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General discussion

The aim of this thesis was, firstly, to evaluate the proportion of APC and MUTYH pathogenic 
variants in colorectal polyposis patients and subsequently identify the proportion of unex-
plained polyposis patients (Part I, chapter 2). Furthermore, three studies aimed to elucidate 
the significance of APC mosaicism and suggest testing and surveillance guidelines (Part II; 
chapters 3-5). Lastly, this thesis aimed to assess another explanation for the development 
of colorectal adenomatous polyps; the presence of pks+ E. coli and colibactin-associated 

mutational signatures. (Part III, chapters 6-8). 

Pathogenic germline variant detection rate in polyposis patients

To determine germline pathogenic APC and biallelic MUTYH variant detection rates in a 
Dutch cohort, we collected all patients tested in the Leiden University Medical Center be-
tween 1992 and 2017 in chapter 2. Comparable to most previous studies, a prevalence of 
70% for FAP and 7% for MAP in patients with more than 20 adenomas was determined.1-7 
One previously performed study reported lower variant detection rates throughout the en-
tire cohort.6 This discrepancy could be explained by the clinical differences between the 
cohorts, such as age of first adenoma development. A unique aspect of our study is the 
large patient group with less than 20 adenomas, which could be used to evaluate testing 
guidelines.  

Besides number of adenomas developed, the odds of finding a pathogenic germline vari-
ant in APC or MUTYH increased with a younger age of first adenoma diagnosis. A personal 
history of CRC only increases the odds of finding biallelic MUTYH variants. This can likely be 
explained by the (sub)total colectomy performed at an early age in FAP patients.7 Lastly, the 
odds increased upon having a first-degree relative (FDR) with more than 10 adenomas only 
for APC, which is explained by the dominant and recessive inheritance pattern of FAP and 
MAP respectively.

Based on these findings, testing for germline pathogenic APC and MUTYH variants is indi-
cated in patients with more than 10 adenomas before the age of 60 years and more than 20 
adenomas before the age of 70 years. Other indications for testing are FAP-related extraco-
lonic manifestations, CRC aged <40, a somatic KRAS c.34G>T transversion, or a FDR with >10 
adenomas. These suggested guidelines are comparable to the Dutch and National Compre-
hensive Cancer Network (NCCN) guidelines for hereditary colorectal cancer and polyposis.8, 

9 Guidelines issued by the American College of Gastroenterology (ACG), on the other hand, 
might result in unnecessary testing.10
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Our cohort also showed an increasing number of patients undergoing genetic testing for 
APC and MUTYH over time. This increase might, first of all, be due to the start of MUTYH 
testing in 2004, which led to more patients with milder phenotypes to be tested. Anoth-
er reason for more genetic testing in polyposis patients is increased adenomas detection 
rates caused by more sensitive colonoscopy techniques, improved equipment and bowel 
preparation and introduction of population based screening in the Netherlands.11-13 This 
suggests that prevalence of colorectal adenomas in the general population was possibly 
underestimated and we now gain relevant insight into the actual numbers. Also, modifiable 
risk factors like diet, alcohol and smoking, attribute to the development of about a third to 
half of all CRC.14-16 This so-called Western lifestyle increases throughout both Western and 
non-Western countries contributing to CRC prevalence.17 Therefore, a Western lifestyle may 
also contribute to the increase in colorectal adenomas in the general population. 

Moreover, in chapter 2, a large proportion of colorectal polyposis patients remain unex-
plained, no germline pathogenic APC or biallelic MUTYH variants. The last decades lots of 
other colorectal cancer and polyposis associated genes were identified.18-23 Due to increas-
ing amount of genes included in Next Generation Sequencing (NGS) panels, the propor-
tion of unexplained polyposis patients will eventually decrease. Moreover Whole Exome 
Sequencing (WES), analyzing the entire exosome, is used to find both newly discovered col-
orectal cancer or polyposis associated genes and to easily re-analyze patients in the future. 
Also, nowadays, the use of Whole Genome Sequencing (WGS) is more broadly introduced 
in the clinic, which compared to WES gives insight into possible pathogenic deep intronic 
variants, large genomic rearrangements or variants in the non-protein-coding sequences 
like regulatory sequences as promotors and enhancers, untranslated regions or Mitochon-
drial Iron-Regulated (MIR) genes.24-27 Also, WES and WGS will provide data on (single nucle-
otide) polymorphisms which might add up to the risk of developing colorectal polyposis and 
cancer.28 In the future, WGS on DNA from neoplastic tissue will provide knowledge about 
mutational signatures.29 These signatures might hint towards an underlying (genetic) cause 
of the developed neoplasm. The broad use of these extensive sequencing techniques will 
eventually further decrease the prevalence of germline unexplained polyposis patients.

Prevalence of APC mosaicism in unexplained polyposis patients

Besides germline pathogenic APC and biallelic MUTYH variants and variants in other more 
rare or not yet discovered genes, a significant part of the unexplained polyposis patients 
are explained by APC mosaicism.30-35 Especially, analysis of DNA isolated from multiple col-
orectal adenomatous polyps is efficient to detect APC mosaicism.33 To assess the prevalence 
of APC mosaicism in patients with adenomas, we performed targeted NGS on DNA from 
colorectal adenomas or carcinomas of 458 patients in chapter 3. Moreover, this chapter 
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provides suggestions of APC mosaicism testing and surveillance guidelines. A detection rate 
of about 17% was found in patients falling inside the Dutch hereditary colorectal polyposis 
and cancer guidelines. This rate is much lower, about 3%, in patients falling outside these 
guidelines. 

Based on the detection rates per phenotypic subgroup, we recommend APC mosaicism test-
ing in all patients with (1) adenomas before the age of 50 years, (2) ≥20 adenomas before 
the age of 60 years or (3) ≥30 adenomas before the age of 70 years. 

The broad spectrum of APC mosaicism phenotypes complicates an universal surveillance 
guideline suggestion. Still, in our opinion, APC mosaic patients should receive regular colo-
noscopies, for example every one or two years, comparable to FAP patients.36 Re-evaluation 
of the follow-up could be considered in patients with effective polypectomies. 

Furthermore, 28% of mosaic patients undergoing a esophagogastroduodenoscopy devel-
oped duodenal or gastric neoplasms. In chapter 5, we showed that the upper intestinal 
adenomas all harbored the mosaic variant. We therefore recommend offering at least one 
gastroduodenoscopy for all APC mosaicism patients. In chapter 5 we moreover present a 
case of duodenal APC mosaicism not affecting the colorectum. This shows the possibility of 
duodenal APC mosaicism despite colorectal adenomas and emphasizes the broad spectrum 
of APC mosaicism and its phenotype.  

Moreover, children of 13 mosaic patients did not inherit the APC variant. Notable, of 10 
patients leukocyte, urine and buccal swab was tested and nine showed a mosaicism restrict-
ed to the colorectum. Also, the mosaic variant was detected in 15% to 18% in semen DNA 
tested of a patient with child wish. Therefore, although chances of hereditability are small33, 
we still recommend testing children especially in cases with mosaicism detected in other 
tissues next to the colorectum. 

The family presented in chapter 4 furthermore highlights the significance of APC mosaicism 
in unexplained polyposis patients. Two first-degree relatives have different mosaic APC vari-
ants with distinct patterns throughout the body and distinct phenotypes. No underlying 
defect in DNA repair systems or mutational signatures could be identified using WES and 
WGS respectively. 

A formula adapted from Le Caignec et al37 determined the probability of finding two APC 
different mosaicism cases in one family to be small. Still, this family shows the value of 
testing for APC mosaicism in unexplained polyposis cases even if a FDR has a comparable 
phenotype.  
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Although important in genetic diagnostics, there are challenges in testing for (APC) mosa-
icism. In countries other than the Netherlands, in and outside Europe, APC mosaicism is 
underestimated and not regularly tested. One of the main issues are resources for sequenc-
ing multiple samples of one patient. Testing normal colorectal mucosa was a hypothesized 
solution. However, only in 50% of patients the mosaic variant was detected in a normal 
colorectal tissue sample. 

Another challenge are the so-called hybrid mosaic cases were encountered. These cases 
have a shared variant in multiple but not all analyzed adenomas. Although this underlines 
necessity of analyzing more than two colorectal adenomas or carcinomas, the clinical impact 
remains unknown. Multiple possible explanations for hybrid mosaicism are hypothesized. 
We considered clonal relationship as an explanation whenever two lesions share the same 
precursor lesion; two adenomas or carcinomas located close to each other and share (mul-
tiple) variants.38 Contamination, mixing two adenomas during polypectomy or mixing DNA 
samples during isolation or library preparation, was considered whenever multiple (APC) 
variants were shared between two adenomas or carcinomas and one of the samples also 
have additional (APC) variants. Another hypothesis was field cancerization, a mechanism in 
which normal tissue is replaced by tumor clones with identical TP53 variants throughout the 
colon.33, 39 This is typically described in inflammatory bowel disease in which chronic inflam-
mation leads to crypt fission. A last explanation is that just by chance common APC variants 
occur in two adenomas of the same patient. In conclusion, no universal explanation could 
be found and case by case evaluation is required. 

Interestingly, hybrid mosaic cases are phenotypically comparable to non-mosaic patients 
and significantly different from mosaic patients. Therefore, we suggest to treat hybrid mo-
saic cases as non-mosaic patients in surveillance and family testing guidelines for now. Al-
though rare, an exception to this suggestion should be patients with the hybrid variant in 
normal colon mucosa or other tissues. In these cases, sporadic adenomas possibly devel-
oped in a background of APC mosaicism.     

The prevalence of APC mosaicism might suggest a relevant role of mosaicism in other tumor 
syndromes. No mosaicism in any other gene included our targeted NGS panel was detected 
but this might be different in cohorts with other phenotypes than adenomatous polypo-
sis. For example, mosaicism of SMAD4 and BMPR1A might be present in unexplained juve-
nile polyposis patients.40 Interestingly, de novo variant rates for genes like BMPR1A, PTEN, 
SMAD4, STK11 and TP53 are more than 10% of germline patients, suggestive for occurrence 

of mosaicism.41-47
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Presence of colibactin as an additional explanation of colorectal adenomas

As described in chapter 6, a large proportion of hybrid mosaic patients shared the APC 
splice variant c.835-8A>G in multiple colorectal adenomas or carcinomas. Furthermore, this 
variant is the most common somatic APC variant detected in our cohort. The variant is pre-
dicted likely pathogenic as it leads to a premature stop codon and is detected in about 3% of 
sporadic colorectal carcinomas.48-50 The c.835-8A>G variant has a (transcriptional) sequence 
context of AAAATT, where the underlined thymine is substituted by a cytosine, which per-
fectly fits the colibactin-associated mutational signature. 

Colibactin is a genotoxin known to cause DNA crosslinks, double strand breaks and chro-
mosomal aberrations.51-53 Colibactin-associated mutational signatures are characterized as 
SBS88 and ID18.54, 55 

Publicly available datasets showed that colibactin-associated mutational signatures are 
present in colorectal, head and neck and urinary tract cancer.54, 55 Interestingly, the muta-
tional signature is detected in normal colonic crypts with a variable mutational burden be-
tween individuals and even between crypts, not attributable to age. Using phylogenetics, 
the mutational signature was proposed to occur early in life.56 This is supported by in vitro 
evidence showing genomic alterations after a short-term exposure to colibactin and the 
colonization of colibactin-encoding E. coli happening the first months after birth.57, 58 The 
number of affected normal crypts was variable between patients, with some patients having 
a more affected left colon while in others the entire colon was affected.56 This might explain 
why in our cohort, in chapter 6 and 7, the c.835-8A>G variant was detected both as a hybrid 
and ‘real’ mosaicism. A recent preprint supports our findings and shows that the c.835-
8A>G might act as a biomarker for colibactin influence in the development of the adenoma 
or carcinoma.59

In our unexplained polyposis cohort, 110 patients had with at least one somatic APC variant 
fitting SBS88 or ID18. In chapter 7, fecal metagenomics and WGS of colorectal adenomas 
was performed to further assess the influence of colibactin. Fecal metagenomics detected 
pks genes in 25% of negative controls and 59% of patients with colibactin-associated APC 
variants. This is comparable to 19% to 29% of healthy individuals and approximately 60% of 
FAP and colorectal cancer patients in previous studies.53, 60-63 Also, WGS showed an enrich-
ment of colibactin-associated mutational signatures in 39% of cases compared to 11.1% of 
negative controls. 

No clear correlation between presence of pks in feces and SBS88 and ID18 in colorectal 
lesions was detected. There are multiple hypotheses for this finding: 
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Due to the short-term effect of colibactin, affecting the colon early in life, eradication of the 
bacteria before feces sampling could be an explanation for patients with colibactin-associat-
ed signature without pks in feces.56, 57

Colonization of pks+ bacteria after developing adenomas is unlikely in patients with pks in 
feces but no colibactin-associated signatures, as pks+ E. coli is proposed to be transmitted 
during birth.58, 64 These patients might, however, be able to inhibit colibactin from entering 
the host cell or protect cells against the DNA damage. For example, the autophagy-relat-
ed protein ATG16L1 is associated with preventing colorectal tumorigenesis in presence of 
pks+ E. coli and oxygen is associated with inhibition of colibactin production.65, 66 On the 
other hand, oligosaccharides and co-colonization with enterotoxigenic Bacteroides fragilis 
are described to increase the genotoxic effect of colibactin.60, 67 Further research should be 
performed to gain more knowledge about which patients are prone to the carcinogenic 
effect of colibactin.

Technically, especially WGS on Formalin-Fixed Paraffin Embedded tissue samples affects the 
performance and interpretation of mutational signature analyses due to fragmentation and 
deamination artefacts.68-70 Also, complications detecting pks in feces due to possible low 
abundance of E. coli could be circumvented using more sensitive techniques like a specific 
quantitative PCR.

Chapter 8 emphasizes colibactin as a risk factor in hereditary colorectal cancer and pol-
yposis syndromes. A biallelic NTHL1 patient is described with pks in fecal metagenomics 
and colibactin-associated mutational signature in WGS data. A small cohort of patients with 
biallelic MUTYH variants showed one somatic APC variant in one lesion fitting the colibac-
tin-associated mutational signature. Previous described WES of carcinomas of both biallelic 
as monoallelic NTHL1 patients did however not show somatic variants suiting the colibac-
tin-associated mutational signature.71, 72 The NTHL1 and MAP patient combined with previ-
ously described enrichment of pks+ E. coli in FAP patients60 and our polyposis cohort results 
described in chapter 7, suggest colibactin as an additional risk factor for development of 
colorectal malignancies in both sporadic colorectal neoplasms and patients with a known 
predisposition to CRC or polyposis. Future research should elaborate on this association 
but also on possible inhibition of colibactin or eradication of pks+ E. coli. Besides this, new 
research is set up to determine whether pks+ E. coli could be used as a biomarker to neoad-
juvant treatment response showing the increasing interest and implications of gut microbi-
ome on colorectal cancer.73
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Future perspectives

Future research into unexplained intestinal polyposis patients will be able to use fast-
er, broader and hopefully better analysis methods. The increasing use of NGS might help 
in minimizing the number of unexplained polyposis patients. With the use of broad DNA 
sequencing, besides germline variants, somatic mutational signatures can be detected 
in tumor cells. These mutational signatures might hint towards the underlying known or 
unknown genetic cause. Additionally, whole genome sequencing can give insights into 
non-protein-coding sequences which can be used for finding (intronic splice site) variants in 
known colorectal polyposis-associated genes and possibly lead to the discovery of new can-
didate genes. Moreover, research into polygenic risk scores, combining pathogenic variants 
and single nucleotide polymorphisms in multiple genes, will help in delineating the risk of 
developing colorectal adenomas in individual patients or families. 

Furthermore, future research in APC mosaicism should focus on explanations for the so-
called hybrid mosaic cases. Also, more knowledge is needed about the association between 
variant allele frequency of the mosaic variants in different tissues or germ layers, pheno-
type, and risk of transmitting the variant to offspring. Based on the insights presented in this 
thesis, APC mosaicism will hopefully be recognized as an explanation for colorectal polypo-
sis and be included as regular diagnostics in colorectal polyposis patients. 

The association of current or past pks⁺ E. coli (or other bacteria) derived colibactin exposure 
and having multiple colorectal adenomas should be more elaborately investigated in larger 
patient cohorts, even at a population level. Furthermore, the possible association with life-
style factors should be studied. Moreover, future research should focus on the identification 
of patients carrying the colibactin-producing bacteria, for example via population-based 
screening programs. Possible inhibition of the DNA damaging effects of colibactin or eradi-
cation of the bacteria involved should be explored.  
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