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Abstract
The sensitivity of malignant tissues to T cell-based cancer immunotherapies 
is dependent on the presence of targetable HLA class I ligands on the tumor 
cell surface. Peptide intrinsic factors, such as HLA class I affinity, likelihood 
of proteasomal processing, and transport into the ER lumen have all been 
established as determinants of HLA ligand presentation. However, the role of 
sequence features at the gene and protein level as determinants of epitope 
presentation has not been systematically evaluated. To address this, we 
performed HLA ligandome mass spectrometry on patient-derived melanoma 
lines and used this data-set to evaluate the contribution of 7,124 gene and protein 
sequence features to HLA sampling. This analysis revealed that a number of 
predicted modifiers of mRNA and protein abundance and turn-over, including 
predicted mRNA methylation and protein ubiquitination sites, inform on the 
presence of HLA ligands. Importantly, integration of gene and protein sequence 
features into a machine learning approach augments HLA ligand predictions to a 
comparable degree as predictive models that include experimental measures of 
gene expression. Our study highlights the value of gene and protein features to 
HLA ligand predictions.

Introduction
Spontaneous or immunotherapy-induced recognition and destruction of malignant tissues by the 
T cell-based immune system is, to a large extent, dependent on presentation of HLA class I bound 
peptides to antigen-specific CD8+ T cells1–3. Consequently, the composition of the pool of peptide-
HLA class I complexes at the cell surface—or the HLA class I ligandome—strongly determines the 
‘visibility’ of tumor cells to CD8+ cytotoxic T cells. Understanding the various factors that define the 
composition of this HLA ligandome is thus of major value for cancer immunotherapy.

The HLA class I ligandome is primarily generated through the intracellular degradation of proteins 
by the proteasome, and subsequent translocation of peptide fragments into the ER lumen by the 
transporter associated with antigen processing (TAP). These peptides can undergo further trimming 
by ER-resident aminopeptidases, bind to the peptide-binding groove of HLA class I molecules, and 
finally traffic to the cell surface to be presented to the immune system4,5. The number of peptides 
that can theoretically be generated from the human proteome is vast, adding up to approximately 
107 distinct peptides for 9-meric species alone6. This large space poses a substantial challenge in the 
prediction of the HLA ligandome of a cell population of interest. Over the past decades, significant 
advances have been made in reducing this complexity, primarily by focusing on characteristics of 
the peptide itself or its surrounding sequence. Specifically, HLA class I ligands bind to the peptide-
binding groove of HLA class I through shared ‘anchor’ residues, a feature that has been leveraged in 
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the development of predictive algorithms7,8. In addition, the predictable cleavage preference of the 
proteasome9 has been used to improve epitope prediction accuracy10,11. 

Beyond local sequence characteristics, a number of protein-level features are expected to play 
an important role in the generation of HLA binding peptides, for instance by tuning protein 
abundance and turn-over12–14. In prior work, transcriptome measurements have been used as a proxy 
for protein expression to aid HLA ligand predictions. However, mRNA and protein abundance 
correlate poorly in most mammalian cells15–17, primarily due to post-transcriptional regulation. 
Such post-transcriptional regulation includes the activity of RNA-binding proteins and non-coding 
RNA species, and sequence intrinsic features (e.g. GC content and codon usage), which can affect 
the translational output of mRNAs18,19. Furthermore, post-translational modifications, including 
ubiquitination and glycosylation, are known to modulate protein abundance, localization, and 
turn-over rates20,21, and may thereby influence epitope sampling.

In this study, we aimed to examine the potential value of gene and protein sequence features in the 
prediction of the HLA class I ligands. Implementing a machine learning approach, we show that 
the performance of such predictions can be improved through the addition of sequence features. 
Importantly, predictive models that make use of such features achieve the same level of predictive 
power as models that incorporate experimental measurements of gene-expression levels, and the 
predictive value of these features was generalizable to external data. Our data exemplify how the 
‘hard-coded’ information of gene and protein sequence features can be exploited to infer a cell’s 
proteomic content and its derivatives. 

Results
Identification of human melanoma HLA ligandomes 
To investigate putative determinants of the HLA ligandome, we performed LC-MS on pan-HLA 
immunoprecipitates of three melanoma lines (Fig. 1A), resulting in the identification of 18,819 
peptides derived from 6,286 proteins at a false discovery rate of <1%. The length distribution 
of the LC-MS detected peptides closely matched that of known melanoma-derived HLA ligands 
(IEDB22, Fig. 1B), with the vast majority of peptides consisting of 9-meric species. Examination 
of positional frequencies of each amino acid revealed strong usage biases at position 2 and 9 (Fig. 
1C-D). To assess whether this observed amino acid enrichment was explained by the known ligand 
preference of the HLA class I haplotypes expressed by these tumor lines, 9-meric peptide sequences 
from each melanoma line were clustered using the GibbsCluster algorithm23. This analysis revealed 
dominant motifs present in each of the HLA ligandomes that closely matched the corresponding 
HLA haplotype consensus binding motifs for 11/11 HLA A and B alleles and 5/6 HLA C alleles 
(Fig. 1E, Supplementary Figure 1). In addition, HLA class I binding affinity predictions showed 
that the majority of LC-MS detected peptides (61.5–91.2%) were predicted to form ligands for at 
least 1 of the expressed HLA alleles (Fig. 1F, Supplementary Figure 1). 
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Gene and protein features inform on HLA sampling  
Gene and protein sequence features, such as post-transcriptional or post-translational modification 
sites, have been shown to provide information on mRNA or protein abundance19,24–26. To determine 
whether such features can be employed to predict the presence of HLA ligands within the 
proteome, we made use of a library of 7,124 sequence features. This feature library includes codon 
and amino acid usage, RNA-binding motifs from 142 RNA-binding proteins (RBPs), predicted 
miRNA (miR) binding scores, and RNA modification sites that were separately identified in the 
5’ UTR, 3’ UTR and coding sequence27. Predicted post-translational modification (PTM) sites, 
such as ubiquitination, acetylation, and malonylation sites were additionally included. Of note, this 
sequence feature library comprises predicted mRNA and protein modification sites, rather than any 
experimental measurement of such modifications in the cell systems used. 

To assess whether individual sequence features can inform of HLA sampling, we first explored 
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Figure 1. Identification of HLA ligandomes. (A) HLA class I haplotype of the melanoma lines used, and number 
of peptides and source proteins identified. (B) Peptide length distribution of each LC-MS dataset, compared to the 
peptide length distribution of known melanoma-derived HLA class I ligands deposited to IEDB. (C-D) Enrichment of 
indicated amino acids, relative to amino acid occurrence in the proteome, at each position of all 9-meric species in 
the datasets. Summary depicting the median of the absolute enrichment values of all amino acids for each position 
(C), and heatmaps visualizing hierarchical clustering of amino acid enrichment (E) are shown. (G) Sequence logos of 
all 9-mer ligands deposited to IEDB for the HLA class I alleles expressed by SK-MEL-95 (top), and the sequence logos 
of 6 peptide clusters obtained using the GibbsCluster algorithm (bottom). The number of clusters was constrained 
to the number of expressed HLA class I alleles. (H) Affinity percentile rank scores of LC-MS detected peptides, com-
pared to randomly drawn peptides from transcribed genes of each melanoma line (decoy peptides).
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Figure 2. Sequence features inform on HLA sampling. Random forest models were trained using HLA ligandome 
data from each melanoma line and using individual classes of gene and protein sequence features to identify HLA 
ligands. (A) Sequence feature classes used to fit random forest classifiers for each melanoma line. Values indicate 
number of features per class. (B) Mean importance of sequence features to the models of each class. Feature im-
portance represents the mean decrease in accuracy when that sequence feature is not included in the model, all 
importance scores are re-scaled per random forest model to a 0-100 scale. Dots indicate individual features. (C) 
Comparison of the importance of all sequence features across the individual random forest models. Dots indicate 
individual features, linear regressions are shown as colored lines, and 95% confidence intervals as greyed areas. Col-
ored text denotes the respective Pearson correlation coefficients. (D) Comparison of sequence feature occurrence 
between 500 LC-MS detected HLA ligands and the same number of decoy peptides. Selected sequence features are 
shown. Boxplots indicate group median and 25th and 75th percentiles, whiskers indicate the interquartile range 
multiplied by 1.5, and dots signify individual peptides. (E) HLA ligands and decoy peptides were either ranked at 
random or by the indicated sequence feature, and the number of HLA ligands in the top 50% ranked peptides 
was quantified. Data depict the relative increase in HLA ligands as compared to random, bars indicate the mean 
percentage increase of 50 bootstraps, error bars depict 95% confidence intervals. (F) Comparison of averaged ab-
solute enrichment values between feature classes. Boxplots indicate group median and 25th and 75th percentiles, 
whiskers indicate the interquartile range multiplied by 1.5, and dots signify individual features.
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the contribution of a subset of features that could be assigned to five major feature classes (5’ 
UTR, CDS, 3’ UTR, miR binding, PTM) and that displayed a substantial degree of variance 
across the proteome (Fig. 2A, 5,771 out of 7,124 features in the library). A set of 2,000 HLA 
ligands was drawn from each tumor line and supplemented with a 2-fold excess of decoy peptides 
that were randomly sampled from the transcribed genome. This dataset was then used to train 
individual Random Forest classifiers for each tumor line and each sequence feature class, which 
were subsequently used to determine the importance of these sequence features to each of the 
obtained classifiers (Fig. 2B, Supplementary Figure 2A, showing normalized importance plots 
and RF metrics). The importance of sequence features was highly consistent between the different 
melanoma ligandome datasets, indicating that a shared set of features reliably informed on the 
presence of HLA ligands (Fig. 2C). Furthermore, direct comparison of the occurrence of high-
importance sequence features within source proteins of HLA ligands and decoy peptides revealed 
significant differences for a set of sequence features (Supplementary Figure 2). For example, HLA 
ligands were preferentially sampled from proteins that contained a higher number of predicted sites 
for ubiquitination and acetylation, two PTMs that can regulate targeted proteasomal degradation 
and protein stability28–30 (Fig. 2D). Predicted N1-methyladenosine (m1A) sites within the 5’ UTR 
were also enriched in the mRNA of source proteins of HLA ligands, an effect that appears consistent 
with the prior observation of enhanced translation efficiency of m1A-modified mRNA molecules25. 
In contrast, 5’UTR length and occurrence of G-rich motifs in the CDS, features that have previously 
been suggested to negatively impact mRNA levels and translation, respectively31,32, were negatively 
associated with the presence of HLA ligands (Fig. 2D).

To understand the ability of individual sequence features to contribute to HLA ligand prediction 
in a more quantitative manner, a custom enrichment score was calculated for each of the selected 
features (see methods). In brief, the set of HLA ligands and decoy peptides was sorted by the 
occurrence of each feature or was arranged in a random manner. Subsequently, the quantity of HLA 
ligands present in the top 50% ranked peptides was compared between these two cases, reflecting 
the benefit of each feature when used as a single determinant. In concordance with the prior analysis 
(Fig. 2C), miR binding site quantities exhibited no detectable bias toward HLA ligands or decoy 
peptides. In contrast, sequence features from the other classes showed a consistent capacity to 
enrich or deplete for the presence of HLA ligands (Fig. 2E). The most prominent associations were 
observed in the CDS and PTM classes (Fig. 2F), with some features increasing the number of ligands 
detected by more than 20%. Notably, computed m1A and N7-methylguanosine (m7G) sites were 
predictive of the presence of HLA ligands in the protein product irrespective of their location within 
the coding sequence or the untranslated regions (Fig. 2E), an observation that aligns with their 
general translation-enhancing capacity25,33. Intriguingly, even though GC content was consistently 
informative on HLA sampling, its directionality was context dependent (positively correlated in the 
5’ UTR and negatively correlated in the 3’UTR and CDS), in line with prior reports suggesting that 
GC content may influence mRNA levels differently depending on location6,17,34. Together, the above 
analyses show that gene and protein sequence features can individually inform on the presence of 
HLA ligands. 
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Sequence features augment HLA ligand predictions  
Having shown that individual sequence features can inform on HLA sampling, we next assessed 
whether these features can be leveraged to improve HLA ligand prediction models. To this end, the 
melanoma HLA class I ligand dataset was divided into a training set (80%) and test (20%) set that 
were supplemented with a 4-fold and 1,000-fold excess of decoy peptides, respectively. To evaluate 
the added value of sequence features to classical HLA ligand prediction methods, such as netMHC 
(HLA affinity) and netChop (proteasomal processing), the training set was used to generate 
multiple XGBoost35 classifier models (Fig. 3A), each integrating a different set of explanatory 
variables. As reported previously8,11, both computed HLA affinity and proteasomal processing were 
strongly predictive of HLA sampling (Supplementary Figure 2C, D). Importantly, applying the 
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Figure 3. Value of sequence features in HLA ligand predictions. (A) The melanoma line data set was split into 
a training set and test set at an 80/20 ratio. The training set was used to build XGB classifiers using different com-
binations of features. (B-C) Number of true HLA ligands observed in the top 0.1% of predicted peptides from the 
matched melanoma line test set by each of the indicated models. Line graphs depicting the cumulative sum (B) 
and bar charts depicting AUCs (C) are shown. (D-E) Positive predictive value (PPV) at each peptide rank within the 
top 0.1% of predicted peptides from the melanoma line test set by each of the indicated models. (F-G) Quantity of 
true HLA ligands observed in the top 0.1% of predicted peptides from the melanoma line test set by each of the 
indicated models. Line graphs depicting the cumulative sum (F) and bar charts depicting AUCs (G) are shown. (H-I) 
Positive predictive value (PPV) at each peptide rank within the top 0.1% of predicted peptides from the melanoma 
line test set by each of the indicated models. Features used to build classifiers were predicted HLA class I affinity (A), 
predicted proteasomal processing (P), transcript abundance (RNA), ribosome occupancy (RP), and the sequence 
feature library (SF).
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obtained models to predict HLA ligands in the test set revealed that the classifier that included 
sequence feature information consistently and substantially outperformed the models that lacked 
this information. Specifically, the model including sequence features consistently ranked true HLA 
ligands at a higher position (Fig. 3B-C) and increased the positive predictive value by approximately 
1.5-fold (Fig. 3D-E). 

To determine whether the sequence features that were highly informative of HLA sampling when 
testing separate feature classes (figure 2) were also substantially contributing to the XGBoost 
classifier, the importance of those features was examined. This assessment revealed that the top 
scoring features in the prior analyses, such as predicted ubiquitination, acetylation, m7G, and m1A 
sites, were likewise dominant contributing factors in the XGBoost classifier (Supplementary Figure 
2D). Furthermore, after predicted affinity and proteasomal processing, PTM and CDS features 
were generally assigned the highest importance scores (Supplementary Figure 2E), underlining 
their significance in HLA ligand prediction.

Sequence features can match ‘wet lab’ measures of gene transcription and 
translation 
mRNA abundance measurements have been applied in prior studies to enhance the quality of HLA 
ligand prediction classifiers36,37, and a number of recent efforts have established analysis of ribosome 
occupancy as a measure of active protein translation38,39. To understand the value of protein and 
gene sequence features relative to these experimental measurements of either gene expression 
or ribosome occupancy, we generated mRNA sequencing (transcript abundance) and ribosome 
profiling (protein translation activity) datasets for each of the melanoma lines. Consistent with 
previous reports, both measures of gene expression were strongly indicative of HLA sampling and 
the combination of transcript level data and ribosome occupancy data offered little additional benefit 
(Supplementary Figure 3A-E). Next, to directly compare the predictive value of sequence features 
versus these ‘wet-lab’ measures of gene transcription and protein translation, additional XGBoost 
classifiers were trained that included these metrics. Application of this new set of models on the 
test dataset revealed that the XGBoost model that included sequence features was able to predict 
true HLA ligands at an equal potency as models that incorporated wet-lab measurements of gene 
transcription and protein translation (Fig. 3F-I). Interestingly, addition of wet-lab measurements 
of gene transcription and protein translation in a model that contained sequence features did not 
consistently improve predictiveness (Supplementary Figure 3F-G), indicating that the predictive 
value of sequence features and wet-lab measurements is largely redundant. Together, these data show 
that gene and protein sequence features jointly provide a similar degree of information on HLA 
ligandome composition as experimentally obtained expression levels. 

Sequence feature-based HLA ligand classifiers are generalizable to external 
data
To understand whether the value of sequence features in HLA ligandome prediction is generalizable, 
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we subsequently tested whether the above observations could be extended to another tumor type, 
other HLA class I alleles, and to an independent dataset. To this purpose, we assessed the performance 
of the different classifiers on an HLA ligandome data set obtained from multiple mono-allelic human 
B lymphoblastoid cell lines37, focusing on HLA ligandome data for the 4 most common HLA class 
A and B alleles40, plus HLA ligandome datasets for 4 common HLA A and B alleles that were absent 
from the original melanoma dataset. From each of these ligandomes, 350 9-meric HLA ligands were 
sampled and supplemented with a 1,000-fold excess of decoy peptides, resulting in 8 individual 
test datasets. Application of the classifiers trained on internal ligandome data to these external test 
sets showed that models that included sequence features outperformed predicted HLA affinity- and 
processing-based models in 7 out of 8 datasets (Fig. 4A-D). Furthermore, the performance of the 
sequence feature-based classifier was equal to that of XGBoost models that included the matched 
gene expression information from the external data sets (Fig. 4F-G), demonstrating that the value 
of gene and protein feature-based prediction models is generalizable across cell types and datasets. 

A B

C D

H
LA

 li
ga

nd
s 

fo
un

d

Peptide rank

A
U

C

HLA class I allele

P
P

V

Peptide rank
HLA class I allele

P
P

V

A
A+P
A+P+SF
A+P+RNA
A+P+SF+RNA

B4001 B0702

A1101 A3101

B3501 B5101

A2402 A0201

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300
0

25
50
75

100
125

0

50

100

0
30
60
90

0

50

100

0

50

100

0

50

100

150

0
30
60
90

120

0

50

100

150

0.0

0.1

0.2

0.3

0.4

0.5

A2402 A0201 B3501 B5101 A1101 A3101 B4001 B0702

B4001 B0702

A1101 A3101

B3501 B5101

A2402 A0201

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300

0 100 200 300 0 100 200 300
0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0 0.0

0.1

0.2

0.3

0.4

A2402 A0201 B3501 B5101 A1101 A3101 B4001 B0702

A
A+P
A+P+SF
A+P+RNA
A+P+SF+RNA

Figure 4. Sequence feature-based XGBoost models are generalizable to external data. XGBoost classifiers were 
validated using HLA ligandome data from 6 mono-allelic cell lines published by Sarkizova and colleagues37. From 
each cell line, 350 true HLA ligands were supplemented with 350,000 decoy peptides. (A) Cumulative sum graphs of 
true HLA ligands observed in the top 0.1% of predicted peptides, by each of the indicated models. (B) AUC values 
for each of the graphs shown in panel A. (C) Positive predictive value (PPV) at each peptide rank within the top 0.1% 
of predicted peptides by each of the indicated models. (D) PPV within the top 0.1% of predicted peptides by each of 
the indicated models. Features used to build classifiers were predicted HLA class I affinity (A), predicted proteasomal 
processing (P), transcript abundance (RNA), and the sequence feature library (SF).
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Discussion
Gene and protein sequence features represent a class of ‘hard-coded’ regulators of protein expression, 
influencing this process at many different levels. In this study, we leveraged a large set of such 
gene and protein features to assess their contribution to the composition of the HLA ligandome. 
Through this effort, we demonstrate that sequence features can augment HLA ligand predictions, 
and that the predictive gain obtained in these models is equal to that of models that incorporate 
experimentally obtained gene expression and protein translation data. 

While not formally assessed here, it is expected that at least some of the sequence features contribute 
to HLA ligand predictions by providing a proxy for protein abundance. This notion is supported 
by the observation that sequence features such as mRNA region length, GC content, and post-
transcriptional modifications can be used to help predict protein levels17. Furthermore, predicted 
RNA methylation sites were among the features that were most prominently associated with the 
presence of HLA ligands, an observation that may be explained by their known modulatory effect 
on both mRNA stability and translation efficiency25,26,33,41. In addition to features involved in 
mRNA regulation and translation, our data reveal that the predicted occurrence of several PTM 
sites informed on the presence of HLA ligands. For ubiquitination, the PTM that displayed 
the highest predictive value, its positive association with HLA ligand yield may be caused by an 
enhanced accessibility to proteasomal degradation20,30,42. For other PTMs that were predictive of 
HLA ligands, such as methylation and acetylation, their involvement in specific pathways is less 
well understood21,43,44. Our data provide correlative evidence that that these modifications influence 
availability of proteins to the antigen processing machinery but further work will be required to 
formally test this. 

Improvement of HLA ligand prediction approaches remains an active field of research, with the 
aim to, for example, allow the more precise selection of cancer (neo)antigens for therapeutic 
purposes36,37,45,46.  Because of its generalizable nature and lack of requirement for direct transcriptome 
measurements, we envision that the approach described here will be of value in these efforts.

Methods
Patient-derived melanoma cell lines
SK-MEL-95 and M026.X147 were a kind gift from Daniel Peeper (Netherlands Cancer Institute). SK-
MEL-95 was originally established in the Memorial Sloan Kettering Cancer Center. NKIRTIL006 
was established in house48. 

Cell culture
Patient-derived melanoma cell lines were cultured in RPMI (Gibco) supplemented with 8% fetal 
calf serum (FCS, Sigma), 100 U/ml penicillin (Gibco) and 100 µg/ml streptomycin (Gibco) at 37 
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°C and 5% CO2. For mRNA sequencing and ribosome profiling, cell lines were cultured to a density 
of 70-90% on 150mm Corning tissue-culture treated culture dishes (Merck). For HLA ligandome 
LC-MS, approximately 1·109 cells were cultured in Corning CELLSTACK Culture Chambers 
(Corning, 05-539-096). 

HLA class I peptide isolation and LC-MS/MS
HLA class I-associated peptides were isolated by immunoprecipitation of HLA class I complexes 
using the mouse monoclonal IgG2a antibody W6/32, as described previously49. Peptides were 
eluted from HLA class I protein molecules using a 10% acetic acid (v/v) solution, and subsequently 
separated using a 10 kDa molecular weight cutoff filter. Obtained solution was then desalted into 
3 fractions using in-house made c18 STAGE (STop And Go Extraction) tips, eluted with 20%, 
30% and 50% acetonitrile, respectively. The resulting fractions were injected on an Agilent 1290 
system using a 120-min gradient coupled to an Orbitrap Fusion mass spectrometer (Thermo 
Fisher Scientific). Fractions 1 and 2 were injected in triplicate, whereas fraction 3 was injected in 
duplicate. The LC system comprised of a 20 × 0.1 mm i.d. trapping column (Reprosil C18, 3 µm; 
Dr. Maisch) and a 50 × 0.005 cm i.d. analytical column (Poroshell 120 EC-C18; 2.7 µm). An LC 
resolving gradient of 13 to 43% Solvent B (80% acetonitrile, 20% water, 0.1% formic acid) was 
used. The Top Speed method was enabled for fragmentation, where the most abundant precursor 
ions were selected in a 3 s cycle for data-dependent EThcD. MS1 and MS2 spectra were acquired at 
a resolution of 60,000 (FWHM at 400 m/z) and 15,000 (FWHM at 400 m/z), respectively. RF lens 
voltage was set to 60. Dynamic exclusion of 18s was used. Peptide precursors of charges 2 to 6 were 
fragmented, if accumulated to a minimum intensity of 4·105 within 50 ms. In MS2, a maximum 
injection time of 250ms was used with a minimum intensity filter of 5·104. 

HLA class I peptide analysis
RAW data files were analyzed using the Proteome Discoverer 1.4 software package (Thermo Fisher 
Scientific). MS/MS scans were searched against the human Swissprot reviewed database (accessed in 
September 2015; 20,203 entries), with no enzyme specificity using the SEQUEST HT search engine. 
Precursor ion and MS/MS tolerances were set to 10 ppm and 0.05 Da. Methionine oxidation was 
set as variable modification. The peptides-to-spectrum matches were filtered for precursor tolerance 
5 ppm, <1% FDR using Percolator, XCorr >1.7, and peptide rank 1. Peptides that were between 
8 and 14 amino acid long were selected for further analysis. The mass spectrometry data have been 
deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set 
identifier PXD036277.

Replicate injections displayed an overlap of approximately 70% (shared between at least 2 replicates). 
Consistent with their shared tissue origin, a large part of peptides detected across the melanoma 
lines mapped to a core group of proteins (47.6% shared between at least 2 lines). In contrast, the 
MS detected peptides exhibited a small degree of overlap (12.4% shared between at least 2 lines), in 
line with their difference in HLA haplotype. 
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mRNA sequencing
Cells were cultured to an approximate density of 80%, and 1·107 cells were subsequently dissociated 
using a cell-scraper in cold (4 °C) PBS, centrifuged for 10 minutes at 300x g, and snap-frozen in 
liquid nitrogen. RNA was extracted from the frozen pellets using the RNeasy Mini Kit (Qiagen). 
Whole transcriptome sequencing samples were prepared using the TruSeq Stranded mRNA Kit 
(Illumina). Single-end 65 bp sequencing was performed on a HiSeq 2500 System (Illumina). 
Obtained reads were aligned to the GRCh38 reference (gencode release 21) using STAR aligner 
(version 2.5.2b), and transcripts were quantified using Salmon (version 0.7.0). Transcript counts 
belonging to a single consensus coding sequence were summed. 

Ribosome profiling
Cells were cultured to an approximate density of 80%, and 5·107 cells were subsequently treated 
with 100 µg/ml cycloheximide for 5 minutes at 37 °C. Cells were then washed once in cold (4 
°C) PBS containing 100 µg/ml cycloheximide, dissociated using a cell-scraper in cold (4 °C) PBS 
supplemented with 100 µg/ml cycloheximide, centrifuged for 10 minutes at 300x g, and snap-
frozen in liquid nitrogen. Frozen pellets were resuspended in lysis buffer (20 mM Tris–HCl, pH 
7.8, 100 mM KCl, 10 mM MgCl2, 1% Triton X-100, 2 mM DTT, 100 µg/ml cycloheximide, 1× 
Complete protease inhibitor), and incubated on ice for 20 minutes. Lysates were sheared using a 
26G needle, centrifuged for 10 minutes at 1,300x g, and supernatants were transferred to a clean 
tube. Supernatants were treated with 2 U/µl of RNase I (Ambion) for 45 min at room temperature, 
with rotation. Next, lysates were fractionated on a linear sucrose gradient (7–47%) using the 
SW-41Ti rotor (Beckman Coulter) at 221,633x g for 2 hours at 4 °C, without brake. Obtained 
sucrose gradients were then divided in 14 fractions, and fractions 7–10 (cytosolic ribosomes) were 
pooled and treated with PCR grade proteinase K (Roche) in 1% SDS to release ribosome protected 
fragments. The resulting fragments were subsequently purified using Trizol reagent (Invitrogen) 
and precipitated in the presence of glycogen, following the manufacturer’s instructions. For library 
preparation, RNA was gel-purified on a denaturing 10% polyacrylamide urea (7 M) gel. A section 
corresponding to 25 to 36 nucleotides—the region that comprises the majority of the ribosome-
protected RNA fragments—was excised, and purified through ethanol precipitation. RNA 
fragments were then 3′-dephosphorylated using T4 polynucleotide kinase (New England Biolabs) 
for 6 hours at 37°C in 2-(N-morpholino)ethanesulfonic acid (MES) buffer (100 mM MES-NaOH 
pH 5.5, 10 mM MgCl2, 10 mM β-mercaptoethanol, 300 mM NaCl). The 3′ adaptor was added 
using T4 RNA ligase 1 (New England Biolabs) for 2.5 hours at 37°C. Ligation products were 
5′-phosphorylated with T4 polynucleotide kinase for 30 minutes at 37 °C, and the 5′ adaptor was 
added using T4 RNA ligase 1 for 2 hours at 37 °C. Sequencing was performed on a HiSeq 2500 
System (Illumina). Ribosome occupancy was calculated using the Ribomap pipeline50, and was 
aligned to the GRCh38 reference (gencode release 21). Counts belonging to a single consensus 
coding sequence were summed.
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Characterization of LC-MS detected peptides
For comparison of peptide length distributions, known melanoma HLA class I ligands were 
downloaded from the IEDB web-interface (https://www.iedb.org) in June 2021 using the following 
search filters: Epitope – Any; Assay Outcome – Positive; MHC restriction – Class I; Host – Human; 
Disease – Melanoma. 

To assess the amino acid positional biases of the LC-MS detected peptides, the dataset was filtered 
for 9-meric species, and the occurrence of each amino acid on each peptide position was tallied. As a 
reference, all expressed proteins (TPM > 0 in the mRNAseq dataset) were selected for each melanoma 
line, and the number occurrences of each amino acid was calculated. Amino acid enrichment was 
then defined as the fraction by which an amino acid occurred at a certain position divided by the 
fraction by which that amino acid occurred in the reference. The positional bias was defined as the 
median of the absolute amino acid enrichment values for each peptide position. For binding motif 
analyses, 9-meric peptide sequences from each melanoma line were clustered using GibbsCluster 
2.0 (command line options set to: -g 3-7 -C -D 4 -I 1 -S 5 -T -j 2 -c 1 -k 25), with the number of 
clusters for each melanoma line set to the number of alleles expressed by that line. Sequence logos 
were generated using the R package ggseqlogo. To generate reference sequence logos, all known 
human 9mers for each of the shown HLA class I alleles were downloaded from IEDB in June 2021.  

Peptide database construction
To investigate characteristics of HLA class I ligands, a database consisting of LC-MS detected 
peptides (i.e., true HLA ligands) and not-detected peptides (referred to as decoy peptides) was 
constructed. To this end, HLA binding scores to the HLA alleles of each melanoma line were 
calculated for all 9-, 10-, and 11-mers in the human proteome (GRCh38, gencode release 21) using 
netMHCpan 4.0. Processing scores were calculated using netChop 3.1. Separate databases were 
generated for each melanoma line by filtering on peptides derived from expressed proteins (TPM 
> 0 in the mRNAseq dataset), and assigning each peptide the highest affinity rank score out of the 
expressed HLA alleles. LC-MS detected peptides were then assigned as ‘true HLA ligands’ and the 
remainder of all peptides as ‘decoy peptides’. When this database was sampled for analyses, equal 
peptide length distributions were maintained between true HLA ligands and decoy peptides. 

Feature library construction
5’ UTR, coding region (CDS) and 3’ UTR nucleotide sequences were downloaded from ENSEMBL 
BiomaRt (release 104; accessed September 2021) for all protein-coding transcripts. RNA-binding 
protein motifs were acquired from ATtracT51 (accessed June 2021) and filtered for human RBPs 
(142 RBPs; 2,271 motifs). In each transcript region (e.g., 5’ UTR, CDS, 3’ UTR), motifs were 
searched and counted using a custom script (see GitHub project), and GC content and nucleotide 
length were computed. Also included in the sequence feature library were: Codon usage (applying 
coRdon52), amino acid usage within the CDS, miR-DB53 miRNA seed scores (accessed August 
2021 and filtered for miRNA expressed immune cells, based on previous analysis by Juzenas 
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et al.54), sequence homology between Human and Zebrafish (Danio rerio, obtained through 
Ensembl BiomaRt), predicted mRNA modification site occurrence per transcript region (obtained 
from the RMVar database55, accessed at https://rmvar.renlab.org/ in September 2021), and 
predicted post-translational modification (Acetylation, Amidation, Hydroxylation, Malonylation, 
Methylation, N-linked_Glycosylation, O-linked_Glycosylation, Palmitoylation, Phosphorylation, 
S-nitrosylation, Succinylation, Sumoylation, Ubiquitination) site occurrence (obtained from the 
dbPTM database56, accessed at https://awi.cuhk.edu.cn/dbPTM/ in June 2021).

Importance assessment of sequence feature classes
To assess the ability of sequence features to inform on HLA sampling, features belonging to five 
major classes (5’ UTR, CDS, 3’ UTR, miR binding and PTM) were extracted from the sequence 
feature library. The 5’ UTR, CDS, 3’ UTR classes were filtered based on their variance across the 
proteome using the nearZeroVar function in the caret R package (setting cutoffs at: freqRatio < 
500 and percentUnique > 0.05). All putative miR binding sites and PTMs in the library were used 
in the analysis. The number of features left after filtering are shown in Figure 2A. 2,000 true HLA 
ligands and 4,000 decoy peptides were sampled from the peptide database of each melanoma line, 
and subsequently used to train individual Random Forest models for each melanoma line and each 
feature class to predict true HLA ligands (15 models in total). The Random Forest models were 
generated using the R packages randomForest and caret, using 10-fold cross validation optimizing 
the ROC metric. Number of trees in each forest was set to 5,000 and minimum terminal node size 
was set to 2. The mtry parameter was set to . Feature importance (i.e., mean decrease in accuracy) 
was calculated using the varImp function from the R package caret. 

Analyses examining HLA ligand enrichment potential of individual sequence features (Figure 2D-F, 
Supplementary Figure 2B) were focused on the 10 most important features in each class (defined as 
the highest mean importance score of the models trained for that feature class), and were performed 
using 3,389 true HLA ligands and 13,556 decoy peptides per tumor line. For the analysis presented 
in Figure 2E-F, a custom enrichment metric was calculated. In brief, 30% of the data was sampled 
and peptides were ranked either by the occurrence of a sequence feature or at random. In both 
cases the total number of true HLA ligands within the top 50% ranked peptides was tallied. Next, 
the percentage increase in true HLA ligands was calculated comparing the sequence feature ranked 
case versus the randomly ranked case. This process was performed for all sequence features in the 
analyses, and was repeated 50 times. 

XGBoost classifiers
The number of experimentally detected HLA ligands from each melanoma line was down-sampled 
to the number of HLA ligands in the smallest dataset to ensure each melanoma line had equal weight 
during the analyses. The sampled data was split into a training (80%) and a test (20%) set, and these 
sets were supplemented with a 4-fold or 1,000-fold excess of decoy peptides. XGBoost models were 
generated using the R packages xgboost and caret, using 2-times 10-fold cross validation optimizing 
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the accuracy metric. Learning rate was set to 0.3, minimum loss reduction was set to 1.0, maximum 
tree depth was set to 1, sub-sampling ratio of features for each tree was set to 0.5, minimum sum of 
instance weight needed in a terminal leaf was set to 0.9, number of rounds was set to 1,000.

External HLA ligandome data
Transcriptomic data was accessed from the Gene Expression Omnibus (GEO) at GSE131267 and 
was aligned to the GRCh38 reference (gencode release 21) using Salmon (quasi-mapping mode, 
version 0.7.0). Mean transcript counts were calculated between replicates, and transcripts belonging 
to a single consensus coding sequence were summed. HLA ligands from the Sarkizova study37 were 
downloaded from the publisher’s website. This dataset was filtered for 9-meric peptides and peptides 
obtained from the mono-allelic cell lines expressing A2402, A0201, B3501, B5101, A1101, A3101, 
B4001 or B0702. To generate a decoy peptide pool, affinity binding ranks of all 9-meric peptides 
in the expressed proteome (TPM > 0) of the mono-allelic cell lines were calculated for each selected 
HLA allele. Processing scores were calculated using netChop 3.1. For each of the mono-allelic cell 
lines, 350 true HLA ligands and 350,000 decoy peptides were sampled. 
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Figure S1. Identification of HLA class I ligandomes (related to Figure 1). (A–B) Sequence logos of the HLA class 
I alleles (top panels) expressed by M026.X1 (A) and NKIRTIL006 (B), and the sequence logos of peptide clusters 
obtained by the GibbsCluster algorithm (bottom panels). The number of clusters was constrained to the number of 
expressed HLA class I alleles. (C) Fraction of peptides predicted to have a <0.5 (strong binders; SB), <2.0 (weak bind-
ers; WB), or >2.0 percentile rank binding affinity within LC-MS detected peptides and decoy peptides, as determined 
by netMHCpan4-0.
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Figure S2. Sequence features inform on HLA sampling (related to Figure 2). (A) Random forest models were 
trained using data from each melanoma line to classify HLA ligands, using individual classes of gene and protein 
sequence features.  Bar graphs indicate out-of-bag model performance. (B) t statistics obtained comparing counts 
of indicated sequence features between LC-MS detected and decoy peptides. Top 10 features with the highest 
importance to each random forest model are shown. (C) Out-of-bag model performance of XGBoost classifiers 
generated in Figure 3. (D) Feature importance of the top 10 features in each class identified in Figure 2E, compared 
to the feature importance of the remaining features in the library. Dashed line indicated the median importance of 
all features in the A+P+SF XGBoost model. Boxplots indicate group median and 25th and 75th percentiles, whiskers 
indicate the interquartile range multiplied by 1.5, and dots signify individual features.  (E) Importance of features to 
the A+P+SF XGBoost model. The top 12 features are highlighted. 
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Figure S3. Association of HLA ligandome composition with RNA abundance and ribosome occupancy. (A) 
RNA abundance (top) and ribosome occupancy (bottom) of proteins for which either HLA ligands were or were 
not detected by LC-MS. (B) RNA abundance (top) and ribosome occupancy (bottom) of source proteins, binned 
by the number of HLA ligands detected by LC-MS. (C) HLA sampling density of each source protein, calculated as 
the number of detected HLA ligands per 1,000 amino acids, plotted against their respective RNA abundance (top) 
and ribosome occupancy (bottom). (D-E) Predictiveness of the assessed expression metrics. Source proteins were 
ranked by either RNA abundance, ribosome occupancy or by a randomly generated metric (obtained by shuffling 
RNA abundance data). In addition, a combined ranking was obtained by averaging the rankings of RNA abundance 
and ribosome occupancy metrics. Line plots (D) depict the fraction of detected HLA ligands from that melanoma 
line as a function of the fraction of the analyzed proteome (cumulative protein length). Bar charts (E) depict the 
fraction of HLA ligands observed within the top quartile of the proteome (cumulative protein length). (F-G) Number 
of HLA ligands observed in the top 0.1% of predicted peptides from the melanoma line test sets by each of the 
indicated models. Line graphs depicting the cumulative sum (F) and bar charts depicting AUCs (G) are shown.
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