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ABSTRACT

Oncolytic viruses (OVs) represent a highly promising treatment strategy for a wide range 
of cancers, by mediating both the direct killing of tumor cells as well as mobilization 
of antitumor immune responses. As many OVs circulate in the human population, 
preexisting OV-specific immune responses are prevalent. Indeed, neutralizing 
antibodies (NAbs) are abundantly present in the human population for commonly used 
OVs, such as Adenovirus type 5 (Ad5), Herpes Simplex Virus-1 (HSV-1), Vaccinia virus, 
Measles virus, and Reovirus. This review discusses (pre)clinical evidence regarding the 
effect of preexisting immunity against OVs on two distinct aspects of OV therapy; 
OV infection and spread, as well as the immune response induced upon OV therapy. 
Combined, this review provides evidence that consideration of preexisting immunity is 
crucial in realizing the full potential of the highly promising therapeutic implementation 
of OVs. Future investigation of current gaps in knowledge highlighted in this review 
should yield a more complete understanding of this topic, ultimately allowing for better 
and more personalized OV therapies.

List of Abbreviations
Ad5; Adenovirus serotype 5
ADE; antibody-dependent enhancement
ATPP; Antibody-Targeted Pathogen-derived 
Peptides
BiTE; bispecific T-cell engager
CMV; Cytomegalovirus
CV-A21; Coxsackievirus A21
DAMP; damage-associated molecular 
pattern
DC; dendritic cells
EBV; Eppstein-Barr virus
EEVs; extracellular enveloped viruses
FcγRs; Fc-gamma receptors
FDA; Food and Drug Administration
HBsAg; Hepatitis B surface antigen

HSV-1; Herpes simplex virus type 1
ISG; interferon-stimulated gene
MHC; major histocompatibility complex
NAbs; neutralizing antibodies
NDV; Newcastle disease virus
NOD; non-obese diabetic
NOG; NOD.Cg-PrkdcscidIl2rgtm1Sug/ShiJic
NSG; NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
OV; oncolytic virus
OVA; ovalbumin
PAMP; pathogen-associated molecular 
pattern
TME; tumor microenvironment
T-VEC; talimogene laherparepvec
VSV; Vesicular Stomatitis Virus
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INTRODUCTION

Oncolytic viruses (OVs) are increasingly being recognized as a promising therapeutic 
modality for the treatment of a variety of cancers (1,2). Selective replication of OVs 
in cancerous cells, which can either be a result of natural viral tropism or artificially 
achieved by genetic modification, makes them highly specific antitumor agents with 
minimal off-target effects. An overview of the most prominently investigated OVs is 
provided in Figure 1. Increasing interest in the clinical potential of OVs has been driven 
by the Food and Drug Administration (FDA) approval of the modified Herpes Simplex 
Virus type 1 (HSV-1) talimogene laherparepvec (T-VEC), which was shown to significantly 
improve survival in patients with late-stage melanoma (3-5). Currently, there is an 
immense pipeline of over 200 registered clinical trials investigating the therapeutic 
application of various OVs as single agents or as part of combination therapies (6).

Figure 1. Properties of commonly investigated oncolytic virus (OV) platforms. dsDNA 
indicates double-stranded DNA. Green checkmarks indicate that a characteristic does apply to 
the specific OV platform, red crosses indicate that it does not. The presence of seropositivity is 
derived from clinical trial data (serum samples measured before treatment), or population stud-
ies. References for general information about each OV and seropositivity data: Ad5 (7-10), HSV-1 
(3,11-13), Vaccinia virus (14-17), Measles virus (18-22), Reovirus (23-29), VSV (30-32), NDV (33), 
Maraba virus (34), CV-A21 (35-37), Polio virus (38-40). *For Reovirus, only packaging of very small 
transgenes is possible, such as granulocyte-macrophage colony-stimulating factor (GM-CSF) (41).

Multiple mechanisms of action are known to contribute to the therapeutic efficacy of 
OVs, as was previously reviewed by us and others (42,43). Direct oncolysis is the result 
of viral repurposing of the infected cell for the production of viral genomic material 
and proteins, which eventually results in the release of progeny viral particles through 
cell lysis (44). Besides direct killing, there is accumulating evidence that shows that OVs 
can also stimulate strong immune-mediated antitumor effects (45). Local inflammation 
recruits immune cells to the tumor microenvironment (TME), where viral infection and 
killing of tumor cells result in the release of both pathogen- and damage-associated 
molecular patterns (PAMPs and DAMPs) and type I interferons (46). These PAMPs and 
DAMPs mediate the potent activation of dendritic cells (DCs) for antigen presentation. 
In combination with high tumor antigen availability due to oncolysis, this constitutes 
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an OV-induced ‘perfect storm’ which establishes conditions uniquely favorable for 
efficient priming and subsequent influx of both virus- and tumor-specific CD4+ and 
CD8+ T cells (Figure 2). Recent investigations into the OV-mediated delivery of immune-
stimulating transgenes into the TME, such as cytokines, costimulatory T-cell ligands, 
checkpoint inhibitors, or even tumor antigens, further illustrate the crucial importance 
of immunity in the context of OV therapy (47,48). Furthermore, OV therapy can promote 
the availability of tumor antigens. Most notably, OV-induced oncolysis of infected cells 
can result in the release of otherwise inaccessible tumor antigens, improving the 
immune response against cancer cells expressing these epitopes (49). Furthermore, 
OVs can be employed as so-called oncolytic vaccines, which encode or are coated with 
tumor antigens to steer the immune response toward antitumor specificity (50,51).

Figure 2. Mechanism of action of immune-stimulatory effects of OVs in the tumor 
microenvironment. OV administration leads to infection of tumor cells, which induces the 
upregulation of interferon-stimulated genes (ISGs) including T-cell attracting chemokines. The 
OV-induced expression of ISGs is followed by an increased influx of T cells into the tumor. Data 
is derived from studies where oncolytic reovirus is injected intratumorally in immunocompetent 
C57BL/6J mice bearing murine pancreatic KPC3 tumors (52,53). OV infection and ISG expression 
was determined by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and 
intratumoral T-cell influx was measured by flow cytometry.

Despite the immense therapeutic potential of OVs, some patients do not respond to OV 
therapy. One of the proposed limiting factors for effective OV therapy is the presence 
of preexisting immunity in patients (54). Therapeutic application necessitates the use 
of non-pathogenic OVs, but the fact that they are benign is often a result of the efficient 
immune response that is induced upon infection. Thus, previous exposure is likely to 
result in the presence of a potent preexisting immune response. In antiviral immune 
responses, circulating viral particles are recognized and subsequently neutralized by 
antibodies, whereas virus-infected cells are targeted by virus-specific cytotoxic CD8+ T 
cells. Therefore, possible effects of preexisting immunity on OV infection and spread 
predominantly involve a preexisting humoral response. Indeed, assessment of OV-
specific neutralizing antibodies (NAbs) in serum in both the general population and 
OV clinical trial cohorts, also termed seroprevalence, shows that preexisting immune 
responses are abundantly present. This is primarily the case for viruses that, besides 
their application as OVs, also circulate in the human population or are used as vectors 
for vaccination, such as Adenovirus serotype 5 (Ad5), HSV-1, or Vaccinia virus (Figure 1). 
Seroprevalence is much less common for OVs that mainly infect non-human hosts, such 
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as Vesicular Stomatitis Virus (VSV) or Newcastle Disease virus (NDV). So far, the general 
consensus has been that the presence of preexisting immunity decreases OV efficacy 
by enhancing viral clearance, thus limiting the window of therapeutic action. This has 
resulted in patient exclusion criteria based on the presence of neutralizing antibodies 
in some clinical trials, for example (NCT01227551) (55). However, emerging evidence 
suggests that OV-specific preexisting immunity might actually potentiate antitumor 
effects in some cases. Thus, a nuanced assessment of the effects of preexisting 
immunity in the context of OV therapy is warranted.

Here, we provide an overview of the currently available mechanistic insights regarding 
the effect of preexisting immunity in two distinct phases of OV therapy: 1) OV infection 
and spread upon administration, and 2) development of the OV therapy-induced 
immune response, while discussing the many variables that contribute to the effect 
of preexisting immunity in these phases. Furthermore, we discuss how preexisting 
immunity can be evaded or even utilized to enhance the therapeutic efficacy of OVs. 
By shining a light on the complex nature of preexisting immunity in the context of OV 
therapies, the collection of (pre)clinical data discussed here should prove instructive 
for future decisions regarding both fundamental investigation as well as the therapeutic 
application of OVs.

THE EFFECT OF PREEXISTING IMMUNITY ON OV INFECTION 
AND SPREAD

Until recently, interest regarding the effects of preexisting immunity has been largely 
focused on the early phases of OV therapy, which comprise the initial infection of tumor 
cells by the OV, its subsequent spread throughout the circulation, and the dissemination 
to distant tumors and tissues. Although neutralizing antibodies for commonly used OVs 
are present in the human population as well as cancer patients (Figure 1), their effect 
on the therapeutic efficacy of OVs is highly dependent on many variables, including the 
route of administration and the specific OV platform used.

Intratumoral OV therapy is largely unaffected by preexisting immunity
In the field of OV therapy, local versus systemic delivery is a huge topic of debate (56). 
Local, intratumoral delivery of OVs is in clinical practice for T-VEC (57,58) and is often 
used in preclinical studies to ensure efficient delivery to the tumor site (59). Theoretically, 
intratumorally administered OVs might be less accessible to preexisting antibodies than 
circulating OVs (Figure 3A), although this could vary depending on tumor vascularization 
(60). Direct cell-to-cell spread after infection with several OVs, including HSV-1, Vaccinia 
virus, and Measles virus, was shown to be unaffected by the presence of neutralizing 
antibodies in both in vitro and in vivo contexts (61,62). However, several other studies 
have reported that preexisting immunity can limit intratumoral viral replication or spread 
(63-65). For example, induction of preexisting immunity by intramuscular exposure to 
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Ad5 before intratumoral injection of this OV into subcutaneous HPD-1NR pancreatic 
carcinomas, resulted in rapid clearance of viral load from the tumor in hamsters (66).

Figure 3. Route of administration contributes to the effect of preexisting neutralizing 
antibodies (NAbs) on OV efficacy. (A) Intratumorally injected OVs might be less accessible 
to preexisting NAbs (in blue), leading to maintained therapeutic antitumor efficacy. (B) OVs that 
disseminate into the circulation after intratumoral injection, as well as OVs that are systemically 
administered, are susceptible to rapid neutralization. This can limit the delivery efficiency to 
(distant) tumors, but also decrease off-target toxicity.

Interestingly, although preexisting immunity against Ad5 and other OVs including HSV-1 
and Coxsackievirus A21 (CV-A21) can result in reduced intratumoral viral replication, 
preexisting immunity against these OVs does not mitigate the OV-induced effect on 
primary tumor growth or animal survival upon intratumoral OV therapy (63-69). These 
results highlight the discrepancy between viral replication and therapeutic efficacy 
in the setting of intratumoral administration (70). Indeed, clinical trials investigating 
the efficacy of various OVs with high seroprevalence that were injected directly into a 
variety of readily accessible tumors, such as melanomas, have been relatively successful 
(4,55,71-73). One of these trials, investigating the efficacy of intratumoral Ad5 treatment 
of pancreatic ductal adenocarcinoma, showed there was no significant correlation 
between preexisting anti-Ad5 antibody titers and changes in tumor size upon therapy 
(74). Thus, both the preclinical and clinical data suggest that, even though OV replication 
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might be decreased, preexisting immunity should generally not be considered an 
obstacle to primary tumor clearance in the setting of intratumoral OV therapy.

Rapid neutralization of OVs shed by infected tumors prevents viral 
dissemination
Although intratumoral OV therapy consists of direct injection of OVs into the tumor 
microenvironment, spillover and viral shedding as a consequence of oncolysis will 
introduce OVs into the circulation. These circulating OVs are readily accessible to 
preexisting antibodies and thus subject to neutralization, which can impact OV therapy 
in a variety of ways (Figure 3B). For instance, in the case of multiple tumors, preexisting 
immunity might prevent intratumorally administered OVs from disseminating to distant 
tumors. An example of this was shown to occur upon injection of CV-A21 into one 
of two bilateral subcutaneous YUMM 2.1 melanomas in immunocompetent C57BL/6 
mice (69). For naive animals, viral genomic material was present in the blood and 
both tumors, but intraperitoneal preexposure to CV-A21 completely precluded viral 
recovery from the circulation and the distant tumor. Likewise, another study showed 
that passive immunization with Vaccinia-specific immunoglobulins strongly reduced 
dissemination to lung, bone, and lymph node metastases in BALB/c mice upon injection 
of a primary 4T1 mammary carcinoma with luciferase-expressing Vaccinia virus (75). As 
such, preexisting immunity is likely detrimental to therapeutic efficacy in a setting of 
metastatic disease, where therapy should affect both the injected and distant tumors.

Importantly, preexisting NAbs can reduce toxicity associated with intratumoral OV 
therapy by limiting viral dissemination to off-target tissues. This was investigated 
in a study using an intratumoral injection of subcutaneous PymT-induced breast 
adenocarcinoma with a luciferase-expressing replication-deficient Ad5 in FVB/n mice 
(63). Here, intranasal exposure to Ad5 before OV therapy strongly reduced luciferase 
activity in the liver, which is a major site of Adenovirus off-target toxicity, while only 
slightly reducing transgene expression in the tumor. Similar results were obtained 
for intratumoral treatment of subcutaneous HaK kidney tumors with an Ad5 OV in 
Syrian hamsters (64). Here, intramuscular preexposure to Ad5 completely abrogated 
recovery of viral genome copies from the liver and lungs, as well as infectious virus from 
the liver, whereas naive animals exhibited dissemination to these tissues and active 
viral replication in the liver. Importantly, tumor growth was similarly inhibited for both 
naive and preexposed animals. Thus, it appears that NAbs prevent OV dissemination 
to distant tumors upon intratumoral therapy, but can also be beneficial by limiting 
dissemination and infection of off-target tissues.

The efficacy of systemic OV therapy is abrogated by preexisting immunity
Clinically speaking, systemic OV administration is often preferable to intratumoral 
injection, as it limits patient discomfort and allows for the treatment of tumors that 
are not easily accessible (76). However, since therapeutic efficacy in this context is 
completely dependent on dissemination via the circulation, preexisting immunity 
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represents a major hurdle to this route of administration (Figure 3B). Indeed, the 
preclinical efficacy of most systemically-administered OV therapies, including Measles 
virus, VSV, HSV-1, and Ad5, is severely abrogated by preexisting immunity (77-80). For 
example, a study investigating the efficacy of intravenous VSV-GFP treatment in BALB/c 
mice bearing subcutaneous CT26 colon carcinomas demonstrated that intravenous 
VSV exposure before OV therapy completely abrogated transgene expression and 
recovery of infectious virus from the tumor, which was not observed in naive animals 
(81). Similar attenuation was observed upon passive immunization with antibody-
containing serum, but not for animals receiving a transfer of T cells from donor mice 
exposed to VSV. Passive immunization with purified Ad5-specific antibodies was also 
shown to inhibit intratumoral Ad5 replication and clearance of subcutaneous LNCaP 
prostate cancer tumors in BALB/c nude mice treated intravenously with Ad5, while Ad5 
treatment demonstrated antitumor activity in a setting without Ad5 NAbs (80). As such, 
the accessibility of these systemically administered OVs to NAbs appears to be the main 
reason for their diminished therapeutic efficacy in an immunized host.

The specific site of intravenous delivery might be an important consideration for 
therapeutic outcome, as it influences the effect of preexisting immunity on OV 
efficacy. This was shown for HSV-1 therapy in BALB/c mice carrying hepatic metastases 
established by subcapsular injection of CT26 colon carcinoma cells (82). Here, 
intraperitoneal preexposure attenuated HSV-1-induced tumor clearance upon tail 
vein, but not portal vein delivery of HSV-1. As delivery into the portal vein reduces the 
distance to its target, it likely minimizes the window in which preexisting antibodies can 
abrogate therapeutic efficacy through the neutralization of OVs. Thus, this observation 
supports a model in which the required distance of OV dissemination is inversely related 
to the attenuating effect of preexisting immunity. Together, these studies support the 
role of preexisting antibodies as a likely contributing factor to the limited efficacy of 
clinical trials investigating systemic OV delivery and show that nuanced consideration 
of delivery sites is warranted.

EVADING PREEXISTING IMMUNITY FOR IMPROVED OV 
INFECTION AND SPREAD

To improve the infection and spread by OVs, many studies have explored modifications 
of OV therapy to evade neutralization by NAbs (54). Especially in the context of systemic 
therapy, such strategies might strongly increase therapeutic efficacy.

Cell carriage can rescue the efficacy of systemic OV therapy despite preexisting 
immunity
Avoiding recognition of OVs by neutralizing antibodies might be achieved by utilizing 
infected cells as ‘Trojan horses’ to deliver OVs to tumors (Figure 4A, C). Early clinical 
trials demonstrated that systemically delivered Reovirus was able to reach and actively 
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infect distant tumors, despite the presence of Reovirus-specific NAbs (83). Interestingly, 
replication-competent Reovirus could be recovered from circulating PBMCs, granulocytes, 
and platelets but not plasma. This suggests that immune cell carriage can be employed 
for shuttling and handing off OVs to distant tumors, as a means to evade OV clearance 
by neutralizing antibodies. Indeed, mechanistic studies have shown that Reovirus can be 
internalized by various immune cells, including DCs and T cells (84,85). One study assessed 
the consequences of cell carriage by subcutaneously implanting B16 melanomas, treating 
C57BL/6 mice intravenously with either free or cell-carried Reovirus, and then assessing 
the number of metastatic colonies in the tumor-draining lymph node (86). For both naive 
and Reovirus preexposed animals, Reovirus-loaded mature DCs and T cells outperformed 
free OVs in limiting lymph node metastases, likely as a result of more efficient draining and 
thus viral delivery to lymph nodes by immune cells. Similarly, T cells loaded with Measles 
virus facilitated delivery of Measles virus to tumors in the presence of NAbs (87). Other 
studies have investigated stem cells as potential OV carriers, as they are naturally resistant 
to chemotherapeutic drugs and can survive in the tumor microenvironment (88). As an 
example of such a strategy, Ad5-infected neural stem cells were less susceptible to in 
vitro serum neutralization and led to more efficient in vivo infection of intracranial GL261 
gliomas when delivered in multiple cycles, compared to naked OVs (89).

Figure 4. Strategies to evade neutralization by preexisting neutralizing antibodies 
(NAbs). (A) OVs can be carried by various (immune) cells, such as dendritic cells (DCs), T cells or 
stem cells to avoid neutralization. Alternatively, OV-NAb complexes can be internalized by cells 
expressing antibody-binding Fc-gamma receptors. (B) Usage of non-human OVs, epitope modifi-
cation or a protective coating to decrease recognition and clearance by NAbs. (C) Employment of 
evasion strategies described in (A) and (B) lead to decreased neutralization and improved delivery 
of the OV to the tumor.
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Interestingly, when using a cell carrier system for OV delivery, the presence of NAbs 
might even be beneficial. For instance, antibody-Reovirus complexes can effectively be 
internalized by human monocytes and delivered to tumor cells, resulting in infection 
and lysis of Mel-624 melanoma cells. This internalization is mediated via the antibody-
binding Fc-gamma receptors (FcγRs), expressed on the surface of monocytes and 
other immune cells (90). Similarly, antibody-neutralized CV-A21 was shown to be 
ineffective at killing Mel-624 cells in vitro unless carried and handed off by monocytes 
(90). Furthermore, A549 lung carcinoma cell lines artificially expressing FcγRs have 
been shown to internalize antibody-neutralized Ad5 (91). The antibody-dependent 
enhancement (ADE) of viral infection through internalization of antibody-virus 
complexes by FcγR-expressing cells has been described to occur for a range of viruses, 
such as Influenza virus, Measles virus, Coronaviruses, and most notably Flaviviruses 
(92,93). In contrast to Reovirus, these viruses can efficiently replicate in their carrier 
cells, ultimately resulting in cell death. Since this broadens viral tropism and eliminates 
immune cells, ADE is often associated with poorer disease outcomes. As such, the ability 
of some OVs to productively replicate in FcγR-expressing cells might preclude them 
from beneficial cell carriage, as it would result in the rapid elimination of carrier cells 
before they can facilitate viral dissemination to distant tumors. Nevertheless, it appears 
that delivery of OVs via (immune) cell carriage could be a promising new approach for 
systemic delivery of OVs, especially in preexposed individuals.

Non-human OVs demonstrate oncolytic activity towards human tumors but are 
less susceptible to neutralization
Another way to avoid recognition by preexisting immune responses is the use of 
alternative viral strains, which are sufficiently different from their human-infecting 
homologs but also display oncolytic effects (Figure 4B, C). The capacity of non-human 
OVs to kill human tumor cells has been demonstrated for various viruses, such as an 
HSV-1 virus derived from goats that was able to replicate in different human cell lines 
and induce apoptosis (94,95). Additionally, Adenoviruses isolated from non-human 
primates were shown to effectively infect and kill a wide range of human cancer cell 
lines in vitro, while not being neutralized by pooled human donor serum (96). Similarly, 
an avian Reovirus was able to infect hepatocellular carcinoma cells and induce apoptosis 
in vitro but is likely less susceptible to neutralization in humans, since structural analysis 
demonstrated that its neutralizing epitopes were distinctly different from its human 
homolog (97). Other examples of non-human virus species that are in development 
as oncolytic agents have been described elsewhere (98,99). The (pre)clinical efficacy 
of most of these non-human viruses remains to be proven, but they represent an 
attractive alternative to currently used OVs.

Genetic modification limits neutralization by OV-specific preexisting antibodies
Alternatively, antibody-binding sites of OVs can be altered by genetic modification, 
preventing neutralization by preexisting antibodies (Figure 4B, C). For example, the 
introduction of point mutations in the gD glycoprotein of HSV-1 was shown to result 
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in increased resistance to in vitro neutralization by monoclonal antibodies (100). More 
radical modification is also possible by exchanging surface glycoproteins of OVs with 
those from other viruses with lower rates of preexposure in the population. This so-
called envelope exchange has been utilized for the generation of chimeric Measles virus 
strains with surface proteins originating from the Canine Distemper virus, which retain 
their oncolytic activity in vitro and in vivo (77,79,101). Indeed, this modified Measles 
virus demonstrated potent oncolytic antitumor efficacy in athymic nude mice bearing 
intraperitoneal SKOV3.ip1 ovarian cancers and passively immunized with measles-
immune human antibody serum, while the efficacy of the non-modified Measles virus 
was strongly diminished (79). Similar chimerism has also been explored for Ad5, by 
switching its serotype to that of the related Ad3 or Ad35 to evade neutralization (102-
104).

Shielding or coating of OVs prevents immune recognition
Modification of neutralizing epitopes on OVs or the use of OVs from other hosts thus 
appear promising for the evasion of preexisting immunity present in the population. 
Nevertheless, both modified and non-human OVs will likely still be affected by the 
antiviral immune response induced by repeated therapeutic administrations. Thus, 
shielding surface epitopes of OVs with a non-immunogenic coat to prevent recognition 
might be an alternative strategy (Figure 4B, C). This can be achieved by genetic 
modification of the OV, as was shown for the insertion of an albumin-binding domain 
in the main capsid protein of Ad5 (105). Intravenous administration of a luciferase-
expressing Ad5 virus into nude mice bearing subcutaneous B16-CAR melanomas that 
were intraperitoneally preexposed to Ad5 led to complete neutralization, as the Ad5-
mediated luciferase expression within tumors was completely abolished. In contrast, 
the albumin-binding Ad5 did not suffer from significant loss of luciferase signal in 
tumors. Similarly, in nude mice bearing subcutaneous A549 or Sk-mel28 tumors 
that were intraperitoneally preexposed to Ad5, the oncolytic antitumor efficacy of 
intravenously administered albumin-binding Ad5 was maintained while the Ad5 without 
the albumin-binding domain was completely inefficacious. As another example, Vaccinia 
virus has been successfully modified to increase the release of so-called extracellular 
enveloped viruses (EEVs) upon infection, which have an additional membrane layer 
and are thereby less susceptible to immune-mediated clearance compared to Vaccinia 
virus particles themselves (75). This EEV-enhanced Vaccinia virus displayed improved 
spread to metastases in the lungs and lymph nodes after intratumoral delivery in 
BALB/c mice inoculated with 4T1 tumors in the mammary fat pad, compared to a 
Vaccinia virus variant that was less capable to produce EEVs. Similarly, a significant 
survival advantage was provided by the EEV-enhanced strain over the wild-type virus 
in BALB/c mice bearing subcutaneous JC tumors.

Alternatively, OVs can be artificially coated by the attachment of ionic polymers, 
graphene sheets, or liposomes to shield them from antibody recognition (78,106). 
For example, multilayer ionic polymer coating of Measles virus resulted in improved 
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control of subcutaneous LL/2-CD64 lung cancer tumors compared to the non-coated 
virus in Measles-preimmunized C57BL/6N mice (107). In another study, shielding 
of Ad11 using a hybrid membrane comprised of artificial lipid membranes and red 
blood cell membranes protected the virus from neutralizing antibodies, prolonged 
its circulation, and enhanced its antitumor efficacy in the murine TC1 lung cancer 
model (108). Further (pre)clinical evaluation of the strategies described above would 
be interesting to optimally enhance the efficacy of (systemically delivered) OV therapy 
in preexposed patients.

EFFECTS OF PREEXISTING IMMUNITY ON THE OV THERAPY-
INDUCED IMMUNE RESPONSE

Besides viral replication and oncolysis, the induction of a potent immune response is 
a second, but equally important pillar of OV therapy (45) (see also section 1). However, 
if and how the presence of preexisting immunity also affects the OV-induced immune 
response remains underexplored. Here, we gathered (pre)clinical evidence that 
describes the effect of preexisting immunity regarding the induction of virus- and 
tumor-specific immune responses.

Repeated OV exposure can limit the induction of a tumor-specific immune 
response
Indications that preexisting immunity can affect OV-induced immune responses can be 
derived from studies utilizing multiple dosages of OVs. Specifically, it has been shown 
that homologous boosting regimens impair the induction of a tumor-specific T-cell 
response, in contrast to heterologous prime-boost schedules utilizing a combination 
of distinct OV platforms. An example of this was shown for intratumoral OV therapy of 
hamsters with subcutaneously implanted HaK kidney tumors or HPD-1NR pancreatic 
carcinomas (109). In both models, a heterologous treatment schedule comprising three 
intratumoral Ad5 injections followed by three intratumoral Vaccinia injections displayed 
significantly superior antitumor efficacy compared to 6 doses of either virus alone. 
This heterologous OV therapy resulted in improved induction of tumor-specific T cells 
compared to treatment with either virus alone, and these T cells were responsible 
for therapeutic efficacy since the depletion of CD3+ T cells completely abrogated the 
antitumor effect of this combination therapy. OVs encoding a transgene appear to be 
similarly affected by dosage regimens. For instance, in a CT26 metastasis model where 
tumors express β-galactosidase, two intravenous doses of either β-galactosidase-
expressing Vaccinia virus or the related β-galactosidase-expressing Fowlpox virus 
resulted in inferior overall survival compared to sequential treatment with both 
viruses (110). Heterologous boosting led to higher β-galactosidase-specific CD8+ 
T-cell responses compared to homologous boosting, and homologous boosting was 
associated with the induction of a strong antiviral antibody response.
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Although repeated OV administration can hamper the OV-induced tumor-specific 
T-cell response, evidence for the mechanisms underlying this problem remains elusive. 
This phenomenon could simply be explained by lower clearance of the OV by NAbs, 
but another possible explanation could be derived from the immunodominance of 
previously encountered viral T-cell epitopes. Besides the notion that most viral epitopes 
are inherently more immunogenic than most tumor epitopes, an OV-specific T-cell 
response is boosted upon the reintroduction of previously recognized viral epitopes. 
Both aspects might result in an immunodominant OV-specific T-cell response over the 
tumor-specific T-cell response (Figure 5). This phenomenon, sometimes referred to 
as ‘original antigenic sin’ (111), has been extensively studied for vector-based vaccines 
and Influenza infections but has not gained a lot of attention in the field of OV research 
(112). Nevertheless, as similar viral strains are often used in both fields, data showing 
problematic viral epitope immunodominance for vector vaccines highlights current 
gaps in OV research and might indicate shared mechanisms. Of note, it could be that 
different OV platforms vary in their inherent immunogenicity, making them more or 
less dominant over the tumor-specific immune response. Indeed, research on viral 
vectors has shown that viral backbones can differ in the type and potency of immune 
responses they induce (113), indicating the same might be true for OVs.

Figure 5. Immunodominance of OV-specific T-cell responses over tumor-specific T-cell 
responses. Viral epitopes are often more immunogenic compared to most tumor epitopes. Ad-
ditionally, in the setting of preexisting immunity or repeated dosage, the preexisting OV-specific 
T-cell response is boosted upon repeated recognition of the viral epitopes. These combined as-
pects may result in an impaired induction of an antitumor T-cell response compared to a strong 
virus-specific T-cell response.

The possible immunodominance of the viral backbone over transgenes could especially 
be relevant for OVs which encode tumor antigens. For instance, investigation of 
intramuscular delivery of Hepatitis B surface antigen (HBsAg) and ovalbumin (OVA) 
antigen in BALB/c mice using an Ad5-based vector revealed prior exposure to Ad5 
strongly reduced the HBsAg- and OVA-specific CD8+ T-cell responses (114). Instead, 
isolated CD8+ T cells were mainly reactive to Ad5 epitopes. Skewing of immunity towards 
an antiviral response was replicated in antibody-deficient IgH-/- mice, indicating it is the 
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established Ad5-specific cellular immunity, and not the Ad5-specific humoral response, 
that limits the priming and expansion of HBsAg/OVA-specific CD8+ T cells. Similarly, 
induction of CD4+ and CD8+ T-cell responses specific for an Influenza virus antigen, 
which was intramuscularly delivered using a Vaccinia virus vector, was completely 
abrogated by prior exposure to Vaccinia virus (115). Highlighting the relevance of such 
preclinical observations, clinical data suggests similar immunodominance occurs in 
humans. For example, several trials of Ad-vectored vaccines have reported correlations 
between preexisting Ad-specific CD4+ T cells (116,117) or antibodies (118) and strongly 
decreased induction of CD4+ T-cell, CD8+ T-cell and antibody responses directed against 
the delivered vaccine antigen. Although these studies utilized Adenovirus to deliver 
Ebolavirus and HIV epitopes irrelevant to OV therapy, these observations might be 
relevant to the field of OV research. Furthermore, the discussed data on OV boosting 
regimens might suggest that preexisting immunity could also affect responses to tumor 
antigens released after oncolysis, due to the simultaneous release of viral epitopes.

Intramuscular, intravenous, and intratumoral OV administration are likely to result in 
distinct dynamics of viral epitope exposure to the immune system and thus influence 
the development of antiviral immunodominance, but a direct comparison of routes of 
administration has yet to be performed. Regardless of the underlying mechanisms, 
heterologous prime-boost regimens appear to be beneficial for some OV therapies 
by improving tumor-specific immune responses and tumor clearance. Consequently, 
clinical trials of such strategies are promising and currently ongoing. For example, 
sequential systemic therapy with Ad5 and Maraba virus, both encoding the tumor 
antigen MAGE-A3, showed preclinical efficacy and is currently being tested for the 
treatment of advanced metastatic solid tumors and non-small cell lung cancer 
(NCT02285816, NCT02879760) (119-121).

Preexisting OV-specific immunity can also improve therapeutic anticancer 
efficacy by enhancing tumor-specific T-cell responses
The data described above suggested that OV administration might result in the 
dominance of OV-specific T-cell responses over tumor-specific T-cell responses upon 
repeated exposure. However, other studies suggest that preexisting OV-specific 
immunity does not hamper, but can actually promote the induction of a systemic 
tumor-specific immune response. An example of this was shown for immunocompetent 
C57BL/6J mice with subcutaneously implanted bilateral B16.F10 melanomas, of which one 
was injected with NDV (122). In this setting, prior subcutaneous footpad exposure to NDV 
led to improved control of tumor size as well as extended survival upon intratumoral NDV 
treatment, even though viral replication was compromised. For both the injected and 
distant tumor, the ratio of conventional CD4+ T cells over regulatory T cells as well as the 
expression of genes related to immune-mediated cytotoxicity were strongly increased by 
preexposure to NDV. In the distant, but not the injected tumor of preexposed animals, 
an increase in CD8+ T-cell influx could be observed, which was not the case for the 
distant tumors of naive animals. Prior NDV exposure did not significantly increase 
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the amount of virus-specific CD8+ T cells in the spleen but instead caused a strong 
increase in the amount of tumor-specific CD8+ T cells. CD8+ T-cell depletion completely 
abrogated the antitumor effect of NDV in immunized mice, suggesting that CD8+ T cells 
were indispensable for the therapeutic efficacy of NDV in a preexposed setting. Similar 
effects of preexisting immunity on therapeutic OV efficacy were recently shown for 
the intratumoral treatment of BALB/c mice with subcutaneously implanted bilateral 
CT26 colon carcinomas using a highly modified HSV-1, expressing several cytokines 
and a PD-L1 blocking peptide (123). Control of both the injected and distant tumors was 
improved by subcutaneous preexposure to HSV-1, as was overall survival. Strikingly, the 
outgrowth of the distant tumor was completely unaffected by intratumoral OV therapy of 
the local tumor in naive animals, showing preexisting immunity was required for systemic 
efficacy in this setting. Gene expression profiling of tumors again revealed a skewing 
toward cytotoxic and inflammatory responses. Additionally, isolated splenocytes from 
preexposed mice were more reactive to tumor cells compared to splenocytes from naive 
animals, indicating an increased induction of tumor-specific immunity.

Thus, it appears that preexisting immunity can also promote the induction of a 
tumor-specific immune response upon therapy with these OVs. These tumor-specific 
responses have a systemic impact with efficacy on distant tumors and could thus have 
the potential to treat metastatic disease. Whether this phenomenon extends to other 
OV platforms and its underlying mechanisms, however, remains to be explored. One 
possibility could be that preexisting antiviral CD4+ T cells aid the development of tumor-
specific CD8+ T cell responses. CD4+ T-cell help has been well established as a crucial 
factor in the induction of robust CD8+ T-cell responses but is generally considered 
to be restricted to responses specific to the same antigen (124). Nevertheless, some 
studies have indicated that CD4+ T cells might also mediate more general immune-
stimulating effects upon activation by their cognate antigen, such as an increase in naive 
lymphocyte recruitment to lymph nodes (125). Indeed, it was recently shown in C57BL/6 
mice that were intramuscularly vaccinated with tetanus toxoid before intratumoral OVA-
coated Ad5 therapy, that additional coating of the Ad5 with major histocompatibility 
complex (MHC) class II-restricted tetanus toxoid peptides led to increased infiltration 
of tumor-specific CD8+ T cells into subcutaneous B16.OVA melanomas (126). As the 
tetanus toxoid coating resulted in potent stimulation of preexisting pathogen-specific 
CD4+ T-helper cells, it appears likely that pathogen-specific CD4+ T-cell help can 
potentiate tumor-specific CD8+ T-cell responses. In another study, it was revealed 
that prior vaccination against poliovirus substantially improved the antitumor efficacy 
of intratumoral polio treatment in C57BL/6 mice bearing murine melanoma B16.F10 
tumors, and that this antitumor effect was mediated by the recall of CD4+ T cells and 
the induction of tumor-specific T cells that could delay tumor outgrowth in naive mice 
after adoptive cell transfer (127). So far, preexisting virus-specific CD4+ T cells have 
been largely overlooked in the OV research field, but these observations suggest that 
they might play an important part in modulating the OV-induced immune response, 
especially in a setting where preexposure has occurred.
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EXPLOITING PREEXISTING VIRUS-SPECIFIC IMMUNITY FOR 
EFFECTIVE ANTICANCER IMMUNOTHERAPY

Regardless of the induction of a tumor-specific immune response in a preexposed 
setting, increasing amounts of evidence suggest that preexisting antiviral effector 
responses might also be engaged to directly contribute to tumor clearance and thus 
therapeutic efficacy. Studies have shown that antiviral CD8+ T cells commonly survey 
a range of both murine and human tumors, including melanomas, brain metastases, 
endometrial, lung, and colorectal cancers (128,129). Upon immune cell profiling, tumor-
specific CD8+ T cells found in patient tumors expressed high levels of T-cell exhaustion, 
likely as a result of chronic antigen exposure in the tumor (129). CD8+ T cells specific 
for common viral pathogens, such as Cytomegalovirus (CMV), Eppstein-Barr virus 
(EBV), or Influenza virus, on the other hand, exhibited phenotypes more in line with 
active effector cells. Indeed, virus-specific T cells, as determined by staining with HLA 
tetramers specific for these viruses, could be potently activated after isolation from 
tumor tissue by providing relevant viral peptides (128). Various strategies are described 
to employ antiviral T cells for anticancer therapy, either by reactivation using their 
cognate antigens, or in a specificity-independent manner.

Preexisting antiviral T cells can be activated and engaged for anticancer therapy
The engagement of preexisting antiviral T cells for antitumor activity is an appealing 
avenue for immunotherapy, in particular for the treatment of low-immunogenic tumors 
(Figure 6). One way to achieve this is by delivering viral epitopes into the tumor, resulting 
in the activation of antiviral T cells present in the tumor microenvironment. For example, 
preexisting Reovirus-specific CD8+ T cells, induced by vaccination with a synthetic viral 
peptide containing the Reovirus CD8+ T-cell epitope, were efficiently recruited into 
subcutaneous KPC3 pancreatic tumors upon intratumoral injection of Reovirus (53). 
In this study, the presence of this preinstalled pool of Reovirus-specific effector cells 
significantly delayed tumor outgrowth after intratumoral Reovirus administration, an 
effect not observed when Reovirus was administered to naive animals. Similar effects 
on tumor growth were observed in animals that were immunized with Reovirus before 
vaccination, showing that vaccine-mediated boosting of preexisting Reovirus-specific 
CD8+ T cells can improve OV therapeutic efficacy. Similarly, intratumoral delivery of the 
Vaccinia virus-derived B8R protein by a recombinant adeno-associated virus reactivated 
preinduced Vaccinia-specific CD4+ and CD8+ T cells and retarded outgrowth of murine 
DT6606 pancreatic tumors (130).

Besides direct infection with a virus, other innovative strategies can also be employed to 
reactivate virus-specific T cells. Although these studies often investigate the use of non-
OV-specific T cells, these observations should also be instructive for the employment of 
preexisting OV-specific T cells. For example, injection of B16 melanomas with the viral 
peptide SIINFEKL resulted in improved tumor control and survival over an irrelevant 
peptide in C57BL/6J mice that had previously received a transfer of OT-1 CD8+ T cells 
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which target this epitope (128). Similarly, intratumoral injection of murine CMV (MCMV)-
derived T-cell epitopes triggered the expansion of MCMV-specific CD4+ and CD8+ T cells 
in TC1-bearing immunocompetent mice that were preexposed to MCMV (131). Injection 
of MHC-I-restricted MCMV epitopes into TC1 tumors induced a T-cell/IFN-γ signature, 
delayed tumor outgrowth, and improved survival. Expanding on such an approach is 
the idea that the conjugation of virus-derived epitopes to tumor-targeting antibodies 
might improve their specificity and facilitate systemic efficacy. This was demonstrated 
in a study where CMV-derived epitopes conjugated to an antibody targeting the tumor 
antigen MMP14 could be used for efficient recruitment of preexisting antiviral CD8+ 
T cells towards various MMP14-expressing tumors (132). This resulted in improved 
control of orthotopic MDA-MB-231 breast tumors, as well as orthotopic SNU-475 liver 
or subcutaneous MGH-1 lung tumors.

Figure 6. Strategies to exploit or redirect (preexisting) virus-specific T cells for antitu-
mor immunotherapy. Multiple avenues can be employed to exploit the specificity of (oncolytic) 
virus-specific immunity for anticancer immunotherapy. (1) Preexisting OV-specific T cells can be 
attracted to the tumor by intratumoral OV administration and activated by presentation of OV 
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epitopes on the surface of tumor cells in MHC-I proteins. (2) Intratumoral delivery of viral peptides 
leads to activation of intratumoral virus-specific T cells. (3) Complexes of viral peptides together 
with a tumor-targeting antibody can recruit OV-specific T cells to the tumor. (4) Adaptor mole-
cules binding to both OV-specific antibodies and tumor antigens induce NK- and T-cell-mediated 
killing of tumor cells. (5) Utilization of CD3-bispecific antibodies transforms OV-specific T cells 
into tumor-attacking T cells. NK; natural killer, MHC-I; major histocompatibility molecule class I; 
TA; tumor antigen, Ab; antibody.

A similar principle was applied in a model where immunodeficient female non-obese 
diabetic (NOD).Cg-PrkdcscidIl2rgtm1Sug/ShiJic (NOG) mice bearing MDA-MB-231 breast 
cancer xenografts received an adoptive transfer of expanded human EBV-specific CD8+ 
T cells, which were subsequently directed to the tumor by use of immunoconjugates 
called Antibody-Targeted Pathogen-derived Peptides (ATPPs) (133). Here, MHC class I 
peptides are conjugated to antibodies specific for a tumor antigen that is expressed 
on the tumor cell surface. This tumor-specific delivery of EBV peptides activated EBV-
specific T cells and delayed tumor outgrowth in combination with PD-1 checkpoint 
blockade. Similarly, in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) mice bearing the same MDA-
MB-231 tumors, CMV-specific T cells could be redirected to exert antitumor efficacy 
via a CD8+ T-cell epitope-delivering antibody (termed TEDbody), which was engineered 
to deliver a viral MHC-I epitope peptide into the cytosol of target tumor cells by fusion 
with a tumor-specific cytosol-penetrating antibody (134).

Thus, delivery of viral epitopes into the tumor microenvironment, through a variety of 
ways, can be utilized to engage preexisting antiviral T cell populations for antitumor 
effect. An exciting strategy involves the exploitation of ‘molecular mimicry’, where 
preexisting virus-specific T cells can demonstrate cross-reactivity toward tumors after 
restimulation with tumor-specific antigens that display high similarities to their cognate 
viral antigens (135). For instance, in a cohort of melanoma patients with high anti-CMV 
antibody levels, it was suggested that molecular mimicry between CMV and tumor 
antigens played a role in the response to anti-PD1 therapy blockade by activation of 
cross-reactive T cells. Another enticing opportunity is the reactivation of T cells that are 
induced by exposure to a common virus or established antiviral vaccines, which have 
already been abundantly tested for clinical safety and are administered to a majority 
of the human population. As examples of this, T cells specific for Influenza virus (136), 
Yellow Fever virus (137), or even SARS-CoV-2 (138) might be employed for anticancer 
therapy.

Redirecting the specificity of preexisting virus-specific responses for their use as 
anticancer effector cells
As an alternative approach to using the specificity of preexisting antiviral immune 
responses, the inherent specificities could also be redirected to the tumor by using 
bispecific molecules (139). Such retargeting of preexisting virus-specific antibodies 
and T cells for antitumor activity using bispecific molecules might be used to improve 
OV efficacy (140) (Figure 6). For instance, a recent study described the design of a 
bispecific adaptor molecule containing an Ad5 antibody-binding epitope and a domain 
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that binds polysialic acid, a surface adhesion molecule associated with a range of 
cancers (141). Immunocompetent C57BL/6 mice were immunized with Ad5 to develop 
anti-Ad5 antibodies, which were subsequently recruited to the tumor with the bispecific 
adaptor molecule. This treatment led to improved tumor control and survival of mice 
with subcutaneous polysialic acid-expressing MC38 colon carcinomas, CMT-64 lung 
carcinomas, and B16F10 melanomas compared to naive mice. Further studies in MC38 
tumors established a model in which the retargeted Ad5 antibodies recruited and 
activated NK cells, which mediated initial tumor cell killing through antibody-dependent 
cellular cytotoxicity (ADCC) and thereby induced the priming of a tumor-specific CD8+ 
T-cell response (142).

Besides virus-specific antibodies, preexisting OV-specific T cells can also be directly 
recruited for antitumor efficacy using CD3-bispecific molecules (also known as 
bispecific T-cell engagers (BiTEs)). For instance, intratumoral Reovirus administration to 
subcutaneous KPC3 pancreatic tumors expressing tumor antigen TRP1 led to a strong 
influx of virus-specific CD8+ T cells, which could be subsequently engaged for delayed 
tumor growth by intraperitoneal administration of a bispecific antibody targeting 
both CD3 and TRP1 (52). When tested in a bilateral model, this combination therapy 
led to delayed tumor growth for both the injected and non-injected distant tumors, 
showing such strategies could be efficacious in a setting of metastatic disease. Current 
undertakings in this field especially involve the use of OVs encoding BiTEs, where the 
OV acts both as an immunostimulatory agent, as well as a vector for BiTE delivery 
into the tumor (143). Together, these results showcase the potential of bypassing the 
specificity of preexisting antiviral immunity using bispecific molecules for effective 
anticancer therapy.

CONCLUDING REMARKS

In this review, we discussed how preexisting immunity against OVs can act as a 
barrier, but also as a bridge to effective anticancer therapy. As is evident from the data 
described here, a preexisting OV-specific humoral response against commonly-used 
OVs might limit viral replication and spread, especially when the OV is administered 
intravenously. Importantly, even for OVs that do not abundantly circulate in the human 
population, the observations discussed here are highly relevant, as therapeutic 
regimens usually entail multiple OV administrations. Each dose will invariably lead to 
the development of an antiviral immune response that modulates the efficacy of the 
next round of therapy.

Effects of preexisting immunity on OV infection and spread have been relatively 
well explored and suggest that, although various OV modifications can help evade a 
preexisting immune response, a nuanced case-by-case assessment appears warranted 
and variables such as the location of the tumor(s), the specific OV used, as well as 
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the route of OV administration should be taken into account. For example, treatment 
of a single, easily accessible tumor by intratumoral OV injection would likely not be 
compromised by preexisting immunity. In the case of metastatic disease, on the other 
hand, the therapeutic efficacy of both intratumoral and systemic OV administration will 
be strongly limited by preexisting immunity, making modifications to evade it beneficial 
or even necessary. Currently, a variable that remains largely unexplored in this context 
is the confounding effect of tumor location. As discussed, the distance between the 
site of intravenous OV administration and the target tumor appears to modulate the 
effect of preexisting immunity on therapeutic efficacy (82), indicating administration 
sites should be optimized based on tumor localization.

While, generally speaking, preexisting humoral immunity is considered to be a barrier 
to effective anticancer OV therapy and should be circumvented, preexisting OV-
specific cellular immune responses might rather be considered a beneficial factor for 
OV therapy. Additionally, the route of OV administration, which has been abundantly 
explored and discussed here in the context of OV infection and spread, remains 
strongly underappreciated regarding its effect on the induced immune response. 
Vaccine studies have uncovered clear evidence showing that the site of administration 
is a crucial determinant of the type and quality of subsequently induced responses 
(144), highlighting the need for evaluation of this factor in OV research. Regardless 
of its effects on the induction of a tumor-specific immune response, exciting novel 
data suggests preexisting OV-specific adaptive immunity can be engaged for direct 
antitumor effects. However, careful investigation is warranted, since preexisting OV-
specific T cells might also be involved in inducing viral clearance (66). Further research 
in the field of OV research should elucidate how OV replication, the OV-induced immune 
response, and the ultimate therapeutic effects of OVs all interrelate, and how both 
preexisting humoral and adaptive immunity influence these aspects.

In conclusion, consideration of preexisting immunity is crucial in realizing the 
full potential of the highly promising therapeutic implementation of OVs. Future 
investigation of the current gaps in knowledge highlighted here should yield a 
more complete understanding of the topic, ultimately allowing for better and more 
personalized OV therapies.
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