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Throughout this thesis, I have endeavored to apply an engineer’s mindset in 
my pursuit to better understand the marvelously convoluted immune system. 
In doing so, my colleagues and I have generated a number of new ‘hardware’ 
(i.e., genetically engineered) tools and ‘software’ modules (i.e., custom analyses 
and models) that enable the investigation of several otherwise difficult-to-
study concepts. Although we have used these modules here to study immune 
responses, I hope they may be utilized as tools and approaches to crack 
outstanding questions in other fields of research. As the work described in this 
thesis focuses on various aspects of the immune response, I will first briefly 
touch upon the general organization of the immune system, and subsequently 
elaborate on the topics relevant for each individual chapter.

The immune system may be viewed as a sophisticated apparatus that is tasked with the identification 
and eradication of foreign entities. This process occurs through meticulous collaboration between 
the innate and adaptive branches of the immune system. The innate branch consists of a large 
number of different cell types (e.g., macrophages, granulocytes and natural killer cells) that 
collectively recognize a wide variety of common pathogen- and danger-associated molecules. Innate 
immune cells are generally able to respond quickly upon pathogen encounter, providing a first 
layer of protection to a nascent infection. In addition, a specialized subset of innate cells, referred 
to as antigen-presenting cells, are able to leave the site of infection and travel to lymphoid tissues 
where they can trigger the second branch of the immune system. This adaptive branch comprises 
T and B cells that are able to recognize foreign antigens in a highly specific manner. During their 
development, each newly minted T or B cell is endowed with a unique antigen receptor, which 
determines its antigen specificity. Although the approximate diversity of these antigen receptors 
present in any given individual is still unresolved, it is likely to be in the order of billions. As a result 
of this immense diversity, the collective repertoire of T and B cells is able to recognize and respond 
to any pathogen that is encountered during a lifetime. In addition, due to this massive antigen 
receptor diversity, T and B cells of a given antigen specificity initially exist in low frequencies. When 
such ‘naïve’ lymphocytes recognize their cognate antigen, they transition to an activated ‘effector’ 
state and progressively differentiate into various distinct functional subsets that can combat the 
pathogen. When the pathogen has been subdued, the adaptive immune response enters its final 
stage, in which the activated lymphocytes will transition to a ‘memory’ state. Memory lymphocytes 
are long-lived, potentially persisting for a lifetime, and provide enhanced protection when the same 
pathogen is encountered later in life. Collectively, through the combined action of all these cell 
types, the immune system is able to provide tailored responses against many different pathogens.

The recognition and rejection of foreign entities that enter the body is essential to maintain 
homeostasis. However, in a variety of biomedical studies it is desired to introduce genetically modified 
cells (e.g., transgenic cells that carry genes encoding fluorescent proteins) into experimental animals 
such as mice. Due to the exogenous nature of these proteins, such cell transfer experiments are often 
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plagued by confounding effects caused by the immunogenicity of the transplanted cells. In chapter 
2, we develop a mouse model in which immune recognition of a large series of reporter proteins 
is abrogated, thereby providing a solution to this issue. We offer this model (and the methodology 
through which it was generated) as a tool to the community, and hope it will allow others to 
perform experiments that would otherwise be impossible. 

The antigen presentation machinery continuously samples the intracellular proteome, ultimately 
leading to the presentation of peptides bound to HLA class I at the cell membrane. These surface-
presented peptide-HLA class I complexes are collectively referred to as the HLA class I ligandome, 
and provides a ‘snapshot’ of the cellular proteome for scrutiny by T cells. Spontaneous alterations 
to the proteome—as would be the case during viral infections or through genetic mutations 
accumulated during tumorigenesis—can result in the addition of foreign peptides to the surface-
presented HLA class I ligandome. In turn, such peptides can be recognized by antigen-specific T 
cells, resulting in their activation and subsequent destruction of the aberrant cells. In chapter 3, we 
set out to better understand the process of peptide selection by the antigen presentation machinery. 
In this effort we demonstrate that genetically encoded sequence features inform on the likelihood 
of proteins to yield HLA class I ligands. Importantly, these sequence features can be integrated 
into a classification model, thereby improving the prediction of HLA class I ligands. The improved 
predictive models that we generate in this chapter may be of value in studies in which the precise 
identification of an HLA class I ligandome is required, such as the selection of (neo)antigens for 
cancer immunotherapy. 

The T cell pool can be subdivided into 2 major lineages; CD4+ and CD8+ T cells. Whereas CD4+ 
T cells provide a supportive function during the immune response, CD8+ T cells directly seek and 
destroy infected cells. Upon recognition of their cognate epitope, CD8+ T cells enter a phase of 
rapid clonal expansion, resulting in the generation of a large pool of cytotoxic effector T cells that 
can combat the infection. A key feature of the CD8+ T cell response is the formation of long-lived 
central memory T cells (TCM) after antigen clearance. This specialized CD8 T cell subset is able 
maintain itself long-term through homeostatic cell division and possesses a heightened capacity 
to mount a secondary cytotoxic response upon antigen re-encounter. In chapter 4, we study the 
relationship between the cell state and function of memory CD8+ T cells, and the extent of clonal 
expansion that those cells undergo during an immune response. To this end, we engineer a genetic 
reporter system that exploits low-probability mutations that occur during cell division to induce the 
expression of a fluorescent protein, allowing one to ‘record’ the extent of prior proliferation within a 
cell population of interest. Combining this system with single-cell transcriptomics, we find that the 
TCM pool is comprised of subsets that have either divided little or extensively, and that this extent 
of prior division is associated with heightened expression of multipotency- or effector-associated 
transcripts, respectively. Importantly, we show that the capacity to re-expand into a new wave of 
cytotoxic cells upon antigen re-encounter is skewed toward memory T cells that had divided little 
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during the primary response. Our observations in chapter 4 are in support of a model in which 
during the primary response a sub-group of effector T cells adopts a quiescent phenotype and 
maintain a less differentiated cell state. These ‘sleeper T cells’ possess superior replicative capacity 
upon re-infection and therefore represent an important pillar of adaptive immunity. 

As I noted above, T cells only constitute a fraction of the total immune response, functioning 
alongside a large variety of immune and non-immune cells (e.g., fibroblasts and endothelial cells) 
that collectively determine the progression of the response. The complex interplay between all these 
cell types is highly apparent in chronic illnesses that the immune system in unable to resolve, as is 
the case in solid cancers. During tumorigenesis the constantly growing tissue is often infiltrated by 
immune cells that subsequently engage in a vast network of immune interactions within the tumor 
microenvironment. In the event that the cancer cells are not eradicated, the tumor microenvironment 
eventually reaches a state of homeostasis in which immune cells are unable to recognize—or respond 
to—the foreignness of the tumor. A relatively young field of research, immuno-oncology, has 
aspired to understand and manipulate these immune interactions in the tumor microenvironment, 
aiming to tip the scales in favor of the immune system, allowing it to eliminate the mutated cells. 
In chapter 5, we demonstrate that the enzyme glutaminyl-peptide cyclotransferase-like protein 
(QPCTL) acts as a pleiotropic modifier of the tumor microenvironment. Using syngeneic tumor 
models, we observe that genetic deletion of QPCTL increases the quantity of tumor-infiltrating 
macrophages, favors the differentiation of cancer-associated fibroblasts known for inflammatory 
function, and rewires a TGF-b dominated environment to an IFNg dominated one. Importantly, 
we show that the combination of this ablation of QPCTL activity with an immune-activating 
agent (anti-PD-L1 treatment) can result in delay of tumor growth and enhanced survival in mice. 
The findings presented in this chapter suggest that abrogation of QPCTL activity can sensitize the 
tumor microenvironment to immune-activating agents, and provide support for the development 
of QPCTL inhibitors. 

Finally, in chapter 6, I will discuss two separate topics that captured my interest while working on 
this thesis. In the first part of this chapter, I will focus on a concept that has gained a great deal of 
popularity in the T cell field, the presence of stem cell like behavior in the memory T cell pool. In 
the second part of this chapter, I will switch gears to a more societal aspect of science, and discuss 
the manner in which scientific data is recorded and made available to the community.
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Abstract
Reporter proteins have become an indispensable tool in biomedical research. 
However, exogenous introduction of these reporters into mice poses a risk of 
rejection by the immune system. Here we describe the generation, validation 
and application of a multiple reporter protein tolerant ‘Tol’ mouse model that 
constitutively expresses an assembly of shuffled reporter proteins from a single 
open reading frame. We demonstrate that expression of the Tol transgene results 
in the deletion of CD8+ T cells specific for a model epitope, and substantially 
improves engraftment of reporter-gene transduced T cells. The Tol strain 
provides a valuable mouse model for cell transfer and viral-mediated gene 
transfer studies, and serves as a methodological example for the generation of 
poly-tolerant mouse strains.

Introduction
Following the advent of standardized genetic editing techniques, researchers have isolated a large 
collection of reporter and modifier proteins (RPs and MPs, respectively) from a variety of species 
that have since been instrumental to characterize a wide range of biological processes1. For example, 
RPs are frequently used to tag endogenous proteins or to track the behavior of individual cells in 
vivo2,3. In addition, MPs (e.g. Cre recombinase and Cas9) are commonly applied to influence in vivo 
cell behavior through the induction of defined genetic alterations4. However, as RPs and MPs are 
almost invariably derived from non-mammalian species, exogenous introduction of these proteins 
into immunocompetent mice poses the risk of immunological rejection by host-derived T cells. 
In line with this, multiple cases of immunological rejection of cells expressing RPs, such as firefly 
luciferase and eGFP, have been reported5-9. Moreover, major histocompatibility complex (MHC) 
class I-restricted epitopes of luciferase and GFP have been identified, underlining their capacity to 
induce CD8+ T cell responses5-8. Even in the absence of complete immunological rejection of RP- or 
MP-modified cells, experimental outcomes may potentially be subtly biased through the action of 
such undesirable immune responses. 

To overcome this problem, we set out to engineer a transgene that—once introduced into the 
genome of a mouse model of choice—prevents the generation of immune responses against RP- or 
MP-modified cells through the physiological self-tolerance mechanisms. Specifically, CD4+ and 
CD8+ T cells that carry a self-reactive T cell receptor (TCR) may be inactivated or deleted through 
multiple mechanisms. First, during their maturation in the thymus, T cells that carry a self-reactive 
TCR are deleted through negative selection. Second, auto-reactive T cells that escape deletion 
through central tolerance are kept in check by a mechanism referred to as peripheral tolerance that 
requires antigen encounter outside of the primary lymphoid organs9. In addition, self-reactive CD4+ 
T cells may develop into regulatory T cells, and play a crucial role in such peripheral tolerance10. 
Thus, in order to generate a poly-tolerant mouse model, constitutive expression of foreign antigens 
in both the thymus and throughout peripheral tissues would be preferred. However, organism-wide 
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expression of proteins such as eGFP or Cre is incompatible with their intended use as cell-type 
specific reporters or modifiers. 

Results 
Generation and validation of the ‘Tol’ mouse model
In order to engineer a multiple reporter protein tolerant mouse model, we designed a large 
chimeric open reading frame (ORF) that encodes 6 fluorescent proteins, firefly luciferase, and Cre-
recombinase, all in a scrambled format. Specifically, in order to prevent functional expression of the 
introduced proteins, each individual gene was split into two fragments, and the resulting set of 16 
gene fragments was subsequently assembled in a scrambled order. In addition, to ensure tolerance 
toward potential T cell epitopes present at the gene breakpoints, the 60bp region surrounding 
each split site was added (Fig. 1a). Finally, to be able to test whether tolerance was induced against 
epitopes throughout the artificial protein, a control CD8+ T cell epitope derived from the HPV E7 
protein (HPV E749-57) was placed at the COOH-terminus. This resulted in a 7,359 bp chimeric ‘Tol’ 
ORF, encoding a protein of ± 275 kDa that covers seven RP and one MP (Supplementary Fig. 1). 

Recognition of RP- and MP-derived epitopes is dependent on the host MHC haplotype11,12, and 
risk of immunological rejection of cells modified with individual RPs and MPs thus varies between 
mouse strains. To test if the Tol cassette could be applied to induce tolerance against proteins of 

a

RPs/MPs in Tol open reading frame

1. Kaede
2. Katushka
3. Azami Green
4. tagBFP

5. mKusabira-Orange2
6. eGFP
7. Cre recombinase
8. Luciferase2

COOH-terminal regions N-terminal regions HAE749-57Break regions

b

FRTF3 Tol

F3 FRTPURO-R TK

C57BL/6 genome (Col1a locus)

RMCE plasmid

d

Tol wt
0

1

2

3

Tr
an

sc
rip

ts
 p

er
 m

illi
on

Tol transcript
c

0

5

10

15

-5

-10
0 5 10

Fo
ld

 c
ha

ng
e 

(lo
g2

)

Average CPM (log10)

Thymus

Tol

Banp
Ildr2

Cerebrum

Tol

0

5

10

15

-5

-10

Fo
ld

 c
ha

ng
e 

(lo
g2

)

0 5 10
Average CPM (log10)

15

Cerebellum

Tol

0

5

10

15

-5

-10

Fo
ld

 c
ha

ng
e 

(lo
g2

)

0 5 10
Average CPM (log10)

RP/MP gene

C-terminal N-terminalBreak

Fig. 1. Generation and validation of the Tol mouse model. a, Top left: cartoon depicting the strategy for reporter 
gene fragmentation, applied for each RP/MP gene included in the Tol ORF. Top right: reporter proteins included in 
the Tol ORF. Bottom: schematic overview of gene fragment placement in the Tol ORF. Note that the Tol ORF encodes 
the HPV E749-57 epitope in the COOH-terminal region of the chimeric Tol protein. b, Cartoon depicting the targeting 
strategy of the Tol ORF into the Col1a1 locus through recombinase-mediated cassette exchange. c, Differential 
gene expression analysis of indicated organs of Tol mice relative to WT mice. Scatterplots indicate average log2 
fold changes and average counts per million. Genes with a statistically significant change in expression in Tol mice 
are indicated in grey, and the Tol transcript is indicated in blue. d, Expression levels of the Tol transcript in thymi of 
Tol and WT mice. Data shown (c-d) is aggregated from n=4 (Tol) and n=4 (WT) mice. RP = reporter protein, MP = 
modifier protein, RMCE = recombinase-mediated cassette exchange, PURO-R = puromycin resistance gene, TK = 
thymidine kinase gene, CPM = counts per million.
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interest, we set out to assess its functionality in the C57BL/6 strain, a widely used mouse strain 
in immunological research. In addition, MHC binding predictions indicated that the Tol protein 
contains 78 potential MHC ligands predicted to bind with high affinity (i.e. netMHC4.0 percentile 
rank <1%) to the C57BL/6 MHC haplotypes (Supplementary Data 1). To establish the transgenic 
C57BL/6 strain, the Tol gene was targeted to the Col1a1 locus of embryonic stem cells (ESCs) 
via recombinase mediated cassette exchange (Fig. 1b)13,14. Successfully modified ESCs were then 
injected into blastocysts and transferred to pseudopregnant foster mice. The resulting F0 generation 
was tested for transgene presence (Supplementary Fig. 2a), and mice with sufficient chimerism 
were bred to obtain experimental cohorts of heterozygous (‘Tol’) and wild-type littermate controls 
(‘WT’).

Due to its large size and scrambled design, the Tol protein is expected to be unfolded. Cellular 
stress induced by accumulation of unfolded proteins has previously been shown to be associated 
with a variety of pathologies and neurological disorders15. To test whether expression of the Tol 
transgene would affect murine development, histopathological evaluation of tissues from Tol and 
WT mice was performed, revealing no evidence for transgene-induced pathology (Supplementary 
Table 1). As a second test for cellular stress, or potential deregulation of other pathways, that may 
be induced by Tol expression, RNA-sequencing was performed on cerebral and cerebellar tissue of 
Tol and WT animals. In addition, transcriptional activity in thymic tissue, the site of T cell deletion, 
was compared between Tol-transgenic and WT mice. Hierarchical clustering analysis of the top 
expressed genes across tissues showed that WT and Tol mice did not typically cluster separately, 
suggesting that the Tol transgene did not induce major transcriptional changes (Supplementary Fig. 
2b). Subsequent differential gene expression analysis likewise revealed no significant differentially 
expressed genes, aside from two marginally downregulated genes in the thymus (Fig. 1c and 
Supplementary Data 2). Importantly, the Tol transcript could be detected in all organs tested (Fig. 
1c, d), and aligned reads spanned the entire transgene, demonstrating that the full-length ORF was 
transcribed (Supplementary Fig. 2c). 
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Immunological tolerance toward the E749-57 epitope in Tol mice
Having observed the presence of the full-length Tol transcript in thymic tissue of Tol mice, we next 
investigated whether T cell tolerance toward epitopes encoded by the transcript was successfully 
induced. To this purpose, WT and Tol animals were vaccinated with a DNA vector encoding the 
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HPV E749-57 epitope, and the development of CD8+ T cell responses against the E749-57 epitope 
was subsequently monitored in peripheral blood by peptide-MHC multimer staining (Fig. 2a). 
Following DNA vaccination, a large population of E749-57-specific CD8+ T cells was detected in 
blood of WT mice, with peak E749-57-specific CD8+ T cell frequencies up to 30% of the total CD8+ 
T cell population (Fig. 2b, c). In stark contrast, no E749-57-specific CD8+ T cells were detected 
above background in Tol-transgene positive animals at any timepoint post vaccination (Fig. 2b, c). 
These data indicate strict tolerance of Tol mice toward a T cell epitope that is present at the 3’ of the 
Tol ORF, indicating full-length translation of the protein and successful processing by the antigen 
presentation machinery. 

Enhanced engraftment of fluorescent protein expressing OT-I T cells in Tol 
animals
To assess whether expression of the shuffled reporter gene fragments in Tol mice resulted in tolerance 
toward the parental non-shuffled reporter proteins, CD8+ Ly5.1+ OT-I T cells—specific for the 
OVA257-364 peptide—were transduced with a retrovirus encoding the green-to-red photo-switchable 
reporter protein Kaede. The resulting Kaede+ and Kaede– OT-I T cells were then transferred into Tol 
and WT mice, and OT-I T cell frequencies were boosted by administration of an OVA257-364-epitope 
encoding DNA vaccine (Fig. 3a). In the first days following adoptive cell transfer, the numbers of 
Kaede+ T cells increased rapidly and similarly in both WT and Tol mice (day 10, ratio Tol/WT = 
1.25, p = 0.421, Fig. 3b). Notably, at later time points Kaede+ OT-I T cells formed a readily detectable 
memory T cell population in Tol mice, but declined to near undetectable numbers in WT mice 
(day 57, ratio Tol/WT = 5.6, p = 0.008, Fig. 3b, c), suggestive of immunological rejection of the 
introduced Kaede+ cells. As a control, Kaede– T cells were detected in comparable numbers in WT 
and Tol mice (day 57, ratio Tol/WT = 1.5, p = 0.309). In addition, remaining Kaede+ T cells in WT 
mice showed a significantly lower expression of the Kaede protein than Kaede+ T cells present in Tol 
mice (p = 0.008, Fig. 3d), indicating that immune-mediated rejection can both lead to a reduction 
in cell quantities and selection of cells with lower transgene expression. To assess whether expression 
of the Tol transgene resulted in long-term tolerance toward Kaede, recipients of Kaede+ and Kaede– 
OT-I T cells were vaccinated and then challenged by a secondary vaccination 155 days post adoptive 
cell transfer (Supplementary Fig. 3a). In Tol mice, Kaede+ cells again expanded to large numbers 
after receiving a secondary stimulus, emphasizing ongoing tolerance toward the transferred cells 
(Supplementary Fig. 3b). In contrast, Kaede+ T cells exhibited a stunted proliferative burst, and 
expressed only low levels of the fluorescent protein in WT animals (Supplementary Fig. 3c). The 
inability to mount a robust secondary response was directly related to Kaede expression, as Kaede– T 
cells were able to expand in WT mice (Supplementary Fig. 3d).

We next examined the engraftment potential of OT-I T cells that expressed a third foreign entity, the 
rapid-folding red-fluorescent protein Katushka, in Tol and WT recipient mice. Adoptive transfer of 
Katushka+ cells induced a vigorous anti-fluorochrome immune response in WT mice, as reflected by 
the rapid disappearance of Katushka+ OT-I T cells, but not Katushka– T cells (ratio Kat–/Kat+ cells: 
day 6 = 1.2; day 10 = 385.4, Fig. 3e). Importantly, the observed clearance of Katushka-expressing 
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cells was abrogated by Tol expression, as shown by the presence of an approximately 500-fold larger 
pool of Katushka+ T cells in Tol mice as compared to WT littermates at day 10 post first DNA 
vaccination (p = 0.008, Fig. 3f).

To comprehensively evaluate whether cells expressing any of the fluorescent proteins (FPs) encoded 
by the Tol transgene could engraft in Tol mice, we concurrently transferred OT-I T cells that had 
been transduced with four different FPs (Katushka, BFP, AzamiGreen or mKO2) into either Tol or 
WT mice. In line with the prior analyses, Katushka+ OT-I T cells disappeared from the circulation 
of WT mice as early as day 10 post-transfer, whereas robust engraftment of Katushka expressing cells 
was observed in Tol mice (Supplementary Fig 4). Analysis of modified T cell frequencies for the 
other three FPs showed the presence of FP-modified cells in blood of both WT and Tol mice, with a 
trend toward enhanced engraftment in Tol mice (Supplementary Fig 4). Thus, cells modified with 
5 different FPs (Kaede, Katushka, BFP, AzamiGreen or mKO2) stably engraft in Tol mice, whereas 
engraftment of cells expressing at least 2 of these transgenes is severely impaired in WT mice. 

Discussion
Manipulation and detection of cellular pathways using modifier and reporter proteins forms 
a cornerstone of animal research; however, the xenogenic nature of these proteins introduces 
a substantial risk of recognition by the adaptive immune system. In this work, we describe an 
approach to fuse multiple RPs/MPs into a large shuffled ORF, thereby perturbing their functionality 
while maintaining all potentially immunogenic epitopes. Importantly, we show that this approach 
allows expression in the thymus plus peripheral tissues, that the encoded fusion protein is fully 
translated, and that this protein translation confers immunological tolerance toward all epitopes 
tested. Interestingly, comparison of the fate of Katushka+ and Kaede+ cells in WT mice underlines 
that immune recognition can either lead to the rapid clearance of transgene expressing cells (i.e. 
Katushka), or to the gradual selection of cells with lower transgene expression (i.e. Kaede). This 
second mode of immune rejection may go unnoticed in many experimental settings, thereby 
representing a hidden confounder. Engraftment of BFP, AzamiGreen and mKO2 transduced OT-I 
T cells was also observed but was only marginally improved relative to WT mice, suggesting that 
these proteins have a low immunogenicity in the C57BL/6 strain used in this study. As antigen 
presentation is MHC restricted, the value of the Tol transgene for these FPs may be more profound 
in other mouse strains, as e.g. also exemplified by the preferential immunogenicity of eGFP in 
Balb/c mice relative to C57BL/6 strains6,16,17.

Our study provides a methodological framework through which shuffled transgenes are applied to 
avoid undesirable immune responses against exogenously introduced proteins. Both the Tol ORF 
and the C57BL/6 Tol strain used in this work are available upon reasonable request (from the 
corresponding author and the Netherlands Cancer Institute Transgenics Core Facility, respectively). 
Furthermore, creation of a resource of mouse strains that are tolerant for additional reporter and 
modifier proteins used in biomedical research would be of considerable value. 
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Methods
Generation of Tol open reading frame and vaccination plasmids
The Tol ORF was designed as described in Supplementary Fig. 1 and synthesized by Genscript. 
The full-length ORF was subcloned into a recombinase-mediated cassette exchange (RMCE) 
compatible vector, producing the pF3-CAG-Tol-FRT plasmid (Addgene ID: 141349). In the 
resultant vector, the Tol ORF was positioned downstream of the CAG promoter and flanked by 
F3 and FRT recombination sites. The entire F3-CAG-Tol-FRT cassette was sequence verified by 
Sanger sequencing. Katushka, Kaede, AzamiGreen, mKO2 and tagBFP ORFs were shuttled directly 
into the multiple cloning site of pMP71 via Gibson cloning to generate pMP71-Katushka, pMP71-
Kaede, pMP71-AzamiGreen, pMP71-mKO2 and pMP71-tagBFP, respectively. Generation of 
pVAX- E749-67 has been described previously22. pVAX-SIINFEKL (Addgene ID: 141350) was 
generated by Gibson cloning to produce scarless fusions between SIINFEKL, several CD4+ T cell 
epitopes (HELP), and the KDEL-signal peptide. 

Mice
C57BL/6-Ly5.1 and OT-I mice were obtained from Jackson Laboratories and crossed to obtain 
C57BL/6-Ly5.1-OT-I donor mice for adoptive transfer experiments. All animals were maintained 
and bred in the animal department of The Netherlands Cancer Institute and used for experimentation 
at 7-14 weeks. All animal experiments were approved by the Animal Welfare Committee of the 
NKI, in accordance with national guidelines.

Generation of Tol transgenic mice 
The Tol expression cassette was introduced into a locus 3’ to the Col1a1 locus14 using recombinase-
mediated cassette exchange (RMCE)18 In brief, a C57BL/6J ES cell line was derived from blastocysts19 
and an F3-Puro-deltaTK-FRT cassette was targeted into the ESCs by homologous recombination, 
as described14. The pF3-CAG-Tol-FRT plasmid was co-transfected with pCAGGS-FLPe into the 
B6J-RMCE ES cells, followed by selection in medium containing fialuridine. Clones were screened 
by PCR for correct and complete integration of the F3-Tol-FRT cassette into the Col1a1 locus. 
Correctly modified ESCs were then injected into B6/NTAC blastocysts, and injected blastocysts 
were transferred into pseudopregnant B6CBAF1/JRj foster mice, as described previously13,19. 
Resulting chimeras were tested for chimerism by quantitative-PCR (Q-PCR). Positive animals 
(>0.4 RQ) were crossed with C57BL/6JRj mice (Janvier) to generate experimental cohorts. 
Presence of the Tol cassette was confirmed in experimental cohorts by PCR using the forward 
5’-GGAAAGAATCACAACTTACG-3’ and reverse 5’-AGAGCATTTCGGTTGAGGCC-3’ 
primers. The Tol strain described in this communication is available upon request from the 
Netherlands Cancer Institute Transgenics Core Facility.
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Histopathology 
For histopathological analyses, 2 mm-thick hematoxylin-eosin stained sections were prepared from 
formalin-fixed, paraffin-embedded murine tissues such as skin, spleen, thymus, lymph nodes, liver, 
pancreas, gastrointestinal tract, heart, lung, kidneys, testes, ovaries, accessory sex glands, bone 
marrows (sternum and extremity), and muscles. Sections were evaluated and scored by an animal 
pathologist blinded to animal genotype.

RNA sequencing 
RNA was extracted from the indicated frozen tissues using the RNeasy Mini Kit (Qiagen). Whole 
transcriptome sequencing samples were prepared with the TruSeq Stranded mRNA Kit (Illumina). 
Single-end 65 bp sequencing was performed on a HiSeq 2500 System (Illumina). Transcript 
abundance was calculated using Salmon 0.14.120, based on the GRCm38 transcriptome build. The 
Tol transcript sequence was added before read alignment. Differential gene expression analysis was 
performed using EdgeR 3.921. 

Production of retroviral supernatants
Phoenix-E packaging cells were seeded at 1.4*106 cells per 10 cm dish in IMDM supplemented with 
8% FCS, glutamax, penicillin/streptomycin (Gibco). After 24 hours, medium was refreshed and 
cells were transfected using FuGene6 (Roche), following the manufacturer’s protocol. 48 hours post 
transfection, viral supernatant was harvested and passed through a 0.22 µm filter (Sigma). Filtered 
retroviral supernatant was snap-frozen in liquid nitrogen and stored at -80 C.

Generation and adoptive transfer of Kaede, Katushka, BFP, AzamiGreen or 
mKO2 positive OT-I splenocytes 
Spleens from C57BL/6;Ly5.1;OT-I mice were passed through 70 mm strainers to obtain a single cell 
suspension. Splenocytes were then seeded at 6*106 cells/ml in RPMI 1640 supplemented with 8% 
FCS, glutamax, penicillin/streptomycin, pyruvate, non-essential amino acids, HEPES, b-mercapto-
ethanol (Gibco), 2 mg/ml concanavalin A (Calbiochem) and 1 ng/ml IL-7 (Peprotech). After 48 
hours, T cells were harvested and re-seeded on 24-well plates coated with Retronectin (Takara) at 
1.5*106 cells per well in RPMI 1640 supplemented with 8% FCS, glutamax, penicillin/streptomycin, 
pyruvate, non-essential amino acids, HEPES, b-mercapto-ethanol and 50 IU IL-2 (Novartis). 
Retrovirus containing supernatant was added and cells were transduced by spin-infection at 2,000 
rpm for 90 minutes. After 24 hours, cells were harvested and washed twice in PBS. Subsequently, 
T cells were resuspended in HBSS (Gibco) and 1*106 CD8+ cells were intravenously injected via 
the tail vein.  
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DNA vaccination 
One day prior to vaccination with DNA encoding MHC-II class restricted helper epitopes22, plus 
either the OVA257–264 epitope (‘Help-OVA’) or the E749-67 epitope (‘Help-E7’), hair of mice was 
removed from hind legs using Veet depilation cream (Reckitt Benckiser). Primary DNA vaccination 
was subsequently performed on day 0, 3 and 6, as previously described23. In brief, a droplet of 15 µl 
of a 2 µg/µl DNA solution in 10 mmol/L Tris pH 8.0 and 1 mmol/L EDTA pH 8.0 was applied on 
both the inside and outside of the leg, and vaccination was performed using a rotary tattoo device 
with a sterile disposable 9-needle bar (MT.DERM) oscillating at a frequency of 100 Hz for 1 min 
with a needle depth of 1 mm. For secondary vaccinations, mice received a single DNA tattoo with 
20 µl of the 2 µg/µl plasmid solution on both the inside and outside of the leg, at >155 days after 
start of primary vaccination. 

Analysis of antigen-specific T cell responses by flow cytometry 
Blood samples were collected from the tail vein at the indicated time points. Erythrocytes were 
removed by treatment with NH4Cl buffer, and cells were washed and then stained with anti-
CD45.1-APC (A20, Thermo Fisher Scientific), anti-CD8-PerCp-Cy5.5 (eBioH35-17.2, Thermo 
Fisher Scientific), near-IR dye (Thermo Fisher Scientific) and indicated MHC multimers. MHC 
multimers were produced in-house by UV-induced ligand exchange and subsequent labeling with 
BV421, APC or PE (Thermo Fisher Scientific), as described previously24. Flow cytometry data were 
acquired on a Fortessa (BD Biosciences) and analyzed in FlowJo (version 10.4.2) according to the 
gating strategy shown in Supplementary Fig. 5. 

Statistics and reproducibility
Statistical analyses were performed in Prism (GraphPad), comparing groups of mice with the two-
tailed Mann-Whitney test. Results were regarded as statistically significant at a P-value of <0.05. 

Data availability
Mouse cDNA sequences (GRCm38) used for Salmon alignment were downloaded from Ensembl 
(http://www.ensembl.org/biomart/martview). RNA-seq data have been deposited, and are available 
from the Gene Expression Omnibus under accession number GSE147757. All source data 
underlying the graphs and charts presented in the main figures are presented in Supplementary 
Data 3.
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Supplementary Fig. 1. Design of the Tol open reading frame. Cartoon depiction of the Tol open reading frame 
(ORF), with the position of each gene fragment depicted. AzGreen = Azami Green, mKO2 = mKusabira Orange2, 
TagBFP = TagBlue fluorescent protein, eGFP = enhanced green fluorescent protein, Luc2 = luciferase2, E7 = HPV 
E749-57 epitope.
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Supplementary Fig. 2. Validation of the Tol mouse model. a, Bar chart depicting the percentage of chimerism 
in F0 animals, as determined by quantitative PCR. Blue bars represent animals used for subsequent breeding. b, 
Hierarchical clustering analysis performed on RNA sequencing data from thymus, cerebrum and cerebellum of WT 
(black) and Tol (blue) mice. Complete-linkage clustering was performed on the top 1,000 most highly expressed 
genes in the dataset. Thy = thymus, Cbel = cerebellum, Cbr = cerebrum. c, Density of aligned reads along the Tol ORF. 
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Abstract
The sensitivity of malignant tissues to T cell-based cancer immunotherapies 
is dependent on the presence of targetable HLA class I ligands on the tumor 
cell surface. Peptide intrinsic factors, such as HLA class I affinity, likelihood 
of proteasomal processing, and transport into the ER lumen have all been 
established as determinants of HLA ligand presentation. However, the role of 
sequence features at the gene and protein level as determinants of epitope 
presentation has not been systematically evaluated. To address this, we 
performed HLA ligandome mass spectrometry on patient-derived melanoma 
lines and used this data-set to evaluate the contribution of 7,124 gene and protein 
sequence features to HLA sampling. This analysis revealed that a number of 
predicted modifiers of mRNA and protein abundance and turn-over, including 
predicted mRNA methylation and protein ubiquitination sites, inform on the 
presence of HLA ligands. Importantly, integration of gene and protein sequence 
features into a machine learning approach augments HLA ligand predictions to a 
comparable degree as predictive models that include experimental measures of 
gene expression. Our study highlights the value of gene and protein features to 
HLA ligand predictions.

Introduction
Spontaneous or immunotherapy-induced recognition and destruction of malignant tissues by the 
T cell-based immune system is, to a large extent, dependent on presentation of HLA class I bound 
peptides to antigen-specific CD8+ T cells1–3. Consequently, the composition of the pool of peptide-
HLA class I complexes at the cell surface—or the HLA class I ligandome—strongly determines the 
‘visibility’ of tumor cells to CD8+ cytotoxic T cells. Understanding the various factors that define the 
composition of this HLA ligandome is thus of major value for cancer immunotherapy.

The HLA class I ligandome is primarily generated through the intracellular degradation of proteins 
by the proteasome, and subsequent translocation of peptide fragments into the ER lumen by the 
transporter associated with antigen processing (TAP). These peptides can undergo further trimming 
by ER-resident aminopeptidases, bind to the peptide-binding groove of HLA class I molecules, and 
finally traffic to the cell surface to be presented to the immune system4,5. The number of peptides 
that can theoretically be generated from the human proteome is vast, adding up to approximately 
107 distinct peptides for 9-meric species alone6. This large space poses a substantial challenge in the 
prediction of the HLA ligandome of a cell population of interest. Over the past decades, significant 
advances have been made in reducing this complexity, primarily by focusing on characteristics of 
the peptide itself or its surrounding sequence. Specifically, HLA class I ligands bind to the peptide-
binding groove of HLA class I through shared ‘anchor’ residues, a feature that has been leveraged in 
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the development of predictive algorithms7,8. In addition, the predictable cleavage preference of the 
proteasome9 has been used to improve epitope prediction accuracy10,11. 

Beyond local sequence characteristics, a number of protein-level features are expected to play 
an important role in the generation of HLA binding peptides, for instance by tuning protein 
abundance and turn-over12–14. In prior work, transcriptome measurements have been used as a proxy 
for protein expression to aid HLA ligand predictions. However, mRNA and protein abundance 
correlate poorly in most mammalian cells15–17, primarily due to post-transcriptional regulation. 
Such post-transcriptional regulation includes the activity of RNA-binding proteins and non-coding 
RNA species, and sequence intrinsic features (e.g. GC content and codon usage), which can affect 
the translational output of mRNAs18,19. Furthermore, post-translational modifications, including 
ubiquitination and glycosylation, are known to modulate protein abundance, localization, and 
turn-over rates20,21, and may thereby influence epitope sampling.

In this study, we aimed to examine the potential value of gene and protein sequence features in the 
prediction of the HLA class I ligands. Implementing a machine learning approach, we show that 
the performance of such predictions can be improved through the addition of sequence features. 
Importantly, predictive models that make use of such features achieve the same level of predictive 
power as models that incorporate experimental measurements of gene-expression levels, and the 
predictive value of these features was generalizable to external data. Our data exemplify how the 
‘hard-coded’ information of gene and protein sequence features can be exploited to infer a cell’s 
proteomic content and its derivatives. 

Results
Identification of human melanoma HLA ligandomes 
To investigate putative determinants of the HLA ligandome, we performed LC-MS on pan-HLA 
immunoprecipitates of three melanoma lines (Fig. 1A), resulting in the identification of 18,819 
peptides derived from 6,286 proteins at a false discovery rate of <1%. The length distribution 
of the LC-MS detected peptides closely matched that of known melanoma-derived HLA ligands 
(IEDB22, Fig. 1B), with the vast majority of peptides consisting of 9-meric species. Examination 
of positional frequencies of each amino acid revealed strong usage biases at position 2 and 9 (Fig. 
1C-D). To assess whether this observed amino acid enrichment was explained by the known ligand 
preference of the HLA class I haplotypes expressed by these tumor lines, 9-meric peptide sequences 
from each melanoma line were clustered using the GibbsCluster algorithm23. This analysis revealed 
dominant motifs present in each of the HLA ligandomes that closely matched the corresponding 
HLA haplotype consensus binding motifs for 11/11 HLA A and B alleles and 5/6 HLA C alleles 
(Fig. 1E, Supplementary Figure 1). In addition, HLA class I binding affinity predictions showed 
that the majority of LC-MS detected peptides (61.5–91.2%) were predicted to form ligands for at 
least 1 of the expressed HLA alleles (Fig. 1F, Supplementary Figure 1). 
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Gene and protein features inform on HLA sampling  
Gene and protein sequence features, such as post-transcriptional or post-translational modification 
sites, have been shown to provide information on mRNA or protein abundance19,24–26. To determine 
whether such features can be employed to predict the presence of HLA ligands within the 
proteome, we made use of a library of 7,124 sequence features. This feature library includes codon 
and amino acid usage, RNA-binding motifs from 142 RNA-binding proteins (RBPs), predicted 
miRNA (miR) binding scores, and RNA modification sites that were separately identified in the 
5’ UTR, 3’ UTR and coding sequence27. Predicted post-translational modification (PTM) sites, 
such as ubiquitination, acetylation, and malonylation sites were additionally included. Of note, this 
sequence feature library comprises predicted mRNA and protein modification sites, rather than any 
experimental measurement of such modifications in the cell systems used. 

To assess whether individual sequence features can inform of HLA sampling, we first explored 
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Figure 1. Identification of HLA ligandomes. (A) HLA class I haplotype of the melanoma lines used, and number 
of peptides and source proteins identified. (B) Peptide length distribution of each LC-MS dataset, compared to the 
peptide length distribution of known melanoma-derived HLA class I ligands deposited to IEDB. (C-D) Enrichment of 
indicated amino acids, relative to amino acid occurrence in the proteome, at each position of all 9-meric species in 
the datasets. Summary depicting the median of the absolute enrichment values of all amino acids for each position 
(C), and heatmaps visualizing hierarchical clustering of amino acid enrichment (E) are shown. (G) Sequence logos of 
all 9-mer ligands deposited to IEDB for the HLA class I alleles expressed by SK-MEL-95 (top), and the sequence logos 
of 6 peptide clusters obtained using the GibbsCluster algorithm (bottom). The number of clusters was constrained 
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Figure 2. Sequence features inform on HLA sampling. Random forest models were trained using HLA ligandome 
data from each melanoma line and using individual classes of gene and protein sequence features to identify HLA 
ligands. (A) Sequence feature classes used to fit random forest classifiers for each melanoma line. Values indicate 
number of features per class. (B) Mean importance of sequence features to the models of each class. Feature im-
portance represents the mean decrease in accuracy when that sequence feature is not included in the model, all 
importance scores are re-scaled per random forest model to a 0-100 scale. Dots indicate individual features. (C) 
Comparison of the importance of all sequence features across the individual random forest models. Dots indicate 
individual features, linear regressions are shown as colored lines, and 95% confidence intervals as greyed areas. Col-
ored text denotes the respective Pearson correlation coefficients. (D) Comparison of sequence feature occurrence 
between 500 LC-MS detected HLA ligands and the same number of decoy peptides. Selected sequence features are 
shown. Boxplots indicate group median and 25th and 75th percentiles, whiskers indicate the interquartile range 
multiplied by 1.5, and dots signify individual peptides. (E) HLA ligands and decoy peptides were either ranked at 
random or by the indicated sequence feature, and the number of HLA ligands in the top 50% ranked peptides 
was quantified. Data depict the relative increase in HLA ligands as compared to random, bars indicate the mean 
percentage increase of 50 bootstraps, error bars depict 95% confidence intervals. (F) Comparison of averaged ab-
solute enrichment values between feature classes. Boxplots indicate group median and 25th and 75th percentiles, 
whiskers indicate the interquartile range multiplied by 1.5, and dots signify individual features.
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the contribution of a subset of features that could be assigned to five major feature classes (5’ 
UTR, CDS, 3’ UTR, miR binding, PTM) and that displayed a substantial degree of variance 
across the proteome (Fig. 2A, 5,771 out of 7,124 features in the library). A set of 2,000 HLA 
ligands was drawn from each tumor line and supplemented with a 2-fold excess of decoy peptides 
that were randomly sampled from the transcribed genome. This dataset was then used to train 
individual Random Forest classifiers for each tumor line and each sequence feature class, which 
were subsequently used to determine the importance of these sequence features to each of the 
obtained classifiers (Fig. 2B, Supplementary Figure 2A, showing normalized importance plots 
and RF metrics). The importance of sequence features was highly consistent between the different 
melanoma ligandome datasets, indicating that a shared set of features reliably informed on the 
presence of HLA ligands (Fig. 2C). Furthermore, direct comparison of the occurrence of high-
importance sequence features within source proteins of HLA ligands and decoy peptides revealed 
significant differences for a set of sequence features (Supplementary Figure 2). For example, HLA 
ligands were preferentially sampled from proteins that contained a higher number of predicted sites 
for ubiquitination and acetylation, two PTMs that can regulate targeted proteasomal degradation 
and protein stability28–30 (Fig. 2D). Predicted N1-methyladenosine (m1A) sites within the 5’ UTR 
were also enriched in the mRNA of source proteins of HLA ligands, an effect that appears consistent 
with the prior observation of enhanced translation efficiency of m1A-modified mRNA molecules25. 
In contrast, 5’UTR length and occurrence of G-rich motifs in the CDS, features that have previously 
been suggested to negatively impact mRNA levels and translation, respectively31,32, were negatively 
associated with the presence of HLA ligands (Fig. 2D).

To understand the ability of individual sequence features to contribute to HLA ligand prediction 
in a more quantitative manner, a custom enrichment score was calculated for each of the selected 
features (see methods). In brief, the set of HLA ligands and decoy peptides was sorted by the 
occurrence of each feature or was arranged in a random manner. Subsequently, the quantity of HLA 
ligands present in the top 50% ranked peptides was compared between these two cases, reflecting 
the benefit of each feature when used as a single determinant. In concordance with the prior analysis 
(Fig. 2C), miR binding site quantities exhibited no detectable bias toward HLA ligands or decoy 
peptides. In contrast, sequence features from the other classes showed a consistent capacity to 
enrich or deplete for the presence of HLA ligands (Fig. 2E). The most prominent associations were 
observed in the CDS and PTM classes (Fig. 2F), with some features increasing the number of ligands 
detected by more than 20%. Notably, computed m1A and N7-methylguanosine (m7G) sites were 
predictive of the presence of HLA ligands in the protein product irrespective of their location within 
the coding sequence or the untranslated regions (Fig. 2E), an observation that aligns with their 
general translation-enhancing capacity25,33. Intriguingly, even though GC content was consistently 
informative on HLA sampling, its directionality was context dependent (positively correlated in the 
5’ UTR and negatively correlated in the 3’UTR and CDS), in line with prior reports suggesting that 
GC content may influence mRNA levels differently depending on location6,17,34. Together, the above 
analyses show that gene and protein sequence features can individually inform on the presence of 
HLA ligands. 
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Sequence features augment HLA ligand predictions  
Having shown that individual sequence features can inform on HLA sampling, we next assessed 
whether these features can be leveraged to improve HLA ligand prediction models. To this end, the 
melanoma HLA class I ligand dataset was divided into a training set (80%) and test (20%) set that 
were supplemented with a 4-fold and 1,000-fold excess of decoy peptides, respectively. To evaluate 
the added value of sequence features to classical HLA ligand prediction methods, such as netMHC 
(HLA affinity) and netChop (proteasomal processing), the training set was used to generate 
multiple XGBoost35 classifier models (Fig. 3A), each integrating a different set of explanatory 
variables. As reported previously8,11, both computed HLA affinity and proteasomal processing were 
strongly predictive of HLA sampling (Supplementary Figure 2C, D). Importantly, applying the 
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Figure 3. Value of sequence features in HLA ligand predictions. (A) The melanoma line data set was split into 
a training set and test set at an 80/20 ratio. The training set was used to build XGB classifiers using different com-
binations of features. (B-C) Number of true HLA ligands observed in the top 0.1% of predicted peptides from the 
matched melanoma line test set by each of the indicated models. Line graphs depicting the cumulative sum (B) 
and bar charts depicting AUCs (C) are shown. (D-E) Positive predictive value (PPV) at each peptide rank within the 
top 0.1% of predicted peptides from the melanoma line test set by each of the indicated models. (F-G) Quantity of 
true HLA ligands observed in the top 0.1% of predicted peptides from the melanoma line test set by each of the 
indicated models. Line graphs depicting the cumulative sum (F) and bar charts depicting AUCs (G) are shown. (H-I) 
Positive predictive value (PPV) at each peptide rank within the top 0.1% of predicted peptides from the melanoma 
line test set by each of the indicated models. Features used to build classifiers were predicted HLA class I affinity (A), 
predicted proteasomal processing (P), transcript abundance (RNA), ribosome occupancy (RP), and the sequence 
feature library (SF).
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obtained models to predict HLA ligands in the test set revealed that the classifier that included 
sequence feature information consistently and substantially outperformed the models that lacked 
this information. Specifically, the model including sequence features consistently ranked true HLA 
ligands at a higher position (Fig. 3B-C) and increased the positive predictive value by approximately 
1.5-fold (Fig. 3D-E). 

To determine whether the sequence features that were highly informative of HLA sampling when 
testing separate feature classes (figure 2) were also substantially contributing to the XGBoost 
classifier, the importance of those features was examined. This assessment revealed that the top 
scoring features in the prior analyses, such as predicted ubiquitination, acetylation, m7G, and m1A 
sites, were likewise dominant contributing factors in the XGBoost classifier (Supplementary Figure 
2D). Furthermore, after predicted affinity and proteasomal processing, PTM and CDS features 
were generally assigned the highest importance scores (Supplementary Figure 2E), underlining 
their significance in HLA ligand prediction.

Sequence features can match ‘wet lab’ measures of gene transcription and 
translation 
mRNA abundance measurements have been applied in prior studies to enhance the quality of HLA 
ligand prediction classifiers36,37, and a number of recent efforts have established analysis of ribosome 
occupancy as a measure of active protein translation38,39. To understand the value of protein and 
gene sequence features relative to these experimental measurements of either gene expression 
or ribosome occupancy, we generated mRNA sequencing (transcript abundance) and ribosome 
profiling (protein translation activity) datasets for each of the melanoma lines. Consistent with 
previous reports, both measures of gene expression were strongly indicative of HLA sampling and 
the combination of transcript level data and ribosome occupancy data offered little additional benefit 
(Supplementary Figure 3A-E). Next, to directly compare the predictive value of sequence features 
versus these ‘wet-lab’ measures of gene transcription and protein translation, additional XGBoost 
classifiers were trained that included these metrics. Application of this new set of models on the 
test dataset revealed that the XGBoost model that included sequence features was able to predict 
true HLA ligands at an equal potency as models that incorporated wet-lab measurements of gene 
transcription and protein translation (Fig. 3F-I). Interestingly, addition of wet-lab measurements 
of gene transcription and protein translation in a model that contained sequence features did not 
consistently improve predictiveness (Supplementary Figure 3F-G), indicating that the predictive 
value of sequence features and wet-lab measurements is largely redundant. Together, these data show 
that gene and protein sequence features jointly provide a similar degree of information on HLA 
ligandome composition as experimentally obtained expression levels. 

Sequence feature-based HLA ligand classifiers are generalizable to external 
data
To understand whether the value of sequence features in HLA ligandome prediction is generalizable, 
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we subsequently tested whether the above observations could be extended to another tumor type, 
other HLA class I alleles, and to an independent dataset. To this purpose, we assessed the performance 
of the different classifiers on an HLA ligandome data set obtained from multiple mono-allelic human 
B lymphoblastoid cell lines37, focusing on HLA ligandome data for the 4 most common HLA class 
A and B alleles40, plus HLA ligandome datasets for 4 common HLA A and B alleles that were absent 
from the original melanoma dataset. From each of these ligandomes, 350 9-meric HLA ligands were 
sampled and supplemented with a 1,000-fold excess of decoy peptides, resulting in 8 individual 
test datasets. Application of the classifiers trained on internal ligandome data to these external test 
sets showed that models that included sequence features outperformed predicted HLA affinity- and 
processing-based models in 7 out of 8 datasets (Fig. 4A-D). Furthermore, the performance of the 
sequence feature-based classifier was equal to that of XGBoost models that included the matched 
gene expression information from the external data sets (Fig. 4F-G), demonstrating that the value 
of gene and protein feature-based prediction models is generalizable across cell types and datasets. 
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Figure 4. Sequence feature-based XGBoost models are generalizable to external data. XGBoost classifiers were 
validated using HLA ligandome data from 6 mono-allelic cell lines published by Sarkizova and colleagues37. From 
each cell line, 350 true HLA ligands were supplemented with 350,000 decoy peptides. (A) Cumulative sum graphs of 
true HLA ligands observed in the top 0.1% of predicted peptides, by each of the indicated models. (B) AUC values 
for each of the graphs shown in panel A. (C) Positive predictive value (PPV) at each peptide rank within the top 0.1% 
of predicted peptides by each of the indicated models. (D) PPV within the top 0.1% of predicted peptides by each of 
the indicated models. Features used to build classifiers were predicted HLA class I affinity (A), predicted proteasomal 
processing (P), transcript abundance (RNA), and the sequence feature library (SF).
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Discussion
Gene and protein sequence features represent a class of ‘hard-coded’ regulators of protein expression, 
influencing this process at many different levels. In this study, we leveraged a large set of such 
gene and protein features to assess their contribution to the composition of the HLA ligandome. 
Through this effort, we demonstrate that sequence features can augment HLA ligand predictions, 
and that the predictive gain obtained in these models is equal to that of models that incorporate 
experimentally obtained gene expression and protein translation data. 

While not formally assessed here, it is expected that at least some of the sequence features contribute 
to HLA ligand predictions by providing a proxy for protein abundance. This notion is supported 
by the observation that sequence features such as mRNA region length, GC content, and post-
transcriptional modifications can be used to help predict protein levels17. Furthermore, predicted 
RNA methylation sites were among the features that were most prominently associated with the 
presence of HLA ligands, an observation that may be explained by their known modulatory effect 
on both mRNA stability and translation efficiency25,26,33,41. In addition to features involved in 
mRNA regulation and translation, our data reveal that the predicted occurrence of several PTM 
sites informed on the presence of HLA ligands. For ubiquitination, the PTM that displayed 
the highest predictive value, its positive association with HLA ligand yield may be caused by an 
enhanced accessibility to proteasomal degradation20,30,42. For other PTMs that were predictive of 
HLA ligands, such as methylation and acetylation, their involvement in specific pathways is less 
well understood21,43,44. Our data provide correlative evidence that that these modifications influence 
availability of proteins to the antigen processing machinery but further work will be required to 
formally test this. 

Improvement of HLA ligand prediction approaches remains an active field of research, with the 
aim to, for example, allow the more precise selection of cancer (neo)antigens for therapeutic 
purposes36,37,45,46.  Because of its generalizable nature and lack of requirement for direct transcriptome 
measurements, we envision that the approach described here will be of value in these efforts.

Methods
Patient-derived melanoma cell lines
SK-MEL-95 and M026.X147 were a kind gift from Daniel Peeper (Netherlands Cancer Institute). SK-
MEL-95 was originally established in the Memorial Sloan Kettering Cancer Center. NKIRTIL006 
was established in house48. 

Cell culture
Patient-derived melanoma cell lines were cultured in RPMI (Gibco) supplemented with 8% fetal 
calf serum (FCS, Sigma), 100 U/ml penicillin (Gibco) and 100 µg/ml streptomycin (Gibco) at 37 
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°C and 5% CO2. For mRNA sequencing and ribosome profiling, cell lines were cultured to a density 
of 70-90% on 150mm Corning tissue-culture treated culture dishes (Merck). For HLA ligandome 
LC-MS, approximately 1·109 cells were cultured in Corning CELLSTACK Culture Chambers 
(Corning, 05-539-096). 

HLA class I peptide isolation and LC-MS/MS
HLA class I-associated peptides were isolated by immunoprecipitation of HLA class I complexes 
using the mouse monoclonal IgG2a antibody W6/32, as described previously49. Peptides were 
eluted from HLA class I protein molecules using a 10% acetic acid (v/v) solution, and subsequently 
separated using a 10 kDa molecular weight cutoff filter. Obtained solution was then desalted into 
3 fractions using in-house made c18 STAGE (STop And Go Extraction) tips, eluted with 20%, 
30% and 50% acetonitrile, respectively. The resulting fractions were injected on an Agilent 1290 
system using a 120-min gradient coupled to an Orbitrap Fusion mass spectrometer (Thermo 
Fisher Scientific). Fractions 1 and 2 were injected in triplicate, whereas fraction 3 was injected in 
duplicate. The LC system comprised of a 20 × 0.1 mm i.d. trapping column (Reprosil C18, 3 µm; 
Dr. Maisch) and a 50 × 0.005 cm i.d. analytical column (Poroshell 120 EC-C18; 2.7 µm). An LC 
resolving gradient of 13 to 43% Solvent B (80% acetonitrile, 20% water, 0.1% formic acid) was 
used. The Top Speed method was enabled for fragmentation, where the most abundant precursor 
ions were selected in a 3 s cycle for data-dependent EThcD. MS1 and MS2 spectra were acquired at 
a resolution of 60,000 (FWHM at 400 m/z) and 15,000 (FWHM at 400 m/z), respectively. RF lens 
voltage was set to 60. Dynamic exclusion of 18s was used. Peptide precursors of charges 2 to 6 were 
fragmented, if accumulated to a minimum intensity of 4·105 within 50 ms. In MS2, a maximum 
injection time of 250ms was used with a minimum intensity filter of 5·104. 

HLA class I peptide analysis
RAW data files were analyzed using the Proteome Discoverer 1.4 software package (Thermo Fisher 
Scientific). MS/MS scans were searched against the human Swissprot reviewed database (accessed in 
September 2015; 20,203 entries), with no enzyme specificity using the SEQUEST HT search engine. 
Precursor ion and MS/MS tolerances were set to 10 ppm and 0.05 Da. Methionine oxidation was 
set as variable modification. The peptides-to-spectrum matches were filtered for precursor tolerance 
5 ppm, <1% FDR using Percolator, XCorr >1.7, and peptide rank 1. Peptides that were between 
8 and 14 amino acid long were selected for further analysis. The mass spectrometry data have been 
deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set 
identifier PXD036277.

Replicate injections displayed an overlap of approximately 70% (shared between at least 2 replicates). 
Consistent with their shared tissue origin, a large part of peptides detected across the melanoma 
lines mapped to a core group of proteins (47.6% shared between at least 2 lines). In contrast, the 
MS detected peptides exhibited a small degree of overlap (12.4% shared between at least 2 lines), in 
line with their difference in HLA haplotype. 
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mRNA sequencing
Cells were cultured to an approximate density of 80%, and 1·107 cells were subsequently dissociated 
using a cell-scraper in cold (4 °C) PBS, centrifuged for 10 minutes at 300x g, and snap-frozen in 
liquid nitrogen. RNA was extracted from the frozen pellets using the RNeasy Mini Kit (Qiagen). 
Whole transcriptome sequencing samples were prepared using the TruSeq Stranded mRNA Kit 
(Illumina). Single-end 65 bp sequencing was performed on a HiSeq 2500 System (Illumina). 
Obtained reads were aligned to the GRCh38 reference (gencode release 21) using STAR aligner 
(version 2.5.2b), and transcripts were quantified using Salmon (version 0.7.0). Transcript counts 
belonging to a single consensus coding sequence were summed. 

Ribosome profiling
Cells were cultured to an approximate density of 80%, and 5·107 cells were subsequently treated 
with 100 µg/ml cycloheximide for 5 minutes at 37 °C. Cells were then washed once in cold (4 
°C) PBS containing 100 µg/ml cycloheximide, dissociated using a cell-scraper in cold (4 °C) PBS 
supplemented with 100 µg/ml cycloheximide, centrifuged for 10 minutes at 300x g, and snap-
frozen in liquid nitrogen. Frozen pellets were resuspended in lysis buffer (20 mM Tris–HCl, pH 
7.8, 100 mM KCl, 10 mM MgCl2, 1% Triton X-100, 2 mM DTT, 100 µg/ml cycloheximide, 1× 
Complete protease inhibitor), and incubated on ice for 20 minutes. Lysates were sheared using a 
26G needle, centrifuged for 10 minutes at 1,300x g, and supernatants were transferred to a clean 
tube. Supernatants were treated with 2 U/µl of RNase I (Ambion) for 45 min at room temperature, 
with rotation. Next, lysates were fractionated on a linear sucrose gradient (7–47%) using the 
SW-41Ti rotor (Beckman Coulter) at 221,633x g for 2 hours at 4 °C, without brake. Obtained 
sucrose gradients were then divided in 14 fractions, and fractions 7–10 (cytosolic ribosomes) were 
pooled and treated with PCR grade proteinase K (Roche) in 1% SDS to release ribosome protected 
fragments. The resulting fragments were subsequently purified using Trizol reagent (Invitrogen) 
and precipitated in the presence of glycogen, following the manufacturer’s instructions. For library 
preparation, RNA was gel-purified on a denaturing 10% polyacrylamide urea (7 M) gel. A section 
corresponding to 25 to 36 nucleotides—the region that comprises the majority of the ribosome-
protected RNA fragments—was excised, and purified through ethanol precipitation. RNA 
fragments were then 3′-dephosphorylated using T4 polynucleotide kinase (New England Biolabs) 
for 6 hours at 37°C in 2-(N-morpholino)ethanesulfonic acid (MES) buffer (100 mM MES-NaOH 
pH 5.5, 10 mM MgCl2, 10 mM β-mercaptoethanol, 300 mM NaCl). The 3′ adaptor was added 
using T4 RNA ligase 1 (New England Biolabs) for 2.5 hours at 37°C. Ligation products were 
5′-phosphorylated with T4 polynucleotide kinase for 30 minutes at 37 °C, and the 5′ adaptor was 
added using T4 RNA ligase 1 for 2 hours at 37 °C. Sequencing was performed on a HiSeq 2500 
System (Illumina). Ribosome occupancy was calculated using the Ribomap pipeline50, and was 
aligned to the GRCh38 reference (gencode release 21). Counts belonging to a single consensus 
coding sequence were summed.
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Characterization of LC-MS detected peptides
For comparison of peptide length distributions, known melanoma HLA class I ligands were 
downloaded from the IEDB web-interface (https://www.iedb.org) in June 2021 using the following 
search filters: Epitope – Any; Assay Outcome – Positive; MHC restriction – Class I; Host – Human; 
Disease – Melanoma. 

To assess the amino acid positional biases of the LC-MS detected peptides, the dataset was filtered 
for 9-meric species, and the occurrence of each amino acid on each peptide position was tallied. As a 
reference, all expressed proteins (TPM > 0 in the mRNAseq dataset) were selected for each melanoma 
line, and the number occurrences of each amino acid was calculated. Amino acid enrichment was 
then defined as the fraction by which an amino acid occurred at a certain position divided by the 
fraction by which that amino acid occurred in the reference. The positional bias was defined as the 
median of the absolute amino acid enrichment values for each peptide position. For binding motif 
analyses, 9-meric peptide sequences from each melanoma line were clustered using GibbsCluster 
2.0 (command line options set to: -g 3-7 -C -D 4 -I 1 -S 5 -T -j 2 -c 1 -k 25), with the number of 
clusters for each melanoma line set to the number of alleles expressed by that line. Sequence logos 
were generated using the R package ggseqlogo. To generate reference sequence logos, all known 
human 9mers for each of the shown HLA class I alleles were downloaded from IEDB in June 2021.  

Peptide database construction
To investigate characteristics of HLA class I ligands, a database consisting of LC-MS detected 
peptides (i.e., true HLA ligands) and not-detected peptides (referred to as decoy peptides) was 
constructed. To this end, HLA binding scores to the HLA alleles of each melanoma line were 
calculated for all 9-, 10-, and 11-mers in the human proteome (GRCh38, gencode release 21) using 
netMHCpan 4.0. Processing scores were calculated using netChop 3.1. Separate databases were 
generated for each melanoma line by filtering on peptides derived from expressed proteins (TPM 
> 0 in the mRNAseq dataset), and assigning each peptide the highest affinity rank score out of the 
expressed HLA alleles. LC-MS detected peptides were then assigned as ‘true HLA ligands’ and the 
remainder of all peptides as ‘decoy peptides’. When this database was sampled for analyses, equal 
peptide length distributions were maintained between true HLA ligands and decoy peptides. 

Feature library construction
5’ UTR, coding region (CDS) and 3’ UTR nucleotide sequences were downloaded from ENSEMBL 
BiomaRt (release 104; accessed September 2021) for all protein-coding transcripts. RNA-binding 
protein motifs were acquired from ATtracT51 (accessed June 2021) and filtered for human RBPs 
(142 RBPs; 2,271 motifs). In each transcript region (e.g., 5’ UTR, CDS, 3’ UTR), motifs were 
searched and counted using a custom script (see GitHub project), and GC content and nucleotide 
length were computed. Also included in the sequence feature library were: Codon usage (applying 
coRdon52), amino acid usage within the CDS, miR-DB53 miRNA seed scores (accessed August 
2021 and filtered for miRNA expressed immune cells, based on previous analysis by Juzenas 
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et al.54), sequence homology between Human and Zebrafish (Danio rerio, obtained through 
Ensembl BiomaRt), predicted mRNA modification site occurrence per transcript region (obtained 
from the RMVar database55, accessed at https://rmvar.renlab.org/ in September 2021), and 
predicted post-translational modification (Acetylation, Amidation, Hydroxylation, Malonylation, 
Methylation, N-linked_Glycosylation, O-linked_Glycosylation, Palmitoylation, Phosphorylation, 
S-nitrosylation, Succinylation, Sumoylation, Ubiquitination) site occurrence (obtained from the 
dbPTM database56, accessed at https://awi.cuhk.edu.cn/dbPTM/ in June 2021).

Importance assessment of sequence feature classes
To assess the ability of sequence features to inform on HLA sampling, features belonging to five 
major classes (5’ UTR, CDS, 3’ UTR, miR binding and PTM) were extracted from the sequence 
feature library. The 5’ UTR, CDS, 3’ UTR classes were filtered based on their variance across the 
proteome using the nearZeroVar function in the caret R package (setting cutoffs at: freqRatio < 
500 and percentUnique > 0.05). All putative miR binding sites and PTMs in the library were used 
in the analysis. The number of features left after filtering are shown in Figure 2A. 2,000 true HLA 
ligands and 4,000 decoy peptides were sampled from the peptide database of each melanoma line, 
and subsequently used to train individual Random Forest models for each melanoma line and each 
feature class to predict true HLA ligands (15 models in total). The Random Forest models were 
generated using the R packages randomForest and caret, using 10-fold cross validation optimizing 
the ROC metric. Number of trees in each forest was set to 5,000 and minimum terminal node size 
was set to 2. The mtry parameter was set to . Feature importance (i.e., mean decrease in accuracy) 
was calculated using the varImp function from the R package caret. 

Analyses examining HLA ligand enrichment potential of individual sequence features (Figure 2D-F, 
Supplementary Figure 2B) were focused on the 10 most important features in each class (defined as 
the highest mean importance score of the models trained for that feature class), and were performed 
using 3,389 true HLA ligands and 13,556 decoy peptides per tumor line. For the analysis presented 
in Figure 2E-F, a custom enrichment metric was calculated. In brief, 30% of the data was sampled 
and peptides were ranked either by the occurrence of a sequence feature or at random. In both 
cases the total number of true HLA ligands within the top 50% ranked peptides was tallied. Next, 
the percentage increase in true HLA ligands was calculated comparing the sequence feature ranked 
case versus the randomly ranked case. This process was performed for all sequence features in the 
analyses, and was repeated 50 times. 

XGBoost classifiers
The number of experimentally detected HLA ligands from each melanoma line was down-sampled 
to the number of HLA ligands in the smallest dataset to ensure each melanoma line had equal weight 
during the analyses. The sampled data was split into a training (80%) and a test (20%) set, and these 
sets were supplemented with a 4-fold or 1,000-fold excess of decoy peptides. XGBoost models were 
generated using the R packages xgboost and caret, using 2-times 10-fold cross validation optimizing 
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the accuracy metric. Learning rate was set to 0.3, minimum loss reduction was set to 1.0, maximum 
tree depth was set to 1, sub-sampling ratio of features for each tree was set to 0.5, minimum sum of 
instance weight needed in a terminal leaf was set to 0.9, number of rounds was set to 1,000.

External HLA ligandome data
Transcriptomic data was accessed from the Gene Expression Omnibus (GEO) at GSE131267 and 
was aligned to the GRCh38 reference (gencode release 21) using Salmon (quasi-mapping mode, 
version 0.7.0). Mean transcript counts were calculated between replicates, and transcripts belonging 
to a single consensus coding sequence were summed. HLA ligands from the Sarkizova study37 were 
downloaded from the publisher’s website. This dataset was filtered for 9-meric peptides and peptides 
obtained from the mono-allelic cell lines expressing A2402, A0201, B3501, B5101, A1101, A3101, 
B4001 or B0702. To generate a decoy peptide pool, affinity binding ranks of all 9-meric peptides 
in the expressed proteome (TPM > 0) of the mono-allelic cell lines were calculated for each selected 
HLA allele. Processing scores were calculated using netChop 3.1. For each of the mono-allelic cell 
lines, 350 true HLA ligands and 350,000 decoy peptides were sampled. 
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Figure S1. Identification of HLA class I ligandomes (related to Figure 1). (A–B) Sequence logos of the HLA class 
I alleles (top panels) expressed by M026.X1 (A) and NKIRTIL006 (B), and the sequence logos of peptide clusters 
obtained by the GibbsCluster algorithm (bottom panels). The number of clusters was constrained to the number of 
expressed HLA class I alleles. (C) Fraction of peptides predicted to have a <0.5 (strong binders; SB), <2.0 (weak bind-
ers; WB), or >2.0 percentile rank binding affinity within LC-MS detected peptides and decoy peptides, as determined 
by netMHCpan4-0.
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Figure S2. Sequence features inform on HLA sampling (related to Figure 2). (A) Random forest models were 
trained using data from each melanoma line to classify HLA ligands, using individual classes of gene and protein 
sequence features.  Bar graphs indicate out-of-bag model performance. (B) t statistics obtained comparing counts 
of indicated sequence features between LC-MS detected and decoy peptides. Top 10 features with the highest 
importance to each random forest model are shown. (C) Out-of-bag model performance of XGBoost classifiers 
generated in Figure 3. (D) Feature importance of the top 10 features in each class identified in Figure 2E, compared 
to the feature importance of the remaining features in the library. Dashed line indicated the median importance of 
all features in the A+P+SF XGBoost model. Boxplots indicate group median and 25th and 75th percentiles, whiskers 
indicate the interquartile range multiplied by 1.5, and dots signify individual features.  (E) Importance of features to 
the A+P+SF XGBoost model. The top 12 features are highlighted. 
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Figure S3. Association of HLA ligandome composition with RNA abundance and ribosome occupancy. (A) 
RNA abundance (top) and ribosome occupancy (bottom) of proteins for which either HLA ligands were or were 
not detected by LC-MS. (B) RNA abundance (top) and ribosome occupancy (bottom) of source proteins, binned 
by the number of HLA ligands detected by LC-MS. (C) HLA sampling density of each source protein, calculated as 
the number of detected HLA ligands per 1,000 amino acids, plotted against their respective RNA abundance (top) 
and ribosome occupancy (bottom). (D-E) Predictiveness of the assessed expression metrics. Source proteins were 
ranked by either RNA abundance, ribosome occupancy or by a randomly generated metric (obtained by shuffling 
RNA abundance data). In addition, a combined ranking was obtained by averaging the rankings of RNA abundance 
and ribosome occupancy metrics. Line plots (D) depict the fraction of detected HLA ligands from that melanoma 
line as a function of the fraction of the analyzed proteome (cumulative protein length). Bar charts (E) depict the 
fraction of HLA ligands observed within the top quartile of the proteome (cumulative protein length). (F-G) Number 
of HLA ligands observed in the top 0.1% of predicted peptides from the melanoma line test sets by each of the 
indicated models. Line graphs depicting the cumulative sum (F) and bar charts depicting AUCs (G) are shown.
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Abstract
Clonal expansion is a core aspect of T cell immunity. However, little is known 
with respect to the relationship between replicative history and the formation of 
distinct CD8+ memory T cell subgroups. To address this issue, we developed a 
genetic-tracing approach, termed the DivisionRecorder, that reports the extent 
of past proliferation of cell pools in vivo. Using this system to genetically 
‘record’ the replicative history of different CD8+ T cell populations throughout a 
pathogen-specific immune response, we demonstrate that the central memory T 
cell (TCM) pool is marked by a higher number of prior divisions than the effector 
memory T cell pool, due to the combination of strong proliferative activity during 
the acute immune response and selective proliferative activity after pathogen 
clearance. Furthermore, by combining DivisionRecorder analysis with single 
cell transcriptomics and functional experiments, we show that replicative 
history identifies distinct cell pools within the TCM compartment. Specifically, 
we demonstrate that lowly divided TCM display enriched expression of stem-
cell-associated genes, exist in a relatively quiescent state, and are superior in 
eliciting a proliferative recall response upon activation. These data provide the 
first evidence that a stem cell like memory T cell pool that reconstitutes the CD8+ 
T cell effector pool upon reinfection is marked by prior quiescence.

Introduction
The CD8+ T cell compartment serves to provide protection against intracellular pathogens and also 
acts as a modifier of cancer growth. Upon antigen encounter, naïve T cells (TN) undergo extensive 
gene-expression alterations, while entering a highly proliferative state, dividing every 4h to 6h1,2 in 
mice. This phase of clonal expansion gives rise to a phenotypically and functionally diverse pool 
of effector T cells (TEFF) that exceeds its precursor population size by >10,000-fold3,4. Unlike TN, 
these TEFF have the capacity to disseminate to peripheral tissues, and scan for and kill infected or 
transformed cells. Upon antigen clearance, around 95% of the TEFF pool succumbs to apoptosis, 
leaving behind a small long-lived pool of memory T cells (TM) that is equipped to provide long-term 
protection against recurring pathogens. 

The central role of proliferation in the T cell response has inspired many to study the relationship 
between replication and T cell state. While earlier work hinted that memory precursor T cells have 
undergone limited clonal expansion5,6, more recent work studying acute T cell responses in human 
subjects demonstrated that TM, as a whole, are derived from precursor cells that have undergone an 
extensive number of divisions7. Furthermore, prior work has shown that cell cycle speed can differ 
substantially between phenotypically distinct T cell subsets at different time-points in the T cell 
response. Specifically, central memory T cells (TCM), a subgroup of memory cells that are endowed 
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with a high level of multipotency, have been documented to undergo homeostatic proliferation after 
pathogen clearance, while effector memory T cells (TEM) have a low turnover rate8,9. In contrast, 
during the effector phase, a TCM-like state has been linked to lower division speed and reduced 
clonal burst size compared to their TEM-like and terminally differentiated counterparts10–13. 

The phase-dependent association of proliferative activity within specific cell states, in combination 
with the reported phenotypic instability of certain T cell subsets14,15, makes it difficult to deduce 
the replicative history (i.e., the cumulative number of prior divisions) of different memory T 
cell populations, and the possible relationship between such replicative history and functional 
properties. Here, we develop a genetic-tracing approach—termed DivisionRecorder—that allows 
the measurement of prior division of cell pools over extensive rounds of division, and apply this 
approach to determine to what extent replicative history identifies distinct memory T cell states 
and behaviors. In this effort, we focus on three central issues: (1) What are the differences in 
replicative history between (precursor-)TCM and TEM in the effector and memory phase? (2) Is there 
heterogeneity in prior division within the TCM pool? (3) If so, does replicative history of cells within 
the TCM pool predict their capacity to mount a secondary T cell response?

Results 
Division-linked genetic labeling of cell pools
The genome contains a large number of hypervariable short tandem nucleotide repeats (STRs) that 
accumulate intra-allelic length mutations through DNA polymerase slippage during cell division. 
Such slippage mutations in endogenous STRs have been used to study lineage trees in various 
organisms and tissues16,17, and synthetic STRs have previously been employed in a probabilistic 
labeling approach to define stem cells in the intestinal epithelium and the mammary gland18,19. 
To investigate the replicative history of memory T cells, we engineered a synthetic STR-reporter 
system to continuously ‘record’ proliferation in cell pools. This genetically encoded system, termed 
DivisionRecorder, utilizes a synthetic STR domain to achieve a division-linked low-probability 
acquisition of a fluorescent mark (Fig. 1a). The DivisionRecorder consists of two separate elements: 
(1) a retroviral-vector encoded module that contains a synthetic STR linked to an out-of-frame CRE 
recombinase gene; (2) A CRE-activity reporter module that irreversibly induces the expression of a 
red fluorescent protein (RFP). In its base configuration, all cells that contain the DivisionRecorder 
only express GFP (hereafter referred to as DRGFP cells). As cells undergo successive divisions, 
slippage mutations that occur within the synthetic STR yield in-frame variants of the downstream 
CRE recombinase gene at a fixed, division-dependent, probability (p). The resulting CRE activity 
induces an irreversible activation of the RFP gene, giving rise to GFP+RFP+ cells (hereafter referred 
to as DRRFP) that pass this genetically encoded label on to subsequent generations, resulting in a 
cumulative increase in the DRRFP cell fraction within the DivisionRecorder+ (DR+, i.e., the sum 
of DRGFP and DRRFP) population as the cell pool expands (Fig. 1b, Supplementary Note 1). 
Importantly, when p is small (< 0.01) the DivisionRecorder yields a near-linear relationship between 
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the DRRFP fraction and the average number of divisions over dozens of population doublings (Fig. 
1c)20, thereby allowing analysis of replicative history—at the population level—far beyond what can 
be achieved with classical cell labeling dyes21 (Fig. 1d). 

To test the utility of the DivisionRecorder, we established a reporter cell-line carrying a lox-STOP-
lox-RFP cassette. Following retroviral introduction of the GFP-STR-CRE module, a progressive 
increase in DRRFP cells was observed over time, whereas no label acquisition was observed when the 
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Fig. 1. DivisionRecorder activation is a proxy for replicative history. a, Schematic overview of the DivisionRe-
corder system. b, Cartoon depicting progressive DivisionRecorder activation in a proliferating cell pool. c, Simu-
lation of the minimal ODE model (See Supplementary Note 2 for detailed description and equations), depicting 
DRRFP acquisition as a function of population doublings for the indicated values of DRRFP acquisition probability (p). 
d, Maximal number of theoretically recordable population doublings, approximated by calculating the amount 
of division events required to reach a 99% DRRFP population. Approximate maximums for selected values of p are 
indicated, colors correspond to legend in panel c. e-f, Percentage of DRRFP cells over time in cultured DivisionRecord-
er+ (DR+) CRE-activity reporter HEK 293T cells (n=3 replicates per group) in which the CRE recombinase gene was 
preceded by either a stable nucleotide region (indicated as “no STR”) or a repeat of 24 guanines (indicated as “with 
STR”). Representative plots (e) and summarizing line graphs (f) are shown. Lines connect experimental replicates g, 
Percentage of DRRFP cells across population doublings in DR+ CRE-activity reporter HEK 293T cells (n=3 replicates per 
group) in which the CRE recombinase gene was preceded by either a low stability STR ([G]24) or a high stability STR 
([CA]30). Dots indicate individual samples, lines represent fitted linear regression, dotted lines indicate bounds of 
the 95% confidence interval. h-i, Percentage of DRRFP cells across population doublings in immortalized DR+ mouse 
embryonic fibroblasts. Representative flow cytometry plots (h) and summarizing graph (i) are shown. Best fits of 
the minimal ODE model are depicted (100 bootstraps per experimental replicate, Supplementary Note 2). Blue 
line represents the median of the bootstraps, grey lines represent individual fits, dots indicate experimental mea-
surements (n=3 replicates). p indicates the estimated DRRFP acquisition probability. Depicted experimental data are 
representative of at least two independent experiments. P values (g) were determined by two-sided ANCOVA test.
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Fig. 2. The DivisionRecorder can be applied to study T cell division kinetics in vivo. a, Overview of experimen-
tal setup. b-c, DR+ OT-I T cells were transferred into recipient mice 24 hours post infection with Lm-OVA. Spleen 
samples were analyzed for the percentage of DRRFP cells at day 1-4 post cell transfer. Representative pseudo-color 
density plots (b), and boxplots (c) in which the boxes indicate group median and 25th/75th percentiles, whiskers 
represent min/max, dots represent individual samples (n=8 mice for day 1 and 2; n=7 mice for day 3 and 4). d-e, 
CTV-stained OT-I T cells were retrovirally transduced with the DivisionRecorder and transferred into recipient mice 
(n=4) 24 hours post infection with Lm-OVA. 48 hours post-transfer, splenic DR+ OT-I T cells were assessed for CTV 
dilution (d), and the percentage of DRRFP cells within each division peak was analyzed (e). All depicted data are 
representative of at least two independent experiments, lines and symbols indicate individual mice or samples. P 
values were determined by two-sided Kruskal-Wallis test, with Dunn’s multiple comparisons test (c), or two-sided 
repeated measurement correlation test (e). 
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STR was replaced with a stable DNA sequence (Fig 1e, f). Moreover, the rate at which DRRFP cells 
accumulated was dependent on the sequence stability of the STR22,23, underpinning that p is linked 
to the likelihood of STR slippage (Fig 1g). Similarly, upon introduction of the DivisionRecorder 
into immortalized embryonic fibroblasts from the Ai9 mouse strain—that carry an endogenous 
lox-STOP-lox-RFP cassette24—a low and predictable DRRFP acquisition was observed, with a [G]33 
STR conferring a p of 0.0052 ±0.00074 (Fig. 1h, i), thereby enabling the measurement of replicative 
history over many cell divisions (in theory >1,500 population doublings, Fig. 1d).

To test whether the DivisionRecorder can be used as a proxy for replicative history in the CD8+ T 
cell compartment in vivo, we generated Ai9;OT-I mice, in which all T cells recognize the OVA257-264 
epitope, thereby allowing examination of T cell pools in the context of equal TCR affinity. Ai9;OT-I 
T cells were isolated, modified with the DivisionRecorder to obtain DR+ OT-I T cells, transferred 
into Listeria monocytogenes-OVA (Lm-OVA) infected mice, and the fraction DRRFP cells was measured 
over time (Fig. 2a). At early time-points post cell transfer (d1-d4), a rapid increase in DRRFP cells 
was observed (Fig. 2b, c), coinciding with the proliferative burst of the antigen-specific CD8+ T cell 
pool. To determine whether the observed accumulation of DRRFP cells formed an accurate measure 
of prior cell division, DR+ OT-I T cells were stained with CellTrace Violet (CTV) prior to cell 



Chapter 4

56

transfer. Notably, analysis of the fraction DRRFP cells within cell pools with different degrees of CTV 
dilution revealed a close correlation (Fig. 2d, e, rrm = 0.94), providing direct evidence that in vivo 
DRRFP acquisition reflects the extent of past division in the CD8+ T cell pool. In conclusion, these 
data establish that the DivisionRecorder allows the long-term measurement of division history in 
cell pools in vivo, in a way that is compatible with down-stream methodologies such as single cell 
sequencing (see below). 

CD8+ TCM cells are derived from replicative mature T cells
Having validated the utility of the DivisionRecorder to record T cell division, we next sought to 
determine the replicative history of the total CD8+ TM pool relative to that of the TEFF pool. Analysis 
of the size of the DR+ OT-I T cell compartment in blood following Lm-OVA infection showed the 
characteristic rapid expansion phase, with T cell numbers peaking around day 6, and subsequent 
contraction into a stable memory pool (Fig. 3a). Notably, DRRFP cells remained detectable following 
formation of T cell memory, thus allowing analysis of replicative history at late time points after 
infection (Fig. 3b). 

In case TM would primarily be derived from T cells that had undergone limited proliferation upon 
primary antigen encounter, the fraction of DRRFP cells would be expected to decay during the 
contraction phase, due to the decline in the number of clonally expanded TEFF (Extended Data Fig. 
1, Supplementary Note 3). However, analysis of DRRFP frequencies in blood demonstrated that the 
fraction of DRRFP cells did not decline, but instead continued to increase during contraction and 
memory phase (an increase of 2.07% ±0.77% between day 13 and 59, Fig. 3c). This increase in 
DRRFP frequencies post pathogen-clearance was not restricted to T cell responses induced by Lm-
OVA infection, but was also observed upon infection with LCMV-OVA25 (Fig. 3d), and was not 
due to anatomical redistribution of cells with distinct division histories, as the fraction of DRRFP 
cells increased concurrently in peripheral blood and the primary sites of Lm-OVA infection (spleen/
liver; Fig. 3e, f). Thus, in line with work by Akondy et al.7, our results support the notion of a 
replicative ‘mature’, rather than ‘nascent’, CD8+ TM pool, and extends this observation beyond the 
peripheral blood compartment to the sites of infection. 

It has been well documented that TCM are able to maintain the memory pool through infrequent 
homeostatic cell division15,26,27, and recent work has shown that precursor-TCM slow down their 
replicative cycle early during the expansion phase10, suggesting limited clonal expansion of these 
cells during the early phase of the T cell response. However, it is difficult to translate cell-cycle 
activity at a given time-point into cumulative proliferative history, and we therefore wished to 
directly test the relationship between cell state (e.g., TCM or TEM) and replicative history during 
different stages of the T cell response. To this end, the fraction of DRRFP cells within the TM pool was 
calculated at varying expression levels of proteins associated with either multipotency or terminal 
differentiation (Fig. 3g). This analysis revealed a positive correlation between replicative history 
and the expression of the TCM-associated proteins CD27 (rrm = 0.81, P = 6.2·10–14) and CD62L (rrm 

= 0.62, P = 5.6·10–7)15,28,29, and a negative relationship between prior division and the expression 
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Fig. 3. The multipotent memory T cell pool is formed by replicative ‘mature’ cells. a-c, Kinetics of DR+ OT-I T 
cells (a) and the percentage of DRRFP relative to day 4 (c) in response to Lm-OVA, measured in peripheral blood (n=6 
mice). Representative flow cytometry plots (b) showing DRRFP and DRGFP frequencies at indicated time points, and 
line graphs (a, c) depicting kinetics of single mice (grey) and group median (black). d, DRRFP percentages within 
blood at day 5/6 (TEFF) and day >60 (TM) following LCMV-OVA infection (n=7). e, Representative plots depicting DRRFP 

frequencies in blood (Bl), spleen (Spl) and liver (Liv). f, Percentage of DRRFP detected in indicated organs of recipient 
mice at the indicated time points (n=6 mice per time point; response to Lm-OVA). Boxplots indicate group median 
and 25th/75th percentiles, whiskers represent min/max, dots represent individual samples. g, Moving average of 
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for the total percentage of DRRFP detected in that sample. h, Gating strategy (left) and DRRFP percentages (right) of 
CD27HIKLRG1LO and CD27LOKLRG1HI cells in spleen during effector (d6, top) and memory phase (d86, bottom; n=6) 
in response to Lm-OVA. i, DRRFP percentages within the CD27HIKLRG1LO and CD27LOKLRG1HI cell populations in blood, 
comparing effector (day 5/6) and memory (day >60) phases. Data shown for Lm-OVA (top; n=22) and LCMV-OVA 
(bottom; n=7) infections. Lines connect individual mice. j-k, Ki67 expression by CD27HIKLRG1LO and CD27LOKLRG1HI 
OT-I cells in blood in response to Lm-OVA. Representative flow cytometry plot (j), and line graphs (k) where solid 
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Wilcoxon’s signed-rank test (d, h, i).

of the TEM-associated proteins KLRG1 (rrm = –0.83, P = 9.0·10–15) and CX3CR1 (rrm = –0.75, P 
= 4.5·10–11)14,15,30. Likewise, defining multipotent TCM and terminally differentiated TEM subsets 
by joint expression or absence of CD62L and CD27, respectively, (Extended Data Fig. 2a), and 
further partitioning based on the expression of KLRG1 or CX3CR1, revealed a positive association 
between division history and a less differentiated cell state (Extended Data Fig. 2b). Furthermore, 
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the division history of CD27HIKLRG1LO TCM present in lymph nodes equaled that of TCM in the 
spleen, implying that division history is dictated by cell state rather than anatomical location 
(Extended Data Fig. 2c).    

Next, to delineate at which point the divergence in replicative history between T cells with a TCM-
like multipotent and TEM-like terminally differentiated phenotype developed, we assessed the link 
between phenotypic marker expression and DRRFP fractions throughout the T cell response. Notably, 
replicative history varied minimally across TEFF cell states at the peak of the antigen-specific T cell 
response (d6 post transfer, Fig. 3h, Extended Data Fig. 2d-f), followed by selective accumulation 
of DRRFP within the CD27HIKLRG1LO early-TCM pool directly after the peak of the expansion 
phase (Fig. 3h, i, Extended Data Fig. 1g), due to continued replicative activity of this subset (Fig. 
3j, k). The observation that the division history of CD27LOKLRG1HI T cells stays constant post 
effector phase (Fig. 3i) suggests that, in addition to the previously documented lack of proliferative 
activity of this cell pool15,26,31, this terminally differentiated subset also does not receive significant 
replenishment by the replicative active CD27HIKLRG1LO T cell pool (Extended Data Fig. 1h). The 
substantial number of divisions that we observe in the CD27HIKLRG1LO cell pool at the peak of 
the response appears at odds with the proposed limited clonal expansion of precursor-TM. However, 
these observations may either be reconciled by the reported trans-differentiation between TEFF cell 
states14,15,30, or by the fact that a reduced proliferative activity may form a property of only a small 
part of the memory precursor pool10,11,32. In summary, the above data indicate that the high amount 
of prior division of the TCM pool results from both strong proliferative activity during the effector 
phase and selective proliferative activity after pathogen clearance.

Replicative history identifies distinct TCM cell states
Increasing evidence suggests that the TCM pool is highly heterogeneous in terms of both gene 
expression profiles and prior and ongoing replicative behavior14,15,33, providing an incentive to 
test for possible associations between division history and transcriptional states within this cell 
pool. To this end, we carried out single-cell mRNA sequencing (scRNAseq) on DRGFP and DRRFP 

memory OT-I T cells (75-85 days post Lm-OVA infection; Extended Data Fig. 3). In addition, 
to test whether DR+ OT-I TM assume the same spectrum of transcriptional states as non-modified 
T cells, we performed scRNAseq on OT-I TM that were generated through adoptive transfer of a 
small number (2,000) of naïve OT-I T cells followed by Lm-OVA infection 24 hours later. DR+ 
OT-I and unmodified OT-I memory T cells were jointly grouped into 23 transcriptionally distinct 
MetaCells (MCs)34 that included 4 TEM and 19 TCM MCs based on the expression of a small set 
of multipotency- and effector-associated genes (Fig. 4a,b). Notably, while memory T cells derived 
from small numbers of unmodified OT-I T cells showed a proportionally greater contribution to 
TEM MCs—consistent with the relationship between precursor frequency and TEM formation35—
DR+ OT-I T cells and unmodified OT-I T cells were equal in their potential to yield the 19 distinct 
TCM MCs (Extended Data Fig. 4), indicating that the introduction of the DivisionRecorder did not 
measurably impact the ability of T cells to differentiate into different TCM states.
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 Amongst the observed TCM MCs, two transcriptionally distinct subgroups could be identified 
(Fig. 4b). Specifically, while all TCM showed the expected high expression of Bcl2, Sell and Cd27, 
and minimal expression of Cx3cr1, Zeb2, Gzma and Prdm1 (Fig. 4c, Extended Data Fig.  5a), a 
dichotomy was observed in the expression of multipotency-associated (e.g. Myb, Ccr7) and effector-
associated (e.g. Tbx21, Lgals1) genes within the TCM pool (denoted as TCM(mult) and TCM(eff), 
respectively in the figures; Fig. 4b, Extended Data Fig. 5a). Next, we assessed the relation between 
transcriptional state and replicative history within the memory T cell pool. In line with the flow 
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cytometry data, the replicative history of TCM—as a whole—exceeded that of TEM, thereby validating 
the scRNAseq approach. Strikingly, TCM enriched for effector genes had overall higher DRRFP/DRGFP 
ratios compared to TCM enriched for multipotency genes, demonstrating that stemness-related 
transcriptomic features are inversely associated with division history within the TCM pool (Fig. 4d). 
Correspondingly, comparison of the three TCM MCs with the highest and lowest level of prior 
division (hdTCM and ldTCM, respectively) revealed that ldTCM were marked by the expression of key 
multipotency-associated genes, including Tcf7, Sell, Myb and Eomes, and several survival factors 
(Gimap and Birc family members, Extended Data Fig. 5b, c). Moreover, one ldTCM MC was highly 
enriched for transcripts involved in inhibitory function (Lag3, Cd160, Tox), suggesting a possible 
analogy with the inhibitory signaling-dependent TCM-precursor subset identified by Johnnidis et 
al.33 (Extended Data Fig. 5c). In contrast, hdTCM commonly expressed genes related to terminal 
differentiation, such as Lgals1 and S100 family members, and showed increased transcript levels for 
cytotoxicity-associated genes (Nkg7, Ctsw; Extended Data Fig. 5b, c). This link between replicative 
history and a multipotency versus effector-associated gene expression signature within the TCM pool 
was further validated by differential gene expression analysis and gene set enrichment analysis (Fig. 
4e-g, Extended Data Fig. 5d). In line with this association, ex vivo antigen stimulation of TCM 
harvested from Lm-OVA memory mice showed that TCM that had undergone more prior divisions 
were more likely to degranulate and less likely to produce IL-2, as compared to their less divided 
TCM counterparts (Extended Data Fig. 5e, f). 

The observed divergence in replicative history between distinct TCM states potentially reflects the 
selective quiescence of a subset of TCM with a less differentiated state. Of note, ldTCM showed 
reduced expression of Myc targets and genes involved in cell metabolism (Extended Data Fig. 
5g), suggesting that these cells exist in a transcriptionally-enforced replicative quiescent state. To 
test for such a transcriptional state, we scored the expression of a core gene set of quiescent stem 
cells from various tissues36 (hereafter referred as QstemScore). Notably, TCM that showed increased 
expression of multipotency-associated genes were marked by a higher QstemScore than TCM with 
increased expression of effector-associated genes. (Fig. 4h). Moreover, variation in QstemScore 
could also be detected in gp33-specific P14 TCM from an external data-set37, and those P14 TCM 
that prominently expressed this gene set transcriptionally resembled the multipotency-signatureHI, 
effector-signatureLO OT-I ldTCM described here (Extended Data Fig. 6). Together, these data 
suggest a link between TCM quiescence and the expression of multipotency-associated genes, driving 
the divergence in replicative history between distinct TCM states. 

To directly test whether replicative behavior in the TCM pool is associated with a multipotency-
associated state and relates to the functional capacity of TCM to re-expand upon secondary activation, 
we established a DivisionRecorder-independent, CTV-based serial-transfer approach (Fig. 5a). 
Naïve OT-I and GFP;OT-I T cells were transferred into primary recipients that were subsequently 
exposed to Lm-OVA infection. At day 30 post-infection, early memory T cells were harvested, CTV 
labeled and transferred into infection-matched secondary recipients. 75 days later, CTVHI (div0-2) 
and CTVLO (div5+) TCM were isolated, and the resulting TCM populations were then profiled by 
scRNAseq, or transferred at a 1:1 ratio into tertiary recipients that were subsequently challenged 



Replicative history of memory T cells

61

with Lm-OVA. Strikingly, comparison of quiescent (div0-2) cells and proliferative (div5+) TCM by 
gene set enrichment analysis revealed a clear negative association between quiescence and an effector-
like transcriptional state, while quiescence was positively associated with multipotency-associated 
gene expression (Fig. 5b, c, Extended Data Fig. 7a). Likewise, inspection of MCs (Extended Data 
Fig. 7b-e) that were enriched in the div0-2 cells, showed a prominent expression of multipotency-
associated genes (Myb, Tcf7, Id3), whereas those enriched in div5+ cells showed increased expression 
of effector-associated genes (Id2, S00a4, Lgals1) (Fig. 5d, e). Furthermore, comparison of the 
expansion potential of div0-2 and div5+ TCM demonstrated that quiescent TCM were superior in 
generating offspring upon renewed infection (Fig. 5f, g), further demonstrating that replicative 
heterogeneity in the TCM pool is both linked to transcriptional state and functionality. 

Re-expansion potential of TCM is linked to prior division
Having observed a link between prior division and recall potential in adoptive transfer experiments, 
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we set out to verify this relationship without disruption of the TM niche, through re-challenge of 
recipient mice carrying DR+ memory OT-I T cells. In case the capacity for renewed expansion would 
primarily be restricted to replicative quiescent TCM cells, the fraction of DRRFP cells should show an 
initial decay upon reinfection—due to the increased preponderance of offspring derived from this 
previously quiescent population—followed by a gradual recovery throughout the contraction phase, 
as a result of novel division-dependent label acquisition. Notably, analysis of the fraction of DRRFP 
T cells in blood revealed a steep decline during the first days post-secondary infection, followed 
by a gradual recovery during secondary memory formation (Fig. 6a, Supplementary Note 4). 
This transient reduction in the DRRFP fraction was observed in multiple anatomical compartments 
(blood, spleen, liver), occurred independent of cell phenotype, and was also observed in LCMV-OVA 
induced TM pools responding to secondary challenge (Fig. 6b-d). Of note, DRRFP cell accumulation 
during the secondary contraction phase occurred at a comparable rate as during the primary response 
(Fig. 6e), yielding a secondary TM pool that—despite extensive renewed clonal expansion—had 
undergone a similar number of divisions as the initial memory pool (Fig. 6f, median fold difference 
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Fig. 6. The secondary TEFF pool is predominantly generated by previously quiescent memory T cells. a, Kinetics 
of the percentage of DRRFP cells in blood upon secondary Lm-OVA infection. Values are relative to the DRRFP percent-
age within the respective memory pools (n=6 mice), black line represents group mean. b-c, DRRFP percentages in 
indicated organs (b), or within splenic CD27LOKLRG1HI and CD27HIKLRG1LO populations (c) at indicated time points 
(n=6 mice per time point) post-secondary infection. Boxplots indicate group median and 25th/75th percentiles, whis-
kers represent min/max, dots represent individual samples. d, DRRFP percentages in blood at memory (day >60) and 
at the peak of the secondary response (day 4/5 post-recall). Memory pools were generated with LCMV-OVA, recall 
infection was performed with Lm-OVA. e, DRRFP acquisition in blood following primary and secondary infection. 
Values are relative to DRRFP percentage at the peak of the primary or secondary response. Lines represent group me-
dians (n=6 mice per group), greyed areas represent 95% confidence intervals. f, DRRFP percentages in blood during 
effector and memory phases of the primary and secondary responses. Lines connect data of individual mice (n=6). 
g, DRRFP percentages in blood (n=5 mice) upon tertiary infection. Mice were challenged twice with Lm-OVA with a 
>60 days interval, and subsequently infected with LCMV-OVA >60 days post-secondary infection. Depicted data 
are representative of at least 2 independent experiments. P values were determined by two-sided Kruskal-Wallis 
test with Dunn’s multiple comparisons test (b, c), two-sided Wilcoxon signed-rank test (d, f), or repeated-measures 
one-way ANOVA followed by Dunnett correction (g).
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= 1.03). Thus, the replicative histories of the TEFF and TM pools of the secondary T cell response 
mimic those of the primary T cell response, supporting the notion that the secondary expansion 
wave is mounted by a group of TCM that has undergone limited prior division. Furthermore, this 
low-division TCM pool is able to repeatedly reconstitute the effector T cell pool, as the same decrease 
in the fraction of DRRFP cells was observed upon tertiary infection of mice (Fig. 6g). 

To determine whether the observed data are consistent with re-expansion being driven by a memory 
T cell subset that becomes quiescent early in the immune response, we simulated T cell responses in 
which a fraction of TCM precursors acquires replicative quiescence during the primary T cell response 
(see Supplementary Note 5, Extended Data Fig. 8a). Specifically, T cell responses were simulated 
that yielded quiescent T cells at a frequency of either ±0.1% or ±1% of the TEFF pool, resulting in 
TM pools in which quiescent TCM accounted for ±3 and ±25 percent of the memory population 
(Fig. 7a). Modeling of DRRFP labeling rates during recall responses in which the potential to re-
expand was either abruptly lost as a function of the number of prior divisions (fun 1 and 2), or was 
lost more gradually across division history (fun 3), demonstrated that the transient drop in DRRFP 
fractions is only consistent with models in which the capacity to re-expand is restricted to cells that 
have undergone limited clonal expansion (Fig. 7a, b). Furthermore, the stringency of this relation 
is strongly dependent on the relative size of the quiescent TCM pool (Fig. 7b). 

Taken together, our data establish that replicative state is not homogeneously distributed within 

Fig. 7. Modelled T cell responses are consistent 
with the presence of a replication-competent 
quiescent TCM population. a, Division history of 
TCM and TEM pools generated by modelled T cell 
responses (see Supplementary Note 5) during 
which a high (capped at 1% of the TEFF pool size) or 
low (capped at 0.1% of the TEFF pool size) fraction 
of T cells acquire quiescence during the effector 
phase (top). 3 re-expansion functions were used 
to restrict which fraction of TCM with a given 
number of prior divisions will re-expand during 
recall (bottom). For reference, the division histo-
ry of TCM is shown as a shaded area. b, Modelled 
DRRFP percentages within the CD27LOKLRG1HI and 
CD27HIKLRG1LO populations during secondary re-
sponses, with each re-expansion function applied 
to a memory pool containing either a high or low 
number of quiescent TCM. Black dots indicate ex-
perimental measurements. j, Best fit of the mod-
elled T cell response (number of quiescent T cells 
capped to 1% of TEFF) experimental data obtained 
from spleen, depicting either cell numbers (left) 
or DRRFP percentages (right). See Supplementary 
Note 5 for details. Lines indicate the modeled 
populations; dots indicate experimental measure-
ments
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the TCM pool and is linked to distinct transcriptional and functional properties. Specifically, 
our observations are consistent with a dichotomy in the TCM pool, in which a self-renewing 
TCM population maintains the TM pool but marginally contributes to secondary expansion, and 
a replication-competent quiescent TCM population is required to form the TEFF pool that arises upon 
renewed infection (Fig. 7c, Extended Data Fig. 8, 9).

Discussion
Here, we report the development and application of the DivisionRecorder to dissect the replicative 
history of cell pools in vivo. We show that this approach allows longitudinal examination of division 
history, and how it may be combined with technologies such as flow cytometry and scRNAseq to 
couple cell state to division history. In the application presented here, the DivisionRecorder requires 
viral transduction to introduce one of its modules. While this did not significantly disrupt cell 
behavior in our study, development of a fully germline encoded DivisionRecorder system will be 
attractive, for instance, to follow replicative behavior of cell pools that are not amenable to adoptive 
transfer.

Using the DivisionRecorder, we demonstrate that, as a whole, the multipotent CD8+ T cell pool 
has undergone substantial proliferation at the peak of the expansion phase, and continues to 
proliferate following pathogen clearance, resulting in a cumulative replicative age of the TCM pool 
that exceeds that of the TEFF and TEM pool. Previous work has shown that a fraction of CD62LHI 
precursor-TM divide at a lower rate than terminally differentiated effector subsets10,11,32. In line with 
this, we observed a lower fraction of Ki67HI cells within the multipotent effector pool compared 
to the terminally differentiated pool, early post infection. At the same time, our data indicate 
that this difference does not result in a reduced cumulative number of past divisions within the 
entire CD62LHI TEFF pool. Conceivably, these findings may be reconciled by the ability of highly 
proliferative CD62LLO TEFF to phenotypically convert to a less differentiated CD62LHI state14,15,30. 
Alternatively, the precursor-TCM pool may harbor a heterogeneity in replicative history that is not 
revealed by the phenotypic markers used. 

In line with the latter possibility, by combining the DivisionRecorder with scRNAseq we reveal 
that, while the TCM pool has undergone substantial prior division as a whole, replicative history is 
heterogeneous within this pool and is associated with specific transcriptional states. First, our data 
demonstrate the presence of TCM that bear transcriptional similarities to TEM cells but, in contrast to 
TEM, remain highly proliferative in the absence of inflammation (Extended Data Fig. 9). Second, 
we identify a population of quiescent TCM that expresses reduced levels of effector-associated genes, 
and high levels of pro-survival genes and genes associated with quiescent stem cells36.  Several recent 
studies have reported the early emergence of TCF-1HI and CD62LHI effector cells that develop 
into memory T cells exhibiting stemness features38,39. Moreover, Johnnidis et al.33 propose early 
expression of inhibitory receptors as a mechanism preserving hallmark memory features. Although 
these early T cell subsets bear similarities to the quiescent TCM observed here, further investigations 
into the developmental origin of distinct TCM states are necessary to better understand the lineage 
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relationships between the TCM states described here, and those present during the early phases of the 
T cell response.

A hallmark of immunological memory is the ability to efficiently generate a new wave of TEFF upon 
renewed infection. Our data demonstrate that this ability is predominantly confined to a subgroup 
of replicative nascent TM cells. The combined observations of a less differentiated quiescent TCM 
population, and the reconstitution of the secondary and tertiary TEFF pool by the output of 
these nascent progenitors, make a compelling argument for the presence of a bona fide stem cell 
population within the TM pool. A growing body of work has examined a stem cell-like memory T 
cell (TSCM) population40,41, generally using cell phenotype to enrich and study these cells ex vivo. 
Using a function-driven, phenotype-agnostic, approach that does not require removal of cells from 
their niche, we observe a cell behavior that fits the profile of stem cell-like memory T cells in situ.

In high turnover tissues, such as the bone marrow42,43, the intestinal epithelium44,45 and skin 
epidermis46,47, two distinct behaviors of multipotent progenitor cells have been described: Actively 
dividing cells that promote normal tissue homeostasis, and quiescent cells that have been documented 
to break their dormancy upon tissue injury and exhibit profound re-population capacity42,45,48,49. We 
propose that the two TCM behaviors we describe provide the T cell compartment with the same 
capacity for renewal. Thus, the T cell pool can be viewed as an autonomous tissue that abides by 
organizing principles akin to those of the hematopoietic system and solid organs.

Methods 
DivisionRecorder vector generation
In order to prevent expression of Cre recombinase during bacterial cloning, a synthetic intron—
containing a splice donor, a branch site, a pyridine rich region, and a splice acceptor— was inserted 
into the Cre gene through three-fragment isothermal assembly. To prevent low level Cre translation 
occurring from alternative start sites, two ATG codons (position 78 and 84) were replaced by 
TGT codons. Finally, the Cre start codon was replaced by an EcoRI-spacer-XhoI site, to facilitate 
subsequent introduction of synthetic STRs. To generate the DivisionRecorder vector, two lox511 
sites were introduced into the multiple cloning site of the pMX retroviral vector. Subsequently, 
an eGFP gene and the modified Cre recombinase gene were introduced directly upstream and 
downstream of the 5’ lox511 site, respectively. Finally, a P2A element was inserted directly in 
between the eGFP gene and the 5’ Lox511 site. Together, this resulted in a cassette comprising 
from 5’ to 3’: Kozak, an eGFP gene, a P2A site, a lox511 site, an EcoRI restriction site, spacer, 
an XhoI restriction site, a Cre recombinase gene, and a lox511 site. In its base configuration, Cre 
recombinase is out of frame. Synthetic STR domains were ordered as oligonucleotides (Invitrogen) 
and subsequently dimerized. STR dimers were inserted via the EcoRI and XhoI sites. Full sequences 
of all oligonucleotides are supplied in Supplementary Table 6.  
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Cre-activity reporter vector generation
LoxP sites were introduced into the multiple cloning site of the pCDH-CMVp-MCS-PGK-BlastR 
vector. In addition, a Katushka open reading frame was introduced, resulting in a vector containing 
from 5’ to 3’; The CMV promoter, a floxed scrambled open reading frame, a Katushka open reading 
frame, the PGK promoter, and a blasticidin resistance gene.

Establishment of cell lines
The Cre-activity reporter cell line used in Figure 1 was generated by retroviral transduction of HEK 
293T cells (ATCC) with the Cre-activity reporter plasmid and subsequent Blasticidin selection (2 
µg/ml, InvivoGen). Transduced cells were seeded at 1% confluency, and resulting single cell-derived 
colonies were transferred to individual wells. Clones were then examined for efficiency of induction 
of Katushka expression upon transfection with Cre recombinase, and the best-performing clone 
was selected. Cre-activity reporter cells were cultured in IMDM (Gibco) supplemented with 8% 
fetal calf serum (FCS, Sigma), 100 U/ml penicillin (Gibco), 100 µg/ml streptomycin (Gibco) and 2 
mM Glutamax (Gibco). A mouse embryonic fibroblast (MEF) cell line from the Ai9 mouse strain 
was generated by modification of E14.5 embryonic fibroblasts with a retroviral vector encoding 
short-hairpin RNA directed against the p53 mRNA. Resultant cells were cultured in IMDM 
supplemented with 8% FCS, 100 U/ml penicillin, 100 µg/ml streptomycin and 2 mM Glutamax. 

Mice
C57BL/6J-Ly5.1, OT-I, UBC-GFP and Ai9 mice were obtained from Jackson Laboratories, and 
strains were maintained in the animal department of The Netherlands Cancer Institute (NKI). 
Ai9 and OT-I, and UBC-GFP and OT-I mice were crossed to obtain the Ai9;OT-I and GFP;OT-I 
strains, respectively. Between 5-10 mice, both male and female, of the age of 6 to 15 weeks were 
used for each experiment. All animal experiments were approved by the Animal Welfare Committee 
of the NKI, in accordance with national guidelines.

Generation of DivisionRecorder+ OT-I T cells 
Platinum-E cells (Cell Biolabs Inc) cultured in IMDM supplemented with 8% FCS, 100 U/ml 
penicillin, 100 µg/ml streptomycin, and 2 mM Glutamax were transfected with the DivisionRecorder 
vector using FuGeneTM6 (Promega). Retroviral supernatant was harvested 48h after transfection and 
stored at -80°C.  Spleens from Ai9;OT-I mice were harvested and mashed through a 70 µm strainer 
(Falcon) into a single cell suspension and resulting splenocytes were subsequently treated with NH4Cl 
to remove erythrocytes. Subsequently, splenocytes were cultured in T cell medium (RPMI (Gibco 
Life Technologies) with 8% FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, Glutamax, 10mM 
HEPES (pH 7.4), MEM Non-Essential Amino Acids (Gibco), 1mM Sodium pyruvate (Gibco), 50 
µM 2-mercaptoethanol, supplemented with 1 ng/ml recombinant murine IL-7 (PeproTech) and 2 
µg/mL ConcanavalinA (Merck)). After 48h, splenocytes were re-seeded on RetroNectin (Takara) 
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coated plates in T cell medium supplemented with 60 IU/mL human IL-2 and DivisionRecorder 
virus, and were centrifuged for 90min at 400g to allow spinfection. Virus concentration was chosen 
such that a transduction efficiency of approximately 10-15% was achieved, in order to minimize the 
occurrence of multiple retroviral integrations (Supplementary Note 6). Cells were harvested 24h 
later and a small aliquot was stained with anti-CD8-PercpCy5.5, anti-Vb5-PeCy7, anti-CD45.2-
AF700 and DAPI to determine the fraction viable OT-I T cells (DAPI-CD8+Vb5+CD45.2+) by flow 
cytometry (Fortessa, BD Bioscience), which generally was around ~80%. CD8+Vb5+CD45.2+ cells 
that expressed GFP were considered as DivisionRecorder+ OT-I cells. Within the initial population 
of DivisionRecorder+ OT-I cells, the fraction of cells that already showed reporter activation (as 
inferred by tdTomato expression) 24h after transduction was consistently between 0.4 and 0.8%. 
Activated splenocytes were prepared for adoptive transfer (see below). 

Infection, adoptive transfer and cell recovery
C57BL/6J-Ly5.1 mice were infected with 5,000-10,000 CFU of a recombinant Listeria 
monocytogenes strain that expresses ovalbumin or with 5,000 PFU artLCMV-OVA25. Approximately 
24h later, infected mice received 5,000-40,000 DivisionRecorder+ OT-I T cells through intravenous 
tail vein injection. To analyze OT-I T cell responses in peripheral blood over time, 25-50 mL blood 
samples were obtained from the tail vein at the indicated time points, and were treated with NH4Cl 
supplemented with 0.2 mg/ml grade-II DNaseI (Roche) to remove erythrocytes (see Methods, Flow 
Cytometry). To obtain spleen and liver samples, mice were sacrificed, organs were harvested, and 
single cell suspensions were prepared by means of mashing through a 100µM or 70µm strainer 
(Falcon), respectively. Subsequently, erythrocytes were removed by treatment with NH4Cl. To 
purify leukocytes from single cell suspensions of liver tissue, cell suspensions were separated over 
a 37.5% Percoll (Sigma) density gradient. Obtained blood, spleen and liver samples were further 
processed for flow cytometric analysis, scRNA-sequencing or functional in vitro assays, as indicated. 
Samples were monitored for the occurrence of retroviral silencing; which was not observed in any of 
the examined samples (Supplementary Note 7)

Validation of DivisionRecorder functionality 
To assess the ability of the DivisionRecorder to faithfully report on the replicative history of T cell 
populations using dilution of cell dyes as a reference, as described in Fig. 2d-e, we employed an 
experimental approach that was optimized to obtain sufficient DRRFP events within the limited 
number of cell divisions that can be followed using cell dyes such as CTV (i.e., by transferring a 
high number of cells modified at a high transduction efficiency). Conclusions from this experiment 
are restricted to the validation of the functionality of the DivisionRecorder in dividing CD8+ T 
cells. Splenic CD8+ T cells were isolated using the Mouse CD8 T Lymphocyte Enrichment Set 
(BD Biosciences) and were subsequently stained with CellTrace™ Violet (Thermofisher). Next, 
cells were activated for 16h in T cell medium supplemented with 0.05 µg/mL SIINFEKL peptide 
and 60 IU/mL IL-2. Following this activation step, cells were seeded onto RetroNectin® (Takara 
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Bio) coated plates and were transduced with DivisionRecorder virus by spinfection for 4h in the 
presence of IL-2 and SIINFEKL peptide. Analysis of CellTrace™ Violet signal by flow cytometry 
indicated that the cells had not undergone a full cell division post labeling. Subsequently, 6x106 
OT-I T cells were transferred into Lm-OVA infected recipients. Spleens were harvested 48h after 
adoptive transfer, processed into single cell suspensions and prepared for flow cytometric analysis. 
In order to accurately determine the fraction of DRRFP cells per division during the initial stages 
of the proliferative burst when cumulative switching rate is still low, analysis of a large number 
of DivisionRecorder+ OT-I T cells events is required. For this reason, a transduction efficiency of 
~60% was chosen in these experiments, instead of the 10-15% transduction efficiency used in other 
experiments. Note that a high transduction efficiency will result in the more frequent occurrence of 
cells that carry multiple retroviral integrations. The presence of cells with multiple integrations will 
result in a higher, yet stable, DRRFP acquisition rate, as compared to the experimental set-up used in 
the remainder of the study. 

Ex vivo analysis of degranulation and cytokine secretion potential of memory T 
cells
Spleens were harvested from recipient mice at >60 days post-infection, and CD8 T cells were isolated 
using the Mouse CD8 T Lymphocyte Enrichment Set (BD Biosciences). Following isolation, T 
cells were plated at 106 cells per well in 96-well U bottom plates in T cell medium supplemented 
with 0.05 µg/mL SIINFEKL peptide to selectively activate OVA-specific T cells. Following a 4hr 
incubation, capacity of indicated T cell populations to either produce the indicated cytokines or 
to degranulate was assessed. To allow analysis of cytokine production, Brefeldin A (GolgiPlug™, 
BD Biosciences) was added 30 minutes after initiation of T cell stimulation. To allow analysis of 
degranulation, T cell medium was supplemented with anti-CD107a and anti-CD107b antibodies 
at the initiation of T cell stimulation, and Brefeldin A (GolgiPlug™, BD Biosciences) and Monensin 
(GolgiStop™, BD Biosciences) were added 30 minutes after initiation of T cell stimulation. At the 
end of the T cell stimulation period, cells were stained for KLRG1 and CD27 and prepared for flow 
cytometric analysis (see below). 

Flow cytometric analysis 
Cells were taken up in PBS (Invitrogen) supplemented with 0.5% bovine serum albumin (BSA, 
Fisher Scientific), and stained with antibodies directed against the indicated cell surface proteins 
(1:200 dilution), for 30min on ice. To allow detection of intracellular cytokine production, 
cells were fixed and permeabilized with CytoFix/CytoPerm™ (BD Biosciences) according to 
the manufacturer’s protocol and subsequently stained using antibodies against IL-2, TNFa and 
IFNg. To detect intranuclear Ki-67 expression, the Foxp3/Transcription factor Staining buffer 
set (eBioscience) was used. See Supplementary Table 7 for list of antibodies used in the study. 
All samples were acquired on a BD LSR Fortessa™ (BD Bioscience); DRGFP and DRRFP cells 
were identified as CD8+Vb5+CD45.2+GFP+tdTomato- and CD8+Vb5+CD45.2+GFP+tdTomato+, 
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respectively. Flow cytometry data analysis was performed using FlowJo V10. An example of the 
used gating strategy is depicted in Extended Data Fig. 10.

For the moving average analysis depicted in Fig. 3g and Extended Data Fig. 2e, 
CD8+Vb5+CD45.2+GFP+ events were exported and further processed using the R package 
FlowCore50. In brief, outlier events (i.e., antibody aggregates/cell doublets) were removed, 
fluorescence intensities of each of the cell surface proteins were normalized using an inverse 
hyperbolic sine transformation and subsequently scaled between 0 and 1. To obtain the depicted 
moving averages, the fraction of DRRFP cells was calculated within windows that each contained 
10% of total cells, starting with the 10% of cells with the lowest expression levels for the indicated 
marker, and with subsequent windows moving up by steps of 2.5%. 

Single cell RNA sequencing and data analysis of DivisionRecorder modified 
cells
The scRNAseq dataset of DivisionRecorder modified and unmodified OT-I memory T cells was 
obtained in two independent experiments, comprising 11 mice in total (See Extended Data Fig. 3). 
Experiment 1 included 3 mice containing DR+ memory T cells (mouse 1-3), which were processed 
in a single batch. Experiment 2 included 4 mice containing DR+ memory T cells (mouse 4-7) and 4 
mice containing memory T cells derived from naïve OT-I T cells (unmodified, mouse 8-11), which 
were processed in two separate batches (batch 1: mouse 4-5 and mouse 8-9, batch 2:  mouse 6-7 
and mouse 10-11). 

Spleens of DivisionRecorder+ OT-I T cell recipient mice (n=7) or naïve OT-I T cell recipient 
mice (n=4) were harvested >65 days post-infection. Splenocytes were stained with fluorochrome-
conjugated antibodies directed against CD8, CD45.2 and Vβ5 (See Supplementary Table 7), to 
allow purification of transferred cells by FACS using the BD FACSAria™ Fusion Flow Cytometer 
(BD Biosciences). DR+ cells were subsequently FACS purified based on their expression of RFP and 
GFP. Following the isolation of DRGFP and DRRFP memory T cells by FACS (FACSAria Fusion, BD 
Biosciences), obtained cell populations were barcode-labeled with distinct anti-mouse TotalSeq™ 

Hashtag antibodies (TotalSeq-A0301-0306, Biolegend), and pooled, with an equal number of 
cells from each mouse to form the total pool of cells for scRNA-sequencing. If the amount of 
sorted DRRFP cells from a particular sample was limited, it was pooled together with another DRRFP 

sample to reduce cell loss during cell hashing (as indicated in Extended Data Fig. 3). Single-cell 
RNA isolation and library preparation was performed according to the manufacturer’s protocol 
of the 10X Genomics Chromium™ Single Cell 3’ kit, and the cDNA library was sequenced on a 
NextSeq™ 550 Sequencing System (Illumina). Cumulative data tallied to a total of ±15,000 
cells. Feature-barcode matrices were generated using the Cell Ranger software of the 10X Genomics 
Chromium™ pipeline. Cells that could be ascribed to multiple samples or to no sample (inferred 
from the detection of multiple or no Hash tags), cells with a transcript (UMI) count lower 
than 1,500 and cells with a mitochondrial-gene fraction higher than 0.12 were excluded from 
downstream analysis. Next, cells were further filtered based on gene counts, setting upper and lower 
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thresholds separately for each sample-batch to control for differences in sequencing depth (gene-
count-thresholds: Experiment 1 [1,200-3,000], experiment 2 batch 1 [800 -2,500], experiment 2 
batch 2 [1,000-3,000]). Subsequent analysis of the remaining 11,767 cells was performed using the 
Seurat51 and MetaCell34 R packages.

To examine enrichment or depletion of DRRFP cells within the different MetaCells, cell counts were 
first normalized across hashtags. Data obtained from the different mice were subsequently aggregated 
and used to calculate the ratio of DRRFP versus DRGFP cells in each MetaCell. The immune signature 
gene list used in several analyses was composed of gene clusters involved, or proposed to be involved 
in T cell function. The full gene list is described in Supplementary Table 3.

Differential gene-expression testing was performed using the FindMarkers function (Wilcoxon Rank 
Sum test) implemented in Seurat, comparing all ldTCM to all hdTCM. Significantly differentially 
expressed genes (P < 0.05) were subsequently used for gene-set enrichment analysis using the R 
package fgsea52, testing for enriched gene-sets from the C7 immunologic or the H Hallmark gene-
sets from Molecular Signatures Database (only including sets that consisted of >10 genes). Results 
from this analysis were filtered for collections deposited by Kaech and Goldrath (Supplementary 
Table 2), focusing on relevant CD8+ T cell biology. 

To calculate the QstemScore, the log2 enrichment values of genes that were positively or negatively 
associated with stem cell quiescence (Supplementary Table 5) were first summed within each 
MetaCell resulting in a positive and a negative score. QstemScore was then obtained by subtracting 
the negative-score from the positive-score.

Re-analysis of LCMV specific memory T cell scRNAseq dataset
Single cell transcriptomes from P14 memory T cells (harvested from spleen at day 90 post infection) 
were obtained from the Gene Expression Omnibus (accession GSE131847, sample GSM3822202). 
All single cells from this dataset were clustered applying the MetaCell algorithm. Next, TCM MetaCells 
were determined based on the expression levels of core effector- and multipotency-related genes 
(Supplementary Table 1). QstemScores were then calculated for each of the TCM MetaCells, and 
the 2 highest and 2 lowest scoring MetaCells were selected. Pearson correlations were subsequently 
calculated between each of these 4 TCM MetaCells and all of the TCM MetaCells from the OT-I 
dataset described here. 

CTV-based serial transfer experiment and analysis
Spleens from OT-I and GFP;OT-I mice were harvested and CD8+ T cells were isolated using the 
Mouse CD8 T Lymphocyte Enrichment Set (BD Biosciences) according to the manufacturer’s 
protocol. The obtained cells were mixed in a 1:1 ratio and transferred to 4 primary recipient 
C57BL/6J-Ly5.1 mice (1.5x106 T cells per recipient), and 24 hours later recipients were infected 
with 5,000-10,000 CFU Lm-OVA. 30 days post-infection, spleens and lymph nodes were harvested 
and CD8+ T cells were enriched using the Mouse CD8 T Lymphocyte Enrichment Set (BD 
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Biosciences), replacing the supplied antibody-cocktail with a mixture of anti-mouse CD19, CD20 
and CD4 biotinylated antibodies (used 1:200 each, See Supplementary Table 7 for information 
on antibody clones). The enriched cell pool was subsequently stained with CellTrace™ Violet 
(Thermofisher) and re-transferred into 4 infection-matched secondary C57BL/6J-Ly5.1 recipients. 
74 days after secondary transfer (104 days post-infection) spleens and lymph nodes were harvested 
from the secondary recipients and stained with anti-mouse KLRG1-PE, CD27-APC, and CD45.2-
AF700 (See Supplementary Table 7 for information on antibody clones). Next, stained cell-pools 
were first enriched for transferred cells (i.e., CD45.2+) through FACS using the BD FACSAria™ 
Fusion Flow Cytometer (BD Biosciences), and subsequently sorted again to obtain 4 populations of 
TCM based on both GFP expression and CTV dilution: KLRG1-CD27+GFP+Division0-2, KLRG1-

CD27+GFP+Division5+, KLRG1-CD27+GFP-Division0-2, KLRG1-CD27+GFP-Division5+. These 
cell pools were then further processed for tertiary transfer or single-cell RNA sequencing.

For tertiary transfer, GFP-Division0-2 cells were mixed 1:1 with the GFP+Division5+ cells 
(experiment 1), or GFP+Division0-2 cells were mixed 1:1 with GFP-Division5+ cells (experiment 
2), thereby controlling for potential confounding effects of the donor strain. Next, 10,000 cells of 
either obtained cell pool were transferred in naive tertiary recipient C57BL/6J-Ly5.1 mice (3 mice 
for experiment 1, 4 mice for experiment 2). 24 hours later recipients were infected with 10,000 
CFU Lm-OVA and the ratio of GFP+ over GFP- cells within the transferred population (Ly5.2+) in 
blood was monitored by flow-cytometry over time. 

For scRNAseq analysis, cell pools obtained by cell-sorting were barcode-labeled with distinct 
anti-mouse TotalSeq™ Hashtag antibodies (TotalSeq-A0301-0304, Biolegend), and subsequently 
pooled. Single-cell mRNA isolation and library preparation was performed according to the 
manufacturer’s protocol of the 10X Genomics Chromium™ Single Cell 3’ kit, and the cDNA 
library was sequenced on a NextSeqTM 550 Sequencing System (Illumina). Feature-barcode matrices were 
generated using the Cell Ranger software of the 10X Genomics Chromium™ pipeline, resulting in 
13,064 single-cell transcriptomes. Cells that could be ascribed to multiple samples or to no sample 
(inferred from the detection of multiple or no Hashtags), cells with a transcript (UMI) count lower 
than 2,000 and cells with a mitochondrial-gene fraction higher than 0.12 were excluded from 
downstream analysis. Finally, cells with a gene-count of >2,800 were additionally excluded from 
further analysis. Subsequent analysis of the remaining 9,702 cells was performed using the Seurat51 
and MetaCell34 R packages.

Differential gene-expression testing was performed using the FindMarkers function (Wilcoxon 
Rank Sum test) implemented in Seurat, comparing all CTVHI (division0-2) cells to all CTVLO 
(division5+) cells. Significantly differentially expressed genes (P < 0.05) were subsequently used for 
gene-set enrichment analysis using the R package fgsea52, testing for enriched gene-sets from the C7 
immunologic gene-sets (only including sets that consisted of >10 genes). Results from this analysis 
were filtered for collections deposited by Kaech and Goldrath (Supplementary Table 2), focusing 
on relevant CD8+ T cell biology. 

For the MetaCell-based analysis, the number of cells within each hashtag-MetaCell combination 
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was counted, and subsequently normalized to 1,000 cells within each hashtag. The ratios of CTVHI 
over CTVLO was then calculated separately for the GFP;OT-I and OT-I derived cells.  

Statistical analysis
Flow cytometric data was acquired using BDFACSDiva (v8.0) software. Flow cytometric data was 
analyzed using Flowjo (v10.4.2), R (v6.3.1, ‘Action of the Toes’), and FLowCore (v1.52.1). Single 
cell RNA sequencing data was analyzed using R (v 6.3.1), Seurat (v3.1.1), and MetaCell (v0.3.41). 
Data was visualized using Graphpad (V8.4.1, Prism software) and GGplot (v3.2.1). No statistical 
methods were used to pre-determine sample sizes, and sample sizes were chosen based on those 
reported in previous publications13,53. Data distribution was assumed to be normal but this was not 
formally tested. Mice were stratified according to age and sex where appropriate. Data collection 
and analysis were not performed blind to the conditions of the experiments. No data points were 
excluded from the analyses. 

Materials 
All commercially available reagents are listed in Supplementary Table 8.

Data availability
Transcriptomic data presented in the manuscript have been deposited to the Gene Expression 
Omnibus (GEO), and can be accessed under the GEO accessions GSE169154 and GSE184947. 
The gp33-specific P14 T cell scRNAseq dataset was retrieved from GEO (accession GSE131847, 
sample GSM3822202). All statistical source data of the figures presented in the present study are 
provided with this paper. Indicated gene sets used in gene set enrichment analyses were retrieved 
from the Molecular Signatures Database (MSigDB) at http://www.gsea-msigdb.org/gsea/msigdb. 
Any additional data supporting the findings of this study are available from the corresponding 
authors upon request.

Code availability
R scripts that were used to produce the main and extended data figures in the manuscript are 
available from GitHub (https://github.com/kasbress/DivisionRecorder_analysis).

Acknowledgements
We would like to thank Monika C Wolkers (Sanquin, Amsterdam), Carmen Gerlach (Karolinska 
Institute, Stockholm) and Klaas van Gisbergen (Sanquin, Amsterdam) for helpful discussions 
regarding experimental procedures and sharing biological material, and Doron Merkler (University 
of Geneva, Geneva) for kindly providing the artLCMV-OVA. In addition, we would like to thank 
the NKI Genomics Core Facility and Flow Cytometry Core Facility for providing experimental 



Replicative history of memory T cells

73

support. This work was supported by ERC AdG Life-his-T (Grant agreement ID: 268733) to 
T.N.S. and an NWO grant (ALWOP.265) to R.J.d.B.

Author contributions
The study was designed by K.B., L.K., F.A.S. and T.N.S., and supervised by T.N.S. and F.A.S.; 
K.B. and L.K. jointly performed, analyzed, and visualized all experimental work included in the 
manuscript; F.A.S and K.B designed and developed the retroviral DivsionRecorder construct. 
L.A.K. and L.J. performed optimization and validation experiments integral to the design of the 
DivisionRecorder; A.C.S and R.J.D.B. performed mathematical modelling, together with T.S.W, 
L.P and K.R.D; K.B. and L.K. wrote the manuscript with the input of co-authors; T.N.S. and F.A.S. 
critically reviewed and revised the manuscript. 



Chapter 4

74

References

1.	 Hwang, L. N., Yu, Z., Palmer, D. C. & Restifo, N. P. The in vivo expansion rate of properly stimulated 
transferred CD8+ T cells exceeds that of an aggressively growing mouse tumor. Cancer Res. 66, 1132–
1138 (2006).

2.	 Yoon, H., Kim, T. S. & Braciale, T. J. The Cell Cycle Time of CD8+ T Cells Responding In Vivo Is 
Controlled by the Type of Antigenic Stimulus. PLoS ONE 5, e15423 (2010).

3.	 Obar, J. J., Khanna, K. M. & Lefrançois, L. Endogenous Naive CD8+ T Cell Precursor Frequency 
Regulates Primary and Memory Responses to Infection. Immunity 28, 859–869 (2008).

4.	 Blattman, J. N. et al. Estimating the precursor frequency of naive antigen-specific CD8 T cells. J. Exp. 
Med. 195, 657–664 (2002).

5.	 Buchholz, V. R., Schumacher, T. N. M. & Busch, D. H. T Cell Fate at the Single-Cell Level. Annu. Rev. 
Immunol. 34, 65–92 (2016).

6.	 Restifo, N. P. & Gattinoni, L. Lineage relationship of effector and memory T cells. Curr. Opin. Immunol. 
25, 556–563 (2013).

7.	 Akondy, R. S. et al. Origin and differentiation of human memory CD8 T cells after vaccination. Nature 
552, 362–367 (2017).

8.	 Sarkar, S. et al. Functional and genomic profiling of effector CD8 T cell subsets with distinct memory 
fates. J. Exp. Med. 205, 625–640 (2008).

9.	 Obar, J. J. & Lefrançois, L. Early signals during CD8 T cell priming regulate the generation of central 
memory cells. J. Immunol. Baltim. Md 1950 185, 263–272 (2010).

10.	 Kretschmer, L. et al. Differential expansion of T central memory precursor and effector subsets is regulated 
by division speed. Nat. Commun. 11, 113 (2020).

11.	 Kinjyo, I. et al. Real-time tracking of cell cycle progression during CD8+ effector and memory T-cell 
differentiation. Nat. Commun. 6, 6301 (2015).

12.	 Buchholz, V. R. et al. Disparate individual fates compose robust CD8+ T cell immunity. Science 340, 
630–635 (2013).

13.	 Gerlach, C. et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science 340, 635–
639 (2013).

14.	 Herndler-Brandstetter, D. et al. KLRG1+ Effector CD8+ T Cells Lose KLRG1, Differentiate into All 
Memory T Cell Lineages, and Convey Enhanced Protective Immunity. Immunity 48, 716-729.e8 (2018).

15.	 Gerlach, C. et al. The Chemokine Receptor CX3CR1 Defines Three Antigen-Experienced CD8 T Cell 
Subsets with Distinct Roles in Immune Surveillance and Homeostasis. Immunity 45, 1270–1284 (2016).

16.	 Reizel, Y. et al. Colon stem cell and crypt dynamics exposed by cell lineage reconstruction. PLoS Genet. 
7, e1002192 (2011).

17.	 Shlush, L. I. et al. Cell lineage analysis of acute leukemia relapse uncovers the role of replication-rate 
heterogeneity and microsatellite instability. Blood 120, 603–612 (2012).

18.	 Kozar, S. et al. Continuous clonal labeling reveals small numbers of functional stem cells in intestinal 
crypts and adenomas. Cell Stem Cell 13, 626–633 (2013).

19.	 Davis, F. M. et al. Single-cell lineage tracing in the mammary gland reveals stochastic clonal dispersion of 
stem/progenitor cell progeny. Nat. Commun. 7, 13053 (2016).

20.	 Weber, T. S., Perié, L. & Duffy, K. R. Inferring average generation via division-linked labeling. J. Math. 
Biol. 73, 491–523 (2016).

21.	 Tempany, J. C., Zhou, J. H., Hodgkin, P. D. & Bryant, V. L. Superior properties of CellTrace YellowTM 
as a division tracking dye for human and murine lymphocytes. Immunol. Cell Biol. 96, 149–159 (2018).

22.	 Lai, Y. The Relationship Between Microsatellite Slippage Mutation Rate and the Number of Repeat 
Units. Mol. Biol. Evol. 20, 2123–2131 (2003).

23.	 Koole, W., Schäfer, H. S., Agami, R., van Haaften, G. & Tijsterman, M. A versatile microsatellite 
instability reporter system in human cells. Nucleic Acids Res. 41, e158–e158 (2013).

24.	 Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole 
mouse brain. Nat. Neurosci. 13, 133–140 (2010).

25.	 Kallert, S. M. et al. Replicating viral vector platform exploits alarmin signals for potent CD8+ T cell-
mediated tumour immunotherapy. Nat. Commun. 8, 15327 (2017).

26.	 Wherry, E. J. et al. Lineage relationship and protective immunity of memory CD8 T cell subsets. Nat. 
Immunol. 4, 225–234 (2003).

27.	 Becker, T. C. et al. Interleukin 15 Is Required for Proliferative Renewal of Virus-specific Memory CD8 T 
Cells. J. Exp. Med. 195, 1541–1548 (2002).

28.	 Graef, P. et al. Serial transfer of single-cell-derived immunocompetence reveals stemness of CD8(+) 
central memory T cells. Immunity 41, 116–126 (2014).

29.	 Olson, J. A., McDonald-Hyman, C., Jameson, S. C. & Hamilton, S. E. Effector-like CD8+ T Cells in the 
Memory Population Mediate Potent Protective Immunity. Immunity 38, 1250–1260 (2013).



Replicative history of memory T cells

75

30.	 Youngblood, B. et al. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature 552, 
404–409 (2017).

31.	 Voehringer, D. et al. Viral infections induce abundant numbers of senescent CD8 T cells. J. Immunol. 
Baltim. Md 1950 167, 4838–4843 (2001).

32.	 Lin, W.-H. W. et al. CD8 + T Lymphocyte Self-Renewal during Effector Cell Determination. Cell Rep. 
17, 1773–1782 (2016).

33.	 Johnnidis, J. B. et al. Inhibitory signaling sustains a distinct early memory CD8+ T cell precursor that is 
resistant to DNA damage. Sci. Immunol. 6, eabe3702 (2021).

34.	 Baran, Y. et al. MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions. Genome Biol. 
20, 206 (2019).

35.	 Badovinac, V. P., Haring, J. S. & Harty, J. T. Initial T cell receptor transgenic cell precursor frequency 
dictates critical aspects of the CD8(+) T cell response to infection. Immunity 26, 827–841 (2007).

36.	 Cheung, T. H. & Rando, T. A. Molecular regulation of stem cell quiescence. Nat. Rev. Mol. Cell Biol. 14, 
329–340 (2013).

37.	 Kurd, N. S. et al. Early precursors and molecular determinants of tissue-resident memory CD8+ T 
lymphocytes revealed by single-cell RNA sequencing. Sci. Immunol. 5, eaaz6894 (2020).

38.	 Grassmann, S. et al. Early emergence of T central memory precursors programs clonal dominance during 
chronic viral infection. Nat. Immunol. 21, 1563–1573 (2020).

39.	 Pais Ferreira, D. et al. Central memory CD8+ T cells derive from stem-like Tcf7hi effector cells in the 
absence of cytotoxic differentiation. Immunity 53, 985-1000.e11 (2020).

40.	 Gattinoni, L. et al. Wnt signaling arrests effector T cell differentiation and generates CD8+ memory stem 
cells. Nat. Med. 15, 808–813 (2009).

41.	 Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–
1297 (2011).

42.	 Laurenti, E. et al. CDK6 Levels Regulate Quiescence Exit in Human Hematopoietic Stem Cells. Cell Stem 
Cell 16, 302–313 (2015).

43.	 Wilson, A. et al. Hematopoietic stem cells reversibly switch from dormancy to self-renewal during 
homeostasis and repair. Cell 135, 1118–1129 (2008).

44.	 Schepers, A. G., Vries, R., van den Born, M., van de Wetering, M. & Clevers, H. Lgr5 intestinal stem 
cells have high telomerase activity and randomly segregate their chromosomes. EMBO J. 30, 1104–1109 
(2011).

45.	 Yan, K. S. et al. The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct 
populations. Proc. Natl. Acad. Sci. U. S. A. 109, 466–471 (2012).

46.	 Clayton, E. et al. A single type of progenitor cell maintains normal epidermis. Nature 446, 185–189 
(2007).

47.	 Ito, M. et al. Stem cells in the hair follicle bulge contribute to wound repair but not to homeostasis of the 
epidermis. Nat. Med. 11, 1351–1354 (2005).

48.	 An, Z. et al. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth 
in mouse incisors. Nat. Commun. 9, 378 (2018).

49.	 Sugimura, R. et al. Noncanonical Wnt Signaling Maintains Hematopoietic Stem Cells in the Niche. Cell 
150, 351–365 (2012).

50.	 Hahne, F. et al. flowCore: a Bioconductor package for high throughput flow cytometry. BMC 
Bioinformatics 10, 106 (2009).

51.	 Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data 
across different conditions, technologies, and species. Nat. Biotechnol. 36, 411–420 (2018).

52.	 Korotkevich, G. et al. Fast gene set enrichment analysis. http://biorxiv.org/lookup/doi/10.1101/060012 
(2016) doi:10.1101/060012.

53.	 Kok, L. et al. A committed tissue-resident memory T cell precursor within the circulating CD8+ effector 
T cell pool. J. Exp. Med. 217, e20191711 (2020).



Chapter 4

76

0 20 40 60
0.00

0.50

0.75

1.00

D
R

R
FP

 c
el

ls
 (%

 o
f D

R
+ )

0.25

1.25

0

1

2

3

4

C
el

l n
um

be
rs

 (l
og

10
)

Time post infection (days)

0 20 40 60 0 20 40 60

All T cells

Short-lived TEFF

(Precursor-)TM

TM derived from proliferative precursor TM derived from less proliferative precursor TM derived from near quiescent precursor
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to divide rapidly for 6 days (expansion phase), die at a fixed rate throughout the response, and can differentiate into 
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Extended Data Fig. 2. Evaluation of the division history of T cell subsets throughout a response to Lm-OVA. 
a, Gating strategy used to identify indicated TM populations (d86) in spleen samples. b, DRRFP percentages within 
splenic TM populations (n=6 mice) as identified in panel a. c, DRRFP percentages within the CD27HIKLRG1LO TCM subset 
in spleen and lymph nodes (LN) and within the CD27LOKLRG1HI TEM subset in spleen. d, Cell surface expression of 
CX3CR1, CD62L, and CD43 within splenic CD27LOKLRG1HI and CD27HIKLRG1LO populations at the peak of the TEFF 
phase (day 6 post infection) and in memory phase (day 86 post infection). e, Moving-average of surface marker 
expression of splenic DR+ OT-I T cells during effector phase (day 6), depicted as in Fig. 3g. f, Boxplots depicting DRRFP 

percentages within TEFF (day 6 post infection) subsets in spleen (n=6 mice), relative to the total DRRFP percentage. g, 
Kinetics of DRRFP percentages within CD27LOKLRG1HI (left) and CD27HIKLRG1LO (right) DR+ OT-I T cell populations in 
blood. Values are relative to the percentage of DRRFP cells detected at the peak of the response (day 6).  Grey lines 
represent individual mice (n = 22), red and blue lines indicate group mean. h, Simulation of the phenotype model 
(See Supplementary Note 5 for details) illustrating a scenario in which conversion of CD27HIKLRG1LO to CD27LOKL-
RG1HI cells occur only after the peak of the response at a low rate. Depicted are the overall cell numbers (left), and 
the percentage DRRFP cells of DR+ OT-I T cells (right) in CD27HIKLRG1LO cells (blue), CD27LOKLRG1HI cells (red) and 
the total T cell population (green). Note that in this scenario the fraction DRRFP within the terminally differentiated 
CD27LOKLRG1HI population would increase to almost twice the experimentally observed frequency. All depicted 
data are representative of at least two independent experiments. Boxplots (c, d, g) represent group median and 
25th/75th percentiles, whiskers indicate the interquartile range multiplied by 1.5 (c, d) or min/max (g), dots indicate 
individual samples. P values were determined by one-way ANOVA followed by Tukey’s HSD post-hoc test (c and d), 
two-sided Student’s T test (c), two-sided repeated measurement correlation test (h), or two-sided Friedman test (g). 
All significant (< 0.05) P values are indicated in the plots.
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Extended Data Fig. 3. Single cell mRNA sequencing of DivisionRecorder+ and unmodified memory T cells. Sin-
gle cell mRNA sequencing was performed on DivisionRecorder modified and unmodified OT-I memory T cells (Day 
75 and 85 post Lm-OVA infection), isolated from spleens (n=7 mice with DR+ memory T cells; n=4 with unmodified 
memory T cells). Obtained data were aggregated from two independent experiments (Experiment 1: M1-3; Experi-
ment 2: M4-11). All cells were jointly analysed and clustered. a, Cell count per sample. b, Total cell count per MC. c, 
Sample composition of each MC. d, Relative contribution of DRGFP and DRRFP to the total DR+ pool within each MC.
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TCM subset. Dots indicate individual mice (n=3 per condition). Note that all TCM states are generated in near-equal 
proportions by DR+ and unmodified memory T cells. Depicted scRNAseq data was obtained from 6 individual mice, 
and was aggregated from 2 independent experiments. P values were determined by two-sided Student’s T test 
followed by Bonferroni correction for multiple testing (d and e). P values < 0.05 are indicated.
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Extended Data Fig. 5. Replicative history identifies distinct transcriptional states within the TCM pool. Single 
cell transcriptomic profiling of DR+ T cells obtained from spleen in memory phase (Day 75 and 85 post Lm-OVA 
infection). a, Log2 enrichment of selected genes in each MC cluster. Boxplots indicate group median and 25th/75th 
percentiles, whiskers indicate the interquartile range multiplied by 1.5, dots signify individual MCs. The phenotype 
clusters TEM, TCM(eff) and TCM(mult) contain 4, 9 and 10 MCs, respectively. For definition of TCM(eff) and TCM(mult), see 
Fig. 4B. b, Top and bottom marker genes of ldTCM (Top, MC2, 11, 14) and hdTCM (Bottom, MC6, 8, 18), see Fig. 4D for 
ldTCM and hdTCM definitions. c, Heatmaps depicting z-score transformed enrichment values of genes related to cell 
survival (left), cytotoxicity and effector function (middle), inhibitory markers (top-right), and transcription factors 
involved in T cell multipotency (bottom-right). Expression is depicted for the 3 ldTCM and 3 hdTCM MCs. d, Volcano 
plot depicting differentially expressed genes in ldTCM versus hdTCM. Significantly (adjusted P-value < 0.05) differen-
tially expressed genes are depicted in red. Selected genes are highlighted. e, Cytokine release of CD27HIKLRG1LO 
DR+ T cells (isolated from spleen at day >60 post infection) 4 hours post ex vivo stimulation. Percentage DRRFP cells 
within cytokine producers (+) and non-producers (-), relative to the average DRRFP percentage within each sample, 
is depicted. Lines connect individual ex vivo stimulated samples samples (n=12), obtained from 3 mice. f, Ex vivo 
degranulation of CD27HIKLRG1LO DR+ T cells (isolated from spleen at day >60 post infection) 4 hours post ex vivo 
stimulation. Percentage DRRFP cells within the CD107a/b positive (+) or negative (-) cell populations is depicted. 
Lines connect individual samples ex vivo stimulated samples (n=17), obtained from 5 mice. g, Enrichment of gene 
signatures from MSigDB (Hallmark) by gene set enrichment analysis comparing ldTCM and hdTCM. Data depicted was 
accumulated in two independent experiments (3-4 mice per experiment). P values were determined by Tukey’s HSD 
test (a), Wilcoxon Rank Sum test with Bonferroni correction (d), two-sided Wilcoxon signed-rank test (e, f), the FGSEA 
algorithm followed by the Benjamini-Hochberg procedure (g). P values < 0.05 are indicated.
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Extended Data Fig. 6. gp33-specific P14 TCM with increased expression of genes associated with replicative 
quiescence resemble OT-I ldTCM. Re-analysis of scRNAseq profiled splenic of P14 memory T cells, published in Kurd 
et al. (Kurd et al., Science Immunology, 2020). a-b, 2D projection of P14 memory T cells 90 days post LCMV infection, 
colors indicate individual MCs (a), or the relative expression of effector- and multipotency-associated genes (b). 
Gene list in Supplementary Table 1. c, P14 memory T cells cluster into TCM (blue) and TEM (red). 2D projection colored 
by subset (top), and violin plots depicting normalized UMI counts of selected genes (bottom) are shown. d, Qstem-
Score of all TCM MCs in the Kurd et al. dataset. e, Pearson correlations between the Kurd et al. P14 TCM MCs that score 
high (MC1, 3) or low (MC6, 7) for QstemScore, and all OT-I TCM MCs described here. Data are depicted as waterfall 
plots, asterisks indicate significant correlations. TCM(eff), TCM(mult), ldTCM and hdTCM MCs are defined in Figure. 4. P 
values were determined by two-sided Pearson correlation test followed by Bonferroni correction (e). P values < 0.05 
are indicated in the plots.
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Extended Data Fig. 7. Single cell mRNA sequencing analysis of highly divided and less divided splenic TCM. 
a, Volcano plot depicting differentially expressed genes in Div0-2 versus Div5+ TCM. Significantly differentially ex-
pressed genes (Adjusted P < 0.05) are depicted in red. Selected immune-related genes are highlighted. b, Cell count 
per MC. c, Number of sequenced cells per sample included in the analysis. d, Sample composition of each MC. e, 
2D projection, colors indicate different MCs.Depicted scRNAseq data was collected from 4 individual mice. P values 
were determined by Wilcoxon Rank Sum test with Bonferroni correction (a).
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Extended Data Fig. 8. Modelled T cell responses are consistent with the presence of a replication-competent 
quiescent TCM population. a, Cartoon of the phenotype model depicting phenotypes, the considered interactions 
among them and the parameters associated with the interactions. Arrows indicate various events occurring during 
the response, such as cell division (denoted with l), differentiation to a different phenotype (denoted with d), cell 
death during contraction (denoted with m), and recruitment toward the secondary response during recall infection 
(denoted with r). Subscripts indicate the phenotype of the cell that the parameter is affecting. Full list of param-
eters can be found in Supplementary Note 5. b-d, Best fit of the modelled T cell response to the experimental 
measurements depicting either cell numbers (top plot in each panel), or DRRFP percentages (bottom plot in each 
panel). The total number of quiescent T cells generated was either capped at 1% (b) or 0.1% (c, d) of the TEFF pool. 
Lines depict the modeled populations; Dots indicate the experimental measurements obtained from peripheral 
blood (b, d) or spleen (c). See Supplementary Note 5 for more details and calculations. Experimental data points 
are representative of at least two independent experiments, dots indicate individual mice (n=6 mice per time point).
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Extended Data Fig. 9. Model describing replicative behaviors in the CD8+ memory T cell pool. Upon infection, 
antigen-specific CD8+ T cells activate and rapidly expand (phase 1, p1). Following pathogen clearance (p2), a subset 
of memory T cells continues to divide, resulting in a progressive increase in the replicative history of the overall 
T cell memory pool (dotted line). Within this population, three separate behaviors of transcriptionally disparate 
memory T cell pools can be distinguished. Top) Terminally differentiated TEM cells that cease division after the 
inflammation phase (p1) and that are marked by high transcription of effector- and minimal expression of multipo-
tency-associated genes ([E], [M]). Upon reactivation, these cells exert rapid effector functions, but lack the potential 
to re-expand. Middle) A subgroup of TCM that continues to proliferate in the memory phase, exhibits diminished 
levels of multipotency-associated transcripts, and that abundantly expresses effector-associated genes. Although 
the functionality of these cells upon reinfection requires further study, their heightened expression of effector-as-
sociated genes suggests that these cells exert cytotoxic activity upon reinfection.  The contribution of these cells to 
the secondary TEFF pool is limited.  Bottom) A subgroup of TCM cells that shows low expression of effector-associated 
genes but increased expression of multipotency-associated genes, and that exists in a near-quiescent state after 
the inflammation phase. Upon renewed infection, this cell pool is primarily responsible for the generation of a new 
wave of secondary TEFF. Based on their transcriptional profile, these cells are expected to have limited immediate 
cytotoxic functions.
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Extended Data Fig. 10. Gating strategy.  General gating applied to flow cytometry data presented in the study. 
Single lymphocytes were first selected using morphology gates, and were subsequently gated on CD8+ T cells and 
transferred OT-I T cells (Vb5+CD45.2+). Next, DRRFP and RFGFP could be directly selected, or first separated by pheno-
type depending on the analysis. The data presented here was analyzed from blood of a recipient of DR+ cells, and 
was acquired 6 days post infection with Lm-OVA. Phenotype gates other than those shown here are defined in their 
respective figures. 



Replicative history of memory T cells

87

Supplementary Notes

Supplementary Note 1
Division-coupled stochastic labeling as a proxy of division history
If we would consider a hypothetical T cell response comprising of two independent populations (A 
and B; see cartoon below): Both populations start dividing at time-point 1 with the same amount 
of RFP label. Population A undergoes a large amount of expansion, and subsequently stops dividing 
and contracts significantly. Population B undergoes a low level of proliferation, but experiences no 
contraction. At the time-point of measurement (time-point 3), population A and B have an equal 
size. 

Due to the high level of proliferation in population A, it accumulates a larger amount of RFP+ cells at 
time-point 2 as compared to its counterpart. As population A stops dividing, it stops accumulating 
RFP+ cells. Next, because RFP labeling occurred stochastically, contraction will occur to the same 
extent in the labeled and the unlabeled cell pool. As a result, the two equally sized populations 
that are analyzed at time-point 3 will contain different fractions of RFP+ cells, which reflect the 
difference in division history between these populations.
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Supplementary Note 2
Minimal ODE model
We detail the results from Weber et al1, as originally shown for a branching process for a system 
of ordinary differential equations (ODEs). As in Weber et al1, the average generation number is 
defined as the mean of the generation numbers of all the cells in the population.

For cells dividing at a rate λ/day and dying at a rate d/day, according to the ODE  
                           , the equations for change in unlabeled (DRGFP, G) and labeled (DRRFP, R) cells 
with time can be written as

the fraction of DRRFP labeled cells, fR at time t is

here, p is the labelling probability and k is the number of daughter cells that get labeled. k = 1 is the 
asymmetric case when only one daughter cell can be labeled during cell division, and k = 2 is the 
symmetric case when both daughters can get labeled during cell division.

In such a model the average generation number,  	             , is independent of the death rate2. 
For this ODE, the relationship between the fraction of DRRFP labeled cells in a population and its 
average generation number at some time-point t is

MEF experiment described in Fig. 1h-i
Linear regression on the cell number data from the MEF experiment was used to infer the division 
rate λ (Fig. I). Using the same minimal ODE and assuming no cell death, the estimate for the 
division rate in the MEF data is λ = 0.698/day. The 95% confidence interval for the fit is 0.673-
0.723.

With the division rate known, Eq. (2) was fitted to the fraction of DRRFP labeled cells to estimate the 
switching probability p. Fig. 1i shows the fits of 300 bootstraps (100 per MEF experiment) on the 
MEF data. The basic statistics of the switching probability estimates from these fits are p = 0.0053 
(mean), 0.0052 (median), 0.0043-0.0063 (95% CI).
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Figure I: Immortalized DivisionRecorder+ (DR+) 
mouse embryonic fibroblasts were cultured, 
counted, and analyzed every 3-4 days. Natural 
log of the number of DR+ cells is shown for three 
experimental replicates. Black dots represent 
the experimental data, the best fit of the linear 
regression is depicted by the blue line, greyed 
area represents the 95% confidence interval. The 
slope of this regression line is the division rate of 
the cells in the MEF experiment.
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Supplementary Note 3
Expected DRRFP fraction in the memory T cell pool
In Extended Data Fig. 1 we model the expected DRRFP fractions in the memory T cell pool for a 
several scenarios where memory is generated from a subset of T cells that have undergone different 
a different number of divisions during the effector phase. 

Consider the clonal expansion and subsequent contraction of a T cell population with two 
phenotypes: activated A cells and quiescent Q cells. Activated cells divide at a rate λA = 2/day for 6 
days (expansion phase), die at a rate dA = 0.2/day throughout, and can differentiate into quiescent 
cells at a rate ai during the expansion phase. One daughter cell of a dividing unlabeled cell (DRGFP, 
XG) can become permanently labeled (DRRFP, XR) with a switching probability p = 0.0013 . The 
labelling is genetic i.e., the daughters of a labeled cell cannot be unlabeled. In the model below, i ≥ 
0 denotes the division number.

We analyze two variants of the model. In the first variant, activated cells can only become quiescent 
when they have completed less than or equal to n divisions. In the second variant, we allow quiescent 
cells to be formed from activated cells throughout the expansion phase regardless of their prior 
division number (referred to as `all’). To create a similar number of quiescent cells in all cases we 
adjust the rate at which quiescent cells are formed. We depict two examples of the first variant in 
Extended Data Fig. 1 (left and middle panels): n = 10 and n = 24 (i.e., in the left panel we set ai 
= 0.25/day when i < 10 (and t < 6 days), and ai = 0 otherwise, and in the middle panel we set ai = 
0.1/day when i < 24 (and t < 6 days), and ai = 0 otherwise). The second variant shown in Extended 
Data Fig. 1 (right panel) has the lowest rate at which quiescent cells are formed, ai = 0.05/day for 
all i.

By numerical integration of Eq. (4), we show in Extended Data Fig. 1 that if the population that is 
persisting during the memory phase were composed of quiescent cells only, the percentage of DRRFP 
labeled cells would decrease after the peak, regardless of when quiescent cells appear. Naturally, the 
decrease in the percentage of DRRFP labeled cells after the peak is smaller when more quiescent cells 
are formed during the expansion phase. Note that we would not obtain much more quiescent cells 
if we would increase ai in the n = 10 scenario because a too large ai cripples the expansion of the 
activated cells.
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Supplementary Note 4
Reduction in DRRFP fractions during recall responses (Fig. 6)
In Figure 6 we apply the DivisionRecorder to assess the replicative recall potential of high- and 
low-division memory T cells, in situ. Based on the reduction in the fraction of DRRFP cells that we 
reproducibly observe early upon recall, we conclude that secondary TEFF cells predominantly derive 
from low-division TCM, a conclusion that is in line with the data obtained using a CTV-based serial 
transfer approach (Fig. 5). 

As a potential alternative explanation for the observed reduction in DRRFP fractions, it could be 
proposed that recall responses would be based on the output of only a very small pool of memory 
T cells, and the numerical dominance of GFP-positive cells over RFP-positive cells (92.5% versus 
7.5%, respectively) would make it likely that such cells would all be GFP-positive, even if replicative 
recall potential was identical for GFP-positive cells and RFP-positive cells. To determine how 
small the responding cell pool would have to be to achieve a reproducible drop in the fraction 
of DRRFP cells without occasional 'jackpot events', in which one of the early responders would be 
RFP-positive (thereby resulting in a secondary TEFF pool that is largely RFP-positive, something 
that is not experimentally observed), we modelled memory pools with 7.5% RFP-positive cells, 
responding to a secondary infection, allowing various numbers of these cells to expand, and then 
assessed the DRRFP fractions within the resulting TEFF pools (Figure II). This analysis indicates 
that secondary TEFF pools generated from a very small precursor pool (< 20 cells) would show a 
reduction in DRRFP fraction in the majority of mice, even if replicative recall potential would be 
equal between low-division and high-division TCM populations. However, models that assume such 
a tight bottleneck do show the occurrence of jackpot events, an observation that is inconsistent with 
the experimental data (Fig. 6). In addition, an assumption of a responding cell pool of < 20 cells 
is inconsistent with the widely held view that recall responses are more rapid because of the larger 
pool of responding cells. Based on this analysis, we conclude that the observed drop in labeling rate 
during recall responses cannot be explained by T cell expansion during recall responses being driven 
by a very small pool of reactivated T cells.
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Figure II. Random sampling of 
precursor cells initiating the recall 
response. Expected DRRFP fractions 
in secondary TEFF pools (vertical axis) 
when a random sample of respond-
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Supplementary Note 5

Phenotype model

In the main text, we argue that the observed drop in DRRFP percentages is due to the preferential 
recruitment of lowly divided cells into subsequent responses. Here, we provide support for this 
proposition by demonstrating that a similar transient drop in DRRFP frequencies is observed in 
mechanistic mathematical models that have a preferential recruitment of lowly divided cells into 
the secondary response. In the modeled T cell responses described below we consider two major 
phenotypic subsets; CD27HIKLRG1LO (hereafter referred to as TMULT) and CD27LOKLRG1HI 
(hereafter referred to as TTERM).

For an experiment in which DRRFP label flow is asymmetrical and permanent, the DRRFP 
accumulation in a population can be modelled by Eq. (5); see the cartoon in Extended Data Fig. 8a. 
We model five phenotypes: clonally expanding activated TMULTs (MA), clonally expanding activated 
TTERMs (EA), cycling TMULTs (MC), cycling TTERMs (EC) and quiescent TMULTs (MQ, MnQ). The variable 
MnQ (for newQ) keeps track of newly formed quiescent cells to prevent them from becoming re-
activated during the same expansion phase. These cells become MQ during the contraction and 
memory phase and can be re-activated during the secondary expansion phase.

Upon encountering antigen, a naïve T cell becomes activated, starts dividing and gives rise to a 
continuum of phenotypically different populations. The phenotype model (Extended Data Fig. 8a) 
broadly classifies this continuum into the five phenotypes introduced above. An activated TMULT can 
either differentiate into an activated TTERM or can stop dividing and become a quiescent TMULT. After 
the peak of the response, a small part of the activated TMULTs and TTERMs becomes cycling TMULTs and 
long-lived TTERMs, respectively. During the recall response, we model a scenario in which a fraction 
of the cells engages in renewed expansion. Upon secondary antigen encounter (set at day 86 post 
primary infection, in concordance with the recall experiment presented in Fig. 6b), the model 
undergoes a second sequence of expansion, contraction, and memory formation.

To examine the scenario in which lowly divided cells are preferentially recruited, it was important 
to know the division history of cells prior to the re-expansion. We, therefore, formulated a division-
indexed model (similar to Eq. 4) to track the number of divisions of the DRGFP and DRRFP cells 
of each phenotype over time. The model is described in full in the supplementary R codes. For 
readability we here present a collapsed version of the model, which can be obtained by summing 
over the division numbers as well as the DRGFP and DRRFP cells (compare the full model equations 
shown in Eq. (6) to the collapsed equation in Eq. (5) for a single phenotype, EA):
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where texp (for time in expansion) is the time since the most recent challenge. The fraction of cells 
that is expected to be re-activated, 0 ≤ a(i) ≤ 1, is a function of the division number, i. Each 
phenotype is actually indexed by the number of divisions completed, i, and is subdivided into 
an unlabeled (DRGFP, R) and a labeled (DRRFP, G) subtype. For instance, the full division-indexed 
model for activated TTERMs is:

where p is the switching probability. A complete list of division-indexed phenotype specified 
equations can be found in the R code. Below, we explain the step-wise parameter estimation 
procedure of this model.
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Fitting the model and estimating the parameters
Two phases of immune response were inferred from the experimental data: the expansion phase (day 
0-6 for the primary response and day 86-90 for the secondary response), and the non-expansion 
phase, i.e., the contraction and memory phases (day 6-86 for the primary response and day 90-111 
for the secondary response). The percentages of DRRFP cells in blood and spleen were found to be 
highly similar. Additionally, the ratio of the number of DRGFP cells in spleen to that in blood was 
similar across all time points. The blood and spleen data were therefore fitted simultaneously under 
the assumption that both compartments are well-mixed (Fig. 7a-c, Extended Data Fig. 8).

Our primary interest was to find a realistic division history of all phenotypes on day 86, to 
subsequently test whether the preferential recruitment of lowly divided cells can explain the kinetics 
of labeling rate during recall responses. The number of free model parameters was reduced to 6 using 
a few simplifying assumptions:

1.	 The division rate during the expansion phase is the same for TMULTs and TTERMs,

2.	 The death rate of cells during the expansion phase is negligible,

3.	 The formation of quiescent cells decreases with time post antigen encounter,

4.	 The rate at which TTERMs are formed increases with time (instead of division number),

5.	 Only 5% of the activated cells survive after the expansion phase, i.e.,             , and

6.	 TMULTs and TTERMs maintain constant numbers during the memory phase, i.e., λM =  dM and 
λE =  dE.

The free parameters were estimated by fitting the collapsed model sequentially to the data obtained 
during the primary expansion and non-expansion phases. First, the initial number of cells that were 
activated among the engrafted cells in blood and spleen, the division rate of the activated cells, and 
the differentiation rate of the activated cells into the different phenotypes were estimated using the 
experimental data obtained during the expansion phase. Next, these estimated parameters were 
used to estimate the division rates of the cycling cells from the experimental data obtained during 
the non-expansion phase. Because the estimation of the re-activation function was infeasible, as it 
would require fitting the full division-indexed model to the data, this function was tuned manually 
to obtain an optimal description of the data with the full model. The estimated parameters for the 
best description of the data are listed in Table S1.

Expansion of adoptively transferred DR+ cells is expected to occur after a short delay, covering 
both the time required to identify an antigen-positive APC and to initiate cell division after TCR 
triggering. This delay was fixed to 1 day as our dataset lacked the appropriate information for this 
parameter to be estimated. The loss rate of activated cells was fixed to dA 0.3/day. The rate at which 
the formation of quiescent cells declines was tuned such that only 1% of the quiescent population 
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formed during the primary response would be DRRFP. As antigen-experience is known to influence 
secondary memory formation, e.g. the expansion phase occurring on a shorter time-scale and a 
considerably slower contraction phase, the rates during the secondary response differ from those 
during the primary response3. Therefore, mq and mc and were set to 0.5/day and     , respectively. 

The maximum rate at which quiescent cells were formed was fixed to different values 

(                           ) to generate different numbers of quiescent cells (103, 104) at the peak of 
the primary response (day 6) (Fig. 7a). Unsurprisingly, formation of a larger number of quiescent 
cells during the primary response, resulted in a larger drop in DRRFP frequencies during secondary 
expansion (Fig. 7b). Higher numbers of quiescent TCM also generated secondary responses that were 
higher in magnitude, providing a better explanation of the data (Extended Data Fig. 8b-d). Three 
different re-activation functions, signifying either an abrupt (fun 1-2) or gradual loss (fun 3) of re-
expansion potential based on the number of prior divisions, were tested (Fig. 7a). The experimental 
data was only congruent with scenarios where re-expansion potential was restricted to cells that had 
undergone limited clonal expansion (Fig. 7a-b). Furthermore, higher numbers of quiescent TCM 
correlated positively with larger drops in DRRFP frequencies upon re-expansion (Fig. 7b).
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Table S1: The estimated parameters for the best fit of the phenotype model to the data. The 
parameter values in this table were obtained by fitting the phenotype model to the blood and spleen 
data simultaneously using the pseudorandom-search algorithm (see pseudoOptim) in the modFit 
function of the FME R package4. F signifies that these parameters were set to a fixed value.
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Supplementary Note 6

Analysis of DivisionRecorder single integration frequency
As the DivisionRecorder is retrovirally introduced into the genome, a fraction of the modified 
cells may carry multiple integrations. As each DivisionRecorder has an independent probability of 
slippage—and hence creation of an in-frame Cre gene—during cell division, this means that cells 
that contain more than 1 integration will have a 'faster clock', resulting in the more rapid labeling 
of these cells. However, as the DivisionRecorder is applied as a population-based metric, and 
conclusions are based on comparison of different timepoints and/or different cell populations within 
individual mice, the presence of a fraction of cells with multiple integration events will not influence 
the interpretation of the obtained data. Nevertheless, to minimize variation in the fraction of cells 
with >1 integration event between experiments, we aimed for a low and standardized transduction 
efficiency, in which the occurrence of multiple integration events will be minor. To determine which 
fraction of single integrations could be expected as a factor of transduction efficiency, Ai9 mouse 
embryonic fibroblasts (MEFs) or ex vivo activated Ai9;OT-I cells were transduced with a mixture 
of 2 retroviruses encoding either GFP or Katushka. The fraction of single and double-positive cells 
could subsequently be used to estimate the relationship between transduction efficiency and the 
percentage of single integrations. This analysis shows that at a transduction efficiency of ~10-15% 
(the transduction efficiency used for in vivo experiments), approximately 85-90% of the modified 
cells contains a single integration, and this percentage is comparable between the two cell types 
assessed (Figure III). Thus, the large majority of switch events we observe in our experiments 
derives from cells carrying a single reporter.
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Figure III. Frequency of multiple retroviral integration events. GFP and Katushka encoding retroviruses were 
mixed 1:1, and subsequently used to transduce either Ai9 MEF cells (A-B) or ex vivo activated Ai9;OT-I cells (C-D). 
Ai9 MEF and Ai9;OT-I cells were assessed for fluorescent protein expression at day 7 or 24 hours post transduction, 
respectively. The percentage of cells carrying a single integration was calculated as 100-(2*fraction GFP+Katush-
ka+ cells). A) Gating strategy to determine the percentage of GFP+Katushka+ cells within the transduced Ai9 MEF 
cell population. B) Plot depicting the percentage of Ai9 MEF cells carrying a single retroviral integration at differ-
ent transduction efficiencies. C) Gating strategy to determine the percentage of GFP+Katushka+ cells within the 
transduced Ai9;OT-I cell population. D) Plot depicting the percentage of Ai9;OT-I cells carrying a single retroviral 
integration at different transduction efficiencies. Depicted data was obtained in a single experiment consisting of 
two experimental replicated. Dots indicate individual samples, lines represent a linear regression fitted to the data 
points (B, D). 
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Supplementary Note 7
Retroviral silencing of the DivisionRecorder does not occur
As the GFP-Cre module of the DivisionRecorder is introduced retrovirally, there is a potential 
risk of retroviral transcriptional silencing or attenuation. Such silencing events could influence 
interpretation of the data, as the fraction of DRRFP cells over DRGFP cells may become skewed. As 
only the GFP-Cre module is retrovirally introduced, whereas the RFP reporter that is switched 
on upon Cre activity is germline encoded, the extent of retroviral silencing can be experimentally 
determined by measuring the occurrence of cells that do show RFP expression (and hence did at 
some point express the GFP-Cre module) but lack GFP expression. As depicted in Figure IV, 
virtually no RFP+GFP- cells are observed within recipient mice, either during the acute phase or in 
the memory phase, demonstrating that retroviral silencing is extremely rare.
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Figure IV. GFP expression of RFP+ 
cells. LM-OVA infected recipient mice 
received 20,000 DR+ cells and the occur-
rence of GFP-RFP+ cells was assessed in 
spleen on day 6 and 86 after adoptive 
cell transfer. A) Flow cytometry plot, gat-
ed on CD45.2+ cells, depicting RFP and 
GFP expression. B) Fraction of GFP- and 
GFP+ cells within the RFP+ cell popula-
tion (n=12 mice). 
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Abstract
The enzyme glutaminyl-peptide cyclotransferase-like protein (QPCTL) 
catalyzes the formation of pyroglutamate residues at the NH2-terminus of 
proteins, thereby influencing their biological properties. A number of studies 
have implicated QPCTL in the regulation of chemokine stability. Furthermore, 
QPCTL activity has recently been shown to be critical for the formation of the 
high affinity SIRPα binding site of the CD47 “don’t-eat-me” protein. Based on 
the latter data, interference with QPCTL activity—and hence CD47 maturation—
may be proposed as a means to promote anti-tumor immunity. However, the 
pleiotropic activity of QPCTL makes it difficult to predict the effects of QPCTL 
inhibition on the tumor microenvironment (TME). Using a syngeneic mouse 
melanoma model, we demonstrate that QPCTL deficiency alters the intra-
tumoral monocyte-to-macrophage ratio, results in a profound increase in the 
presence of pro-inflammatory cancer-associated fibroblasts (CAFs) relative to 
immunosuppressive TGF-β1-driven CAFs, and leads to an increased IFN and 
decreased TGF-β transcriptional response signature in tumor cells. Importantly, 
the functional relevance of the observed TME remodeling is demonstrated by 
the synergy between QPCTL deletion and anti PD-L1 therapy, sensitizing an 
otherwise refractory melanoma model to anti-checkpoint therapy. Collectively, 
these data provide support for the development of strategies to interfere with 
QPCTL activity as a means to promote tumor-specific immunity.

Introduction 
Regulation of immune cell activity at sites of infection or cancer growth frequently occurs through 
a balance of signals that are received by immune activating and immune inhibitory receptors1. For 
example, while activation of myeloid cells, including neutrophils, macrophages and monocytes, often 
occurs through Fc receptor signaling, such activation can be prevented through the simultaneous 
engagement of ITIM/ITSM-containing inhibitory receptors such as SIRPa. Specifically, binding of 
the “don’t-eat-me” signal CD47, which is widely expressed on hematopoietic and non-hematopoietic 
cells, to the SIRPa receptor on myeloid cells has been shown to result in decreased myeloid effector 
function, including suppression of target cell phagocytosis by macrophages and tumor cell killing 
by neutrophils2–4. 

The inhibitory capacity of CD47 is dependent on the maturation of its SIRPa binding site by the 
ER-resident enzyme QPCTL5,6. Similar to its secreted family member QPCT, QPCTL catalyzes 
the cyclization of N-terminal glutamine and glutamic acid residues on target proteins into a 
pyroglutamate residue (pGlu)7,8. As shown by structural analysis, the pGlu residue at the N-terminus 
of CD47 contributes to the interaction surface with SIRPa9; and, through genetic screening, it 
was shown that the activity of QPCTL is critical for the formation of this residue, making this 
enzyme a key regulator of the high-affinity CD47-SIRPa binding site6. In line with this, prevention 
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of pGlu formation on CD47, either by genetic knock-out or small molecule inhibition, leads to 
reduced SIRPa binding and increased macrophage- and neutrophil-dependent killing of antibody-
opsonized target cells. Based on its role in regulating CD47-SIRPa signaling, and the possibility 
to develop small molecule inhibitors of enzymatic activity, QPCTL forms a potentially interesting 
target in cancer immunotherapy.

In addition to CD47, chemokines such as CCL2 and CX3CL1 have been identified as QPCTL and/
or QPCT substrates10–12. The formation of the N-terminal pGlu on CCL2 was shown to increase its 
in vivo activity, both by conferring resistance to aminopeptidases and by increasing its capacity to 
induce CCR2 signaling10. Likewise, pGlu-modified CX3CL1 appears to show an increased capacity 
to promote CX3CR1 signaling in vitro12. Finally, around 600 human proteins harbor a N-terminal 
glutamine or glutamic acid residue after the predicted signal peptide cleavage site, and it is plausible 
that additional QPCTL/QPCT substrates exist amongst this group of proteins13. 

Because of its known or potential role in the post-translational modification of different immune- 
or tumor cell-related molecules, it is difficult to predict the overall effects of QPCTL inhibition on 
the tumor microenvironment (TME), and the poor pharmacokinetics of available QPCT/QPCTL 
inhibitors such SEN1776 has precluded evaluation of such effects by small-molecule inhibition. 
To address this question, we have generated a QPCTL-deficient mouse model and combined it 
with QPCTL-deficient tumor cells, to map the effects of QPCTL deficiency on either cellular 
compartment on the composition of the TME. The obtained data reveal that QPCTL deficiency 
results in a skewing of the macrophage-monocyte ratio, causes an approximately 20-fold change in 
the balance between TGF-b-producing myofibroblastic cancer-associated fibroblasts (myCAFs) and 
cytokine-secreting inflammatory CAFs (iCAFs), and shifts tumor cells from a TGF-b-responding 
to an IFN-responding state. Collectively, these changes convert the TME to pro-inflammatory 
environment that sensitizes tumors to anti-PD-L1 therapy. Together, these results suggest that 
therapeutic manipulation of QPCTL activity may synergize with current cancer immunotherapies.

Results
Genetic deletion of QPCTL does not significantly alter the immune 
compartment
Previous work has indicated that genetic deletion of QPCTL can be used to study its function in 
vivo10,14; however, the possible effects of QPCTL inactivation on the TME has not been studied. To 
determine how blockade of QPCTL activity alters the TME, we applied CRISPR-Cas9 mediated 
gene-editing to generate a QPCTL-deficient (QPCTL-/-) C57BL/6 mouse strain that is compatible 
with commonly used tumor models. To first determine whether QPCTL deficiency results in 
abrogation of pGlu formation on CD47, peripheral blood cells from QPCTL-/- mice and WT 
littermates were stained with mouse SIRPa and an anti-mouse CD47 antibody that recognizes 
CD47 independent of pyroglutamate formation6. As compared to WT littermates, blood cells of 
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QPCTL-deficient mice displayed significantly decreased SIRPa binding, thereby providing the first 
evidence that QPCTL is also a critical CD47 modifier in vivo (Fig. 1a-b). 

To understand how QPCTL deficiency influences steady-state immune cell frequencies and gene 
expression, QPCTL-/- and QPCTL+/+ littermates were subjected to histopathological, transcriptomic 
and flow cytometric analysis. Histopathological assessment of QPCTL-/- mice revealed no 
significant morphological aberrations relative to littermate controls (Supplementary Data 1), and 
gene expression analysis of spleen, lymph nodes and bone marrow revealed no genotype-specific 
transcriptional changes (Fig. 1c, Supplementary Fig 1a), indicating that QPCTL deficiency does 
not result in major alterations in steady-state immune activity. Likewise, no substantial differences 
in cell counts or immune cell population frequencies were observed in blood (Supplementary Fig. 
1b-c). In spleen, a modest increase in the frequency of NK cells of total non-myeloid cells and a 
decrease in the fraction of activated cells of total CD4+ T cells was observed in QPCTL-/- mice, but 
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Figure 1. Generation and characterization of QPCTL-deficient mice. (a) Ratio of recombinant mouse (rm)
SIRPα-His and anti-mouse (αm)CD47 antibody (clone MIAP301) binding to blood cells from QPCTL+/+, QPCTL+/-, 
and QPCTL-/- mice, as measured by flow cytometry. Dots depict the ratio of rmSIRPα-His/αmCD47-MIAP301 mean 
fluorescence intensity (MFI) on blood cells from individual mice, group medians are indicated and whiskers repre-
sent min/max, n = 3 mice per group. (b) Flow cytometry plot depicting data described in a) for blood cells from a 
representative QPCTL+/+ and QPCTL-/- mouse. (c) Heatmap depicting hierarchical clustering performed on the 1,000 
most differentially expressed genes in bone marrow (BM), lymph node (LN) and spleen samples from QPCTL+/+ 
and QPCTL-/- mice. (d-e) Unbiased Euclidean distance-based clustering of immune cells obtained from spleens of 
QPCTL+/+ and QPCTL-/- mice. UMAP 2-dimensional projection (d) depicts the obtained clusters. Cell counts of both 
genotypes within each cluster are depicted (e). Bars indicate group means, error bars represent standard error of 
the mean. P values were determined by one-way ANOVA followed by Tukey’s HSD test (a) or by two-sided Student’s 
T test with Bonferroni correction for multiple testing (e). Significant P values (< 0.05) are indicated in the plots. 
Data are representative of 3 independent experiments (a-b), or were obtained in a single experiment (c-d). UMAP, 
Uniform Manifold Approximation and Projection.
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no significant changes in other immune cell type frequencies were identified (Supplementary Fig. 
1d). The absence of substantial differences in immune cell frequencies was corroborated by unbiased 
hierarchical clustering of cells obtained from QPCTL+/+ and QPCTL-/- spleen samples (Fig. 1d and 
Supplementary Fig. 1e). 
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Figure 2. Tumor and host QPCTL deficiency alters the Mφ-Mo ratio in the TME. (a) Frequency of macrophages 
and monocytes of myeloid cells (CD11b+), and Mφ-Mo ratio, in the TME of QPCTL+/+ (n = 4) and QPCTL-/- (n = 6) 
mice inoculated with QPCTL-WT or QPCTL-KO B16F10 melanoma cells, respectively. Tumors were analyzed between 
14–16 days post inoculation. (b) UMAP visualizing 30,000 cells sampled from the data shown in a. 5,000 cells were 
randomly drawn from each sample (n = 3 mice per group) prior to analysis. Colors indicate clusters obtained by 
Euclidean distance-based hierarchical clustering, cluster phenotype is shown in Supplementary Figure 2f. (c) 
Contribution of cells from QPCTL+/+ (n = 3) and QPCTL-/- (n = 3) TMEs to each cluster shown in b. Bars indicate group 
means, error bars represent standard error of the mean. (d) Frequency of macrophages and monocytes of myeloid 
cells (CD11b+), and Mφ-Mo ratio, in the TME of QPCTL+/+ and QPCTL-/- mice inoculated with either QPCTL-WT or 
QPCTL-KO B16F10 melanoma cells (n = 7–8 per group). Tumors were analyzed between 12–14 days post inoculation. 
(e) Frequency of macrophages and monocytes of myeloid cells (CD11b+), and Mφ-Mo ratio, in the TME of QPCTL+/+ 
mice inoculated with QPCTL-WT, QPCTL-KO, CD47-KO, or CD47/QPCTL double-KO (dKO) B16F10 cells. Tumors were 
analyzed between 14–16 days post inoculation. (f) Frequency of macrophages and monocytes of myeloid cells 
(CD11b+), and Mφ-Mo ratio, in the TME of QPCTL+/+ and QPCTL-/- mice inoculated with QPCTL-WT and QPCTL-KO 
MC38 cells, respectively. Data from 2 independent experiments are shown (n = 5 per experiment). Tumors were 
analyzed at 22 (experiment 1) or 29 (experiment 2) days post inoculation. Dots indicate measurements from indi-
vidual mice, group medians are indicated and whiskers represent min/max. P values were determined by two-sided 
Student’s T test without (a, f) or with Bonferroni correction for multiple testing (c), or by one-way ANOVA followed 
by Tukey’s HSD test (d, e). Significant P values (< 0.05) are indicated in the plots. For all boxplots, dots represent 
individual mice, group median and 25th/75th percentiles are indicated by the box, whiskers indicate min/max. Data 
are representative of at least 2 independent experiments (a, d, f), or were obtained in a single experiment (b, c, e). 
UMAP, Uniform Manifold Approximation and Projection.
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QPCTL-deficiency alters macrophage-monocyte-ratios in the TME
To test whether systemic QPCTL deficiency influences immune cell infiltration in the TME, 
QPCTL+/+ and QPCTL-/- mice were inoculated with wild-type (QPCTL-WT) and QPCTL knock-
out (QPCTL-KO) B16F10 melanoma cells (Supplementary Fig. 2a), respectively, and TMEs 
were analyzed by flow cytometry 14–16 days post inoculation.  QPCTL-proficient and -deficient 
tumors grew with similar kinetics and were similarly infiltrated by large numbers of myeloid cells 
(Supplementary Fig. 2b-c). Importantly, within the myeloid subset, QPCTL-deficient TMEs 
exhibited a significant higher frequency of macrophages and a substantially increased macrophage-
monocyte (Mf-Mo) ratio (Fig. 2a). Although no other significant changes within the immune 
infiltrate could be detected (Supplementary Fig. 2d), an increase in the frequency of B cells, a 
trend toward a decrease in monocytes, and a decrease in the frequency of CD4+ T cells within the 
non-myeloid immune cell subset was observed in peripheral blood samples from QPCTL-deficient 
tumor-bearing mice (Supplementary Fig. 2e). Also, when immune infiltrates of QPCTL-deficient 
and -proficient TMEs were analyzed through unbiased hierarchical clustering, an increase in F4/80+ 
cells (macrophages) and a decrease in Ly6Chigh cells (monocytes) in QPCTL-deficient TMEs was 
observed (Fig. 2b-c, Supplementary Fig. 2f).

To determine whether the increased Mf-Mo-ratio could be attributed to a lack of QPCTL activity in 
either host or tumor cells, QPCTL+/+ and QPCTL-/- mice were inoculated with either QPCTL-WT 
or QPCTL-KO melanoma tumor cells (Supplementary Fig. 3a). Both tumor and host QPCTL 
deficiency led to an increased Mf-Mo-ratio, but the most profound increase in Mf-Mo-ratios was 
observed when QPCTL activity was lacking in both cell compartments (Fig. 2d, Supplementary 
Fig. 3b-c). In blood, the most pronounced differences in immune cell frequencies were found 
when comparing tumor-bearing versus non-tumor-bearing animals—independent of QPCTL 
activity—emphasizing that QPCTL deficiency does not impact the systemic immune compartment 
in a major way (Supplementary Fig. 3d). To explore to what extent loss of pGlu-modified CD47 
contributed to the altered intra-tumoral Mf-Mo balance, wild-type mice were inoculated with 
QPCTL-, CD47- or double-KO tumor cells. Absence of CD47 resulted in Mf frequencies that were 
numerically higher than observed in recipients of WT B16 tumor cells, but to a lower extent than 
observed in recipients of QPCTL-KO cells, and did not significantly alter Mf-Mo-ratios (Fig. 2e). 
This suggests that, if the CD47-modifying activity of QPCTL contributes to the altered myeloid 
cell composition in these tumors, it likely plays a minor role. 

To test whether the role of QPCTL as a modifier of the TME extended to other tumor models, 
QPCTL+/+ and QPCTL-/- mice were inoculated with QPCTL-WT and QPCTL-KO MC38 colon 
carcinoma cells, respectively. Following tumor outgrowth, a profound increase in MfMo-ratio was 
observed in QPCTL-deficient TMEs (Fig. 2f, Supplementary Fig. 4a-b), while no significant 
changes were detected in other immune cell subsets (data not shown). Together, these data indicate 
that QPCTL affects the TME composition in at least two different tumor models, and that 
combined tumor and host QPCTL deficiency leads to a significant increase in Mf-Mo-ratio. 
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QPCTL deficiency is associated with suppressed intra-tumoral melanogenesis 
and cell metabolism 
Having established that QPCTL deficiency is associated with an alteration in intra-tumoral immune 
cell composition, we set out to investigate the effect of QPCTL deficiency on the tumor cell and 
stromal cell compartment of the TME. RNA sequencing of CD45-negative cell fractions from 
QPCTL-deficient and -proficient TMEs showed that QPCTL deficiency resulted in differential 
expression of a substantial set of genes (Fig. 3a, Supplementary Fig. 5a), and network analysis 
revealed that expression of multiple genes involved in melanogenesis (Dct, Tyrp1, Gpnmb) was 
reduced in QPCTL-deficient melanomas (Fig. 3b). Assessment of the expression level of a broader 
set of genes involved in melanogenesis likewise showed dampening of this pathway (Fig. 3c). 
Interestingly, these transcriptional changes coincided with the functional abrogation of melanin 
production, as evidenced by a loss of pigmentation of QPCTL-deficient tumors (Supplementary 

f

Gbp5

Iigp1

Igtp

Gbp7

Gbp4

Irf1

Tap1

Gbp2
Psmb9

e

genotype

cluster
1
2
3
4

−1.5

0

1.5

−3

0

3

z-
sc

or
e

lo
g2

 F
C

−3

0

3

lo
g2

 F
C

d

Mlana Pmel Trpm1 Tyr Tyrp1

Dct Gpnmb Mc1r Met Mitf

0.8

1.0

1.2

0.8

1.0

1.2

M
ed

ia
n 

no
rm

al
iz

ed
 C

P
M

c

Akt1

Ogdh

Psmb4

Tyrp1

Ctnnb1

Slc25a5

Dct

Fzd6

Tfrc

Bysl

Scd2

Atp5a1

Mterfd2

Sdcbp

Gpnmb

Atg7

Rps3

Cox7b

Atp1a1

Stub1

Gpi1

Psmd8

Mapk1

Pgk1

mt−Nd6

Ftl1

Ugp2

Bnip3

Ldha

Oxct1

Met

Rapgef2

Lgals3

Malsu1

Mlst8

Lgals3

Fzd6

Mlst8

Tyrp1

Met

Gpnmb

Malsu1

Fbxo46

Tpm1

−9

−6

−3

0

−2 0 2 4
log2 Fold change

lo
g1

0 
Fa

ls
e 

di
sc

ov
er

y 
ra

te

Gbp5
Stub1

ba

1050

1100

1150

1200

1250

S
ig

na
tu

re
 e

xp
re

ss
io

n 
(s

um
m

ed
 C

P
M

) Myc targets (1)

260
270
280
290
300

Myc targets (2)

900

950

1000

Mitotic spindle

900

950

1000

1050

G2M checkpoint

900

950

1000

1050

E2F targets
QPCTLdef

QPCTLprof

QPCTL
proficient

0.007 0.008 0.008

0.03 0.01 0.04 0.03 0.01

0.028 0.038 0.016

0.021 0.029

QPCTLprof QPCTLdef

QPCTL
deficient

QPCTL
proficient

QPCTL
deficient

Figure 3. QPCTL deficiency results in suppression of melanogenesis and cell metabolism. mRNA sequencing 
was performed on sorted CD45-negative cells from QPCTL-proficient (n = 5) and QPCTL-deficient (n = 6) B16F10 
TMEs. Tumors were harvested at day 14 post inoculation. (a) Differential gene expression analysis comparing 
CD45-negative cells obtained from QPCTL deficient versus QPCTL-proficient TMEs. Genes with a false discovery 
rate (FDR) < 0.05 are indicated in red. Selected genes are indicated in the plot. (b) Network analysis (StringDB) 
performed on all significantly (FDR < 0.05) differentially expressed genes. Genes with a medium interaction strength 
(> 0.4) are included. Line thickness indicates interaction strength. Nodes are colored based on log2 fold differences 
obtained in a. (c) Transcript abundance of selected genes in the melanogenesis pathway. Boxplots indicate group 
median and 25th/75th percentiles, whiskers indicate the interquartile range multiplied by 1.5, dots signify individ-
ual samples. (d) Signature expression of cell cycle-associated hallmark signatures from MSigDB, calculated as the 
summed CPM of all genes within each signature. Boxplots indicate group median and 25th/75th percentiles, whiskers 
indicate the interquartile range multiplied by 1.5, dots signify individual samples. (e) Hierarchical clustering of the 
1,000 most differentially expressed genes across all samples, depicted as a row-normalized heatmap. (f) Network 
analysis (StringDB) performed on genes from cluster 2 (e). Genes with a medium interaction strength (> 0.4) are 
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are indicated in the plots. Data are representative of 2 independent experiments. CPM, counts per million; MSigDB, 
Molecular Signatures Database.
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Fig. 5b).  Expression of a network of genes involved in cell cycle (Mapk1, Akt1) and cell metabolism 
(Pgk1, Atp5a1, Oxct1) was additionally found to be decreased in CD45-negative cells in the 
QPCTL-deficient setting (Fig. 3b, d, Supplementary Fig. 5c). While dampened expression of 
these gene sets was consistently observed, effect sizes were small and had no discernible effect on 
tumor outgrowth (Supplementary Fig. 2b-c). 

To further explore putative transcriptional alterations in the CD45-negative compartment as a 
result of QPCTL deletion, obtained transcriptomes were clustered based on the top 1,000 most 
variable genes, revealing a cluster of genes that was enriched in 3 out of 6 QPCTL-deficient samples 
(gene cluster 2, Fig. 3e). Network analysis performed on this cluster showed that this gene set 
contained a small network comprised of IFN induced genes (Gbp family members, Tap1, Irf1; Fig. 
3f). Interestingly, previous studies have shown that IFNg can act as a suppressor of melanogenesis 
in B16F10 melanoma cells15–17, a notion that potentially links this IFN signature to the observed 
decrease in tumor pigmentation.
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Figure 4. QPCTL deficiency leads to an increased IFN- and decreased TGF-b-response signature in tumor 
cells. scRNA sequencing was performed on sorted live cells from QPCTL-proficient (n = 3) and QPCTL-deficient (n = 
3) B16F10 TMEs. Tumors were harvested at day 14 post inoculation. (a) 2-dimensional MetaCell projection of the tu-
mor cell compartment. Single cells are colored by MetaCell. (b) Stacked barchart depicting the sample composition 
of each tumor cell MetaCell. Cell counts from each sample were normalized to 1,000 cells. (c) Enrichment of marker 
genes (6 highest and lowest expressed) in tumor cell MetaCell 12. (d) Gene set enrichment analysis performed on 
the top and bottom 200 genes expressed by MC12 (see Supplementary Fig. 7b). Gene-enrichment plots for the 
IFNg and IFNa response gene-sets are depicted. (e-f) Differential gene expression analysis comparing tumor cells 
derived from QPCTL-proficient and QPCTL-deficient TMEs, followed by gene set enrichment analysis using either 
hallmark (e) or immunologic signature (f) gene sets from MSigDB. Results obtained from the immunologic signature 
gene sets were filtered for those containing “TGFb”. Gene sets with a P < 0.05 are shown. (g) Volcano plots depicting 
differential gene expression analysis. Horizontal line indicates an adjusted P value cutoff of 0.05. IFN (left) or TGF-b 
(right) signature genes are highlighted in red (see Supplementary Table 1 for signature genes). Red numbers de-
note quantity of significant differentially expressed genes within the signature, grey numbers denote the quantity 
of remaining differentially expressed genes. Depicted data were obtained in a single experiment, consisting of 6 
mice. NES, normalized enrichment score; MSigDB, Molecular Signatures Database.
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Single cell transcriptomic profiling reveals remodeling of the tumor micro-
environment by QPCTL deficiency 
The above data indicate that QPCTL inactivation affects both immune cell composition of the 
TME and the transcriptome of non-immune cells at the tumor site. With the aim to potentially 
link these two observations we inoculated QPCTL+/+ and QPCTL-/- mice with QPCTL-WT and 
QPCTL-KO B16F10 cells, respectively, and performed scRNAseq of both immune cells and non-
immune cells from the resulting QPCTL-deficient and -proficient TMEs. Applying the MetaCell 
algorithm18 on 13,093 transcriptomes derived from 6 TMEs (3 QPCTL-proficient, 3 QPCTL-
deficient), showed 3 transcriptionally divergent cell supertypes, reflecting immune cells (Ptprc, 
Itgam), fibroblasts (Col1a1, Acta2), and tumor cells (Mlana, Pmel) (Supplementary Fig. 6). To 
identify cell type-specific changes that accompany QPCTL deficiency, each of these supertypes was 
subsequently re-clustered and analyzed separately.

To investigate which of the transcriptional changes observed in the CD45-negative compartment 
could be mapped to the tumor cell compartment, this supertype was re-grouped into transcriptionally 
disparate MCs (Fig. 4a, Supplementary figure 7a), and the relative contribution of cells from 
either QPCTL-deficient mice or QPCTL-proficient samples to the different MCs was examined. 
Strikingly, 1 MC (MC12) was nearly exclusively observed in QPCTL-deficient samples (Fig. 4b). 
Examination of the marker genes of MC12 showed a prominent presence of IFN induced transcripts 
Ifitm3, B2m, Bst2 and H2-D1 (Fig. 4c), and gene-set enrichment analysis performed on MC12 
marker genes identified both IFNg and IFNa response as the strongest enriched gene-sets (Fig. 4d, 
Supplementary figure 7b-c). IFNg and IFNa/b response signatures show a high level of overlap 19–

21, making it difficult to assign the observed response to either cytokine. To potentially deconvolute 
these signatures, and diagnose other putative cytokine response signatures, the CytoSig model19 was 
applied to MC12. In line with the GSEA, this analysis detected transcription response signatures of 
all IFN types, with the highest score being observed for IFNg (Supplementary figure 7d). CytoSig 
additionally identified a reduction in TGF-b signaling in MC12, and retrospective analysis of the 
bulk RNAseq data revealed reduced expression of TGF-b responsive genes in QPCTL-deficient 
TMEs (Supplementary figure 7e). Furthermore, differential gene expression analysis showed that 
QPCTL deficiency was associated with a reduced TGF-b and an increased IFN responsive signature 
(Fig. 4e-g) across all MCs, potentially indicating either an altered abundance of—or sensitivity to—
these cytokines. Notably, in vitro sensitivity of B16F10 cells to both TGF-b and IFNg was unaltered 
by QPCTL deficiency (Supplementary figure 7f-i), arguing in favor of an altered abundance of 
these cytokines in the TME.

Next, the immune cell compartment was grouped into 11 MetaCells (MCs), classified as either CD3+ 
lymphocytes (Cd8a, Cd3e), dendritic cells (Ccr7, H2-Aa), or macrophages/monocytes (Adgre1, 
Fcgr1; Fig. 5a-b, Supplementary Fig. 8a). The macrophage/monocyte (Mf/Mo) MCs could be 
further subdivided into 2 groups that were marked by high expression of either Ccr2 and Itga4 (Mf/
Mo-1 subgroup) or Ms4a7 and Pf4HI (Mf/Mo-2 subgroup; Fig. 5b-c), suggestive of a blood- versus 
tissue-derived origin22–25. Analysis of the contribution of cells from QPCTL-deficient and -proficient 
TMEs to individual MCs indicated that QPCTL deficiency changed the relative abundance of the 
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different cell states that jointly comprised the Mf/Mo-1 subgroup (Supplementary Fig. 8b). As 
intra-tumoral Mf/Mo cells can exist within a continuum of transcriptional cell states26,27, pseudotime 
analysis was performed on Mf/Mo subgroup 1 to examine if such a continuum could be observed, 
and whether this was linked to QPCTL deficiency. This analysis demonstrated a strong continuous 
association between pseudotime (i.e. cell state) and sample-origin (Fig. 5d). To investigate the 
transcriptional changes underlying this association, genes were clustered based on their expression 
kinetics across pseudotime (Supplementary Fig. 8c), revealing a gradual loss of expression of 
Mo-related genes Ly6c2 and Plac8 across pseudotime (Fig. 5e), with the lowest expression levels 
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Figure 5. QPCTL deficiency alters the immune cell compartment and CAF polarization in the TME. scRNA 
sequencing was performed on sorted live cells from QPCTL-proficient (n = 3) and QPCTL-deficient (n = 3) B16F10 
TMEs. Tumors were harvested at day 14 post inoculation. (a, b) 2-dimensional MetaCell projection of the immune 
cell compartment. Single cells are colored by MetaCell (a), or normalized UMI count (b) of selected genes. (c) Violin 
plots depicting normalized UMI counts of selected genes across Mf/Mo MCs. (d, e) SlingShot Trajectory analysis per-
formed on Mf/Mo subset 1 (MC1, 2 and 3). (d) QPCTL-deficient or QPCTL-proficient TMEs replicates were pooled, and 
normalized cell counts were tallied within windows of 60 cell wide, sliding 1 cell per frame. Lines indicate normalized 
cell counts within each window. (e) Normalized UMI counts of selected genes that are significantly associated with 
pseudotime. Blue lines indicate general additive linear models, greyed areas indicate confidence intervals, grey dots 
represent single cells. (f) Violin plots depicting normalized UMI counts of selected genes within the CD3+ lymphoid 
cell MetaCell (MC6). (g, h) 2-dimensional MetaCell projection of the fibroblast compartment. Single cells are col-
ored by MetaCell (g), or normalized UMI count (h) of selected genes. (i) Enrichment of iCAF and myCAF signatures 
(Supplementary Table 2) in each CAF MetaCell. Signature values represent summed log2 transformed enrichment 
values, calculated using the MetaCell algorithm. (j) Stacked barchart depicting sample composition of each CAF 
MetaCell. Cell counts from each sample were normalized to 1,000 cells. (k) myCAF/iCAF ratio detected in QPCTL-pro-
ficient and -deficient TMEs. Colored dots indicate individual mice, black dots indicate means, whiskers indicate the 
standard deviation. Depicted data were obtained in a single experiment, consisting of 6 mice. iCAF, inflammatory 
cancer-associated fibroblast; myCAF, myofibroblastic cancer-associated fibroblast; UMI, unique molecular identifier.
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found in the area that contained the highest fraction of cells from QPCTL TMEs. At the same 
time, an increase in transcripts linked to ‘inflammation-resolutory’ Mf ’s (Mrc1, Timp2), antigen-
presentation (H2-Aa, Cd74) and Mf effector function (Eps8, Ctsd, Ecm1, Lipa)28–31 was observed. 
Consistent with these findings, Mf/Mo cells that were more dominant in QPCTL-deficient samples 
had reduced expression of monocyte-associated transcripts, and displayed transcriptional similarity 
to previously identified tumor-associated macrophage subsets32 (Supplementary Fig. 8d). Together 
with the observed Mf-Mo skewing (Figure 2), these data argue in favor of a model in which QPCTL 
deficiency in the TME leads to transcriptional changes that drive Mo-to-Mf conversion. Moreover, 
the intra-tumoral macrophages identified by flow cytometry (Figure 2) exhibited high-level surface 
expression of MHC class II (H2-Aa), CD206 (Mrc1) and CCR2 (Ccr2), linking these cells to the 
Mf/Mo population identified through scRNAseq (Supplementary Fig. 8e).

Congruent with the flow cytometric analysis, no differences in the frequencies of CD3+ lymphoid 
cells derived from QPCTL-deficient versus QPCTL-proficient TMEs could be observed in the 
scRNAseq dataset. However, as activated lymphoid cells are potent producers of IFN, we queried 
whether transcriptional features associated with lymphocyte activation were detected more frequently 
in lymphocytes from QPCTL-deficient TMEs. Interestingly, expression of genes associated with 
TCR-triggering (Ifng, Il2rb and Tnfrsf9) and cell cycle activity (Top2a, Mki67, Birc5) was detected 
more frequently in cells derived from the QPCTL-deficient tumors (Fig. 5f). Likewise, lymphocytes 
derived from QPCTL-deficient TMEs showed increased expression of the Ccl3, Ccl4, and Ccl5 
chemokines, and of the T cell activation-related genes Ly6a, Nkg7, and Gzmb (Supplementary 
Fig. 8f). While the increase in Ifng gene expression in lymphocytes in QPCTL-deficient samples 
was only modest, the parallel observation of other aspects of lymphocyte activation in these samples 
suggests that these cells may, at least in part, be responsible for the IFN responsive signature that is 
observed in the tumor cell compartment.

Diverse subsets of cancer-associated fibroblasts (CAFs) that possess distinct immunomodulatory 
functions have been reported in the TME of different cancer types33, and two highly distinct 
populations— termed TGF-b-producing myofibroblastic CAFs (myCAFs) and IL-1-driven 
inflammatory CAFs (iCAFs)—have been identified in a recent set of cross-species studies34,35. As 
a reduced TGF-b response signature was identified as one of the characteristics of tumor cells in 
QPCTL-deficient tumors, we next asked whether QPCTL deficiency affected CAF polarization. 
MetaCell-based clustering within the fibroblast cell supertype resulted in 5 transcriptionally distinct 
MCs (Fig. 5g, Supplementary Fig. 8g). Assessment of transcripts known to be involved in CAF 
function showed that MC2 was enriched for Tgfb1 transcripts and several myCAF markers (e.g. 
Acta2, Itgb1), whereas MC4 exhibited more pronounced expression of genes involved in functional 
inhibition of TGF-b (Ltbp1, Dcn) and multiple iCAF markers (C3, Clec3b; Fig. 5g, Supplementary 
Fig. 8h). In line with this, analysis of signature enrichment-scores pertaining to these two subsets 
showed that MC2 and MC4 scored the highest for either the myCAF or iCAF signature, respectively 
(Fig. 5h). Moreover, increased surface expression of the myCAF and iCAF markers CD29/ITGB1 
and Ly6C was detected on MC2 and MC4, respectively (Supplementary Fig. 8i). Strikingly, MC2 
and MC4 displayed the highest depletion and enrichment in QPCTL-deficient and -proficient 
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TMEs (Fig. 5i), resulting in a 20-fold increase in the iCAF/myCAF ratio in QPCTL-deficient 
TMEs (Fig. 5j). Thus, in the absence of QPCTL activity, polarization of fibroblasts toward TGF-b-
producing myCAFs is reduced in favor of the more pro-inflammatory iCAFs.

QPCTL deficiency enhances susceptibility of B16F10 tumors to anti-PD-L1 
treatment
The B16F10 melanoma commonly shows a poor response to single agent PD1/PD-L1 checkpoint 
blockade36,37. Having observed that QPCTL deficiency alters the TME to a more proinflammatory 
state, we hypothesized that QPCTL deficiency may modulate the sensitivity of B16F10 tumors to 
such PD-1/PD-L1 blocking therapies. To test this, QPCTL+/+ and QPCTL-/- mice were inoculated 
with QPCTL-WT and QPCTL-KO B16F10 cells, respectively. Upon tumor formation (6 days 
post-inoculation) mice were treated with either an anti-PD-L1 or isotype control antibody. In 
QPCTL-proficient animals, tumor growth progressed rapidly and was not influenced by anti-
PD-L1 therapy (Fig. 6a). In contrast, anti-PD-L1 therapy did result in improved tumor control 
in QPCTL-deficient mice (Fig. 6a), and led to a prolonged survival in approximately 50% of 
animals (Fig. 6b), providing direct evidence that the TME modulatory effect of QPCTL removal 
has functional consequences. 
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Figure 6. QPCTL deficiency sensitizes the tumor microenvironment to anti-PD-L1 treatment. QPCTL+/+ and 
QPCTL-/- mice were inoculated with QPCTL-WT and QPCTL-KO B16F10 melanoma cells, respectively. Each group sub-
sequently received either aPD-L1 or isotype control antibody treatment at day 7, 9 and 11 post tumor inoculation. 
(a) Tumor growth curves, assessed until day 50 post tumor inoculation. Lines represent individual mice. Data from 
two experiments are depicted (n = 5 per group). (b) Survival probabilities of mice treated with aPD-L1 or isotype 
control antibody in a QPCTL-proficient and -deficient setting. Black plus-signs indicate censored events. Data from 
two experiments are depicted (n = 5 per group). Global P values were determined by log-rank test (b). Data from 2 
independent experiments are depicted. 
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Discussion
QPCTL activity is known to influence the properties of a number of molecules that are active in 
the TME and may potentially influence additional—as of yet unidentified—substrates. To obtain 
a global view of the cumulative effects of QPCTL activity on the host’s immune response to tumor 
growth, we made use of a QPCTL-/- mouse model in combination with syngeneic QPCTL-KO 
tumor cell lines. We conclude that inactivation of QPCTL alters Mf-Mo abundance, increases IFN 
pathway activity relative to TGF-b pathway activity, and leads to a profound increase in iCAFs 
relative to myCAF in the TME (Supplementary Fig. 9a). In line with the observed skewing of the 
TME to a pro-inflammatory state that is induced by QPCTL deficiency, we demonstrate that such 
deficiency leads to the sensitization of B16F10 melanomas to anti-PD-L1 treatment. 

The current study has the following limitations: 1) Germline deletion of QPCTL may potentially 
lead to developmental alterations that influence the host’s response to tumor challenge, e.g. affecting 
the capacity of certain CAF or immune subsets to differentiate, independent of QPCTL activity 
during tumor outgrowth. However, the absence of clear phenotypic alterations at baseline, and 
the fact that an increased Mf-Mo-ratio was observed in wild-type mice challenged with QPCTL-
deficient tumor cells, argue against this possibility. 2) In the present study we have aimed to model 
the effects of depletion of QPCTL activity on the tumor micro-environment, whereas glutaminyl 
cyclase inhibitors will, based on the similarity of their active sites, likely inhibit both QPCTL and 
QPCT activity38,39. Such inhibition of QPCT may be relevant as siRNA-mediated suppression of 
QPCT has been shown to reduce expression of CCL2, CX3CL1 and CD54/ICAM12. In future 
work, dual inactivation of QPCTL and QPCT may form a means to test this. 

The depletion of monocytes that we observe in QPCTL-deficient TMEs may potentially be 
explained by a decreased functionality of the CCL2-CCR2 signaling axis. In pre-clinical models 
of breast cancer, the CCL2-CCR2 axis has been shown to influence the abundance of monocytes 
in primary tumors40 and metastatic lesions41. Furthermore, monocyte recruitment was found to 
be reduced after thioglycolate challenge of mice that were either QPCTL-deficient or treated with 
QPCT/QPCTL inhibitors10. However, it is important to note that at high concentrations, pyroGlu-
CCL2 and unmodified CCL2 demonstrate similar chemotactic activity10, and the effect of impaired 
pyro-glutamylation of CCL2 will therefore depend on local concentrations. 

Contrary to expectations, we observed a relative increase in macrophage frequencies in QPCTL-
deficient TMEs. Transcriptomic profiling of intra-tumoral Mf/Mo cells revealed that these 
macrophages expressed monocyte-associated molecules (e.g. Ccr2, Itga4) and pseudotime analysis 
suggests the existence of intermediate Mf/Mo cell states, together arguing in favor of their 
monocytic origin. In prior work, abrogation of the CCR2-CCL2 signaling axis in monocytes has 
been shown to strongly reduce the accumulation of intra-tumoral macrophages42. Based on these 
data, we propose that the boosting of intra-tumoral macrophages by QPCTL inactivation occurs 
through a mechanism that is independent of CCL2, and is potentially driven by an accelerated 
monocyte-to-macrophage differentiation program. 
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Having observed a number of independent alterations in the TME that are induced by QPCTL 
deficiency, it is of interest to speculate on the possible causal relationship between these individual 
changes. One possible scenario (Supplementary Fig. 9b) is that suppression of the CCR2-CCL2 
axis due to the lack of QPCTL activity causes an early reduction in the influx of monocytes, 
which have been shown to form a major source of TGF-b 43. Such an initial deficit in TGF-b 
abundance could potentially limit myCAF polarization and favor differentiation toward iCAFs, 
relieving TGF-b-driven suppressive effects on myeloid and lymphoid effector cells. Notably, TGF-b 
can act as a suppressor of IFNg production by NK cells44,45 and CD8+ T cells46,47, and increased 
abundance of activation-associated transcripts was observed in lymphocytes from QPCTL-deficient 
TMEs, together suggesting that this cell pool may be the source of the observed IFN-response 
signature. Genetic ablation experiments (Figure 2) indicated that CD47 does not play a significant 
mechanistic role in the TME-modulatory effects of QPCTL in the B16 melanoma model. However, 
as the CD47/SIRPa axis acts primarily through inhibition of activating signals of ITAM-containing 
receptors, such as activating Fc receptors on myeloid cells, it is plausible that the observed synergy 
between QPCTL deficiency and treatment with an opsonizing anti-PD-L1 antibody is at least 
partially mediated through its effect on the CD47 pathway.

In summary, our data provide evidence that removal of QPCTL activity can shift the TME from an 
immunosuppressive (monocyte skewed, myCAF, TGF-b) towards a pro-inflammatory (macrophage 
skewed, iCAF, IFN) milieu, and acts synergistically with anti-PD-L1 therapy to enhance tumor 
control and survival. If this TME-remodeling effect can also be achieved through pharmacological 
inhibition of QPCTL activity in human cancers, such inhibitors may offer potential in combination 
treatment strategies that include checkpoint blocking antibodies and/or tumor-opsonizing 
antibodies.

Methods
Generation of transgenic mice 
C57/Bl6JR mice were obtained from Janvier. QPCTL-/- mice carrying an 811bp deletion in 
exon 2 of the Qpctl gene were generated on the C57BL/6JRj background using pronuclear 
microinjection in mice zygotes with a CRISPR/Cas9 mixture (50 ng/ml Cas9 RNA and 
25 ng/ml sgRNA, in water). The sgRNA was targeted to the second exon of the Qpctl gene 
(5’-GCACAATCAATAAGGGACGC-3’). QPCTL-/- mice and QPCTL+/+ mice were identified by 
PCR using the following primers: Fwd_KO (5’-GTTTTAGGGATGGATGCCGC-3’), located 
before the 811bp deletion, Fwd_WT (5’-GGACTCCTAGTAGGCAACGG-3’), located in the 
811bp deletion, and Rev (5’-GGCTGTTTTGGGATCTTCGG-3’), located after the 811bp 
deletion. 

Evaluation of mouse blood cell counts
Whole blood of mice was collected by heart puncture and total cell counts were determined using a 
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DxH500 Hematology Analyzer (Beckman Coulter). 

Peripheral blood collection and preparation
Whole blood of mice was collected into heparin-coated tubes by heart puncture or tail vein puncture 
at indicated time points. Samples were incubated twice for 5 minutes in erythrocyte-lysis buffer 
(0.15M NH4Cl, 10mM KHCO3, 0.1 mM EDTA, pH 7.4), and washed once in staining buffer 
(0.5% BSA in PBS). Cells were then used for antibody staining, as described below. 

Cell lines
B16F10 cells and MC38-AMS cells were kindly provided by D. Peeper (Division of Molecular 
Oncology & Immunology, Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The 
Netherlands). The MC38-AMS cell line is a variant of the MC38 cell line available from Kerafast. 
Whole exome sequencing was performed to compare the MC38-AMS and MC38-Kerafast line, 
and data have been uploaded to the Sequence Read Archive. B16F10 and MC38-AMS cells were 
cultured in DMEM (Gibco) supplemented with 10% FCS and penicillin-streptomycin. Cells were 
cultured at 37 °C and 5% CO2. 

CRISPR/Cas9-mediated generation of CD47 and QPCTL knockout cells
To generate QPCTL- knockout (KO), CD47-KO, and WT control B16F10 cell lines, cells were 
transfected with pLentiCRISPR v.2 vector encoding sgRNA targeting the murine QPCTL (5’- 
TATTGATTGTGCGACCCCCG-3’) or CD47 (5’- AGCAACAGCGCCGCCGCCAA-3’) gene, 
or left untransfected. Culture medium of transfected cells was supplemented the next day with 
2 mg ml–1 puromycin for at least 2 days. Selected cells were expanded, and subsequently sorted 
on the basis of amCD47-MIAP301LO mSIRPa-FcLO phenotype (in case of CD47 knockout), or 
amCD47-MIAP301HI mSIRPa-FcLO phenotype (in case of QPCTL knockout), in order to obtain 
bulk knockout populations. WT control B16F10 cells were sorted based on morphology gating 
only. Next, single cells were isolated and expanded, and approximately 50 knockout or wild-type 
clones were pooled to obtain pure knockout or wild-type populations. To generate CD47/QPCTL 
double KO (dKO) cell lines, B16F10 QPCTL KO cell lines were transfected with pLentiCRISPR 
v.2 vector encoding sgRNA targeting the murine CD47 gene. 1 day after transfection, culture 
medium was supplemented with 2 mg ml–1 puromycin for at least 2 days. Single cells were isolated 
and expanded, and 12 clones were pooled to obtain knockout populations. To generate QPCTL-
KO and control MC38-AMS cell lines, cells were transduced with pLentiCRISPR v.2 vector 
encoding sgRNA targeting the murine QPCTL gene or a non-targeting control gRNA. 2 days after 
transduction, culture medium was supplemented with 2 ug ml-1 puromycin for at least 4 days. Next, 
single cells were isolated and expanded, and 12 knock-out or control clones were pooled to obtain 
cell populations for further use. Gene disruption was validated by sequence analysis of the relevant 
gene locus by TIDE48 analysis and, in case of CD47, by flow cytometry.
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Tumor challenge
To analyze the effect of QPCTL deficiency in both host and tumor cells or in host cells only, 8- to 
25-week-old male and female QPCTL-/- or wild-type QPCTL+/+ littermate controls were injected 
with 2x105 of the indicated B16F10 tumor cell line in a 100 mL solution of PBS (Lonza) and 
Matrigel (Corning) (1:1) in the right flank on day 0. To analyze the effect of tumor cell CD47 
deficiency or CD47 and QPCTL-double deficiency, 9–12-week-old C57/Bl6JR (female; Janvier) 
were injected with 2x105 of the indicated B16F10 tumor cell line. To analyze the effect of QPCTL 
deficiency in both host and tumor cells in MC38-AMS tumors, 8–25-week-old QPCTL-/- or wild-
type QPCTL+/+ littermate controls were injected with 5x105 of the indicated MC38-AMS tumor 
cell line. Tumors were measured 3 times a week, and mice were sacrificed 13-17 days (B16F10 
tumors) or 21-29 days (MC38 tumors) after tumor challenge. Mice with a tumor volume equal or 
below 40mm3 were excluded and tumors used for subsequent flow cytometry analyses ranged from 
75-1436 mm3 (B16F10 tumors) or 112.5 - 786.5mm3 (MC38 tumors). 

TME single-cell preparation
Tumors were fragmented on ice and were subsequently digested in DMEM (10 ml per tumor) 
supplemented with collagenase IV (2 mg ml-1, Sigma Aldrich) and DNase I (50 mg ml-1, Sigma 
Aldrich) for 30 min at 37 C. Subsequently, 40 ml DMEM supplemented with 10% FCS was added 
per tumor, and cell suspensions were passed through 100 mm filters. Next, samples were incubated 
for 5 minutes in erythrocyte-lysis buffer (0.15M NH4Cl, 10mM KHCO3, 0.1 mM EDTA, pH 
7.4), and washed once in staining buffer (0.5% BSA in PBS). Tumor single cell suspensions were 
then counted and used for antibody staining. 

Flow cytometry
Cell surface CD47 was assessed by staining of blood immune cells with the anti-mouse CD47 
antibody MIAP301 at a dilution of 1:100 or 1:200 plus His-tagged recombinant mouse SIRPa 
(rmSIRPa-His) (4, 12 or 36 mg ml–1), in PBS containing 0.5% (w/v) BSA (Sigma) and 0.2% (w/v) 
sodium azide (Sigma) (FACS buffer) for 30 min at room temperature, protected from light. After 
two washes with FACS buffer, cells were stained with a fluorochrome-labeled anti-His antibody at a 
dilution of 1:100 or 1:200 for 30 min at 4 °C in FACS buffer, while protected from light. Cells were 
then washed with FACS buffer, and DAPI, propidium iodide, or 7-AAD Viability Staining Solution 
(eBioscience) was added to allow dead cell exclusion. Antibodies used to analyze immune cells in 
tumor single cell suspensions are listed in Supplementary Table 3. Measurements were performed 
on an LSRII, LSRFortessa, or FACSCantoII (BD Biosciences). Data were analyzed using FACS 
Diva software (BD Biosciences) and FlowJo software. 

Unbiased flow cytometry data analysis
Samples were preprocessed using FlowJo software, compensating for spectral overlap, selecting 
IR-Dye-CD45+ single cells and removing outlier cells. Further analysis was performed in R, 
implementing the FlowCore package49. Samples were subsampled to obtain 10,000 or 30,000 total 
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cells for spleen or tumor analysis, respectively. Next, a logicle (biexponential) transformation was 
applied to the measured fluorescence intensities. Uniform Manifold Approximation and Projection 
(UMAP) was used for dimension reduction, and subsequently used for hierarchical clustering by 
Euclidean distance (Ward’s method). Relative contributions of cells derived from QPCTL-/- and 
QPCTL+/+ samples to each of the clusters was then assessed. 

IFNγ and TGF-β sensitivity of B16F10 cell lines
For IFNg sensitivity testing, QPCTL-WT or QPCTL-KO cell lines were seeded on 6-well plates 
at 50,000 cells per well, incubated at 37 oC for 3 hours to allow cells to adhere, and subsequently 
treated with indicated amounts of IFNg (Mouse IFN-gamma Recombinant Protein, ThermoFisher 
Scientific) for 21 hours. Cells were then harvested with trypsin-EDTA (Gibco), washed twice with 
PBS, and examined either through flow-cytometry or western blotting. For TGF-b sensitivity 
testing, QPCTL-WT or QPCTL-KO cell lines were seeded on 6-well plates at 50,000 cells per 
well and incubated at 37 oC for 16 hours. Next, cells were pre-incubated at 37 oC for 4 hours 
in culture medium containing 0.2% FCS, and subsequently incubated at 37 oC with indicated 
quantities of recombinant mouse TGF-b1 protein (R&D systems) for 1 hour at in culture medium 
containing 0.2% FCS. Cells were then harvested with trypsin-EDTA (Gibco), washed twice with 
PBS, and examined through western blotting. For flow-cytometry cells were stained with anti-
PD-L1-BV421 and anti-H2-Kb-PE (both 1:100 dilution, see Supplementary Table 3) for 15 
minutes at room temperature, washed twice with FACS buffer, and analyzed on an LSRFortessa 
(BD Biosciences). For western blot analyses, cells were incubated on ice for 30 minutes in 200 ml 
RIPA buffer (1% Triton X100, 0.1% Sodium deoxycholate, 0.1% SDS, 1 mM EDTA, 10 mM 
Tris pH 8, 140 mM NaCl) supplemented with Halt™ Protease and Phosphatase Inhibitor Cocktail 
(ThermoFisher Scientific), followed by pulse mixing on a Vortex Genie (Scientific Industries). 
Lysates were then centrifuged at 20,000x g for 20 minutes at 4 oC and protein concentrations in 
the resulting supernatants were determined using Pierce™ BCA Protein Assay Kit (ThermoFisher 
Scientific) according to manufacturer’s protocol. Next, equal amounts of protein were processed 
using the Novex NuPAGE Electrophoresis system (Thermo Fisher Scientific) and Trans-Blot Turbo 
Transfer system (Bio-Rad) according to the manufacturers’ instructions. Membranes were blocked 
using Western Blocking Reagent (Roche) for 1 hours, and subsequently stained overnight at 4 oC 
with indicated primary antibodies diluted in Western Blocking Reagent (see Supplementary Table 
3 for antibody information) followed by 2 hours at 4 oC with either anti-rabbit or anti-mouse 
secondary antibodies conjugated to HRP (see Supplementary Table 3 for antibody information). 
Western blots were imaged using the ChemiDoc MP Imaging System (Bio-Rad). 

RNA sequencing
RNA was extracted from the indicated frozen tissues using the RNeasy Mini Kit (Qiagen). Cell 
populations isolated by FACS were washed once in PBS, and subsequently lysed in RLT buffer 
(Qiagen). Whole transcriptome sequencing samples were prepared with the TruSeq Stranded 
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mRNA Kit (Illumina). Paired-end 50 bp sequencing was performed on a NovaSeq 6000 system 
(S1 flowcell, Illumina), obtaining an average of 18x106 reads per sample. Reads were aligned to 
the pre-built GRCm38 genome_snp_tran reference using HISAT250, and transcript counts were 
obtained using an in-house generated pipeline (GenSum, https://github.com/NKI-GCF/gensum). 
Differential gene expression analysis was performed using the edgeR package51. Network analysis 
was performed using the stringDB database, applying the igraph package for visualization. 

Single cell RNA sequencing analyses
Single-cell digests of QPCTL-/- and QPCTL+/+ TMEs were generated as outlined above. Cells were 
stained with IR-Dye for dead cell exclusion and with anti-mouse TotalSeqä Hashtag antibodies 
(TotalSeq-A0301-06, Biolegend), pooled in equal numbers, and were single-cell sorted on a BD 
Fusion cell sorter. Single-cell RNA isolation and library preparation was performed according to the 
manufacturer’s protocol of the 10X Genomics Chromiumä Single Cell 3’ kit, and the cDNA library 
was sequenced on the NextSeqTM550 Sequencing System (Illumina). A total of ±3.7x108 reads 
resulted in the detection of 14,888 cells with a median of 3,344 detected genes per cell. Feature-
barcode matrices were generated using the Cell Ranger software of the 10X Genomics Chromium 
pipeline. Further processing was subsequently performed using the MetaCell18 and Seurat R 
packages52. Cells that contained less than 500 UMIs or had a mitochondrial transcript fraction 
of >0.2 were removed. Next, variable genes across the dataset were identified with a normalized 
variance/mean threshold at 0.1 and a down-sampled coverage threshold at 80, yielding 1,021 
genes. These genes were subsequently used as anchors to search for gene-gene correlations across the 
dataset, and genes with correlations of >0.1 were included. The obtained genes were then clustered 
into 50 separate gene-modules, and each was annotated manually (Supplementary Table 4).

To identify the major cell types, a feature-gene list was compiled of gene-modules that contained 
marker genes for various cell types (modules 10, 17, 19, 21, 24, 26, 29, 30, 33, 39, 40, 44, 47, 
48, 49; Supplementary Table 3), and these feature-genes were used to generate MetaCells. The 
obtained MetaCells were then classified as either immune cells, fibroblasts, or tumor cells, as shown 
in Supplementary figure 6. MetaCells that contained significant expression of marker genes from 
multiple cell types were identified as ‘doublet MetaCells’, and excluded from further analysis.

Subsequent analysis was performed within each individual cell type. In brief, doublet detection was 
performed using the HTOdemux function of Seurat, setting the positive quantile at 0.99. Cells 
containing either a high amount of UMIs (UMI-thresholds: Immune [10,000], fibroblast [11,000], 
tumor cell [30,000]) or gene-counts (gene-count-thresholds: Immune [3,000], fibroblast [4,000], 
tumor cell [5,700]) were considered doublets and excluded. Feature genes used for cell type-specific 
MetaCell generation were obtained using the mcell_gset_filter_varmean and mcell_gset_filter_cov 
functions implemented in the Metacell package. These features genes were filtered for genes involved 
in cell cycle (gene-module 7 and 20) and ribosomal proteins (gene-module 2).

For all plots showing normalized UMI counts, a center log ratio normalization was applied, as 
implemented in the Seurat package 52. To calculate sample fractions within MetaCells, cell counts 
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were first normalized to 10,000 cells within each sample-hashtag to allow comparisons. 

Pseudotime analysis was performed using the Slingshot algorithm53. Gene-level general additive 
models were fitted to feature-genes used for MetaCell generation applying the fitGAM function 
from the TradeSeq R package54, setting knots at 5. Only genes that associated significantly (adjusted 
P value < 0.05) with pseudotime were used in subsequent analysis. Genes were then clustered based 
on expression kinetics across pseudotime based on Euclidean distance (Supplementary Table 5). 
To assess sample composition across pseudotime, the 3 replicates from QPCTL-/- or QPCTL+/+ 
TMEs were analyzed together. To allow pooling of replicates, cell counts were normalized to the 
total number of cell counts within each sample. Normalized cell counts were then tallied within 
windows of 60 cell-codes wide, sliding 1 cell-code per frame.  Differential gene expression analysis 
was performed using the FindMarkers function implemented in Seurat. Wilcoxon Rank Sum test 
was used to obtain log2 fold changes.

For comparison of Immune MetaCell 1–3 to the external monocyte/macrophage cell clusters, 
the scRNAseq dataset from Gubin et al.32 was retrieved from the Gene Expression Omnibus 
(GSE119352). The external data was subsequently filtered for monocyte/macrophage cell clusters 
(Mac_s1–5), and normalized through centered log-ratio transformation. Differentially expressed 
genes within each cluster was then determined by comparing each cluster to all others applying 
Wilcoxon Rank Sum test (FindAllMarks function, Seurat R package). 25 marker genes were then 
selected for each MetaCell, defined as the 25 most enriched genes within that MetaCell. Each of 
these gene-sets was then used to compute a similarity score with each of the Mac_s clusters. Each 
similarity score was calculated by filtering the Wilcoxon Rank Sum test results of a given Mac_s 
cluster for a marker gene-set, followed by a weighted sampling of the log2 transformed fold change 
values (sampling 10,000 times, with replacement, weighted by the MetaCell gene-enrichment 
value), and finally averaging (median) the obtained values. 

Pathology
For histopathological analyses, 2 mm-thick hematoxylin-eosin-stained sections were prepared from 
formalin-fixed, paraffin-embedded murine tissues, including skin, spleen, thymus, lymph nodes, 
liver, pancreas, gastrointestinal tract, heart, lung, kidneys, testes, ovaries, accessory sex glands, bone 
marrow (sternum and extremity), and muscles. Sections were evaluated and scored by an animal 
pathologist blinded to animal genotype.

Statistical analysis
All statistical analyses were performed either with R (V4.0.5, ‘Shake and Throw’) or Graphpad 
(V8.4.1, Prism software). All statistical test were two-sided, unless otherwise indicated. Differences 
were considered statistically significant if P < 0.05. The n values used to calculate statistics, the type 
of replicates and the relevant significant P values are noted in the figure legends. 
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Ethical compliance
All animal experiments were approved by the Animal Welfare Committee of the Netherlands Cancer 
Institute (NKI), in accordance with national guidelines. Animals were maintained in the animal 
department of the NKI, housed in individually ventilated cage systems under specific-pathogen-free 
conditions, and received food and water freely. Mice were used at 8-25 weeks of age. 

Data availability
Transcriptomic data presented in the manuscript have been deposited to the Gene Expression 
Omnibus, and can be accessed as series GSE180201. Exome data for MC38-Kerafast and 
MC38-AMS have been deposited to the Sequence Read Archive, and can be accessed as project 
PRJNA753254. R scripts used to produce key figures in the manuscript have been submitted to 
GitHub (https://github.com/kasbress/QPCTL_Project).
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Supplementary Figure 1 (on previous page). Phenotypic analysis of QPCTL KO mice (related 
to Figure 1). (a) Principal component analysis performed on the 1,000 most differentially expressed 
genes in bone marrow (BM), lymph node (LN) and spleen samples from QPCTL+/+ and QPCTL-/- mice. The 
first two components are plotted. (b) Quantification of indicated parameters in peripheral blood (n = 5 
mice per group). Dots depict data from individual mice, bars represent group means, error bars indicate 
standard deviation. (c) Quantification of indicated immune cell populations as a frequency of total 
live, myeloid (CD11b+), non-myeloid (CD11b-) or total CD4 T cells (CD3+CD4+), in blood of QPCTL+/+ and 
QPCTL-/- mice. Dots depict individual mice, boxplots indicate group median and 25th/75th percentiles, 
whiskers indicate min/max. n = 3 (QPCTL+/+) or n = 2 (QPCTL-/-) mice for activated CD4 T cells; n = 5 mice 
per group for all other immune cell subtypes. (d) Quantification of indicated immune cell populations 
as a frequency of total live, myeloid (CD11b+), non-myeloid (CD11b-), or total CD4 T cells (CD3+CD4+), 
in spleen of QPCTL+/+ and QPCTL-/- mice. Dots depict individual mice, boxplots indicate group median 
and 25th/75th percentiles, whiskers indicate min/max. n = 3 (QPCTL+/+) or n = 2 (QPCTL-/-) mice for acti-
vated CD4 T cells; n = 5 mice per group for all other immune cell subtypes. (e) Violin plots depicting 
expression of indicated markers by the cell clusters described in Fig. 1d. P values were determined by 
two-sided Student’s T test (c, d). Data were obtained in single experiments. WBC, white blood cell; RBC, 
red blood cell; HGB, hemoglobin; HCT, hematocrit; MCV, mean corpuscular volume; MHC, mean cor-
puscular hemoglobin; MCHC, mean corpuscular hemoglobin concentration; RDW, red cell distribution 
width; RDW-SD, red cell distribution width - size distribution; PLT, platelet; PV, mean platelet volume.
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Supplementary Figure 2 (on previous page). Effect of QPCTL deficiency on the TME and blood 
cell compartment in tumor-bearing animals  (related to Figure 2). (a) Representative flow cytom-
etry plot depicting rmSIRPa-His and amCD47 antibody (clone MIAP301) binding to QPCTL-WT and 
QPCTL-KO B16F10 cells. (b-f) QPCTL+/+ (n = 4) or QPCTL-/- (n = 6) mice were inoculated with B16F10 WT 
and B16F10 QPCTL KO tumor cells, respectively. Mice were sacrificed between day 14–16 post inocu-
lation. (b, c) Tumor growth curves and tumor sizes at day 14 post inoculation. Boxplots indicate group 
median and 25th/75th percentiles, whiskers indicate the interquartile range multiplied by 1.5, dots sig-
nify individual samples. (d) Quantification of indicated immune cell populations as a frequency of total 
live, total immune (CD45+), myeloid (CD11b+), non-myeloid (CD11b-) or total CD4 T cells (CD3+CD4+), 
in QPCTL-proficient or -deficient TMEs. Dots depict individual mice, boxplots indicate group median 
and 25th/75th percentiles, whiskers indicate min/max. (e) Quantification of indicated immune cell pop-
ulations as a frequency of total live, total immune (CD45+), myeloid (CD11b+), non-myeloid (CD11b-) 
or total CD4 T cells (CD3+CD4+), in blood of tumor bearing mice in a QPCTL-proficient or -deficient 
setting. Dots depict individual mice, boxplots indicate group median and 25th/75th percentiles, whiskers 
indicate min/max. (f) Violin plots depicting marker expression within the obtained clusters described 
in Fig. 2b. P values were determined by two-sided Student’s T test (d, e). Data are representative of at 
least 2 independent experiments.
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Supplementary Figure 3 (on previous page). Effect of QPCTL deficiency in tumor and host cell 
compartments (related to Figure 2). QPCTL+/+ and QPCTL-/- mice were inoculated with either QPCTL-
WT or QPCTL-KO B16F10 melanoma cells (n = 7–8 per group). Mice were sacrificed between 12–14 
days post tumor inoculation. (a) Tumor growth curves. (b) Representative flow cytometry plots of data 
described in Fig. 2d, depicting macrophages (F4/80+CD64+ cells) amongst total myeloid (CD11b+) cells 
in the TME. Numbers depict the percentage macrophages within the myeloid cell gate. (c) Quantifica-
tion of indicated immune cell populations as a frequency of total immune (CD45+), myeloid (CD11b+) or 
non-myeloid (CD11b-) cells, in the indicated TMEs. Dots depict individual mice, boxplots indicate group 
median and 25th/75th percentiles, whiskers indicate min/max.(d) Quantification of indicated immune 
cell populations as a frequency of total immune (CD45+), myeloid (CD11b+) or non-myeloid (CD11b-) 
cells, in blood before tumor inoculation (0 days), or 11 days after tumor inoculation. Dots depict indi-
vidual mice, boxplots indicate group median and 25th/75th percentiles, whiskers indicate min/max. P 
values were determined by one-way ANOVA followed by Tukey’s HSD test (c). Significant P values (< 
0.05) are indicated in the plots. Data are representative of at least 2 independent experiments (a-c), or 
were obtained in a single experiment (d).
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Supplementary Figure 4. Effect of QPCTL deficiency on TME composition (related to Figure 2). 
QPCTL+/+ and QPCTL-/- mice were inoculated with QPCTL-WT and QPCTL-KO MC38 cells, respectively. 
Data from 2 independent experiments are shown (n = 5 per experiment). Mice were sacrificed at 22 
(experiment 1) or 29 (experiment 2) days post tumor inoculation. (a) Tumor growth curves in two 
independent experiments. Asterisk (*) indicates 3 overlapping lines. (b) Representative flow cytom-
etry plots of data described in Fig. 2f, depicting macrophages (F4/80+CD64+) amongst total myeloid 
(CD11b+) cells in the TME. Numbers depict the percentage macrophages within the myeloid cell gate. 
Data were obtained in 2 independent experiments.
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Supplementary Figure 5. Effect of QPCTL deficiency on tumor melanogenesis and cell cycle-re-
lated gene expression (related to Figure 3). mRNA sequencing was performed on sorted CD45-neg-
ative cells from QPCTL-proficient (n = 5) and QPCTL-deficient (n = 6) B16F10 TMEs. Tumors were 
harvested at day 14 post inoculation. (a) Principal component analysis performed on the 1,000 most 
differentially expressed genes across all samples. (b) Representative hematoxylin-eosin stained sec-
tions from QPCTL-proficient and -deficient TMEs. Note the presence of melanin signal (brown) in the 
QPCTL-proficient, but not the QPCTL-deficient sample. (c) Waterfall plots depicting log2 fold change 
values of genes from indicated hallmark pathways obtained from MSigDB. Only significantly (P < 0.05) 
differentially expressed genes are included. Data are representative of 2 independent experiments. PC, 
principal component; MSigDB, Molecular Signatures Database.
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Supplementary Figure 6. Characteristics of the TME cell supertypes identified by single cell RNA 
sequencing (related to Figure 4 and 5). scRNA sequencing was performed on sorted live cells from 
QPCTL-proficient (n = 3) and QPCTL-deficient (n = 3) B16F10 TMEs. Tumors were harvested at day 14 
post inoculation. (a, b) 2-dimensional MetaCell projection of all cells analyzed by scRNAseq. Single cells 
are colored by MetaCell (a), or normalized UMI count (b) of selected genes. (c) Violin plots depicting 
gene expression of selected cell type-specific genes within the major clusters obtained. Depicted data 
were obtained in a single experiment, consisting of 6 mice.
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Supplementary Figure 7. QPCTL deficiency leads to an increased IFN- and decreased TGF-β-re-
sponse signature in tumor cells (related to Figure 4). (a-d) scRNA sequencing was performed on 
sorted live cells from QPCTL-proficient (n = 3) and QPCTL-deficient (n = 3) B16F10 TMEs. Tumors were 
harvested at day 14 post inoculation. (a) Absolute cell counts per tumor cell MetaCell included in the 
analysis. (b) Gene set enrichment analysis performed on the top and bottom 200 genes expressed by 
MC12. Hallmark gene sets from MSigDB were used in the analysis, and only significant gene sets (P < 
0.05) were included in the plot. (c) Normalized UMI counts of selected IFN responsive genes within each 
tumor MetaCell. (d) Cytokine signaling activity in tumor cell MC12 as predicted by the CytoSig algo-
rithm (Jiang et al., Nature Methods, 2021). (e) Analysis of bulk RNAseq data (Fig. 3). Log2 fold changes 
of TGF-b associated transcripts between QPCTL-deficient and -proficient samples. (f) H2-Kb and PD-L1 
cell surface expression of QPCTL-WT and QPCTL-KO B16F10 lines after a 20-hour incubation with the 
indicated amounts of IFNg. For fold-change plots, group means were calculated and normalized to the 
MFI detected in the control treated samples. (g-h) Protein levels of IFITM3 (g), STAT1 and phosphor-
ylated STAT1 (h) detected in cell lysates obtained from QPCTL-WT and QPCTL-KO B16F10 lines after 
a 20-hour incubation with indicated amounts of IFNg. (i) Phosphorylation state of SMAD2 detected 
in cell lysates obtained from QPCTL-WT and QPCTL-KO B16F10 lines after a 1-hour incubation with 
indicated amounts of TGF-b. Data were obtained in a single experiment, consisting of 6 mice (a-e), or 
are representative of 2 independent experiments (f-i).
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Supplementary Figure 8 QPCTL deficiency alters the immune cell compartment and CAF polar-
ization in the TME (related to Figure 5). (a-d and f-i) scRNA sequencing was performed on sorted live 
cells from QPCTL-proficient (n = 3) and QPCTL-deficient (n = 3) B16F10 TMEs. Tumors were harvested 
at day 14 post inoculation. (a) Absolute cell counts per immune MetaCell included in the analysis. (b) 
Stacked barchart depicting the sample composition of each immune MetaCell. Cell counts from each 
sample were normalized to 1,000 cells. (c) Gene clusters obtained through hierarchical clustering of 
gene expression kinetics across pseudotime. Graphs depict general additive models fitted for each 
gene in grey. Blue lines represent average trends for each cluster. Note that gene cluster 2 and 4 exhibit 
a strong positive and negative association with pseudotime, respectively. Single gene examples from 
these clusters are depicted in Figure 4e. (d) Comparison of marker-gene expression between the Me-
taCells comprising Mf/Mo subset 1 (MC1, 2 and 3) and the Mf/Mo cell clusters described by Gubin and 
colleagues (Mac_s1–5; Gubin et al., Cell, 2018). The 20 most enriched genes of each MetaCell were se-
lected, and similarity to the Mac_s clusters was calculated as the sum of log2 transformed enrichment 
of those selected genes within each Mac_s cluster. See methods for details on analysis. (e) Comparison 
of cell surface expression levels of indicated proteins on macrophages, monocytes and neutrophils as-
sessed in QPCTL-proficient (n = 6) or -deficient (n = 4) TMEs, analyzed at day 14 post tumor inoculation. 
(f) Top 12 genes with the highest relative expression in CD3+ lymphocytes (MC6) from QPCTL-deficient 
compared to QPCTL-proficient TMEs. Violin plots depicting normalized UMI counts. (g) Absolute cell 
counts per CAF MetaCell included in the analysis. (h) Violin plots depicting normalized UMI counts 
of selected genes across CAF MetaCells. (i) cell surface expression levels of indicated proteins on CAF 
MC2 and MC4, as assessed using barcoded antibodies. Data were obtained in a single experiment, 
consisting of 6 mice (a-d and f-i), or are representative of 2 independent experiments (e).
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While making my first steps into the academic world I encountered a host of 
tenacious dogmas, enlightening opinions, and close-to-ideal-but-not-so-perfect 
systems. Although this journey has caused me to consider, and re-consider, 
many different topics included in this thesis, I will use this this chapter to dive a 
bit deeper into two—perhaps somewhat unrelated—themes that have fascinated 
me during my work. First, I will consider the current theories on stemness in 
the CD8+ memory T cell population and offer my own view on this topic, a view 
that was strongly shaped by our work in chapter 4. Second, I will discuss the 
current structure for academic data-sharing that should allow for the re-use (or 
re-purposing) of data and findings. In chapter 3 through 5 I sought to use data 
from others to enrich our own observations, but found that this was not a simple 
feat, in part forming the basis for my interest in the matter. In the final section of 
this part of the discussion, I will give an example of some of the current problems 
with the accessibility of scientific data, and opine on a number of ways to improve 
the manner in which data is shared across the academic community. 
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Stemness in the CD8+ memory T cell pool
My colleagues and I ended the discussion of chapter 4 with the notion that the organizing principles 
of the TCM pool shares some similarities with the stem cell compartments found in solid tissues. 
Stemness in the CD8+ memory T cell pool has been widely discussed in the literature, with the 
concept of stemness taking many shapes and forms. Although the premise of true stem cell activity 
is, at first glance, somewhat counterintuitive for a highly differentiated cell type such as T cells, I do 
feel that this concept provides a helpful framework when considering lineage relationships in the T 
cell pool. 

In the following sections I will outline some influential studies investigating stemness in the CD8+ 
T cell memory pool, describe where, in my view, these studies have placed our understanding of this 
concept, and additionally suggest a few topics that I believe require further consideration.  

Stemness in the context of T cell immunity
Stemness is commonly defined as the capacity of a cell pool to allow both self-renewal (duplicating 
oneself in relative perpetuity) and differentiation (regenerating a functional tissue)1. In many 
anatomical compartments, this property is restricted to a small subset of multipotent cells capable 
of differentiating into the specialized cells that make up the tissue2–4; a process that is accompanied 
with the progressive loss of stemness. This concept also holds true for the majority of immune cells, 
such as monocytes and neutrophils, which are continuously replenished by hematopoietic stem cells 
(HSCs) in the bone marrow. However, due to their adaptive nature, T and B cells cannot rely on 
this replenishment model. Specifically, the naïve T cell pool comprises an immense variety of T cell 
receptor (TCR) clonotypes, generated though random re-arrangement of gene-fragments. Upon 
pathogen encounter, relevant antigen-specific T cell clonotypes are selected to expand, differentiate 
and combat the ongoing infection, and subsequently establish a long-lived memory pool. This 
memory T cell pool retains the capacity to repeatedly differentiate and expand upon multiple 
cycles of infection, but must do so independent of de novo generation from the bone marrow, in 
order to retain the critical clonotype information. This highlights an interesting question in the 
developmental hierarchy of T cell memory; How to allow for successive rounds of proliferation and 
differentiation without reinforcements from HSCs?

An attractive hypothesis for the maintenance of T cell memory is that, analogous to other tissues, 
stemness or multipotency is restricted to a minute subset. Evidence in favor of this model came 
from a series of studies describing a small subset of memory T cells that existed in a multipotent 
naïve-like state, and this population has been coined ‘memory stem cells’ (or TSCM)5–7. This TSCM 
population possessed superior proliferative potential and retained a high level of multipotency upon 
TCR stimulation. Furthermore, the TSCM pool was phenotypically similar to the TCM pool apart 
from the peculiar retention of CD45RA, a protein that has been extensively used by immunologists 
as a mark for naïve T cells. Transcriptional profiling put these antigen-experienced cells at the apex 
of the memory T cell pool hierarchy7,8, placing them somewhere between naïve and central memory 
T cells. 
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Although the presence of TSCM provides a parsimonious model for developmental hierarchy in the 
memory T cell pool, this model does not fully fit with adoptive cell transfer studies showing that 
the ability to give rise to secondary effector pools is abundantly present in the TCM pool9,10. This 
stem-like capacity of TCM was elegantly demonstrated by Graef et al.11, showing that single CD62L+ 
TCM cells (that had not been specifically selected for the expression of TSCM associated markers) were 
able to reconstitute a functional T cell pool throughout multiple successive rounds of single cell 
transfer. This study thereby established that stemness is a characteristic shared across many cells in 
the TCM pool. 

So how does this finding fit with the TSCM model? A simple consideration provides some insight here: 
As demonstrated in chapter 4, the TCM pool comprises cells that exhibit a variety of transcriptional 
states and distinct behaviors. Therefore, the transcriptome analyses of bulk TSCM and TCM that placed 
TSCM as a more naïve-like subset relative to TCM, may have been confounded by the latter’s internal 
heterogeneity. In line with this possibility, a recent study by Galletti et al. showed that the depletion 
of PD1+TIGIT+ cells from the TSCM and TCM pools largely eliminated the transcriptional and 
functional differences between these two cell populations12. Furthermore, findings from a scRNAseq 
study of tumor-infiltrating and blood-derived T cells suggest that there is a noteworthy degree of 
promiscuity in the expression of CD45 isoforms across T cell subsets13. These findings could imply 
that TSCM should not be considered an entirely distinct population as previously imagined, but 
rather a constituent of the TCM pool that is primarily set apart by its alternative splicing of CD45. 
Whether the differential expression of distinct splice-forms of CD45 is functionally relevant in 
memory maintenance or re-expansion potential will be an interesting topic for future endeavors. 

In summary, the studies by Galletti and Graef would support a model in which the TCM pool, as a 
whole, serves as a stem-like reservoir maintaining each T cell clone. While stemness appears to be a 
shared property of TCM, our findings, in addition to those made by Galletti and colleagues, signify 
that a degree of specialization is present within this population. This begs the question: If all TCM are 
equal, are some TCM more equal than others?

Decreasing potential or division of labor
The phenotypic and transcriptional diversity within the TCM population that we observe in chapter 
4 presents us with two intriguing avenues to pursue. First, it will be interesting to explore how this 
diversity is established. Our observation that prior cell division is correlated with an effector-like 
transcriptional program is consistent with several models. For instance, this could mean that at 
some point during the acute phase of the T cell response TCM precursors diverge, with one lineage 
“deactivating” into a more naïve-like quiescent behavior, whereas the other lineage maintains a 
more activated state and continues to divide. Alternatively, effector-like TCM cells could derive from 
a separate lineage of de-differentiated effector T cells14,15, which could explain their transcriptional 
state and extensive degree of prior proliferation. A strategy to experimentally address this issue 
would be to leverage the Klrg1Cre mice developed by Herndler-Brandstetter et al.14, to examine 
whether the effector-like TCM pool is enriched for cells that have previously expressed the effector T 
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cell-associated protein KLRG1. 

A second valuable direction will be to investigate the functional relevance of TCM diversity upon 
re-infection. In our efforts we have found substantial differences in transcriptional profiles and 
re-expansion potential within the TCM pool. This fits with an observation made in the Galletti 
study12 that a more differentiated TCM sub-population, that the authors term “pre-exhausted”, 
exhibits reduced replicative potential. A matter that is currently unresolved is whether this more 
differentiated state indicates that these cells are of little value or, rather, that the diversity in cell states 
in the TCM pool is reflective of a division of labor. Some experiments from chapter 4 and Galletti 
et al. may provide some insight here. Specifically, our effector-like TCM appear to degranulate to a 
larger extent upon short term ex vivo stimulation. Likewise, Galletti’s “pre-exhausted” TCM contain 
more accessible chromatin at cytotoxicity-related genomic loci. These observations could indicate a 
degree of specialization within the TCM pool, in which some cells are more prone to re-expand and 
others are predisposed to rapidly re-exert effector functions. 
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Nature versus nurture at the cellular level
The studies discussed above provide compelling evidence that the TCM pool comprises cells that exist 
in distinct states, and that differ in their capacity to execute specific functions upon re-activation. 
But what underlies this disparity during a recall response? Is, for instance, the enhanced re-expansion 
potential of quiescent TCM fully attributable to their cell state (i.e., their nature), or could the biased 
localization of different TCM types in distinct niches (i.e., nurture) play a role?

The lymphoid tissues in which TCM largely reside (such as lymph nodes and spleen) have a complex 
organization of myeloid, lymphoid, and stromal cells, compartmentalizing these organs into 
distinct niches. Several studies have highlighted the importance of memory T cell positioning 
within secondary lymphoid organs to recall responses, and demonstrated a key role for chemokine 
receptors in this process16–18. However, such studies have generally not assessed whether TCM with 
different cell states are differentially positioned. Re-examination of the scRNAseq dataset of splenic 
CD8+ memory T cells presented in chapter 4 offers some clues on this matter. While all TCM 
expressed high levels of Sell transcripts (encoding the lymphoid-tissue entry receptor CD62L), 
these cells displayed heterogeneous expression of the tissue-egress associated gene S1pr1 and several 
chemokine receptors (Fig. 1a-b). Several TCM MetaCells additionally differed in their expression 
of Cd69 and Itgae (encoding CD103), genes classically associated with tissue-resident memory T 
cells (Fig. 1c). Interestingly, one of these MetaCells with elevated Cd69 and Itgae expression was 
additionally marked by relatively high levels of Ltb and Xcl1 transcripts (Fig. 1d). Both of these genes 
encode secreted factors for which the receptors are present on the myeloid and stromal component 
of lymphoid tissues19,20. The differential expression of these cell migration and retention-associated 
genes could therefore imply that these TCM subtypes possess a different affinity toward specific local 
niches. 

As a final note, if such differential positioning of TCM indeed underlies distinct functional outcomes, 
it would be highly interesting to investigate the stability of these niches. Specifically, are these niches 
seeded upon memory formation and subsequently remain immutable, or is there a certain degree 
of plasticity, allowing TCM to move in and out of these niches? Also, can such niches exclusively be 
seeded during resolution of infection, or is simply the correct expression of specific chemotactic 
receptors/factors enough? This latter question may be particularly noteworthy, as its answer would 
strongly affect the manner in which studies using the re-transfer of T cell subsets (that are taken 
out of their original niche) should be interpreted. By the same token, the mechanism of niche 
formation could have implications for T cell based cellular therapies, as putative factors necessary 
for the establishment of niches that ensure long-lasting protective T cell responses may not be 
sufficiently present. In the event that improper niche formation negatively impacts T cell immunity, 
such cellular therapies may conceivably be modified to incorporate this component, for instance 
through the use of adjuvants (e.g., cytokines or chemokines) or forced expression of putative niche-
inducing factors through genetic engineering of transferred T cells.   
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Scientific equity through data sharing
Scientific discovery is, at its core, a community effort, with each new insight being built on the 
foundation of data that was provided by predecessors. Therefore, I feel it is important that our 
precious data is viewed not only as a means to an end for our specific question, but first and 
foremost as a starting point for others. This would entail properly storing and sharing our published 
findings in a way that is easily accessible and interpretable by others. In chapters 3, 4 and 5 I 
sought to validate specific findings using data from others, and found that the habit of proper data 
storage is still far from commonplace in the scientific community. Although I could usually find 
plenty of studies that contained experiments useful to my research questions, a large share of this 
data was either not published alongside the article at all or uploaded in a manner that did not allow 
for proper re-use. 

By no means am I suggesting that all is Fire and Brimstone, in fact, data sharing is a field of lively 
discussion and steady (albeit slow) innovation. In the next few paragraphs, I will briefly outline 
the most prominent philosophy for data sharing, then provide an example of a data type for which 
we are still ‘playing catch-up’, and finally discuss my view on the role of three major stakeholders/
components of the scientific community (publishers, repositories, and scientists) in the improvement 
of data availability. 

A philosophy for open science
In practice, the academic field is purposefully unequal, resulting in disparities in the ability of 
different labs to generate certain types of datasets. Because the source of this inequality is difficult to 
address (e.g., there cannot and should not be infinite funding for all labs), data sharing provides a 
way toward more equitable outcomes, as everyone would be able to reap the benefits of data obtained 
by a few. To achieve such an outcome, a number of parties from various disciplines met in Leiden 
(2014) to discuss the principles of open science. During this workshop, the FAIR principles21 
were drafted, which represent a general philosophy of data sharing that can be applied broadly in 
the scientific community. Essentially, for a dataset to be FAIR it needs to be Findable, Accessible, 
Interoperable and Re-usable, factors that are mostly determined by the richness of information 
on experimental conditions or outcomes of analyses that is shared alongside the data, referred to 
collectively as metadata. 

Say I have found an intriguing gene-expression network in my pet cell type, and now would like 
to pressure-test these findings in an external RNAseq dataset. First, I should be able to find a 
relevant dataset, meaning the original research article should refer me to the RNAseq data through 
a permanent link or should be easily found through a query of the relevant repository. In the latter 
case, rich metadata detailing the experiment is key, as it simplifies discovery through a search engine. 
Second, I should be able to access and download the data freely without the need of going through 
a paywall or creating some site-specific account, to the extent that privacy regulations permit. 
Third, the dataset needs to be interpretable (both to machines and humans) so I can integrate it in 
any analysis—through its interoperability—meaning that the files use standardized formats and its 
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annotations use vocabularies that are widely applied (e.g., genes are identified with gene symbols or 
ensemble identifiers). Last, I should be able to easily use, or rather re-use, the obtained data for its 
new purpose. To achieve this, rich metadata is again crucial, providing machine-readable sample-
level information on both experimental conditions and downstream analyses (e.g., outcomes of 
a clustering analysis or the code that was applied to generate the manuscript figures). If the data 
produced by a study is shared in a FAIR manner, a secondary user should be able to use and mine 
the dataset within a matter of hours, providing the user with a means to start asking questions the 
original authors have not considered. 

The case of single cell RNA sequencing
Single cell sequencing is a good example where FAIR data sharing is highly beneficial. Due to their 
richness of information, a multitude of questions can be probed in each dataset, making these 
datasets useful reference points for research lines outside of their original intended purpose. In order 
to serve as such reference points, it is key that access is provided to both the raw data and the results 
of all down-stream analyses. This means that detailed metadata—at the cell level—is crucial, as it 
allows direct re-use and integration of a study’s results for new endeavors. 

Unfortunately, assessment of single cell sequencing datasets deposited to the Gene Expression 
Omnibus (GEO) over the last couple of years shows that the majority of datasets does not 
include identifiable metadata (Fig. 1a). While such data can still be re-analyzed from scratch, a 
direct comparison to the authors results is severely complicated. The observed inconsistency in 
the FAIRness of single cell sequencing datasets uploaded to GEO is not entirely surprising, as the 
information page ‘Submitting high-throughput sequence data to GEO’ does not provide information 
or guidelines on submitting single cell sequencing data (as of this writing). Furthermore, a lot of 
variability can be found in the data availability guidelines among the different scientific publishers. 
Some publishers, such as Cell Press22, leave little ambiguity, whereas many other publishers mainly 
provide either vague or dated guidelines23,24. Interestingly however, these differences do not appear 
to result in better or worse commitment to data re-usability, as the percentage of depositions that 
include metadata are comparable between the different publishers (Fig. 1b, c). 

As a final note, improved FAIRness of scRNAseq data appears to be positively associated with the 
influence of a manuscript. Specifically, manuscripts that included metadata in their data depositions 
are generally cited to a higher degree as compared to those that do not (Fig. 1d). This trend could 
potentially indicate that proper data deposition increases the likelihood that others will re-use the 
data and thus reference the original manuscript in their work. 

Where can we improve things? 
Publishers. As gatekeepers of peer-reviewed scientific content, academic journals play a pivotal role 
in FAIR data sharing. As mentioned above, many publisher guidelines on data sharing are written 
in an implicit manner, suggesting various repositories and requesting adherence to community 
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standards such as the FAIR principles. I feel a more effective approach would be to make such 
guidelines explicit. For example, journals could provide a mock-up manuscript in which various 
commonly used data types are used, showing an impeccable example of how the different data 
components can be deposited and shared. The same mock-up would ideally be used across multiple 
journals from the same or different publishers to achieve homogeneous standards.

Peer-review offers another opportunity to ensure that the data underlying the results of the study 
can be readily assessed. The peer-review system is in place to ensure that published content is 
valuable to the community, it therefore makes sense to allocate more weight to data availability in 
the assessment of a manuscript. This could be achieved by either requesting reviewers to include 
an analysis of the efforts that were made by the authors to adhere to the FAIR principles in their 
assessment, or appointing a specialized reviewer whom specifically covers this aspect. To simplify 
this process, a short checklist could be offered to reviewers specifying points of interest. For instance, 
if both raw and processed data can be found and downloaded easily, and whether field-relevant 
repositories are used. 

Figure 2. Inclusion of metadata in scRNAseq datasets deposited to GEO. (a) Number of depositions that did or 
did not include metadata in each year since 2009. Numbers on top of stacks denote the percentage of depositions 
without metadata. (b) Fraction of depositions that did or did not include metadata per publisher. Numbers on top 
of stacks denote the percentage of depositions without metadata. (c) Percentage of depositions that did or did 
not include metadata per publisher. Black dots indicate individual journals, colored dots indicate means, colored 
lines represent the 95% confidence interval. (d) Number of citations that a manuscript received since publication. 
Depicted as violin plots, dots indicate individual manuscripts. P values indicated in the plots were calculated by 
Wilcoxon signed-rank test, followed by Holm-Bonferroni correction. 
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Repositories. As data repositories define how results are deposited, these entities are in a crucial 
position in the data sharing network. In my view, a big leap in the right direction would be for 
repositories to harmonize their guidelines with the scientific publishers. This would, as noted in 
the segment above, include the specification of explicit instructions on the contents of a deposition 
that match the requirements of major publishers and dummy uploads that are linked to mock-up 
manuscripts. 

Furthermore, setting strict requirements for the inclusion of metadata and processed data alongside 
raw data would be appropriate. This prevents repositories from turning into ‘data dumpsites’, where 
the findings are technically shared, but re-use is severely complicated. Using scRNAseq uploads as 
an example, this would entail that sequencing results should be supplemented with at least one 
metadata file (e.g., results from clustering or pseudotime analyses) and at least one processed data 
file (e.g., results from gene-set enrichment or custom analyses). Again, implementation of these 
requirements will work best if they are set in collaboration with the scientific publishers. 

Scientists. In my view, both publishers and repositories have a huge influence in shaping the data 
sharing environment. However, I do not believe that a perfect system can be built if we would 
have these two bodies policing the FAIRness of all data uploads. They should be here to guide and 
enable the process, but the ultimate responsibility needs to lie with the ones generating the data, 
the scientists. 

Improving the way that scientists treat their data is not trivial; to be efficacious—at least in the long 
term—FAIR practices need to be instilled into the culture of the community. This would begin at 
the university level, for example including primers in the curriculum that discuss best practices on 
documenting one’s findings. Next, internships provide a perfect microcosm for an applied scientific 
project, making them crucial moments in teaching scientists-to-be the importance of reporting re-
usable data. In practice, the supervisor could provide the student with a system that would make 
the obtained data FAIR within the lab, and essentially ready to publish. It would also be desirable 
to integrate the importance of finishing the internship with re-usable data in the grading system, 
giving this aspect equal weight as, for instance, quality of the practical work.  

In large part, the lab culture is defined by its principal investigator. Therefore, it is important for 
them to provide guidance in, and promote adherence to, a FAIR system of data storage. This would 
not necessarily require group leaders to micro-manage filing systems used by their scientists, but can 
simply entail being an advocate for the desired ideals. For example, engaging in discussions on open 
science during meetings or encouraging diligence in these topics during the final stages of a project.  

Concluding remarks
Everything taken together, it will take a concerted effort from all members of the scientific 
community to shape and—most importantly—maintain a FAIR data sharing network. As I have 
noted, I feel that a tight collaboration between publishers and repositories will result in a huge step 
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forward. Such a unified front would eliminate much of the ambiguity that currently complicates 
data deposition.  Furthermore, it will likely be key to provide both scientists and publishers with 
appropriate incentives to implement the FAIR principles. For example, by more prominently 
integrating adherence to these principles into journal impact metrics, or awarding/penalizing 
investigators during the allocation of publicly funded research grants. 

Technologies and their resulting datasets will continue to evolve, meaning that keeping FAIRness 
at a constant level represents a Red Queen’s race. I feel it is important that we, as a community, do 
not lose sight of this principle, and remain flexible in the implementation of changes in order to 
‘keep up’. 
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English summary

In my (perhaps somewhat subjective) judgement, the immune system can be 
considered to be the most fascinating part of the body. This system encompasses 
a large diversity of cell types and an unbelievably large number of interactions 
and processes, all of which are the result of an age-old evolutionary arms race 
against the pathogens that surround us. While compiling this thesis, I have had 
the pleasure of studying various components of the immune system, and making 
small contributions to various topics within the field of immunology. Through this 
summary, I will provide some general background information on the immune 
system, and then briefly highlight the findings made in each chapter.

The central task of the immune system is to detect and then destroy ‘foreign entities’ that are 
potentially harmful to the body. For example, the detection and recognition of pathogens (e.g. 
bacteria or parasites) is based on the principle that these organisms look highly different from us. 
This recognition occurs mainly in two ways: (1) A non-specific manner, involving a large group of 
immune cells collectively termed the ‘innate’ immune system. These cells often recognize common 
patterns associated with pathogens, for example certain sugars that are prominently produced by a 
large family of bacteria and that are not produced by the human body. (2) A specific manner, mainly 
due to the action of T and B cells, collectively referred to as the ‘adaptive’ branch of the immune 
system. These T and B cells can recognize foreign proteins via specialized receptors that are present on 
the surface of these cells, the so-called T and B cell receptors, respectively. During the development 
of T and B cells, those receptors are assembled through a semi-random process, in which each new 
T or B cell acquires a unique receptor. Due to this process, there is always at least one T and B cell 
in the body that can specifically recognize a protein of a pathogen that is causing an infection. Once 
those pathogen-specific cells recognize their target, they become activated and begin dividing at a 
high rate to generate a large number of daughter cells, all of which can attack the pathogen in a 
targeted manner: B cells through the production of antibodies, and T cells by the production of 
cytotoxic molecules or substances that alert other cells to the ongoing danger. Ultimately, in most 
cases, the foreign entity is defeated and cleared through a coordinated collaboration between the 
many cells that operate in these two branches of the immune system.

Tricking the immune system
While the recognition of foreign proteins by the immune system is normally a great asset, it 
complicates in biomedical studies that investigate the physiological ‘behavior’ of various cell 
types. In these experiments, cells are frequently studied in the context of a living organism, such 
as mice (Mus musculus), where it is often crucial that the cells of interest can be distinguished 
from all other cells. The technological solution generally applied in these cases is to label the cells 
of interest with a fluorescent protein. This is done by inserting a gene that encodes a fluorescent 
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protein (often from some type of jellyfish or coral) into the DNA of the cells of interest, after which 
these cells start producing this protein themselves. After this genetic modification, the cells can be 
readily distinguished from other cells by their fluorescence. However, when such modified cells are 
transplanted into a mouse with a competent immune system, those cells are rejected from the host. 
Not entirely unexpected, since the modified cells now contain large amounts of a foreign protein 
(e.g., from a jellyfish). For this reason, many types of experiments are difficult to perform, if not 
completely impossible.

In chapter 2, we created a novel genetically modified ‘transgenic’ mouse model to solve this 
problem. Our approach is based on the following reasoning; modified cells are rejected because 
the fluorescent protein is foreign to the body. By ensuring that this protein is already present from 
birth, it will be recognized as part of the organism, and hence rejection may be prevented. To 
achieve this, we inserted the genetic code of several frequently used fluorescent proteins into the 
DNA of mouse embryonic stem cells, which we then used to create a transgenic mouse. For obvious 
reasons, we did not want all cells in this animal to become fluorescent, and we therefore modified 
the genetic code of the introduced genes such that they were no longer functional. This approach 
is described in chapter 2. In addition, we show that these transgenic animals have indeed become 
tolerant to a number of fluorescent proteins, allowing cells that are labeled with these proteins to 
be transplanted without complications. We have made this transgenic mouse strain available to the 
academic community.

Predicting the ‘appearance’ of a cell
All proteins in a cell have a certain lifespan, after which they are broken down into smaller 
fragments, generally referred to as peptides. The majority of these peptides are further degraded 
to their individual amino acids, and these are then recycled in new cellular processes. However, a 
small fraction of peptides is transported into the lumen of the endoplasmic reticulum, bound to 
a specialized protein named HLA (Human Leukocyte Antigen) class I, and finally transported to 
the cell surface to be presented to the immune system. Cytotoxic T cells continuously scan HLA 
class I-peptide complexes on the surface of cells with their T cell receptor, and in this way monitor 
whether something is amiss with the cell. For example, if cells are infected with a virus, or if mutated 
proteins are present (as is the case with many cancers), foreign peptides will be presented. These 
foreign peptides can subsequentially be recognized by a cytotoxic T cell, after which the T cell 
becomes activated and can clear the affected cells.

The peptides presented via HLA class I thus determine how cells are ‘seen’ by a cytotoxic T cell. 
Understanding which peptides are presented by HLA class I is therefore of major interest in 
therapeutic approaches where activation of cytotoxic T cells is desirable, such as vaccination and 
cancer immune-therapy. 

In chapter 3 we aimed to acquire more insight into this process by directly measuring which peptides 
were bound to HLA class I in a number of different melanoma lines. Using these data, we compared 
genes (and proteins) that either did, or did not, yield HLA-bound peptides using a large database of 



﻿

152

gene and protein characteristics. This database contained more than 7,000 characteristics, including 
the occurrence of sequence motifs and potential protein modification sites. We observed that 
the genes (and proteins) from which presented peptides were derived often contained or lacked 
certain of these characteristics, with, for instance, a clear predictive power of certain predicted post-
translational modifications. We then incorporated the database of protein and gene characteristics 
into an algorithm that we trained to predict whether or not peptides are presented by HLA. Finally, 
we were able to show that the incorporation of this information greatly improved the predictive 
value of such algorithms.

The role of dormant T cells in immunological memory
Once a T cell becomes activated during an infection, it will start to divide at a high rate. The 
aim of this proliferation is to generate a large number of daughter cells that all share the same T 
cell receptor, and can thus all specifically recognize and attack cells that present a specific antigen. 
When the infection has been successfully cleared, the vast majority of these ‘effector T cells’ are no 
longer needed and die off. A fraction of the pathogen-specific T cells remains alive for many years 
as a relatively stable population. During a reinfection, these ‘memory T cells’ are able to generate a 
new wave of effector T cells much faster than during the first infection, thereby offering the body 
long-term protection against the pathogen. This principle is central to the prophylactic activity of 
vaccination and, for this reason, the formation and function of memory T cells (and B cells) is a 
widely studied topic in immunology.

As noted above, cell division is a key feature of the T cell response; however, little is known about the 
relationship between T cell proliferation during an infection and the formation of T cell memory. In 
chapter 4 we set out to study this process in vivo. To this end, we developed a synthetic transgenic 
construct (termed DivisionRecorder) that contains an inactive gene that encodes a fluorescent 
protein. The DivisionRecorder was designed in such a way that during each cell division there is a 
small probability that the gene activates, switching the cell to an irreversible fluorescent state. This 
means that we were able to use the fraction of fluorescent cells within a population as a measure 
for the amount of proliferation that had occurred in the past. Using this method, we were able to 
determine the relative number of cell divisions that different groups of T cells had undergone during, 
and after, infection. From these data it became clear that there is a large degree of heterogeneity 
in the number of cell divisions that memory T cells have undergone. In addition, we observed 
that this heterogeneity was associated with distinct cell characteristics. For example, we identified a 
group of memory T cells that have undergone only few cell divisions during the immune response. 
Furthermore, these ‘dormant’ memory T cells were found to have the highest potential to rapidly 
divide during reinfection, making these cells a crucial component of immunological memory.

Priming tumors
Like pathogens, cancer cells can be recognized by the immune system as foreign. Indeed, during 
its development, a tumor is ‘infiltrated’ by many different types of immune cells. In many cases, 
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however, the immune system is unable to reject the cancer cells. The subsequently established tumor 
micro-environment contains a large number of immune-supportive and immune-dampening 
molecules that exist in a stalemate. For example, fibroblasts may secrete proteins named chemokines 
that act as signaling molecules to attract different types of immune cells, whereas tumor cells can 
increase cell surface levels of membrane-bound inhibitory proteins (such as CD47 or PD-L1) that 
prevent immune cells from attacking the malignancy. 

Proteins consist of a chain of distinct amino acids that can—due to their sequence—fold into 
complex three-dimensional structures. The formation of such structures is crucial for the function 
of a protein, but is often not sufficient. Additional modifications to the amino acid residues may be 
necessary for the ‘maturation’ of the protein. An example of such a modification is the cyclization 
of glutamine or glutamic acid residues located at the start of a protein chain, which is crucial for 
the function of certain membrane-bound and secreted proteins, including several chemokines and 
inhibitory protein CD47. The formation of this modification is catalyzed by the enzyme glutaminyl-
peptide cyclotransferase (QPCTL), therefore making this enzyme a potentially important regulator 
of the balance between immune-supportive and immune-dampening molecules in the tumor 
micro-environment. 

In chapter 5 we used genetically modified mice and melanoma cells to investigate tumor growth and 
characteristics of the tumor micro-environment in a scenario in which QPCTL is rendered inactive. 
Using this approach, we observed that tumor growth was unaffected, but that the composition 
of tumors was significantly altered in the absence of QPCTL. Interestingly, we found that these 
alterations to the tumor micro-environment where indicative of a more inflamed milieu. This led us 
to conclude that QPCTL-deficient tumors might be more sensitive to additional immunotherapeutic 
treatments. We confirmed this by combining QPCTL deletion with an immune activating therapy 
(anti-PD-L1 therapy), a combination treatment that resulted in slower tumor growth and sporadic 
tumor regression. These findings suggest that QPCTL is an interesting target in the treatment of 
cancer, as an addition to existing cancer immunotherapies.
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Nederlandse samenvatting

Naar mijn (wellicht wat subjectieve) oordeel, is het immuunsysteem het meest 
fascinerende onderdeel van het lichaam. Dit systeem bestaat uit vele cel 
typen en een onwaarschijnlijk grote hoeveelheid interacties en processen, 
die allen het gevolg zijn van een eeuwenoude evolutionaire wapenwedloop 
met de ziekteverwekkers om ons heen. Tijdens het samenstellen van dit 
proefschrift heb ik het genoegen gehad om verschillende componenten 
van het immuunsysteem te bestuderen, en bijdragen te leveren aan diverse 
onderwerpen binnen de immunologie. Middels deze samenvatting zal ik wat 
algemene achtergrondinformatie geven over het immuunsysteem, en vervolgens 
het onderwerp en de bevindingen van elk hoofdstuk kort toelichten.

De centrale taak van het immuunsysteem is om ‘lichaamsvreemde entiteiten’ die potentieel schadelijk 
zijn voor het lichaam op te sporen en vervolgens te vernietigen. Het opsporen en herkennen van 
pathogenen (i.e., ziekteverwekkers zoals bacteriën of parasieten) is gebaseerd op het algemene principe 
dat deze organismen er anders uitzien dan wij. De herkenning van zulke ‘lichaamsvreemdheid’ gebeurt 
overwegend op twee manieren: (1) Een relatief aspecifieke manier, waarbij een grote groep immuun 
cellen is betrokken die collectief het ‘aangeboren’ immuunsysteem genoemd wordt. Deze cellen 
herkennen vaak algemene patronen die geassocieerd zijn met pathogenen, bijvoorbeeld bepaalde 
suikerverbindingen die uitsluitend door een grote familie van bacteriën worden geproduceerd en 
dus lichaamsvreemd zijn voor mensen. (2) Een specifieke manier, waarbij er primair een rol is voor 
de T en B cellen, die gezamenlijk de ‘adaptieve’ tak van het immuunsysteem vormen. Deze T en B 
cellen kunnen lichaamsvreemde eiwitten herkennen via speciale eiwitten die aanwezig zijn op hun 
celmembraan, respectievelijk de zogenaamde T en B cel receptoren. Tijdens de ontwikkeling van 
T en B cellen worden deze receptoren via een semi-willekeurig proces samengesteld, waardoor elke 
nieuwe T of B cel een unieke receptor verkrijgt. Door dit proces van diversificatie is er tijdens een 
infectie altijd wel minstens één T en B cel in het lichaam die het vermogen heeft een eiwit (of een 
fragment van een eiwit) van het desbetreffende pathogeen te herkennen. Zodra deze pathogeen-
specifieke cellen hun doelwit herkennen neemt de activiteit van deze cellen sterk toe en beginnen 
de cellen in een hoog tempo te delen om zo een grote hoeveel dochtercellen te genereren welke 
allen—op een doelgerichte manier—het pathogeen kunnen aanvallen: B cellen doen dit laatste via 
de productie van antilichamen, en T cellen door de productie van cytotoxische moleculen of stoffen 
die andere cellen alarmeren voor het aanwezige gevaar.  Uiteindelijk wordt, in de meeste gevallen, 
de lichaamsvreemde entiteit verslagen en opgeruimd door een gecoördineerde samenwerking tussen 
de vele cellen die opereren in deze twee takken van het immuunsysteem. 

Omzeilen van herkenning door het immuunsysteem
De herkenning van lichaamsvreemde eiwitten—en de daaropvolgende afstoting—door het 
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immuunsysteem is normaliter een groot goed. In de biomedische wetenschap kunnen dit soort 
immuunreacties echter onwenselijk zijn. Een relevant voorbeeld hiervan zijn studies waarin het 
‘natuurlijke gedrag’ van celtypen wordt onderzocht met behulp van fluorescente eiwitten. In dit 
soort experimenten worden cellen vaak bestudeerd in de context van een levend organisme, zoals 
de muis (Mus musculus), waarbij het cruciaal is dat de cellen van interesse goed kunnen worden 
onderscheiden van alle andere cellen in het lichaam. De oplossing die hiervoor over het algemeen 
wordt toegepast is om de cellen die bestudeerd worden te markeren met een fluorescent eiwit. Dit 
wordt gedaan door een gen dat codeert voor een fluorescent eiwit—vaak afkomstig van een kwal of 
koraal—in te brengen in het DNA van de cellen van interesse, waarna deze cellen zelf dit eiwit gaan 
produceren. Na deze genetische modificatie kunnen de cellen makkelijk onderscheiden worden 
van andere cellen op grond van hun fluorescentie. Een fundamenteel probleem bij deze methode is 
dat als dit type genetisch gemodificeerde cellen naar een muis met een competent immuunsysteem 
worden getransplanteerd, deze cellen vaak afgestoten worden. Niet geheel onverwacht, aangezien de 
gemodificeerde cellen nu een grote hoeveelheid lichaamsvreemd eiwit (b.v. afkomstig van een kwal) 
bevatten. Om deze reden zijn een groot aantal type experimenten moeilijk uit te voeren of geheel 
onmogelijk. 

In hoofdstuk 2 hebben wij een nieuw type genetisch gemodificeerde ‘transgene’ muis gecreëerd 
om dit probleem op te lossen. In onze aanpak zijn we uitgegaan van de volgende redenering; De 
gemodificeerde cellen worden afgestoten omdat het fluorescente eiwit lichaamsvreemd is. Door 
ervoor zorgen dat dit eiwit al vanaf de geboorte aanwezig is zal het als lichaamseigen herkend 
worden, en zal afstoting worden voorkomen. Om dit te bereiken hebben we de genetische code van 
verschillende fluorescente eiwitten ingebracht in het DNA van embryonale stamcellen van een muis, 
die we vervolgens hebben gebruikt om een transgene muis te creëren. Omdat we vanzelfsprekend 
niet wilden dat alle cellen in dit dier fluorescent zouden worden, hebben we de genetische code 
van de ingebrachte genen zo aangepast dat deze niet meer functioneel zijn. Deze methode staat 
beschreven in hoofdstuk 2. In dit hoofdstuk laten we vervolgens zien dat de transgene dieren 
inderdaad tolerant zijn geworden voor een aantal fluorescente eiwitten, waardoor cellen die met 
deze fluorescente eiwitten gemarkeerd zijn zonder problemen getransplanteerd kunnen worden. 
Deze transgene muizen stam hebben we beschikbaar gesteld aan de academische gemeenschap. 

Het ‘uiterlijk’ van een cel voorspellen
Alle eiwitten in een cel hebben een bepaalde levensduur, waarna ze worden afgebroken in kleinere 
fragmenten, ook wel peptiden genoemd. Een groot deel van deze peptiden wordt verder afgebroken 
tot losse aminozuren, voor hergebruik in nieuwe cellulaire processen. Een kleiner deel wordt echter 
gebonden aan een gespecialiseerd eiwit genaamd HLA (Human Leukocyte Antigen) klasse I en 
uiteindelijk vervoerd naar het cel oppervlakte om gepresenteerd te worden aan het immuunsysteem. 
Cytotoxische T cellen scannen continu HLA-klasse I-peptiden complexen op het oppervlak van 
cellen met hun T cel receptor, en houden op deze manier in de gaten of er iets mis is met de cel. 
Wanneer cellen bijvoorbeeld geïnfecteerd zijn door een virus of als er gemuteerde eiwitten aanwezig 
zijn (zoals het geval is bij veel kankers), dan zullen er lichaamsvreemde peptiden gepresenteerd 
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worden. Deze lichaamsvreemde peptiden kunnen vervolgens door een T cel herkend worden, 
waarna de T cel geactiveerd raakt en de aangetaste cellen kan gaan opruimen. 

In hoofdstuk 3 hebben we meer inzicht verkregen in het proces van peptide presentatie door 
direct te meten welke peptiden gebonden waren aan HLA klasse I in een aantal verschillende 
melanoomlijnen. Middels deze data konden we genen (en eiwitten) vergelijken die al dan niet HLA-
gebonden peptiden opleverden, met behulp van een grote database met gen- en eiwitkenmerken. 
Deze database bevatte meer dan 7.000 kenmerken, waaronder de frequentie van bepaalde motieven 
in de DNA-sequentie en mogelijke eiwitmodificaties. Met deze analyse hebben we vastgesteld dat 
genen (en eiwitten) waarvan gepresenteerde peptiden afkomstig zijn, vaak bepaalde kenmerken 
bevatten of juist missen. We vonden bijvoorbeeld dat aminozuur sequenties die gemodificeerd 
kunnen worden met een acetyl- of ubiquitine-groep verrijkt zijn in eiwitten die presenteerde 
peptiden bevatte. Vervolgens hebben we de database met eiwit- en gen-kenmerken opgenomen in 
een algoritme dat we hebben getraind om HLA klasse I presenteerde peptiden te voorspellen. Ten 
slotte konden we aantonen dat het incorporeren van deze informatie de voorspellende waarde van 
dergelijke algoritmen sterk verbeterde.

De rol van slapende T cellen in immunologisch geheugen
Op het moment dat een T cel gedurende een infectie geactiveerd raakt, gaat deze in een snel tempo 
delen. Het doel van dit proces is om een grote hoeveelheid dochtercellen te creëren die allen dezelfde 
T cel receptor tot expressie brengen, en dus allen specifiek de geïnfecteerde cellen kunnen herkennen 
en aanvallen. Als de infectie succesvol is afgeweerd sterft het overgrote deel van deze ‘effector T cellen’ 
af, ze zijn niet meer nodig. Een fractie van de pathogeen-specifieke T cellen blijft gedurende vele 
jaren aanwezig in het lichaam als een relatief stabiele populatie. Deze ‘geheugen T cellen’ kunnen 
tijdens een her-infectie veel sneller opnieuw een nieuwe golf effector T cellen genereren, en bieden 
het lichaam hierdoor langdurige bescherming tegen het desbetreffende pathogeen. Dit principe 
staat bijvoorbeeld centraal in de werking van vaccinatie, en om deze reden is de vorming en werking 
van geheugen T cellen een breed bestudeerd onderwerp in de immunologie. 

Zoals hierboven opgemerkt, is celdeling een belangrijk kenmerk van de T-celrespons; er is echter 
weinig bekend over de relatie tussen proliferatie tijdens een infectie en de vorming van geheugen T 
cellen. Om dit proces te  bestuderen hebben we in hoofdstuk 4 een synthetisch transgeen construct 
(genaamd DivisionRecorder) ontwikkeld dat gebruikt kan worden om celdelingen te meten. De 
DivisionRecorder bevat een inactief gen dat codeert voor een fluorescerend eiwit. Dit gen is zodanig 
ontworpen dat er tijdens elke celdeling een kleine kans is dat het gen wordt geactiveerd, waardoor 
de cel onomkeerbaar fluorescent wordt. Dit betekent dat we de fractie fluorescente cellen binnen 
een populatie konden gebruiken als maat voor de hoeveelheid proliferatie die in het verleden had 
plaatsgevonden. Door middel van deze methode konden we relatieve bepalingen uitvoeren van de 
hoeveelheid celdelingen die verschillende groepen T cellen hadden ondergaan tijdens en na een 
infectie. Uit deze data werd duidelijk dat er een grote mate van heterogeniteit is in de hoeveelheid 
celdelingen die geheugen T cellen hebben ondergaan, en tevens vonden we dat deze heterogeniteit 
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geassocieerd was met specifieke karakteristieken. Zo vonden we dat er een groep geheugen T cellen 
bestaat die weinig celdelingen hebben ondergaan gedurende de immuunrespons. Deze ‘slapende’ 
geheugen T cellen bleken het hoogste potentieel te bezitten om tijdens een her-infectie opnieuw in 
snel tempo te gaan delen, wat deze cellen cruciaal maakt voor het immunologische geheugen.

Tumoren op scherp zetten
Net als ziekteverwekkers kunnen kankercellen door het immuunsysteem als lichaamsvreemd worden 
herkend. Tijdens de ontwikkeling van een tumor wordt deze ‘geïnfiltreerd’ door veel verschillende 
soorten immuun cellen. In veel gevallen is het immuunsysteem echter niet in staat de kankercellen 
af ​​te stoten. De vervolgens tot stand gebrachte micro-omgeving van de tumor bevat een groot aantal 
immuun-ondersteunende en immuun-dempende moleculen die tezamen verweven zitten in een 
impasse. Fibroblasten kunnen bijvoorbeeld eiwitten uitscheiden (die chemokinen worden genoemd) 
die fungeren als signaalmoleculen om verschillende soorten immuun cellen aan te trekken, terwijl 
tumorcellen de hoeveelheid van membraangebonden immuun-remmende eiwitten (zoals CD47 of 
PD-L1) verhogen die de functionaliteit van immuun cellen kunnen blokkeren.

Eiwitten bestaan uit een aaneenschakeling van verschillende aminozuren die zich—door middel 
van hun volgorde—in complexe driedimensionale structuren kunnen vouwen. De vorming van 
zulke structuren is essentieel voor de functie van een eiwit, maar is vaak niet voldoende. Verdere 
modificaties aan de aminozuurresiduen kunnen nodig zijn voor de ‘maturatie’ van het eiwit. Een 
voorbeeld van een dergelijke modificatie is de cyclisatie van glutamine- of glutaminezuurresiduen 
die zich aan het begin van een eiwitketen bevinden, wat cruciaal is voor de functie van bepaalde 
membraangebonden en uitgescheiden eiwitten, waaronder verschillende chemokinen en immuun-
remmend eiwit CD47. De vorming van deze modificatie wordt gekatalyseerd door het enzym 
glutaminyl-peptide cyclotransferase (QPCTL), waardoor dit enzym een ​​potentieel belangrijke 
regulator is van de balans tussen immuun-ondersteunende en immuun-dempende moleculen in de 
micro-omgeving van de tumor.

	 In hoofdstuk 5 hebben we gebruik gemaakt van genetisch gemodificeerde muizen en 
melanoomcellen om de groei en ontwikkeling van tumoren te onderzoeken in een scenario waarin 
QPCTL inactief is. Middels deze strategie vonden we dat, alhoewel tumorgroei onaangetast was, 
de compositie van de tumor significant veranderd was. De som van alle veranderingen die we 
vonden in de afwezigheid van QPCTL duidde erop dat de omgeving binnen de tumor veel meer 
weg had van een actieve ontsteking. Hieruit concludeerden we dat QPCTL-deficiënte tumoren 
wellicht sensitiever zouden zijn voor verdere immuuntherapie. Dit bevestigden we door QPCTL-
uitschakeling te combineren met een immuun-activerende therapie (anti-PD-L1 therapie), 
waarop we langzamere tumorgroei en soms zelfs tumorregressie observeerden. Onze bevindingen 
laten zien dat QPCTL een interessant doelwit is om te inhiberen in combinatie met bestaande 
immuuntherapieën in de behandeling van kanker. 
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