually not inflammatory in nature, and 
additionally, tumors use several strategies to actively suppress the immune system, 
leading to T-cell ignorance. Activating tumor-specific CD4+ and CD8+ T cells by 
applying TAs in the optimal context together with a DC maturing agent is in some 
cases achieved by cancer vaccine platforms, such as synthetic peptide-based 
vaccines or dendritic cell-based vaccines (4-6). However, tumors often have the 
ability to escape immune recognition and destruction, which highlights the need 
for effective immunotherapeutic strategies to overcome these barriers.

The tumor immune profile is an important determinant to guide immunotherapeutic 
strategies (7,8). Clinical responses to immune checkpoint inhibition mostly occur in 
patients with an immune-infiltrated tumor phenotype, which displays a pre-existing 
but often dysfunctional immune response (9). In contrast to immune-infiltrated tumors, 
immune-excluded or immune-desert (also described as immune-silent) tumors are 
less susceptible to checkpoint inhibition because tumor-infiltrating T cells (TILs) are 
absent (10). Strategies to convert immune-silent tumors into immune-active tumors 
are desperately needed to broaden the fraction of patients that might benefit from 
immune checkpoint therapy. In this review, we discuss two emerging approaches that 
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might be harnessed on their own or in combination to enhance the efficacy of immune 
checkpoint inhibition in immune-silent tumors (Figure 1, Graphical Abstract).

Figure 1, Graphical Abstract. Combining TGF-β inhibition with oncolytic viruses to in-
crease efficacy of immune checkpoint blockade in solid tumors. Immune checkpoint 
blockade is mostly effective in immune-infiltrated tumors where T cells (blue) are present in the 
tumor nests (red) but may be dysfunctional. In immune excluded tumors, T cells are present 
but remain trapped in the stromal regions (brown) surrounding the tumor nests. TGF-β (dark 
green) inhibition is expected to change the phenotype of immune-excluded tumors towards an 
immune-infiltrated phenotype. In immune-desert tumors, a T cell response is absent. Combina-
tion strategies of oncolytic viruses with TGF-β-inhibition may also convert immune-desert tumors 
to immune-infiltrated tumors, facilitating effective immune checkpoint blockade for all immune 
phenotypes in solid tumors.

First, we discuss the inhibition of transforming growth factor β (TGF-β) signaling 
to enhance the efficacy of checkpoint blockade therapy given that recent evidence 
suggests that TGF-β may be a key factor in regulating immune exclusion and 
immunosuppression in solid tumors. Additionally, we highlight the potency of oncolytic 
viruses (OVs) to convert solid tumors from an immune-silent phenotype towards 
an immune-infiltrated phenotype. Lastly, we theorize how a combination of TGF-β 
inhibition, OVs and immune checkpoint blockade may be superior in efficacy compared 
to strategies that contain only two of these three aspects.
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IMMUNE CHECKPOINT INHIBITION CAN REINVIGORATE 
DYSFUNCTIONAL ANTITUMOR RESPONSES IN IMMUNE-
INFILTRATED TUMORS

The discovery of immune checkpoints boosted the development of immunotherapeutic 
strategies against certain cancers. Programmed cell death protein 1 (PD-1) and 
cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are well-recognized immune 
checkpoint receptors that can limit antitumor immunity using distinct mechanisms. 
CTLA-4 prevents T-cell activation by competing with the costimulatory molecule CD28 
for binding to their common ligands CD80 and CD86 (11). In contrast, PD-1 induces 
T-cell anergy or T-cell exhaustion after binding to one of its ligands, PD-L1 or 
PD-L2, expressed on the surface of tumor cells and/or immune cells (10,12). The use 
of blocking antibodies specific for these immune checkpoint axes can prevent or 
overcome T lymphocyte dysfunction and reinvigorate potent CD8+ T-cell-mediated 
antitumor immune responses, as has been demonstrated in clinical practice for 
hematological malignancies such as acute myeloid leukemia, as well as in solid tumors 
such as melanoma, lung, bladder and head and neck cancers (10,13). In addition to 
the CTLA4-CD80/86 and the PD-1-PD-L1/L2 axes, other coinhibitory receptor targets, 
such as lymphocyte activation gene 3 (LAG-3) (14), T-cell immunoglobulin and mucin-
domain containing protein 3 (TIM-3) (15) and C-type lectin receptor NKG2A (16,17), 
are currently being investigated in either preclinical studies or clinical trials for a 
wide variety of both hematological and solid cancers. Although checkpoint inhibition 
is able to induce dramatic responses in some types of cancer, the response rate 
in general ranges from 10-40% and heavily depends on the cancer type and the 
development of resistance during disease progression (18). Factors associated with 
a beneficial response to checkpoint blockade therapies include a high total number 
of mutations in tumor cell DNA (1), the presence of an interferon gene signature, 
the expression of proinflammatory and T-cell-recruiting chemokines such as CXCL9 
and CXCL10, the presence of CD8+ T lymphocytes in close proximity to tumor cells, 
and high PD-L1 expression, in particular on infiltrating immune cells (10,19-22). An 
immune cell-infiltrated tumor without a clinical response may suggest a pre-existing 
but dysfunctional tumor-specific CD8+ T-cell response (23).

One category of immune-silent tumors with relatively low susceptibility to checkpoint 
inhibition includes tumors with an immune-excluded phenotype, such as colorectal 
cancer, ovarian cancer, pancreatic ductal adenocarcinoma, and vulvar squamous 
cell carcinoma (24,25, reviewed in 26). Immune-excluded tumors are characterized 
by the presence of CD8+ T cells in the tumor-surrounding tumor stromal regions, 
but these T cells fail to infiltrate into the tumor beds (Figure 1) (27). The presence 
of stroma including cancer-associated fibroblasts (CAFs), extracellular matrix 
components such as collagen, and cells of the myeloid lineage, such as the so-
called myeloid-derived suppressor cells (MDSCs) (28) and tumor-associated 
macrophages (TAMs) (29), not only represents a physical barrier but also induces an 
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immunosuppressive tumor microenvironment (TME), which limits T-cell infiltration 
into tumor nests (26,30). Hence, it is necessary to overcome the physical barrier and 
modify the immunosuppressive TME in immune-excluded tumors to facilitate T-cell 
migration through the stromal region into the tumor cell nests, where these immune 
cells can fully exert their tumoricidal function. An additional type of immune-silent 
tumors that exhibits low susceptibility to checkpoint blockade is the immune-desert 
phenotype. Immune-desert tumors lack the presence of T cells completely and require 
preceding T-cell activation (31). Below, we discuss promising methods for achieving 
T-cell infiltration into immune-desert tumors.

OVERCOMING IMMUNOSUPPRESSION VIA TGF-β 
SIGNALING INHIBITION FOR IMMUNE-EXCLUDED TUMORS

TGF-β as a mediator of immunosuppression
The secreted cytokine TGF-β is one of the key factors believed to be responsible for 
immune exclusion and suppression in certain types of cancer, such as pancreatic 
cancer, non-small cell lung cancer, and colon cancer (32-34). In premalignant lesions, 
TGF-β signaling suppresses tumor growth by inducing apoptosis and inhibiting cell 
proliferation (35). However, during tumor progression, tumor cells become insensitive 
to TGF-β-induced cytostatic effects, and TGF-β functionally switches into acting 
as a tumor-promoting cytokine by promoting cancer cell migration and invasion, 
extracellular matrix (ECM) remodeling, epithelial-to-mesenchymal transition (EMT) 
and the formation of an immunosuppressive TME (36). TGF-β induces its prometastatic 
programs directly via cell surface TGF-β type I and type II serine/threonine kinase 
receptors (TGF-βRI and TGF-βRII) and intracellular SMAD-transcriptional effector 
proteins. Especially in human colon and pancreatic cancers, the TGF-β-induced 
cytostatic response is often inactivated by mutation of TGF-β receptors or SMADs (37). 
However, TGF-β is still produced in high amounts by cancer and stromal cells, which is 
associated with relapse and reduced survival (32,33,38). In Box 2, we provide further 
details regarding the TGF-β signaling pathway in cancer progression and metastasis, 
and how this pathway can be inhibited.

In addition to the regulation of tumor-promoting processes described above, TGF-β 
also inhibits the generation and function of CD4+ and CD8+ effector T cells and dendritic 
cells (DCs), while promoting the expansion of regulatory T cells (Tregs) and MDSCs 
(recently reviewed in 39). Early, pivotal studies showed that CD4-dnTGFβRII transgenic 
mice engineered to express a dominant-negative version of TGF-βRII in their CD4+ and 
CD8+ T cells rendered these mice resistant to tumor challenge with B16.F10 murine 
melanoma cells or EL-4 murine lymphoma cells (40). TGF-β inhibits the differentiation of 
CD4+ T cells into effector cells by silencing the expression of master transcription factor 
T-bet (41), while stimulating the transition of naive CD4+ cells into Tregs by inducing 
FoxP3 expression (42). In CD8+ T cells, TGF-β represses eomesodermin (EOMES), an 
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important transcription factor that regulates the effector program of cytotoxic CD8+ T 
cells (43). In a murine B16.F10 melanoma model, treatment with various small molecule 
kinase inhibitors specific for TGF-βRI not only directly inhibited phosphorylation of 
receptor-regulated SMAD proteins, but also induced ubiquitin-mediated degradation 
of SMAD4 mainly in CD8+ cytotoxic T lymphocytes (CTLs), and thereby increased 
their effector function and suppressed tumor growth (43). The important role of TGF-β 
in T-cell suppression was further illustrated by the observation that TGF-β induced the 
surface expression of PD-1 on both activated human peripheral blood mononuclear 
cells (PBMCs) and murine B16.F10 tumor-infiltrating CD8+ and CD4+ T cells through 
SMAD3-dependent transcriptional activation, thereby reducing T-cell effector function 
and limiting the antitumor response (44). Additionally, T cells genetically modified to be 
resistant to TGF-β showed significantly enhanced tumor control in an adoptive T-cell 
transfer setting in a syngeneic murine B16.F10 melanoma model in comparison with T 
cells that could still respond to TGF-β (45).

Box 2: TGF-β signaling in cancer and metastasis
Transforming growth factor β (TGF-β) is a pleiotropic cytokine produced in a latent 
form by cancer cells, various immune cells, platelets, and stromal cells (39). The 
signaling pathways activated by TGF-β and its family members are highly conserved 
among species and are involved in development, homeostasis, and regeneration 
(46). Dysfunction of the TGF-β signaling pathway might lead to various pathologies 
such as fibrosis, congenital defects, dysfunction of the immune system, and cancer. 
In short, all three TGF-β isoforms, i.e. TGF-β1, -β2, and -β3 are cleaved into their 
active form by integrins or matrix metalloproteinases, resulting in a TGF-β dimer. 
Signaling takes place via TGF-β type I and II serine/threonine kinase receptors 
(TGF-βRI and TGF-βRII) that are expressed on the plasma membrane (Figure I). 
Upon TGF-β-induced heteromeric complex formation of TGF-βRI and TGF-βRII, TGF-
βRII phosphorylates TGF-βRI, which subsequently leads to the phosphorylation of 
receptor-regulated SMADs (R-SMADs). R-SMADs form complexes with the common 
mediator SMAD4, which drives transcriptional regulation of various TGF-β target 
genes. Additionally, TGF-β family members can also signal in SMAD-independent 
manners by using non-canonical pathways such as the phosphatidylinositol-3 
kinase (PI3K)-AKT and the p38 MAP kinase pathway (47).

TGF-β acts as a tumor suppressor in the early stages of tumor development, 
but this function is lost during the later phases of cancer progression. Instead, 
TGF-β signaling promotes epithelial-to-mesenchymal transition (EMT) by reducing 
the expression of epithelial markers, such as E-cadherin, while increasing the 
expression of mesenchymal markers, such as vimentin (48). The TGF-β-induced 
exploitation of EMT during cancer progression is assumed to contribute to 
the growth of the primary tumor as well as metastasis. Because of the various 
functions of TGF-β during tumor progression and metastasis, multiple strategies 
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have been developed to block TGF-β signaling (Figure I). Current TGF-β pathway 
inhibitors work on different levels by either (A) preventing TGF-β production or 
expression of its receptor by antisense oligonucleotides (synthetic nucleic acids 
with a complementary sequence that prevents mRNA translation), (B) preventing 
TGF-β activation via integrin-blocking antibodies (49), (C) inhibiting the interaction 
between TGF-β and its receptor with neutralizing antibodies to TGF-β, blocking 
antibodies to TGF-βRII or ligand traps (engineered soluble forms of the receptor 
that compete with the cell-bound receptor) or (D) preventing intracellular TGF-β 
receptor signal transduction via small molecule kinase inhibitors such as 
galunisertib (reviewed in 50).

Figure I. Overview of TGF-β signaling across species. Arrows indicate processes. Latent 
TGF-β (dark green) is cleaved into its active form by integrins or matrix metalloproteinases, 
resulting in a TGF-β dimer. Active TGF-β induces heterodimerisation of TGF-βRI and TGF-
βRII, ultimately leading to the phosphorylation of TGF-βRI. Subsequent phosphorylation 
of R-SMADs initiates the SMAD-mediated transcription of TGF-β target genes. TGF-β also 
signals via non-SMAD pathways, via the so-called non-canonical pathways. Interference in 
TGF-β signaling is possible using various strategies (indicated in dark red) by inhibiting A: 
TGF-β (receptor) production, B: TGF-β activation, C: ligand-receptor interaction or D: TGF-
βRI receptor activation.
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The results of these in vivo studies hint towards a potential beneficial effect of 
TGF-β inhibition on the induction of a potent antitumor response. Indeed, antibody-
mediated inhibition of TGF-β was able to induce complete tumor regression when 
given as monotherapy in up to 20% of animals in the subcutaneous CCK168 model 
of chemically-induced cutaneous squamous cell carcinoma engrafted in FVB/NJ 
mice (51). Furthermore, rechallenge experiments suggested that TGF-β blockade 
induced immunological memory and long-term protection since both the parental 
cell line or similar chemically-induced cutaneous squamous cell carcinoma cell lines 
failed to grow in the animals that underwent complete regression (51). Similar effects 
were observed in a mouse model of murine 4T1-luciferase breast cancer, where 
complete regression was observed in 50% of animals after treatment with galunisertib 
(LY2157299 monohydrate), a small molecule that inhibits the kinase activity of TGF-
βRI (52). Mice with durable regressions also rejected tumor rechallenge with both 
the 4T1-luciferase cell line and the parental, less immunogenic 4T1 cell line, thereby 
demonstrating established immunological memory (52). In addition, inhibition of TGF-β 
signaling using the same compound unleashed a potent and enduring CTL response 
in murine metastatic colorectal cancer models, reducing both primary tumor growth 
and blocking the appearance of liver metastases (53). Rechallenge experiments with 
the same tumor model demonstrated rejection of most tumors in the absence of any 
treatment, an effect that was mitigated upon antibody-mediated depletion of CTLs, 
again suggesting that TGF-β could limit adaptive immune responses by inhibiting CTL 
responses (53). Overall, TGF-β can heavily impair CTL responses and induce a generally 
immunosuppressed TME, thereby promoting tumor progression and metastasis.

TGF-β inhibition can increase the efficacy of immune checkpoint therapy
As described above, TGF-β inhibition induces regression of primary tumors, prevents 
metastasis formation, and induces protection against tumor rechallenge in various 
mouse tumor models when applied as a monotherapy. However, can TGF-β inhibition 
provide an added therapeutic effect to immune checkpoint therapy? A rationale for 
this strategy was demonstrated by a genomic and transcriptomic analysis that revealed 
enrichment in markers of EMT, cell adhesion, and ECM remodeling in PD-1 therapy-
resistant melanoma patients in comparison to therapy-responding patients (54). All of 
these cellular processes are known to be regulated via TGF-β signaling (55). Moreover, 
transcriptomic analysis of human tumors from The Cancer Genome Atlas (TCGA) 
suggested that upregulation of ECM gene expression, such as genes encoding matrix 
metallopeptidases (MMPs) and collagen, was linked to the activation of TGF-β target 
genes in CAFs and that this pan-cancer signature predicted unresponsiveness to PD-1 
blockade (56). Additionally, single-cell sequencing studies identified a population of 
TGF-β-driven CAFs that was associated with poor response to anti-PD-L1 therapy in 
human immune-excluded tumors, such as pancreatic cancer and bladder cancer (57). 
Finally, gene set enrichment analysis identified the genes TGFB1 (encoding TGF-β1) and 
TGFBR2 (encoding TGF-βRII) to be associated with nonresponse to anti-PD-L1 therapy 
and reduced overall survival in patients with urothelial cancer (58). Altogether, these 
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studies support the use of TGF-β signaling pathway inhibitors to sensitize immune-
excluded tumors for immunotherapy. Indeed, combined treatment with anti-PD-L1 
and anti-TGF-β antibodies in the immune-excluded EMT6 mouse mammary carcinoma 
model led to a significant decrease in the tumor burden, reprogramming of stromal 
fibroblasts and increased infiltration of CD8+ T cells in comparison to either treatment 
alone (58). These effects were lost after antibody-mediated depletion of CD8+ T cells, 
indicating that the effect of this combination therapy was based on a potent CD8+ 
T-cell-driven antitumor immune response (58). In the 4T1 mouse model of metastatic 
breast cancer, TGF-β neutralization using the pan-isoform 1D11 monoclonal antibody 
during radiotherapy successfully decreased both primary tumor growth and the 
occurrence of metastasis and increased CD4+ and CD8+ T-cell infiltration (59). The 
addition of checkpoint blockade to this regimen led to complete tumor regression 
in 75% of mice, delayed tumor recurrence, and prolonged survival. Similar beneficial 
effects of combined checkpoint inhibition and TGF-β inhibition on tumor regression 
were observed in mouse models of 4T1 breast cancer (52), progressive metastatic 
liver disease (53), MC38 colorectal cancer (60), and on the metastatic spread to the 
lung of the colorectal tumor model CT26 (61). Additionally, in vivo treatment using the 
bifunctional fusion protein M7824, composed of an antibody targeting PD-L1 and a 
TGF-β ligand trap, has shown promising antitumor activity in a vast number of preclinical 
models, including orthotopic and subcutaneous mouse models of breast cancer, 
colon cancer, and renal adenocarcinoma, as well as in a xenograft model of human 
pharyngeal carcinoma (62). Last, a similar bifunctional fusion protein targeting CTLA-4 
instead of PD-L1 was shown to inhibit tumor growth more efficiently than anti-CTLA-4 
alone in human melanoma and triple-negative breast cancer models established in 
immunodeficient, humanized mice (63). Based on the promising effects observed in 
preclinical studies, various clinical trials are ongoing in which the combination of TGF-β 
inhibition and checkpoint blockade is investigated. For example, an ongoing Phase 1b/2 
dose-escalation and cohort-expansion study with 75 participants (NCT02423343)I aims 
to evaluate the safety, tolerability, and efficacy of the combination of galunisertib and 
anti-PD-1 in advanced refractory solid tumors (Phase 1b) and in recurrent or refractory 
non-small cell lung cancer or hepatocellular carcinoma patients (Phase 2). This trial and 
others may provide more information about the ability of dual inhibition of immune 
checkpoint axes and the TGF-β pathway to establish tumor growth control and prevent 
metastasis.

RECRUITING TUMOR-SPECIFIC T CELLS IS THE FIRST 
PRIORITY IN IMMUNE-DESERT TUMORS

While immune-excluded tumors may benefit from combined checkpoint blockade and 
TGF-β inhibition, tumors with the immune-desert phenotype are less likely to benefit 
from this combination therapy (10,64). Immune-desert tumors are characterized by 
an absence of T lymphocytes in both the tumor and the surrounding stromal regions 
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(10). The absence of pre-existing antitumor immunity is the first barrier that needs to 
be overcome before checkpoint inhibitors and TGF-β blockade can be used.

Using oncolytic viruses to induce antitumor immunity
A promising immunotherapeutic strategy that may promote antitumor immunity is 
treatment with oncolytic viruses (OVs) (65). The use of OVs as anticancer agents is 
emerging and driven by the FDA approval of talimogene laherparepvec (T-VEC), a 
modified herpes simplex virus type 1 (HSV-1) that increased survival and demonstrated 
favorable tolerability in advanced-stage melanoma patients (66). OVs selectively 
replicate in transformed cells, either naturally or after genetic modification (Figure 
2A). Accumulating evidence suggests that beyond their oncolytic activity, OVs have 
broad immunostimulatory properties. Mechanisms of action include the induction 
of local inflammation and priming and recruitment of tumor-reactive CD4+ and CD8+ 
T cells (Figure 2B) (67-70). In addition to their oncolytic and immunostimulatory 
properties, OVs can also be used as a delivery platform for tumor-specific expression of 
immunostimulatory transgenes such as cytokines, chemokines, costimulatory ligands, 
immune checkpoint inhibitors and TAs (Figure 2C) (71). More background on OVs is 
provided in Box 3.

Figure 2. Properties of oncolytic viruses. (A) Oncolytic properties. Oncolytic viruses (OVs) 
selectively replicate in malignant cells, either naturally or after genetic modification. Normal 
cells remain unaffected due to viral clearance. Viral replication together with the induction of 
cell death pathways leads to lysis of tumor cells. Oncolysis causes the release of virus progeny, 
which infects new tumor cells. 
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(B) Immuno-stimulatory properties. Virus replication causes oncolysis, which induces the release 
of tumor-specific and virus-specific antigens and pathogen- and damage-associated molec-
ular pattern molecules (PAMPs and DAMPs, respectively). On the one hand, the subsequent 
uptake and presentation of antigens by dendritic cells leads to the induction of tumor- and 
virus-specific T cells. On the other hand, viral infection and replication induces an inflammatory 
response which causes the release of T cell-attracting chemokines. The tumor- and virus-specific 
T cells are attracted by these chemokines and migrate towards the tumor to exert their function. 
(C) OVs as transgene delivery platform. Some OVs (such as adenovirus and vaccinia virus) can be 
modified to encode transgenes (armed oncolytic viruses) such as cytokines or antibodies, en-
suring specific delivery to the tumor microenvironment and further stimulation of an antitumor 
immune response.

Box 3: Oncolytic viruses as antitumor agents
Oncolytic viruses (OVs) are able to selectively infect, replicate in and lyse tumor cells 
that initially gained interest because of their tumor cell-lysing (oncolytic) capabilities. 
In contrast to normal cells, where virus infection initiates a type I interferon (IFN)-
driven antiviral response program, deficiency of this pathway in many cancer cells 
favors cancer-specific OV replication (85,86). Tumor-specific driver mutations, such 
as an activated RAS pathway, and upregulation of cell-entry receptor expression 
can further promote selective replication in tumor cells (87,88). Furthermore, some 
OVs, including adenovirus and HSV, have been engineered to increase their tumor 
specificity (89,90), whereas a strain of oncolytic reovirus has been bioselected by 
growing on cells that lack expression of the entry receptor to broaden its tropism 
for different tumor cells (91).

Beyond their oncolytic activity, OVs are able to induce a tumor-reactive T-cell 
response by acting as in situ vaccines (70,79,92). The process of T-cell priming is 
particularly effective during virus infection because virus-derived nucleic acids 
optimally induce the maturation of dendritic cells (67,70). Simultaneously, dying 
tumor cells are a source of TAs, leading to the priming of tumor-reactive CD4+ 
and CD8+ T cells (93,94). This process is further enhanced by the OV-induced 
IFN response, which recruits immune cells to the tumor and promotes antigen 
presentation (78). Noteworthy, the OV-induced in situ vaccine strategy does not 
rely on prior identification of TAs or neoantigens for a given tumor or patient, 
which conceptually would provide a major advantage over other types of cancer 
vaccines (71).

OVs can also be used as platforms for the specific delivery of transgenes into the 
tumor bed (71). Cytokines and chemokines represent attractive transgenes because 
they have pleiotropic effects and are encoded by small genes (95). The cytokine 
granulocyte-macrophage colony-stimulating factor (GM-CSF), which promotes DC 
recruitment and maturation, has been the most widely studied transgene and 
has been encoded in many different OV platforms (96-98), including the leading 
clinically approved OV T-VEC (99). Other cargoes used to promote tumor-reactive 
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T-cell responses include ligands for costimulatory receptors such as CD40 ligand 
(100,101) or inducible co-stimulator (ICOS) ligand (102), checkpoint blockers 
such as anti-PD-1 antibodies (103), or bispecific T-cell-engagers (BiTEs) (104). 
Alternatively, OVs can also be armed with enzymes such as DNase or hyaluronidase 
to promote intratumoral penetration (105), or TAs such as MAGE-A3, which turn 
OVs into oncolytic vaccine vectors (106).

In addition to the direct elimination of primary treated tumors, OVs can induce long-
term protection against secondary tumors (72-74). In an elegant rechallenge model, 
primary 4T1, EMT6, and E0771 murine breast cancer tumors were treated intratumorally 
with unarmed oncolytic Maraba virus MG1, after which the primary tumor was surgically 
resected (72). Thereafter, secondary tumors were implanted in the mammary fat 
pad and left untreated. Mice that were previously treated with Maraba virus showed 
significantly better tumor control of the untreated secondary tumor, and at least 
20% of the animals showed complete tumor control. When T-cell deficient nude mice 
were used in a similar experiment, this effect was completely lost, suggesting that 
a functional adaptive immune system was necessary to induce T-cell memory and 
subsequent protection from secondary tumors. The capacity to confer immunological 
memory was similarly demonstrated for vesicular stomatitis virus (VSV), adenovirus, 
and HSV-1 in the 4T1 breast cancer model (73). Presurgical treatment with reovirus was 
only effective against the primary tumor in this study (73), but did induce protective 
memory in the EMT6 murine breast cancer model in another study (75). The OV-induced 
tumor-reactive immunity is believed to be not only a crucial aspect of the therapeutic 
efficacy of OVs (76,77) but may also be utilized to sensitize tumors for other types of 
immunotherapy by enhancing immunogenicity or by attracting activated CD4+ and CD8+ 
T cells to nonresponsive tumors (65,68).

Oncolytic virotherapy can synergize with immune checkpoint blockade
Several OV platforms have been demonstrated to increase the number of TILs and 
sensitize tumors for checkpoint therapy, both in preclinical studies and in clinical trials 
(68,72,75,78-81). For example, a randomized Phase 1b clinical trial (NCT02263508)
II that investigated the combination of FDA-approved oncolytic HSV-1 T-VEC and 
pembrolizumab (anti-PD-1) in 21 patients with unresectable melanoma patients has 
shown promising results with a 61.9% objective response and a 33.3% complete 
response (82). Of note, responses have also occurred in patients whose tumors 
displayed a low CD8+ T-cell density and no PD-L1 expression at baseline, which 
originally emerged as the first potential predictive biomarker for insensitivity to 
immune checkpoint blockade (83). This trial is currently continued as a Phase 3 trial 
to investigate the effect of combined treatment with T-VEC and pembrolizumab on 
progression-free survival and overall survival in comparison with pembrolizumab alone 
(NCT02263508)II. Furthermore, the combination of T-VEC and ipilimumab (anti-CTLA4 
monoclonal antibody) has shown promising results in a randomized Phase 2 clinical 
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trial (NCT01740297)III with 198 patients with unresectable stage IIIB or IV melanoma that 
were randomly assigned half-half to combination therapy or ipilimumab alone (84). The 
combination therapy resulted in an objective response of 35.7% compared to 17.5% 
in the ipilimumab-only treated group (84). Driven by these encouraging initial studies 
and additional preclinical data, there are more than twenty ongoing clinical programs 
involving different OV platforms in combination with immune checkpoint inhibitors (65). 
Collectively, these studies not only highlight the potent role of OVs as anticancer agents 
but also illustrate their capacity to sensitize tumors for subsequent immunotherapy, 
although further robust testing is evidently warranted.

COMBINING OVS WITH TGF-β INHIBITION TO SENSITIZE 
SOLID TUMORS FOR IMMUNOTHERAPY

The lack of immunogenicity and the presence of stromal and immunosuppressive 
barriers are 2 major hurdles to effective immunotherapy for immune-desert tumors. 
Combined modulation of the stromal barrier by TGF-β inhibition and increasing 
immunogenicity using OVs might therefore be a potent strategy to sensitize immune-
desert tumors for T-cell-based immunotherapy. Indeed, systemic treatment with a 
small molecule TGF-βRI inhibitor in combination with a single intratumoral injection of 
oncolytic HSV-1 variant MG18L resulted in complete tumor regression in 60% of treated 
subjects in an orthotopic model of patient-derived recurrent glioblastomas established 
in severe combined immunodeficient (SCID) mice lacking mature B and T cells (107). 
In a human MDA-MB-231 breast cancer xenograft model established in nude mice, 3 
intratumoral injections of an oncolytic adenovirus armed with a soluble form of TGF-β 
receptor type II (sTGF-βRII) that functions as a ligand trap for TGF-β caused complete 
tumor regression in 7 out of 8 mice, which was better than the efficacy of the unarmed 
virus (3 out of 8 mice) and sTGF-βRII only (1 out of 8 mice) (108). Additionally, intravenous 
delivery of the same armed virus in this MDA-MB-231 breast cancer xenograft model 
significantly inhibited the progression of bone metastasis and prolonged survival 
when compared with the unarmed virus (109). A limitation of the studies performed 
in immunodeficient mice is that the role of T cells during the OV and TGF-β inhibition 
combination therapies remains underexplored. Combination treatment with 
intratumorally injected HSV1716, an attenuated unarmed oncolytic HSV-1, and a small 
molecule inhibitor of TGF-βRI was evaluated in immunocompetent models of murine 
rhabdomyosarcoma, resulting in tumor growth stabilization, significantly prolonged 
survival and even some complete responses compared to the single agents alone (89). 
In this study, the removal of T-cell responses via antibody-mediated depletion of CD4+ 
and CD8+ T cells or the use of athymic nude mice as recipients completely abolished the 
antitumor effect, indicating the importance of the T-cell response underlying efficacy 
of this combination treatment (89). Together, these preclinical studies suggest that the 
combination of TGFβ inhibition and OV therapy may be considered to putatively treat 
tumors with low immunogenicity and stromal or immunosuppressive barriers.
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CONCLUDING REMARKS

In this review, we discussed two promising therapeutic strategies to overcome barriers 
to effective immunotherapy in relation to the tumor immune phenotype. For the 
classification of tumor immune profiles, we relied on the three main tumor immune 
phenotypes postulated by Chen and Mellman (9). We recognize that other classification 
strategies are possible, and more detailed profiles based on immunophenotyping of 
tumors are being investigated (26,110). Immune-infiltrated tumors have an ongoing 
T-cell response, but the dysfunctional state of these T cells needs to be overcome by 
immune checkpoint therapy. Clinical successes in various tumors with this immune 
phenotype have already been reported, and many efforts to identify novel targets, find 
biomarkers of efficacy, and understand secondary resistance mechanisms are ongoing, 
and more breakthroughs are anticipated. Tumors with an immune-excluded phenotype 
require modification of the immunosuppressive TME to allow T-cell infiltration into the 
tumor before checkpoint therapy can be applied. As discussed above, TGF-β inhibition 
has emerged as a multifunctional strategy to increase the efficacy of immunotherapy 
due to its capacity to modify the desmoplastic TME, increase the cytotoxic activity 
of CD8+ (and possibly CD4+) T cells, and reduce the frequency of Tregs. However, due 
to the pleiotropic effects on different cell types and the heterogenicity of the TGF-β 
superfamily, TGF-β is a challenging target in terms of pharmacology.

For immune-desert tumors, immunotherapy is a different, much harder, challenge. 
Treating these tumors with immune checkpoint blockade and TGF-β inhibition may be 
useful only when a prior treatment strategy has increased the immunogenicity of the 
tumor and induced tumor-reactive T-cell responses. OVs may represent potent tools to 
evoke potent CD4+ and CD8+ T-cell responses, as has been demonstrated by multiple 
preclinical studies mentioned above. The addition of TGF-β blockade may increase the 
efficacy of this combination therapy even further, but this remains to be vigorously 
investigated. TGF-β inhibition can not only lift the immunosuppressive and physical 
barriers to allow T-cell infiltration into the tumor bed, but also lift a physical barrier for 
penetration of OVs into tumors. Previous studies have shown that stromal components 
in the TME, such as TGF-β-producing CAFs and collagen, may impair viral spread in 
tumors, limiting the efficacy of OVs (111). Indeed, an oncolytic vaccinia virus armed with 
a bispecific T-cell-engager (BiTE) directed against fibroblast activation protein (FAP) 
and murine CD3 decreased the number of FAP-expressing CAFs, increased the viral titer 
and T-cell accumulation in the tumor and enhanced antitumor efficacy in comparison 
with the unarmed virus in the murine B16.F1 melanoma model (112). Furthermore, 
in a similar approach with oncolytic Adenovirus that secretes FAP-targeting BiTEs, 
T-cell accumulation and antitumor efficacy were enhanced in xenograft models of 
subcutaneous human lung carcinoma and pancreatic adenocarcinoma established 
in NSG mice supplemented with pre-stimulated human T cells (113). Nevertheless, a 
great deal of caution needs to be taken with these interpretations since TGF-β and 
CAFs can also promote the efficacy of OV replication. A study performed in xenografts 
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derived from patients with pancreatic cancer showed that tumor-derived TGF-β made 
the CAFs more sensitive to infection with various OVs, such as Vaccinia virus, VSV, and 
Maraba virus by downregulating their antiviral program (114). In turn, CAFs produced 
high amounts of fibroblast growth factor 2, which impeded the ability of the pancreatic 
cancer cells to detect and respond to virus infection.

Because of this complex interplay, the interference between TGF-β signaling 
and OV treatment needs to be investigated further in the context of checkpoint 
blockade therapy. In particular, the rational choice of targets and the timing of the 
combination strategy might be of key importance to effectively sensitize tumors for 
immunotherapy (see Outstanding Questions). For instance, in an inducible murine 
model of BRAFV600EPTEN-/- melanoma with modest baseline responses to PD-1/PD-L1 
blockade, TGF-β inhibition failed to augment the response to anti-PD-1 immunotherapy 
whereas anti-CTLA-4 immunotherapy did benefit from the combination, resulting in 
tumor growth control and increased survival (115). Mechanistic studies in mice with 
subcutaneously implanted BRAFV600EPTEN-/- melanomas in C57BL/6 mice revealed that 
inhibition of TGF-β signaling promoted the proliferative expansion of stromal fibroblasts 
and increased the production of MMP9, which subsequently facilitated cleavage of 
PD-L1 on the surface of melanoma cells, ultimately leading to resistance to anti-PD-1 
therapy (115). The authors also demonstrated that TGF-β inhibition following anti-PD-1 
treatment had superior therapeutic efficacy compared to a continuous combination 
of TGF-β inhibition and PD-1 blockade (115).

Additionally, whether combinations of three separate strategies are achievable in 
terms of cost and the accumulating burden of adverse events in patients remains 
undetermined. Although side effects may be limited for all monotherapies (116-118), the 
question arises as to whether adding up these therapies still has manageable adverse 
effects. Encoding checkpoint blockers and TGF-β blocking agents in a single OV for 
intratumoral delivery may limit the therapeutic burden and systemic adverse effects 
(71), however, it remains to be assessed whether the antitumor efficacy of this strategy 
reaches its full potential when all agents are delivered to the tumor simultaneously. 
Additionally, not all OVs have sufficient space in their genome to allow the encoding 
of complicated and large molecules (119). Extensive preclinical studies need to be 
performed to elucidate the putative therapeutic effect of combined TGF-β inhibition 
and OV therapy to sensitize immune-desert tumors for immune checkpoint blockade 
or other immunotherapeutic strategies and to determine for which specific cancers 
these combinations can be helpful.

Although multiple challenges and questions remain to be addressed, combining immune 
checkpoint inhibition with strategies to overcome immune evasion and exclusion is 
expected to result in the induction of strong antitumor immune responses in a variety 
of cancers. It will be exciting to follow future progress in this area.
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OUTSTANDING QUESTIONS

•	 Can we develop approaches to selectively inhibit TGF-β signaling in immune cells 
or in a specific CAF subset to restore immune surveillance and overcome immune 
evasion in solid tumors?

•	 Is replication of oncolytic virus required for its expected synergistic effect with TGF-β 
signaling inhibition and immune checkpoint therapy?

•	 Which biomarkers can predict susceptibility to the combination therapy of oncolytic 
viruses, TGF-β inhibition, and immune checkpoint inhibition?

•	 Which criteria should be used to select the appropriate oncolytic virus and immune 
checkpoint inhibitor for application in combination therapy? Does this differ between 
tumor types or even between patients?

•	 What would be the optimal timing for a combination approach of oncolytic virus 
therapy, TGF-β signaling inhibition, and checkpoint blockade?

•	 Would it be technically feasible and therapeutically effective to genetically engineer 
a single oncolytic virus expressing TGF-β signaling antagonists and immune 
checkpoint inhibitors to limit the therapy burden for patients?

GLOSSARY

Bispecific T-cell-engagers (BiTEs): fusion proteins consisting of two different single-
chain variable fragments of monoclonal antibodies for simultaneous tumor cell binding 
and T-cell activation.
Cancer-associated fibroblasts (CAFs): cell type within the tumor stroma that can 
promote tumor progression by extracellular matrix remodeling and secretion of 
cytokines.
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Cytotoxic T lymphocytes (CTL): CD8+ effector T cells, important for the elimination 
of intracellular pathogens and malignant cells.
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4): immune checkpoint 
receptor that downregulates T-cell responses.
Damage-associated molecular patterns (DAMPs): endogenous molecules that are 
released from damaged cells, initiating a noninfectious inflammatory response.
Dendritic cells (DCs): antigen-presenting cells that are specialized in priming of naive 
T cells.
Epithelial-to-mesenchymal transition (EMT): a process by which epithelial cells 
de-differentiate towards migratory and invasive mesenchymal stem cells.
Extracellular matrix (ECM): a network of extracellular macromolecules such as 
collagen.
Immune-desert: tumor phenotype without an evident immune response.
Immune-excluded: tumor phenotype where tumor-reactive T cells are unable to 
infiltrate into the tumor beds due to a physical or immunosuppressive barrier.
Immune-infiltrated: tumor phenotype where inflammation is present and T 
lymphocytes have infiltrated the tumor.
Immunogenicity: the ability to evoke an adaptive immune response.
Immunotherapy: treatment focused on mobilizing the host immune system to combat 
disease.
Myeloid-derived suppressor cells (MDSCs): cells of the myeloid lineage with strong 
immunosuppressive properties that are associated with tumor progression.
Neoantigens: antigens that result from tumor-specific mutations and are absent from 
the normal genome.
Oncolytic viruses (OVs): viruses that preferentially replicate in and kill cancer cells.
Orthotopic tumor model: an experimental model where a transplanted tumor is 
placed in the organ of the original tumor.
Pathogen-associated molecular patterns (PAMPs): molecules derived from 
bacteria or viruses that evoke an inflammatory reaction.
Priming: process in which naive T cells encounter an antigen in the context of an 
activated dendritic cell and start clonal expansion.
Programmed cell death protein-1 (PD-1): immune checkpoint receptor expressed 
on the cell surface of T cells, which negatively regulates T-cell responses.
Regulatory T cells: FoxP3-expressing CD4+ T lymphocytes that functionally suppress 
effector T cells.
Small molecule kinase inhibitors: low molecular weight compounds that block the 
action of one or more enzymes called protein kinases.
Talimogene laherparepvec (T-VEC): genetically modified oncolytic herpes simplex 
virus type 1, designed to produce GM-CSF. FDA-approved for the treatment of 
melanoma.
T-cell anergy: functionally inactivated state of T cells after antigen encounter.
T-cell exhaustion: progressive loss of effector function in T cells due to prolonged 
antigen stimulation
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Transforming growth factor β: multifunctional secreted protein with three isoforms, 
involved in regulating and mediating many cellular processes.
Tumor antigens: proteins or substances produced in tumor cells that can be 
recognized by the adaptive immune system.
Tumor-associated macrophages (TAMs): macrophages found in tumors that exhibit 
immunosuppressive properties.
Tumor-infiltrating lymphocytes (TILs): white blood cells that have migrated into 
the tumor.
Tumor microenvironment (TME): the molecules, cells, and vessels that surround 
and interact with the tumor cells.
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