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Abstract
Background  Segmentation of the Gross Tumor Volume (GTV) is a crucial step in the brachytherapy (BT) treatment 
planning workflow. Currently, radiation oncologists segment the GTV manually, which is time-consuming. The time 
pressure is particularly critical for BT because during the segmentation process the patient waits immobilized in bed 
with the applicator in place. Automatic segmentation algorithms can potentially reduce both the clinical workload 
and the patient burden. Although deep learning based automatic segmentation algorithms have been extensively 
developed for organs at risk, automatic segmentation of the targets is less common. The aim of this study was to 
automatically segment the cervical cancer GTV on BT MRI images using a state-of-the-art automatic segmentation 
framework and assess its performance.

Methods  A cohort of 195 cervical cancer patients treated between August 2012 and December 2021 was 
retrospectively collected. A total of 524 separate BT fractions were included and the axial T2-weighted (T2w) MRI 
sequence was used for this project. The 3D nnU-Net was used as the automatic segmentation framework. The 
automatic segmentations were compared with the manual segmentations used for clinical practice with Sørensen–
Dice coefficient (Dice), 95th Hausdorff distance (95th HD) and mean surface distance (MSD). The dosimetric impact 
was defined as the difference in D98 (ΔD98) and D90 (ΔD90) between the manual segmentations and the automatic 
segmentations, evaluated using the clinical dose distribution. The performance of the network was also compared 
separately depending on FIGO stage and on GTV volume.

Results  The network achieved a median Dice of 0.73 (interquartile range (IQR) = 0.50–0.80), median 95th HD of 
6.8 mm (IQR = 4.2–12.5 mm) and median MSD of 1.4 mm (IQR = 0.90–2.8 mm). The median ΔD90 and ΔD98 were 
0.18 Gy (IQR = -1.38–1.19 Gy) and 0.20 Gy (IQR =-1.10–0.95 Gy) respectively. No significant differences in geometric or 
dosimetric performance were observed between tumors with different FIGO stages, however significantly improved 
Dice and dosimetric performance was found for larger tumors.

Conclusions  The nnU-Net framework achieved state-of-the-art performance in the segmentation of the cervical 
cancer GTV on BT MRI images. Reasonable median performance was achieved geometrically and dosimetrically but 
with high variability among patients.
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Background
For locally advanced cervical cancer the standard of care 
consists of external beam radiotherapy (EBRT), followed 
by 3 to 4 fractions of brachytherapy (BT) and concomi-
tant chemotherapy [1]. A key step in both EBRT and BT 
treatment planning is the segmentation of organs at risk 
and target volumes. This is mostly performed manually, 
which is time consuming and suffers from the inherent 
bias of the observer. To circumvent these issues, auto-
matic segmentation is being widely investigated in the 
field of radiotherapy [2–4]For the case of BT, the need 
for automatic segmentation is even more critical due to 
the time constraints of the workflow. At each fraction of 
BT treatment, the applicator is inserted surgically in the 
patient, after which the MRI images are acquired. The 
patient then needs to wait, immobilized in bed, while 
the needed structures (namely organs at risk and target 
volumes) are manually delineated and a treatment plan 
is made. The Gynecological (GYN) GEC-ESTRO work-
ing group defines the target volumes of interest for BT 
treatment planning for this cervical cancer as the Gross 
Tumor Volume (GTV), the high risk Clinical Target Vol-
ume (HR-CTV) and the intermediate risk Clinical Target 
Volume (IR-CTV) [5] and they are currently segmented 
by radiation oncologists. Automatic image segmentation 
methods are expected to reduce the clinical workload as 
well as patient burden.

Automatic segmentation of the targets volumes is still 
uncommon and it is mostly limited to positron emission 
tomography (PET) and/or computed tomography (CT) 
and rarely to magnetic resonance imaging (MRI) [9]. For 
the particular case of cervical cancer on BT images, auto-
matic segmentation of the organs at risk has been widely 
investigated [6–10] but literature on the automatic seg-
mentation of the targets, and especially the GTV, is more 
scarce [7, 9, 10]. Zhang et al. [10] and Wong et al. [9] 
developed automatic segmentation tools that segmented 
the HR-CTV (on CT and MRI images, respectively) but 
to the best of our knowledge, only Yoganathan et al. [7] 
have studied the automatic segmentation of the gross 
tumor volume (GTV) on BT MRI images. While they 
demonstrated that automatic segmentation of the GTV 
is possible in principle, the cohort was rather small with 
only 39 patients, resulting in a relatively weak perfor-
mance with Sørensen–Dice coefficients (Dice) between 
0.57 and 0.62. Furthermore, the segmentation architec-
tures used in their project were based on the ResNet50 
architecture[11], which is no longer considered state of 
the art.

A current state-of-the-art framework for the auto-
matic segmentation of medical structures is the nnU-Net 

(‘no-new-U-Net’) [12]. The nnU-Net is a deep learning-
based framework which automatically configures the 
parameters needed for training. It has been shown to 
outperform other approaches on 23 public datasets used 
on segmentation competitions.

The aim of this study was to assess the quality of the 
automatic segmentations of the cervical cancer GTV on 
BT MRI images. We used two methods to determine to 
what extent the automatic segmentations corresponded 
to the clinical segmentations performed by an expert 
radiation oncologist. First, the geometrical correspon-
dence of the automatic and expert delineation was deter-
mined using Dice Similarity Coefficient (Dice), 95th 
Hausdorff Distance (95th HD) and mean surface distance 
(MSD). Then, to find if the observed geometrical differ-
ences between the delineations would have dosimetric 
consequences, we determined dose-volume parameters 
D90 and D98 for the automatic and expert delineations 
using the clinical dose distribution.

Methods
Data
A cohort of 195 histologically proven cervical can-
cer patients treated in our institution between August 
2012 and December 2021 was retrospectively collected. 
The average age was 53 (standard deviation of 15 years) 
and tumor stage ranged from IB to IV according to the 
International Federation of Gynecology and Obstetrics 
(FIGO) staging [13]. The treatment consisted of exter-
nal beam radiotherapy (156 patients with 23 × 2  Gy and 
39 patients with 25 × 1.8  Gy) followed by BT (3 × 7  Gy) 
and combined with chemotherapy (cisplatin 40  mg/m2, 
weekly). The institutional review board approved the 
study (IRBd20276). Informed consent was waived con-
sidering the retrospective design.

A total of 524 separate BT fractions were included 
in this work. For each BT fraction, MRI images of the 
patient with applicator in place were acquired using a 
1.5T (104 scans) or 3T (442 scans) Philips Medical Sys-
tems MRI scanner. Axial T2-weighted (T2w) turbo spin-
echo images were used (TR =[3500–13,300 ms], TE = 
[100–120 ms]) with a pixel spacing of 0.39 mm x 0.39 mm 
(442 scans) or 0.63 mm x 0.63 mm (104 scans) and a slice 
thickness of 3 mm. The GTV, as segmented for treatment 
planning by a radiation oncologist on each available MRI, 
was available as ground truth.

The data set was split into three subsets at the patient 
level: training set (117 patients, 314 images), validation 
set (39 patients, 104 images) and test set (39 patients, 106 
images). The three subsets were stratified according to 
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FIGO stage [13], because it is a relevant clinical param-
eter used to describe gynecological tumors.

Network architecture and training procedure
The nnU-Net framework was used in this work. This 
framework automatically configures the parameters 
needed for preprocessing, network architecture and 
training for each specific task. The loss function was a 
combination of the Dice loss [14] and cross entropy loss. 
We used the stochastic gradient descent (SGD) optimizer 
with learning rate scheduler and early stopping based on 
the validation loss as criterion to choose the best model. 
Dropout, data augmentation and weight decay were used 
as regularization techniques. Further details on the train-
ing procedure can be found in the Additional file 1.

Experiment overview
Geometric comparison
The automatic segmentations were compared to the 
manual segmentations of the GTV that were performed 
by a radiation oncologist for treatment planning for the 
patients on the separate test set. The automatic segmen-
tations were compared to the manual segmentations 
using common segmentation metrics: Dice, 95th HD 
and MSD, which were implemented using the Python 
package by DeepMind (https://github.com/deepmind/

surface-distance). The segmentation results were addi-
tionally compared among patients with different FIGO 
stage and GTV volume. For the volume analysis, the 
patients of the test set were allocated to four volume 
ranges containing the same number of images in each 
bin.

Attention maps were computed for four different exam-
ples to highlight which parts of the input image were rel-
evant for the network to decide on a segmentation. The 
attention maps were then qualitatively compared to the 
binary segmentations to investigate if the over-/under-
segmentations of the network were on specific areas, 
therefore highlighting anatomically challenging regions. 
The attention maps were defined as the activations of the 
last layer of the nnU-net (i.e. before binarizing).

Dosimetric comparison
To assess if the differences between the automatic seg-
mentations and manual segmentations would result in 
differences in dose-volume parameters, we calculated 
the D98 and the D90 for both segmentations on the clini-
cal dose distribution used for the treatment. These dose 
parameters were chosen in accordance with the Embrace 
II guidelines [1]. The values for the manual segmenta-
tions represent the actual treatment parameters for 
the patients. The dosimetric impact of using automati-
cally segmented structures was defined as the difference 
between these parameters compared to the clinical val-
ues (ΔD90 and ΔD98). The dosimetric impact was also 
reported as a relative measure by dividing the absolute 
difference on the dose parameters by the dose parameter 
on the manual segmentation (ΔD90rel and ΔD98rel). The 
dosimetric results were also compared for patients with 
different FIGO stage and GTV volume.

Statistics
The chi-square test for independence was used to con-
firm that the training, validation and test sets were bal-
anced in terms of FIGO stage. The Kruskal-Wallis H test 
was used to assess differences among patients of different 
FIGO stage and GTV volume. If significant differences 
were found, Dunn’s test with Bonferroni correction was 
used for the post-hoc analysis. A p-value of 0.05 was con-
sidered statistically significant. The SciPy Python package 
(version 1.5.4) and Python 3.9 were used for the statisti-
cal analysis.

Results
Patients characteristics of our cohort are described in 
Table 1. No significant differences were found in the dis-
tributions of FIGO stage or volume among the training, 
validation and test sets. The results are shown for 105 out 
of the 106 cases of the test set. The remaining case corre-
sponded to a patient that had her uterus removed which 

Table 1  Patients characteristics in the training, validation and 
test sets

Training Validation Test
Total 117 39 39

Age (years)
Mean 53 52 56

Standard deviation 14 15 17

FIGO stage
FIGO I 12 (10.2%) 6 (15.4%) 6 (15.4%)

FIGO II 70 (59.8%) 22 (56.4%) 22 (56.4%)

FIGO III 21 (18.0%) 8 (20.5%) 8 (20.5%)

FIGO IV 9 (7.7%) 3 (7.7%) 3 (7.7%)

Unknown 5 (4.3%) 0 0

Volume at first BT fraction
Less than 2.8 cc 22 (18.8%) 8 (12.8%) 5 ( 20.5%)

between 2.8 and 4.3 cc 7 (6.0%) 7 (17.9%) 7 (17.9%)

between 4.3 and 12.1 cc 53 (42.3%) 12 (30.8%) 13 (33.3%)

More than 12.1 cc 35 (29.9%) 12 (30.8%) 14 (35.9%)

Histopathological type
Squamous cell carcinoma 97 (82.9%) 31 (79.5%) 33 (84.6%)

Adenocarcinoma 16 (13.7%) 6 (15.4%) 4 (10.3%)

Adeno-squamous cell 
carcinoma

1(0. %) 1 (2.6%) 1 (2.6%)

Non specified/unknown 3 (2.5%) 1 (2.5%) 1 (2.5%)

External beam radiothera-
py scheme
23 × 2 Gy 95 (81.2%) 29 (74.4%) 32 (82.0%)

25 × 1.8 Gy 22 (18.8%) 10 (25.6%) 7 (18.0%)

https://github.com/deepmind/surface-distance
https://github.com/deepmind/surface-distance
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resulted in a deviating anatomy unseen by the trained 
network.

The network achieved a median Dice of 0.73 (inter-
quartile range (IQR) = 0.50–0.80), median 95th HD 
of 6.8  mm (IQR = 4.2 − 12.5  mm) and median MSD of 
1.4 mm (IQR = 0.9 − 2.8 mm). When stratifying for FIGO 
stage (Fig. 1 - top) no significant differences were found 
among the different subgroups. When comparing for 
GTV volume (Fig.  1 - bottom) significant differences 
were found for the case of Dice (p-value < 0.001) but not 
for the distance-based metrics.

Four examples of automatic segmentations are shown 
in Fig. 2 (a,c,e,g) with the corresponding attention maps 
(Fig.  2-b,d,f,h). Even though the network under-/over-
segmented the GTV for the last three cases (Fig. 2-c,e,g), 
the error was in the area surrounding the applicator 
which is an area that is irradiated anyway. In the case 
2c, the applicator was segmented by the network but 
not by the clinician while in the cases 2e and 2f, the cli-
nicians segmented the applicator but the network did 
not. Furthermore, the attention map highlighted the 
undersegmented area of the last case (Fig. 2h), meaning 
that the network looked at that area when deciding the 
segmentation.

The median D90 and D98 received by the manually 
segmented GTV were 12.5  Gy (IQR = 11.1–15.5  Gy) 
and 10.6  Gy (IQR = 9.4–13.1  Gy), respectively, in line 
with Embrace guidelines and the GYN GEC-ESTRO 

recommendations [15]. The resulting ΔD90 and ΔD98 
were 0.18  Gy (IQR = -1.38–1.19  Gy) and 0.20  Gy (IQR 
= -1.10–0.95  Gy), respectively. The median ΔD90rel and 
ΔD98rel relative differences were 9.6% (QR = 4.2–19.28%) 
and 8.8% (QR = 0.15–92.5%),respectively. When stratify-
ing for FIGO stage (Fig. 3 - top), no significant differences 
were observed among the different subgroups per FIGO 
stage. When comparing the results for GTV volume 
(Fig. 3 - bottom), a significantly reduced ΔD90 and ΔD98 
(p-value < 0.01) was found between the smaller tumors 
(0.3–2.8 cc) and the largest tumors (12.1–52.9 cc).

Discussion
In this study we investigated the performance of a state-
of-the-art automatic framework to segment the cervi-
cal cancer GTV on brachytherapy MR images. We used 
a cohort of patients that for their treatment were seg-
mented manually by a radiation oncologist and compared 
these manual segmentations to the automatic segmenta-
tions. The comparison was performed geometrically and 
the impact of differences between automatic and manual 
delineations on dose-volume parameters of the clinical 
dose distribution was evaluated.

We achieved improved geometric performance when 
compared to previously published literature and auto-
matic segmentations yielded a ΔD90 and ΔD98 of less 
than 0.25 Gy. No significant differences in geometric and 
dosimetric performance were observed when comparing 
for FIGO stage. When comparing per volume, decreased 
performance was observed for smaller tumors both for 
the Dice coefficient and dosimetrically.

To the best of our knowledge, only Yoganathan et al. 
[7] studied the automatic segmentation of cervical can-
cer GTV on brachytherapy images. In their work, they 
implemented and compared four different CNNs for 
the segmentation of the targets and organs at risk. The 
geometric performance of our model was considerably 
higher than what the authors obtained with the models 
trained with the axial T2w sequence (Dice: 0.56, 95th HD 
9.7  mm). Their models were based on the ResNet and 
Inception architectures, while we use the nnU-Net, cur-
rently the state-of-the-art architecture for medical image 
segmentation. Additionally, we used a larger cohort.

We observed that the median relative ΔD90rel and 
ΔD98rel were lower than 10%. Hellebust et al. [16] showed 
that the relative ΔD90 between different observers was 
9.4% for the GTV, meaning that the average difference 
dosimetric difference between observers is comparable to 
using the automatic segmentation tool. However, in some 
of the cases the dosimetric difference was large. These 
large differences in dosimetric performance can be par-
tially explained by the marked steepness of the brachy-
therapy dose distributions, which results in that small Fig. 1  Geometric comparison by FIGO stage (top) and by volume (bot-

tom). Segmentation performance in terms of Dice, 95th HD and MSD and 
stratified by FIGO stage (I-IV) and volume
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Fig. 2  Qualitative results and attention maps. (Left) Examples of the automatic contours (pink) and the manual clinical contour (green) on four different 
patients. (Right) The corresponding attention maps for the same patients. The examples are sorted by decreasing Dice
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geometric errors can lead to large differences in dose 
parameters.

When comparing the results per FIGO stage, no sig-
nificant differences were found between the different 
FIGO stages for neither the geometric nor the dosimet-
ric comparisons. A priori, we would have expected the 
performance to be different between tumors of different 
FIGO stages because FIGO stage is an important clini-
cal parameter to describe gynecological tumors. One 
possible reason is that the FIGO stage is defined at the 
time of diagnosis and consequently does not take into 
account the regression of the tumor during the external 
beam radiotherapy treatment, potentially reducing the 
differences between FIGO stages. On the other hand, 
when stratifying per GTV volume, significant differences 
were found for the Dice and for the dosimetric compari-
sons. For the Dice, the explanation can be rather trivial, 
because the Dice is defined as the overlap between the 
two structures and it therefore favors the bigger struc-
tures. However, for the dosimetric impact, larger tumors 
had lower ΔD90 and ΔD98, and less variability, which 
suggests that smaller tumors may require more accurate 
automatic segmentation methods than larger tumors.

This work has the following limitations. Firstly, even 
though our cohort includes a large amount of patients, 
patients from only one center were included and fewer 
patients were included for FIGO I and IV. A multi-cen-
ter validation study is therefore desirable. Secondly, the 
GTV segmentations used for training and evaluation 

were manually segmented for clinical practice with the 
treatment plan in mind, meaning that although the seg-
mentations were clinically acceptable, they may contain 
geometric errors. These geometric errors could poten-
tially lead the network to reproduce these errors and 
therefore partially bias our geometric analysis. However, 
we presented the results in terms of dosimetric impact 
as well and showed that the dosimetric impact of the 
automatic segmentations is comparable to that derived 
from the interobserver variability. Finally, the scope of 
this work was limited to the GTV automatic segmenta-
tion while the HR-CTV and the IR-CTV are also needed 
for treatment planning. The definition of those structures 
is intrinsically related to the information of the image 
before external been radiotherapy (5 weeks before BT) 
and not only to the information present in the BT image. 
Therefore in this work we focused solely on the structure 
that can be found in the BT image.

Conclusions
In this study we evaluated a state-of-the-art framework 
for the automatic segmentation of the cervical can-
cer GTV. The quality of the automatic segmentations 
improved with respect to previously published works. 
The automatic segmentations yielded similar dose-
volume parameters as the manual segmentations used 
clinically and differences were comparable to the interob-
server variability reported in literature.
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