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Abstract

Migraine affects over a billion individuals worldwide but its genetic underpinning remains largely 
unknown. Here we performed a genome-wide association study (GWAS) of 102,084 migraine 
cases and 771,257 controls and identified 123 loci, of which 86 are novel. The loci provide an 
opportunity to evaluate shared and distinct genetic components in the two main migraine 
subtypes: migraine with aura and migraine without aura. Stratification of the risk loci using 29,679 
cases with subtype information indicated three risk variants that appear specific for migraine with 
aura (in HMOX2, CACNA1A and MPPED2), two that appear specific for migraine without aura 
(near SPINK2 and near FECH), and nine that increase susceptibility for migraine regardless of 
subtype. The new risk loci include genes encoding recent migraine-specific drug targets, namely 
calcitonin gene-related peptide (CALCA/CALCB) and serotonin 1F receptor (HTR1F). Overall, 
genomic annotations among migraine-associated variants were enriched in both vascular and 
central nervous system tissue/cell types, supporting unequivocally that neurovascular mechanisms 
underlie migraine pathophysiology. 
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Introduction
Migraine is a highly prevalent brain disorder characterized by disabling attacks of moderate to 
severe pulsating and usually one-sided headache that may be aggravated by physical activity and can 
be associated with symptoms such as a hypersensitivity to light and sound, nausea and vomiting.1 
Migraine has a lifetime prevalence of 15-20% and is ranked as the second most disabling condition 
in terms of years lived with disability.2, 3 Migraine is three times more prevalent in females than in 
males. For about one-third of patients, migraine attacks often include an aura phase4 characterized 
by transient neurological symptoms such as scintillations. Hence, the two main migraine subtypes 
are defined as migraine with aura (MA) and migraine without aura (MO).

It has been debated for decades whether or not the migraine subtypes are in fact two separate disorders,5-7 
and if so, what the underlying causes are. Prevailing theories about migraine pathophysiology emphasize 
neuronal and/or vascular dysfunction.8, 9 Current knowledge on disease mechanisms largely comes 
from studies of a rare monogenic sub-form of MA, familial hemiplegic migraine, for which three 
ion transporter genes (CACNA1A, ATP1A2 and SCN1A) have been identified.10 The common forms 
of migraine, MA and MO, instead have a complex polygenic architecture with an increased familial 
relative risk,5 increased concordance in monozygotic twins,11 and a heritability of 40-60%.12 The 
largest GWAS thus far, with 59,674 cases and 316,078 controls, reported 38 genomic loci that confer 
migraine risk.13 Subsequent analyses of these GWAS data showed enrichment of migraine signals near 
activating histone marks specific to cardiovascular and central nervous system tissues,14 as well as for 
genes expressed in vascular and smooth muscle tissues.13 Other smaller GWAS15-21 have suggested 10 
additional loci. Of note, the previous datasets were too small to perform a meaningful comparison of 
the genetic background between migraine subtypes. 

As migraine is globally the second largest contributor to years lived with disability,2, 3 there is 
clearly a large need for new treatments. Triptans, i.e., serotonin 5-HT1B/1D receptor agonists, are 
migraine-specific acute treatments for the headache phase but are not effective in every patient, 
whereas preventive medication is far from satisfactory alltogether.22 Recent promising alternatives 
for acute treatment are serotonin 5-HT1F receptor agonists (‘ditans’)23 and small-molecule 
calcitonin-gene related peptide (CGRP) receptor antagonists (‘gepants’).24, 25 For preventive 
treatment, monoclonal antibodies (mAbs) targeting CGRP or its receptor have recently proven 
effective,26 and new gepants are under development for migraine prevention.27 Still, there remains 
an urgent need for treatment options for patients who do not respond to the existing treatments. 
Genetics has proven a promising way to develop novel therapeutic hypotheses in other prevalent 
complex diseases, such as cardiovascular disease28 and type 2 diabetes,29 and we anticipate that 
large genetic studies of migraine could also yield similar insights.

We conducted a GWAS meta-analysis of migraine by adding to the previous meta-analysis13 
42,410 new migraine cases from four study collections (Table 1). This increased the number of 
migraine cases by 71% for a total sample of 102,084 cases and 771,257 controls. Furthermore, 
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we assessed the subtype specificity of the risk loci in 8,292 new MA and 6,707 new MO cases 
in addition to the 6,332 MA and 8,348 MO cases used previously13 (Table 2). Here we report 
123 genomic loci, of which 86 are novel, and include the first four loci that reach genome-wide 
significance (P < 5 × 10-8) in MA. Our subtype data compellingly show that migraine risk is 
conferred both by risk loci that appear specific for only one subtype as well as by loci that are 
shared by both subtypes. Our findings also include new risk loci containing target genes of recent 
migraine drugs acting on the CGRP pathway and the serotonin 5-HT1F receptor. Finally, our data 
support the concept that migraine is brought about by both neuronal and vascular genetic factors, 
strengthening the view that migraine truly is a neurovascular disorder.

Methods 

Cohorts and phenotyping 
All participating studies were approved by local research ethics committees, and written informed 
consent was obtained from all study participants. For all the participating studies, an approval was 
received to use the data in the present work. Study-specific ethics statements are provided in the 
Supplementary Note. 

First, we performed a genome-wide meta-analysis on migraine including five study collections 
listed in Table 1 and Supplementary Table 1. Second, we performed subtype-specific meta-
analyses on MA and on MO, both including five study collections listed in Table 2, for the 123 
independent risk variants identified in the migraine analysis. A description of the study collections 
is given in the Supplementary Note. In particular, the migraine phenotype has been self-reported 
in other cohorts except in IHGC2016, where a subset of patients were phenotyped in specialized 
headache centers, as previously explained.13

Table 1 Five migraine study collections included in the meta-analysis

Abbreviation Full name Ancestry Cases Controls Case % Migraine definition 
IHGC2016* Gormley et al. 2016 

(no 23andMe) 
European 
descent 

29,209 172,931 14.4 Self-reported and 
ICHD-II 

23andMe** 23andMe, Inc. 
(23andMe.com)

European 
descent 

53,109 230,876 18.7 Self-reported 

UKBB UK Biobank 
(ukbiobank.ac.uk) 

European, 
British 

10,881 330,170 3.2 Self-reported 

GeneRISK GeneRISK 
(generisk.fi)

European, 
Finnish 

1,084 4,857 18.2 Self-reported 

HUNT Nord-Trøndelag 
Health Study (ntnu.
edu/hunt) 

European, 
Norwegian 

7,801 32,423 19.4 Self-reported migraine 
or fulfilling modified 
ICHD-II criteria 

*IHGC2016 is a meta-analysis of 21 studies listed in Supplementary Table 1 and does not include data from 23andMe. 
Some studies of IHGC2016 determined migraine status through clinical phenotyping, while migraine status in other 
studies is based on self-reported information. **23andMe includes 30,465 cases from Gormley et al. (2016) meta-
analysis and 22,644 new cases. ICHD-II, the International Classification of Headache Disorders 2nd edition.
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Table 2 Study collections included in MO and MA subtype analyses

Abbreviation Full name Ancestry Subtype Cases Controls
IHGC2016* Gormley et al. 2016 European 

descent
MO 8,348 139,622
MA 6,332 144,883

UKBB UK Biobank (ukbiobank.ac.uk) European, 
British 

MO 187 320,139
MA 1,333 320,139

deCODE deCODE Genetics Inc. European, 
Icelandic

MO 1,648  193,050
MA 2,297 209,338

DBDS Danish Blood Donor Study European, 
Danish

MO 3,756 28,045
MA 3,938 28,045

LUMINA LUMINA migraine without aura 
or with aura

European, 
Dutch

MO 1,116 1,445
MA 724 1,447

*IHGC2016 MO is a meta-analysis of 11 studies and IHGC2016 MA is a meta-analysis of 12 studies listed in 
Gormley et al. 2016. MO, migraine without aura; MA, migraine with aura.

Quality control 
Before the meta-analysis, a standard quality control protocol was applied to each individual 
GWAS. Related individuals were removed from all other cohorts except HUNT (which modeled 
relatedness via a logistic mixed model) by using an IBD cut-off of 0.185 or smaller. Multi-allelic 
variants were excluded from all studies, and only variants that satisfied the following thresholds 
were kept for further analysis: minor allele frequency (MAF) > 0.01, IMPUTE2 info or 
MACH  r2 > 0.6, and, when available, Hardy-Weinberg equilibrium (HWE) P-value > 1 × 10-6 
and missingness < 0.05. Variants were matched by chromosome, position and alleles to the UK 
Biobank data. Indels were recoded as insertions (I) and deletions (D). For each study, the SNPs 
with an effect allele frequency (EAF) discrepancy of > 0.30 and indels with EAF discrepancy of > 
0.20 to UK Biobank were excluded. MAF and EAF plots of cohorts against the reference cohort 
are shown in Supplementary Data 7. We conducted a sensitivity analysis on strand-ambiguous 
SNPs (with alleles A/T or G/C), by counting, for each pair of studies, how often the same allele of 
A/T or G/C SNP was coded as the minor allele in both cohorts, as a function of MAF threshold 
(Supplementary Table 17). Minor alleles were same at least in 97.39% of the SNPs without MAF 
threshold and the corresponding proportions were 99.96% and 79.58% when MAF < 0.25 and 
when MAF > 0.4, respectively. The very high concordance for SNPs with MAF < 0.25 suggests 
that the strand-ambiguous SNPs were consistently labeled for almost every SNP. Therefore, we did 
not exclude any SNPs based on possible labeling mismatches due to strand ambiguity. 

Statistical analysis 
All statistical tests conducted were two-sided unless otherwise indicated. The GWAS for the 
individual study cohorts were performed by logistic regression with an additive model of imputed 
dosage of the effect allele on the log-odds of migraine. The analyses for IHGC201613 and 
23andMe19 have been described before. For UKBB data and GeneRISK data, we used PLINK 
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v2.0.30 For HUNT data, we used a logistic mixed model with the saddlepoint approximation as 
implemented in SAIGE v0.2031 that accounts for the genetic relatedness. All models were adjusted 
for sex and at least for the four leading principal components of the genetic population structure 
(Supplementary Table 18). Age was used as a covariate when available. A detailed description is 
provided in Supplementary Note. For the chromosome X meta-analysis, male genotypes were 
coded as (0,2) in all cohorts, and the GWAS were conducted with an X chromosome inactivation 
model that treats hemizygous males as equivalent to homozygous females.32

We performed an inverse-variance weighted fixed-effect meta-analysis on the five study collections 
by using GWAMA.33 After the meta-analysis, we excluded the variants with effective sample size 
Neff < 5,000 to remove results with very low precision compared to the majority of variants and 
were left with 10,843,197 variants surpassing the QC thresholds. We estimated the effective 
sample size for variant i as where ƒi is the effect allele frequency for variant i 
and sei is the standard error estimated by the GWAS software. This quantity approximates the 
value 2 N t (1-t) I, where N is the total sample size (cases + controls), t is the proportion of cases 
and I is the imputation info (derivation in Supplementary Note). 

Risk loci 
There were 8,117 genome-wide significant (GWS) variants with the meta-analysis P-value < 5 × 10-8.  
For 8,067 of them that were available in UK Biobank, an LD matrix was obtained from UK 
Biobank using a random sample of 10,000 individuals included in the UKBB GWAS. We defined 
the index variants as the LD-independent GWS variants at LD threshold of r2 < 0.1 in the 
following way. First, the GWS variant with the lowest P-value was chosen, and subsequently all 
GWS variants that were in LD with the chosen variant (r2 > 0.1) were excluded. Next, out of the 
remaining GWS variants, the variant with the lowest P-value was chosen and the GWS variants in 
LD with that variant were excluded. This procedure was repeated until there were no GWS variants 
left. Out of the 8,067 variants with LD information, 170 were LD-independent (at r2 < 0.1).  
For 18/50 variants that were not found in UK Biobank, LD information was available from the 
23andMe data, and all 18 variants were in LD (r2 > 0.1) with some index variant. Two of the 18 
variants (rs111404218 and rs12149936) had lower P-value than the original index variant they 
were in LD with and hence they replaced the original index variants. For 32 GWS variants, LD 
remained unknown. Thus, at this stage, the GWS associations were represented by 202 = 168 + 2 
+ 32 index variants.

Next, to define the risk loci and their lead variants, an LD block around each index variant was 
formed by the interval spanning all GWS variants that were in high LD (r2 > 0.6) with the index 
variant. Sizes of these regions ranged from 1 bp (only the variant itself, e.g., the variants with 
unknown LD) to 1,089 kb. Sets of regions that were less than 250 kb away from each other were 
merged (distance from the end of the first region to the beginning of the second region). This 
definition resulted in 126 loci. All other GWS variants were included in their nearest locus based 
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on their position and the locus boundaries were updated, and finally loci within 250 kb from each 
other were merged. This resulted in our final list of 123 risk loci. Each risk locus was represented 
by its lead variant defined as the variant with the lowest P-value and named by the nearest protein-
coding gene to the lead variant or by the nearest non-coding gene if there was no protein-coding 
gene within 250 kb. The term “Near” was added to the locus name if the lead variant did not 
overlap with a gene transcript. We note that the nearest gene to the lead variant need not be a 
causal gene. None of the 32 variants without LD information became a lead variant of a risk locus 
because all had a variant in the vicinity with a smaller P-value.

We annotated and mapped these loci by their physical position to genes by using the Ensembl 
Variant Effect Predictor (VEP, GRCh37).34 We used two different thresholds for annotating the 
nearest genes: a distance of 20 kb and 250 kb to the nearest transcript of a gene. The filtered results 
including all variants within a gene or a regulatory element are in Supplementary Table 7B.  

Stepwise conditional analysis
We performed a stepwise conditional analysis (CA) on each risk locus by using FINEMAP v1.4.35 
FINEMAP uses GWAS summary statistics together with an LD reference panel and does not 
require individual-level data. When the reference LD does not accurately match the GWAS data, 
full fine-mapping is prone to false positives.36 A simpler stepwise CA is more robust to inaccuracy 
in reference LD because CA has a much smaller search space than full fine-mapping, and therefore 
CA is less likely to run into most problematic variant combinations where LD is very inaccurate. 
Since we did not have the full in-sample LD from our GWAS data, we only carried out the CA 
and not the full fine-mapping. For the CA, we included only the SNPs, but no indels, and we used 
the same reference LD from the UK Biobank data as we used to define the risk loci. We restricted 
the CA only to the variants with a similar effective sample size (Neff ) by using a threshold of 
±10% of the Neff of the lead SNP of the risk locus, because our summary statistics came from the 
meta-analysis where sample sizes per variant vary greatly. This filter excluded approximately 17% 
of all GWS variants and was necessary since otherwise CA led to spurious conditional P-values, 
such as P < 10-250, for some loci. Consequently, for two of the loci where the lead variant was an 
indel, the lead variant was not included in the CA. For such regions, we checked that the new 
lead variant from the CA output was in LD (r2 > 0.3) with the original lead variant. For one locus 
(rs111404218) where the lead variant does not have LD information in the UK Biobank data, 
there were no GWS variants left in the CA after filtering by Neff. We used the standard GWS (P 
< 5 × 10-8) threshold to define the secondary variants that were conditionally independent from 
the lead variant. The CA results are in Supplementary Tables 6A,B. 

eQTL mapping to genes and tissues 
We used two data sources to map the risk variants to genes via eQTL associations. From GTEx 
v8 database (https://gtexportal.org), we downloaded the data of 49 tissues. We first mapped 
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all 123 lead variants to all significant cis-eQTLs across tissues using the FDR cut-off of 5% as 
provided by the GTEx project.37 Next, we also mapped the variants in high LD (r2 > 0.6) with the 
lead variants to all significant cis-eQTLs. Finally, we filtered the results to include only the new 
significant gene-tissue pairs that were not implicated by the lead variants. Results are shown in 
Supplementary Tables 9 and 10.

With FUMA v1.3.6,38 we mapped the 123 lead variants, and the variants in high LD (r2 > 0.6) 
with the lead variants, to the other eQTL data repositories provided by FUMA except GTEx, 
i.e., Blood eQTL Browser,39 BIOS QTL browser,40 BRAINEAC,41 MuTHER,42 xQTLServer,43 
CommonMind Consortium,44 eQTLGen,45 eQTL Cataloque,46 DICE,47 scRNA eQTLs,48 and 
PsychENCODE.49 Results are shown in Supplementary Tables 9 and 10.

To study whether the lead variants were enriched in any of the 49 tissues from GTEx v8, we fitted 
a linear regression model where the number of lead variants that are significant cis-eQTLs for a 
specific tissue was used as the outcome, and the overall number of genes with at least one significant 
cis-eQTL reported by GTEx for the tissue was the predictor.37 We did a separate regression model 
for each tissue type by leaving the tissue of interest out from the model, and we used the model 
fitted on the other tissues for predicting the outcome variable for the tissue type of interest. Finally, 
we checked in which tissues the true observed number of migraine lead variants was outside of the 
95% prediction intervals as given by the function ‘predict.lm(, interval=”prediction”)’ in R software. 
Details of the procedure are in the Supplementary Note.

LD Score regression
We estimated both the SNP-heritability (h2

SNP) of migraine and pairwise genetic correlations 
(rG) between each pair of study collections using LDSC v1.0.0.50, 51 SNP-heritability and genetic 
correlations were estimated using European LD scores from the 1000 Genomes Project Phase 
3 data for the HapMap3 SNPs, downloaded from https://data.broadinstitute.org/alkesgroup/
LDSCORE/. We reformatted the meta-analysis association statistics to LDSC format with 
munge-tool that excluded variants that did not match with the HapMap3 SNPs, had strand 
ambiguity (i.e., A/T or G/C SNPs), MAF < 0.01 or missingness more than two-thirds of the 90th 
percentile of the total sample size, or resided in long-range LD regions,52 in centromere regions 
or in the major histocompatibility locus (MHC) of chromosome 6, leaving 1,165,201 SNPs for 
the LDSC analyses. We used a migraine population prevalence of 16% and a sample proportion 
of cases of 11.7% = 102,084/(102,084  + 771,257) to turn the LDSC slope into the estimate of 
h2

SNP on the liability scale.53 Pairwise genetic correlation results are listed in Supplementary Table 
2. We note that in the previous migraine meta-analysis,13 LDSC reported h2

SNP value of 14.6% 
(13.8–15.5%), which was considerably larger than the value 11.2% (10.8–11.6%) that we report 
in our analysis. When we ran our LDSC pipeline on the data of Gormley et al.13, we estimated 
h2

SNP value of 10.6% (10.1–11.1%). Thus, it seems that our liability transformation estimates lower 
values of heritability than the transformation used by Gormley et al..13 
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Stratified LD Score regression
We used stratified LD Score regression (S-LDSC) to partition the SNP heritability by functional 
genomic annotations.54 We used the baseline-LD model55 that contains 75 annotations, including 
conserved, coding and regulatory regions of the genome and different histone modifications. 
Baseline-LD model adjusts for MAF- and LD-related annotations, such as recombination rate 
and predicted allele age, which decreases the risk of model misspecification.54-56 We used the same 
QC as with the univariate LDSC, and the baseline LDv1.1 European LD scores estimated from 
the 1000 Genomes Project Phase 3, downloaded from https://data.broadinstitute.org/alkesgroup/
LDSCORE/. We set the significance threshold for enrichment of individual binary functional 
annotations to α = 0.05/24, as we considered only 24 unique functional annotations without the 
flanking regions. Results are listed in Supplementary Table 8.

Subtype analyses of migraine with and without aura
First, we combined new MA and MO data (Table 2) with the previously used migraine subtype-
specific meta-analysis data,13 and estimated migraine subtype-specific effect sizes for the 123 lead 
variants from the migraine meta-analysis. We tested how often the direction of allelic effects was 
similar between the IHGC MA/MO and the new cohorts using a binomial test (Supplementary 
Table 12B). Next, we stratified the lead variants by using the information from the migraine 
subtype-specific analyses. For each of the variants, we estimated probabilities between four 
possible explanations of the observed data that we call ‘NULL’, ‘MO’, ‘MA’ and ‘BOTH’. Under 
model NULL, the effect is not present in either of the migraine subtypes (i.e., the effect is zero); 
under model MO or MA, the effect is present only in MO or only in MA but not in both; and 
under model BOTH, a non-zero effect is shared by both MO and MA. We used a Bayesian 
approach for model comparison that combines a bivariate Gaussian prior distribution on the two 
effect sizes with a bivariate Gaussian approximation to the likelihood using GWAS summary 
statistics.57 Across all models, the prior standard deviation for the effect is 0.2 on the log-odds scale 
for non-zero effects and 0 for a zero effect. The bivariate priors for the four models are as follows: 
NULL assumes a zero effect in both migraine subtypes, MO and MA assume a non-zero effect 
for one subtype and a zero effect for the other subtype, and BOTH combines the fixed-effect 
model (exactly the same effect in both subtypes) with the independent-effects model (the two 
effect sizes are non-zero but uncorrelated with each other) with equal weights. Finally, we assumed 
that each of the four models (NULL, MO, MA, BOTH) is equally probable a priori, which 
we considered an appropriate assumption since all these variants show a convincing association 
to overall migraine (P < 5 × 10-8). Then we used the Bayes formula to work out the posterior 
probability on each model. The results are shown in Figure 3A, thresholded by a probability cut-
off of 95% and in Supplementary Table 12A. The correlation parameter between MO and MA 
GWAS statistics needed in the bivariate likelihood approximation was estimated to be 0.148 
using the empirical Pearson correlation of the effect size estimates of the common variants (MAF 
> 0.05) that did not show a strong association to either of the migraine subtypes (P > 1 × 10-4).58 
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We tested whether the effect sizes between MA and MO were equal at a Bonferroni corrected 
significance threshold of α = 0.05/123 by using a normal approximation and accounting for the 
correlation in effect size estimators. 

We note that the amount of information in the data (“statistical power”) is taken automatically into 
account in this model comparison, which we consider an advantage compared to a comparison of the 
raw P-values between the subtype analyses that does not automatically account for statistical power. 
In particular, observing a GWS P-value (P < 5 × 10-8) in one subtype but not in the other subtype 
is not yet evidence for a subtype-specific locus, because the effect could still be non-zero also for the 
other subtype but simply lack power to reach the stringent GWS threshold. Finally, we point out that 
the inference in the model comparison approach is conditional on the particular set of models being 
included in the comparison as well as on the particular choice of the prior distributions. 

PheWAS with NHGRI GWAS Catalog and FinnGen R4
We performed phenome-wide association studies (PheWAS) for the 123 lead variants using 
the NHGRI GWAS Catalog and the FinnGen R4 GWAS summary statistics. In addition, we 
performed the same lookups for the 123 risk loci including all variants in high LD (r2> 0.6) 
with the lead variants. With the GWAS Catalog, we first downloaded all the available results 
(4,314 traits) from the GWAS Catalog webpage (accessed 6.4.2020). Next, we obtained all the 
associations for the 123 risk loci with all the high LD variants included using P-value thresholds 
of P < 1 × 10-5, P < 1 × 10-6 and P < 1 × 10-4 (Supplementary Table 13A-C). Because the 
GWAS Catalog includes results from several different GWAS for the same phenotype or for a 
very similar phenotype with a different name, we divided the phenotype associations into broader 
categories. The new categories are listed in Supplementary Table 19. The same approach was 
used for the PheWAS of FinnGen R4. We first downloaded all the available summary statistics 
(2,263 endpoints), and next, obtained all the associations for the 123 risk loci using the same three 
P-value thresholds as with the GWAS Catalog (Supplementary Table 13A-C). We also divided 
similar endpoints into broader categories that are listed in Supplementary Table 20.

We tested the direction of allelic effects between migraine and the following three traits that 
shared multiple associated variants with migraine: coronary artery disease (CAD),59 diastolic 
blood pressure,60 and systolic blood pressure51. We first took all migraine lead variants that were 
available also in the summary statistics of the other trait without any P-value threshold and used 
a binomial test to test whether the proportion of variants with same direction of effects was 0.5. 
Next, we used a P-value threshold of 1 × 10-5 for the association with the other trait. Results are 
in Supplementary Table 13D.

LD Score regression applied to specifically expressed genes
We used LD Score regression applied to specifically expressed genes (LDSC-SEG)14 to identify 
tissues and cell types implicated by the migraine GWAS results. LDSC-SEG uses gene expression 
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data and GWAS results from all variants together with an LD reference panel. For our analyses, 
we used the same QC as for the other LDSC analyses and six different sets of readily constructed 
annotation-specific LD scores downloaded from https://data.broadinstitute.org/alkesgroup/
LDSCORE/LDSC_SEG_ldscores/: multi-tissue gene expression, multi-tissue chromatin, GTEx 
brain, Cahoy, Corces ATAC and ImmGen LD Scores. FDR was controlled by the Benjamini-
Hochberg method. The results are in Supplementary Table 14A-F. There were no significant 
results with the Cahoy, Corces ATAC and ImmGen data at FDR 5%. 

Multi-marker Analysis of GenoMic Annotation (MAGMA)
We applied MAGMA v1.0961 to identify genes and gene sets associated with the migraine meta-
analysis results. First, we mapped the meta-analysis SNPs to 18,985 protein-coding genes based 
on their physical position in the NCBI 37 build by using default settings of MAGMA. Next, we 
performed a gene-based analysis using the default SNPwise-mean model and the same UK Biobank 
LD reference as for the other analyses. We applied a Bonferroni correction (α = 0.05/18,985) to 
identify significantly associated genes for migraine with the results listed in Supplementary Table 
16A. Finally, we used the results from the gene-based analysis to perform a gene-set analysis by 
using two different gene-set collections from the Molecular Signature Database v.7.062, 63: the 
curated gene sets containing 5,500 gene sets and the GO gene sets containing 9,988 gene sets. The 
gene-set analysis was performed using the competitive gene set model and one-sided test that tests 
whether the genes in the gene-set are more strongly associated with the phenotype compared to 
the other genes. To correct for multiple testing, we used a Bonferroni correction (α= 0.05/(5,500 + 
9,988)). Results are in Supplementary Table 16B,C and in Supplementary Figure 7. 

DEPICT
DEPICT64 is an integrative tool to identify the most likely causal genes at associated loci, and 
enriched pathways and tissues or cell types in which the genes from the associated loci are highly 
expressed. As an input, DEPICT takes a set of trait-associated SNPs. First, DEPICT uses co-
regulation data from 77,840 microarrays to predict biological functions of genes and to construct 
14,461 reconstituted gene sets. Next, information of similar predicted gene functions is used to 
identify and prioritize gene sets that are enriched for genes in the associated loci. For the tissue and 
cell type enrichment analysis, DEPICT uses a set of 37,427 human gene expression microarrays. We 
used DEPICT v1.194 and ran the analyses twice for each of the P-value thresholds for clumping, 
as recommended,64 and using the default settings of 500 permutations for bias adjustment and 50 
replications for the FDR estimation and for the P-value calculation. As an input, we used only the 
autosomal SNPs and the same UK Biobank LD reference data as for the other analyses. First, we 
ran the analysis using a clumping P-value threshold of 5 × 10-8 that resulted in 165 clumps formed 
from 7,672 variants (Supplementary Table 15D-F). Second, we used a P-value threshold of 1 × 10-5  
leading to 612 clumps formed from 22,480 variants (Supplementary Table 15A-C).
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Transcriptome-wide association study and colocalization
We performed a transcriptome-wide association study (TWAS) by S-PrediXcan65 v0.7.5 using GTEx 
v8 multivariate adaptive shrinkage models (MASHR-M) for 49 tissues downloaded from predictdb.
org and the European 1000 Genomes v3 LD reference panel (hg38). We followed the recommended 
QC protocol, and first harmonized and imputed the migraine summary statistics to ensure an optimal 
overlap with the GTEx v8 expression weights. After the harmonization and summary statistic 
imputation, 8,909,736 variants were available for the TWAS. We performed the analysis with default 
settings to identify significant gene-tissue pairs. We applied a Bonferroni corrected significance level of 
α = 0.05/662,726, corresponding to the number of unique gene-tissue pairs tested. 

Next, we performed colocalization analysis with COLOCv4.0.466 R package for the 1,844 
significant gene-tissue pairs to indicate pairs that could be due to LD contamination. COLOC 
compares five hypotheses where the null hypothesis (H0) corresponds to no association to 
either eQTL or GWAS, H1 and H2 correspond to associations with only one of the traits, H3 
corresponds to association with both eQTL and GWAS but at distinct causal variants, and H4 
corresponds to association with both eQTL and GWAS at a shared causal variant. We set a prior 
probability for colocalization as p12 = 5 × 10-6 for all tested regions and restricted the analysis to 
variants that had Neff ± 10% of the Neff of the lead variant of the region. Results are presented in 
Supplementary Table 11B. 

Fine-mapping of causal gene sets (FOCUS)
To prioritize genes for the migraine loci, we applied a gene-based fine-mapping approach using 
FOCUS v0.7.67 FOCUS is a Bayesian approach that models predicted expression correlations 
among TWAS signals to estimate posterior probabilities for all genes within a tested region.

We used the European 1000 Genomes v3 LD reference panel and same GTEx v8 predicted 
expression weights for the 49 tissues as with S-PrediXcan. First, we mapped the migraine summary 
statistics from hg37 to hg38 with UCSC liftOver.68 Next, we followed the suggested QC protocol 
and applied the modified munge-tool to obtain cleaned summary statistics. After the QC steps, we 
had 6,237,177 variants left for the analysis. We performed tissue-prioritized fine-mapping of gene-
sets for the 49 tissues with otherwise default settings except that we increased the P-value threshold 
to 1 × 10-4 so that the fine-mapping would cover most of the same regions that contained at least 
one significant gene-tissue pair by S-PrediXcan. Posterior inclusion probability (PIP) from FOCUS 
is reported for all available significant S-PrediXcan gene-tissue pairs in Supplementary Table 11B, 
and all prioritized genes by FOCUS with PIP > 0.9 are reported in Supplementary Table 11A.

Data Availability
Results for 8,117 genome-wide significant SNP associations (P < 5 × 10-8) from the meta-analysis 
including 23andMe data are available on the International  Headache Genetics Consortium 
website (http://www.headachegenetics.org/content/datasets-and-cohorts). Genome-wide summary 
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statistics for the other study collections except 23andMe are available for bona fide researchers 
(contact Dale Nyholt, d.nyholt@qut.edu.au) within two weeks from the request. The full GWAS 
summary statistics for the 23andMe discovery data set will be made available through 23andMe to 
qualified researchers under an agreement with 23andMe that protects the privacy of the 23andMe 
participants. Please visit research.23andme.com/collaborate/#publication for more information and 
to apply to access the data.

Code Availability
R code for the subtype specificity analysis: https://github.com/mjpirinen/migraine-meta.

Results

Genome-wide meta-analysis 
We combined data on 873,341 individuals of European ancestry (102,084 cases and 771,257 
controls) from five study collections (Table 1 and Supplementary Table 1) and analyzed 
10,843,197 common variants (Methods). Despite different approaches to the ascertainment of 
migraine cases across the studies, the pairwise genetic correlations were all near 1 (Supplementary 
Table 2), as determined by LD Score (LDSC) regression,50 showing high genetic and phenotypic 
similarity across the studies, justifying their meta-analysis. Pairwise LDSC intercepts were all near 
0, indicating little or no sample overlap (Supplementary Table 2). 

The genomic inflation factor (λGC) of the fixed-effect meta-analysis results was 1.33 
(Supplementary Figure 1), which is in line with other large meta-analyses69-71and is as expected 
for a polygenic trait.72 The univariate LDSC51 intercept was 1.05 (s.e. 0.01), which, being close to 
1.0, suggests that most of the genome-wide elevation of the association statistics comes from true 
additive polygenic effects rather than from a confounding bias such as population stratification. 
The LDSC analysis showed a linear trend between the variant’s LD-score and its association 
with migraine, as expected from a highly polygenic phenotype such as migraine (Supplementary 
Figure 2). The SNP-heritability estimate from LDSC was 11.2% (95%CI 10.8-11.6%) on a 
liability scale when assuming a population prevalence of 16%. 

We identified 8,117 genome-wide significant (GWS; P < 5 × 10-8) variants represented by 170 
LD-independent index variants (r2 < 0.1). We defined the risk loci by including all variants in high 
LD (r2 > 0.6) with the index variants and merged loci that were closer than 250 kb (Methods). This 
resulted in 123 independent risk loci (Figure 1, Supplementary Table 3A, and Supplementary 
Data 1 and 2). Of the 123 loci, 86 are novel whereas 36 overlap with the previously reported 47 
autosomal risk loci (Supplementary Table 4) and one with the previously reported X chromosome 
risk locus. Of the 11 previously reported migraine risk loci that were not GWS in our study, six 
were GWS in Gormley et al.13 and had P < 3.50 × 10-5 in our data, one had P = 2.37 × 10-3, 
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three had P > 0.14, and one was not available in our data (Supplementary Data 3). When we 
represented each risk locus by its lead variant, i.e., the variant with the smallest P-value, 47 GWS 
variants were LD-independent (r2 < 0.1) of the 123 lead variants, and with a more stringent 
threshold (r2 < 0.01), 15 GWS variants remained LD independent of the 123 lead variants 
(Supplementary Table 5). 

In addition, we conducted an approximate stepwise conditional analysis for the 123 risk loci 
(Methods). Since sample sizes per variant varied considerably, we restricted the conditional 
analysis to variants with similar effective sample sizes to the lead variant. The conditional analysis 
returned 6 SNPs within the 123 risk loci that remained GWS after conditioning on the lead 
variants (Supplementary Table 6A,B). 

Characterization of migraine risk loci 
We mapped the 123 risk loci to genes by their physical location using the Ensembl Variant Effect 
Predictor (VEP).34 Of the lead variants, 59% (72/123) were within a transcript of a protein-coding 
gene, and 80% (99/123) of the loci contained at least one protein-coding gene within 20 kb, and 
93% (114/123) within 250 kb (Supplementary Table 3). Five of the 123 lead variants were missense 
variants (in genes PLCE1, MRGPRE, SERPINA1, ZBTB4 and ZNF462), and 40 more missense 
variants were in high LD (r2 > 0.6) with the lead variants (Supplementary Table 7A). Of note, 
three variants with a predicted high impact consequence on protein function were in high LD with 
the lead variants: (i) a stop gained variant (rs34358) with lead variant rs42854 (r2= 0.85) in gene 
ANKDD1B, (ii) a splice donor variant (rs66880209) with lead variant rs1472662 (r2= 0.71) in RP11-
420K8.1, and (iii) a splice acceptor variant (rs11042902) with lead variant rs4910165 (r2= 0.69) in 
MRVI1 (Supplementary Table 7B).

We used stratified LDSC (S-LDSC) to partition migraine heritability by 24 functional genomic 
annotations.54, 55 We observed enrichment for 10 categories (Supplementary Figure 3 and 
Supplementary Table 8), with conserved regions showing the highest enrichment (11.2-fold;  
P = 1.95 × 10-10), followed by coding regions (8.1-fold; P = 1.36 × 10-3) and enhancers (4.2-fold; 
P = 3.64 × 10-4). 

Prioritization of candidate genes
We mapped the 123 lead variants to genes via expression quantitative trait locus (eQTL) 
association using the GTEx v837 and data repositories included in FUMA38 at a false discovery rate 
(FDR) of 5% (Methods). The lead variants were cis-eQTLs for 589 genes (Supplementary Table 
9), and variants in high LD with the lead variants were cis-eQTLs for an additional 624 genes 
(Supplementary Table 10). In total, 84% (103/123) of lead variants were cis-eQTLs for at least 
one gene. Tibial artery had the highest number (47/123) of lead variants as cis-eQTLs in GTEx 
v8, and it was the only tissue type where the enrichment was statistically higher (P = 6.37 × 10-6)  
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than expected based on the overall number of cis-eQTLs per tissue reported by GTEx 
(Supplementary Figure 4 and Supplementary Note). 

To prioritize candidate genes for the risk loci, we applied two approaches based on GTEx v8 
expression data: fine-mapping of causal gene-sets by FOCUS67 (Supplementary Table 11A) and 
a transcriptome-wide association study (TWAS) by S-PrediXcan65 combined with colocalization 
analysis using COLOC66 (Supplementary Table 11B).

With posterior probability (PP) > 0.5, FOCUS found candidate genes for 82 loci and S-PrediXcan 
+ COLOC supported colocalization for 52 loci (Supplementary Table 11C). In total, 73 genes 
in 46 loci were prioritized by both methods. MRC2 and PHACTR1 were the only genes that both 
methods prioritized with strong evidence (PP > 0.99 for same tissue) and without any other gene 
prioritized within their loci.

Table 3 LDSC-SEG results that are significant at FDR 5%

Tissue/cell type and histone mark Tissue category P-value FDR 
adjusted
P-value

Multi-tissue gene expression data
Aorta Cardiovascular 1.78E-04 0.029
Tibial artery Cardiovascular 3.60E-04 0.029
Coronary artery Cardiovascular 4.29E-04 0.029
Gene expression data of 13 brain regions from GTEx
Caudate (basal ganglia) Central nervous system 6.00E-04 0.008
Multi-tissue chromatin annotation data
Fetal brain female, H3K4me3 Central nervous system 2.49E-05 0.012
Brain dorsolateral prefrontal cortex, H3K27ac Central nervous system 8.43E-05 0.018
Brain dorsolateral prefrontal cortex, H3K4me3 Central nervous system 1.11E-04 0.018
Aorta, H3K4me1 Cardiovascular 2.57E-04 0.031
Stomach mucosa, H3K36me3 Digestive 3.36E-04 0.032
Aorta, H3K27ac Cardiovascular 4.40E-04 0.032
Artery-tibial ENTEX, H3K4me1 Cardiovascular 4.53E-04 0.032
Ganglion eminence derived primary cultured 
neurospheres, H3K4me3

Central nervous system 6.53E-04 0.04

Brain germinal matrix, H3K4me3 Central nervous system 8.42E-04 0.043
Aorta ENTEX, H3K27ac Cardiovascular 1.11E-03 0.043
Artery-coronary ENTEX, H3K4me3 Cardiovascular 1.13E-03 0.043
Cortex derived primary cultured neurospheres, 
H3K36me3

Central nervous system 1.14E-03 0.043

Ovary, H3K27ac Other 1.15E-03 0.043
Cortex derived primary cultured neurospheres, 
H3K4me3

Central nervous system 1.29E-03 0.045

Aorta ENTEX, H3K4me1 Cardiovascular 1.39E-03 0.045
Stomach smooth muscle, H3K4me3 Musculoskeletal/connective 1.55E-03 0.047
One-sided P-value from testing whether the regression coefficient is positive. FDR, false discovery rate based on 
Benjamini-Hochberg method. Full results are in Supplementary Table 14A-F.



GENOME-WIDE ANALYSIS OF 102,084 MIGRAINE CASES IDENTIFIES 123 RISK LOCI 
AND SUBTYPE-SPECIFIC RISK ALLELES 175   

8

Two of the new risk loci contain genes (CALCA/CALCB and HTR1F) whose protein products 
are closely related to targets of two migraine-specific drug therapies.73 We observe a convincing 
association at the chromosome 11 locus that contains the CALCA and CALCB genes encoding 
CGRP itself (lead SNP rs1003194, P = 2.43 × 10-10; Figure 2A), while none of the genes encoding 
CGRP receptor proteins (CALCRL, RAMP1 or RCP) show a statistically comparable association 
(all P > 10-4; Supplementary Figure 5). Variant rs1003194 is a cis-eQTL for CALCB, but also for 
COPB1, PDE3B and INSC (Supplementary Table 9) and FOCUS prioritizes CALCA, CALCB 
and INSC (Supplementary Table 11C). In addition, a new locus on chromosome 3 contains 
HTR1F (lead SNP rs6795209, P = 1.23 × 10-8; Figure 2B), which encodes the serotonin 5-HT1F 
receptor. Variant rs6795209 is a significant cis-eQTL for HTR1F, as well as for three other 
genes (CGGBP1, ZNF654, C3orf38) in the same locus (Supplementary Table 9). FOCUS or 
S-PrediXcan + COLOC did not prioritize HTR1F based on gene expression data (Supplementary 
Table 11C).

Migraine subtypes with aura and without aura
Previously, Gormley et al.13 conducted subtype-specific GWAS with 6,332 MA cases against 
144,883 controls and 8,348 MO cases against 139,622 controls, and reported that 7 loci were 
GWS in MO but none were GWS in MA. Here we added to the previous data 8,292 new MA and 
6,707 new MO cases from headache specialist centers in Denmark and the Netherlands as well as 
from study collections in Iceland and UK Biobank (Table 2), for total sample sizes of 14,624 MA 
cases and 703,852 controls, and 15,055 MO cases and 682,301 controls. We estimated the effect 
size for each subtype at the 123 lead variants of the migraine GWAS (Supplementary Table 3B,C 
and Supplementary Data 4 and 5) and detected four GWS variants in the MA meta-analysis and 
15 GWS variants in the MO meta-analysis. We also estimated a probability that the lead variant 
is either subtype-specific (i.e., associated only with MO or with MA but not with both), shared by 
both subtypes, or not associated with either subtype (Methods, Supplementary Table 12A, and 
Supplementary Data 6). With a probability above 95%, three lead variants (i.e., rs12598836 in 
the HMOX2 locus, rs10405121 in the CACNA1A locus, and rs11031122 in the MPPED2 locus) 
are MA-specific, while two lead variants (i.e., rs7684253 in the locus near SPINK2 and rs8087942 
in the locus near FECH) are MO-specific at a similar threshold. Nine lead variants were shared 
by MA and MO with > 95% probability (Figure 3A). In addition to the five subtype-specific lead 
variants, four other lead variants also showed differences in effect size between the subtypes (P < 
0.05/123) (Figure 3B).

PheWAS with NHGRI GWAS Catalog and FinnGen R4 
Next, we conducted phenome-wide association scans (PheWAS) for the lead variants for 4,314 
traits with reported associations in the NHGRI GWAS Catalog (https://www.ebi.ac.uk/gwas/) 
and for the GWAS summary statistics of 2,263 disease traits in the FinnGen release 4 data. 
We identified 25 lead variants that were reported to be associated with 23 different phenotype 
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categories (Methods) in the GWAS Catalog, and 17 lead variants with 26 defined disease 
categories in FinnGen at P < 1 × 10-5. The categories with the highest number of reported 
associations were cardiovascular disease (7 lead variants) and blood pressure (6 lead variants) in 
the GWAS Catalog, and diseases of the circulatory system (11 lead variants) in FinnGen. When 
we performed PheWAS for all variants in high LD (r2 > 0.6) with the lead variants, we observed 
associations for 79 loci with 54 different phenotype categories in the GWAS Catalog, and for 
41 loci with 26 disease categories in FinnGen (Supplementary Table 13A and Supplementary 
Figure 6).

These findings are consistent with previous results that migraine is a risk factor for multiple 
cardiovascular traits74-76, and genetically correlated with blood pressure.77, 78 However, we did not 
observe a trend in the direction of the allelic effects between migraine and coronary artery disease 
(CAD) or migraine and blood pressure traits (Supplementary Table 13D) using the latest meta-
analysis of CARDIoGRAMplusCD4 Consortium59 (n = 336,924) and blood pressure GWAS 
from UK Biobank60 (n = 422,771).

Enrichment in tissue or cell types and gene sets. We used LDSC applied to specifically expressed 
genes (LDSC-SEG)14 (Methods) to evaluate whether the polygenic migraine signal was 
enriched near genes that were particularly active in certain tissue or cell types as determined by 
gene expression or activating histone marks. Using multi-tissue gene expression data, we found 
enrichment at FDR 5% in three cardiovascular tissue/cell types, i.e., aorta artery (P = 1.78 × 10-4), 
tibial artery (P = 3.60 × 10-4) and coronary artery (P = 4.29 × 10-4) (Table 3 and Supplementary 
Table 14A), all of which have previously been reported enriched in migraine without aura.14 
The fine-scale brain expression data from GTEx, since recently including 13 brain regions, 
showed enrichment in the caudate nucleus of striatum, a component of basal ganglia (P = 6.02 
× 10-4; Table 3 and Supplementary Table 14B). With chromatin-based annotations, we found 
enrichment in five central nervous system (CNS) cell types, three cardiovascular cell types, one cell 
type of the digestive system, one musculoskeletal/connective cell type, and ovary tissue (Table 3  
and Supplementary Table 14C). In addition to replicating previous findings,13, 14 the signal linking 
to ovary tissue has not been reported before. 

Finally, we used DEPICT64 to identify tissues whose eQTLs were enriched for migraine-
associated variants. The tissue enrichment analysis replicated three previously reported tissues13: 
arteries (nominal P = 1.03 × 10-3), stomach (nominal P = 1.04 × 10-3) and upper gastrointestinal 
tract (nominal P = 1.29 × 10-3) (Supplementary Table 14A). Results of gene set analyses using 
DEPICT64 and MAGMA61 are presented in Supplementary Tables 15 and 16.  
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Discussion  
We conducted the largest GWAS meta-analysis on migraine thus far by combining genetic data 
on 102,084 cases and 771,257 controls. We identified 123 migraine risk loci, of which 86 are novel 
since the previous migraine meta-analysis that yielded 38 loci.13 This shows that we have now 
reached the statistical power for rapid accumulation of new risk loci for migraine, in line with the 
progress of GWAS seen with other common diseases79, and as expected for a highly polygenic 
disorder like migraine.80 

Migraine subtypes MO and MA were defined as separate disease entities some 30 years ago, 
and since then, the debate has continued as to what extent they are biologically similar. Over the 
years, arguments in favor6 and against5 have been presented, but convincing genetic evidence to 
support subtype-specific risk alleles has been lacking in genetic studies with smaller sample sizes.18, 

81, 82 Here we increased considerably the evidence for subtype specificity of some risk alleles by 
including new migraine subtype data at the 123 migraine risk variants. We observed that, with 
a probability of > 95%, three lead variants (in HMOX2, in CACNA1A and in MPPED2) are 
associated with MA but not MO. Of them, CACNA1A is a well-known gene linked to familial 
hemiplegic migraine, a rare subform of MA.83, 84 The observation that CACNA1A seems involved 
in both monogenic and polygenic forms of migraine provides the first gene-based support for 
the increased sharing of common variants between the two disorders.80 We find no evidence that 
any of the seven loci, previously reported as GWS in MO but not in MA,13 would be specific 
for MO, while four of them (LRP1, FHL5, near FGF6 and near TRPM8) are among the nine 
loci shared by both subtypes with a probability over 95%. Loci (e.g., LRP1 and FHL5) that are 
strongly associated with both subtypes provide convincing evidence for a previous hypothesis that 
the subtypes partly share a genetic background.13, 85 In accordance with our analysis, effects in both 
subtypes were suggested before at the TRPM8 and TSPAN2 loci while, in contrast to our results, 
the LRP1 locus was previously reported to be specific for MO.81 Finally, we also detected four lead 
variants (including LRP1) that do not appear specific for MO but do confer a higher risk for MO 
than for MA. 

It has been long debated whether migraine has a vascular or a neuronal origin, or whether it is 
a combination of both.8, 9, 86, 87  Here we found genetic evidence for the role of both vascular and 
central nervous tissue types in migraine from several tissue enrichment analyses, which refined 
earlier analyses based on smaller sample sizes.13, 14 

With respect to a vascular involvement in the pathophysiology of migraine, both gene expression 
and chromatin annotation data from LDSC-SEG showed that migraine signals are enriched for 
genes and cell type-specific annotations that are highly expressed in aorta and tibial and coronary 
arteries. The involvement of arteries was also proposed by our DEPICT tissue enrichment 
analysis. In addition, cardiovascular disease and blood pressure phenotypes were among the top 
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categories in the PheWAS analyses. These results are consistent with previous reports of a shared 
etiology and some genetic correlation between migraine and cardiovascular and cerebrovascular 
endpoints.76-78, 88-92 However, in our analysis, the migraine risk alleles neither consistently increased 
nor consistently decreased the risk of coronary artery disease or the risk of hypertension.

A key role of the central nervous system (CNS) in migraine pathophysiology has emerged from 
animal models, human imaging, and neurophysiological studies,10, 93 while support for CNS 
involvement from genetic studies has been more difficult to obtain. A likely reason is the paucity 
of gene expression data from CNS tissue types, but recently more data have become available, 
making such studies feasible. Our LDSC-SEG analysis using gene expression data from 13 brain 
regions showed an enrichment for caudate nucleus in the basal ganglia, and with chromatin-based 
annotations for five CNS tissue types: dorsolateral prefrontal cortex, neurospheres derived from 
cortex, fetal brain, germinal matrix and neurospheres derived from ganglion eminence. Alterations 
in the structure and/or function of several brain regions,93-95 including basal ganglia, cortex, 
hypothalamus, thalamus, brainstem, amygdala and cerebellum, have been reported for individuals 
who suffer from migraine, but the cause of these changes is not known. 

In addition to the support for the hypothesis that both vascular and CNS are important in migraine 
pathogenesis,8, 93, 96 the tissue enrichment analyses also reported some tissue types of the digestive 
system as well as ovary at FDR 5%. Given the female preponderance and suggested influence of 
sex hormones (e.g. menstrual related migraine) in migraine,97-99 the involvement of the ovary is an 
interesting finding, although the statistical evidence for it currently remains weaker compared to 
that for the vascular and central nervous systems.

A particularly interesting finding in our GWAS was the identification of risk loci containing genes 
that encode targets for migraine-specific therapeutics. One new locus contains the CALCA and 
CALCB genes on chromosome 11 that encode calcitonin gene-related peptide (CGRP). CGRP-
related monoclonal antibodies have been successful for the preventive treatment of migraine,100 
and they are considered as a major breakthrough in migraine-specific treatments since the 
development of the triptans for acute migraine over two decades ago. Another new locus contains 
the HTR1F gene that encodes serotonin 5-HT1F receptor, which is the target of another recent 
migraine drug class called ditans.101 Ditans provide a promising acute treatment especially for 
those migraine patients that cannot use triptans because of cardiovascular risk factors.23 These two 
new GWAS associations near genes that are already targeted by effective migraine drugs suggest 
that there could be other potential drug targets among the new loci and provide a clear rationale 
for future GWAS efforts to increase the number of loci by increasing sample sizes further. In 
addition, GWAS data with migraine subtype information can help prioritize treatment targets 
for particular migraine symptomatology, such as aura symptoms, that currently lack treatment 
options. More generally, utilizing genetic evidence when selecting new drug targets is estimated to 
double the success rate in clinical development.102, 103
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Even though we observed links between our new risk loci and known target genes of effective 
migraine drugs, the accurate gene prioritization at risk loci remains challenging. First, robust fine-
mapping would require accurate LD information,36 which is typically lacking in meta-analyses 
and further distorted from reference panels by variation in effective sample size across variants. 
Second, computational approaches to gene prioritization require further methodological work104 
and extension to additional sources of functional data in order to provide more robust and 
comprehensive gene prioritization results. Another limitation of our study is that a large proportion 
of migraine diagnoses are self-reported. Therefore, we cannot rule out misdiagnosis, such as, e.g., 
tension headache being reported as migraine, which could overemphasize genetic factors related 
to general pain mechanisms and not migraine per se. Regardless, the high genetic correlation 
that we observed supports a strong phenotypic concordance between the study collections that 
also included deeply phenotyped clinical cohorts from headache specialist centers, which were 
instrumental for the migraine subtype analyses. While the subtype data provided convincing 
evidence of both loci with genetic differences and other loci with genetic overlap between subtypes, 
larger samples are still needed to achieve a more accurate picture of the similarities and differences 
in genetic architecture behind the subtypes. 

To conclude, we report the largest GWAS meta-analysis of migraine to date, detecting 123 risk 
loci. We demonstrated that both vascular and central nervous systems are involved in migraine 
pathophysiology, supporting the notion that migraine is a neurovascular disease. Our subtype 
analysis of migraine with aura and migraine without aura shows that these migraine subtypes have 
both shared risk alleles and risk alleles that appear specific to one subtype. In addition, new loci 
include two targets of recently developed and effective migraine treatments. Therefore, we expect 
that these and future GWAS data will reveal more of the heterogeneous biology of migraine 
and potentially point to new therapies against migraine that currently is a leading burden for 
population health throughout the world.
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Supplementary Materials
Supplementary Note and Figs. 1–8. 
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
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Supplementary Tables 1–20. 
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
MediaObjects/41588_2021_990_MOESM4_ESM.xlsx 

Supplementary Data 1: Regional LocusZoom plots of the 123 independent migraine risk loci 
identified from the meta-analysis. 
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
MediaObjects/41588_2021_990_MOESM5_ESM.pdf 

Supplementary Data 2: Forest plots of the 123 lead migraine variants.
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
MediaObjects/41588_2021_990_MOESM6_ESM.pdf 

Supplementary Data 3: Forest plots of 10 variants that have been previously reported to associate 
with migraine but failed to replicate in our study.
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
MediaObjects/41588_2021_990_MOESM7_ESM.pdf 

Supplementary Data 4: Forest plots of the 123 lead migraine variants from the MO meta-analysis.
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
MediaObjects/41588_2021_990_MOESM8_ESM.pdf 

Supplementary Data 5: Forest plots of the 123 lead migraine variants from the MA meta-analysis.
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
MediaObjects/41588_2021_990_MOESM9_ESM.pdf 

Supplementary Data 6: Subtype-specific combined log-odds-ratio estimates and posterior probabilities 
from subtype-specificity analysis for the 123 lead migraine variants.
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
MediaObjects/41588_2021_990_MOESM10_ESM.pdf 

Supplementary Data 7: Pairwise EAF and MAF plots against the reference cohort (UKBB).
https://static-content.springer.com/esm/art%3A10.1038%2Fs41588-021-00990-0/
MediaObjects/41588_2021_990_MOESM11_ESM.pdf 
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