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E. Kaufmann, O. Cappé, and A. Garivier. On the complexity of a/b testing. In
Conference on Learning Theory, pages 461–481. PMLR, 2014.

M. G. Kebede. Automating normative control for healthcare research. In In-
ternational Workshop on AI Approaches to the Complexity of Legal Systems,
International Workshop on AI Approaches to the Complexity of Legal Systems,
International Workshop on Explainable and Responsible AI and Law, pages 62–
72. Springer, 2021.

J. L. Kelly. A new interpretation of information rate. The bell system technical
journal, 1956.

R. C. Kessler, W. T. Chiu, O. Demler, and E. E. Walters. Prevalence, severity, and
comorbidity of 12-month dsm-iv disorders in the national comorbidity survey
replication. Archives of general psychiatry, 62(6):617–627, 2005.

K. H. Kho, M. F. van Vreeswijk, S. Simpson, and A. H. Zwinderman. A meta-
analysis of electroconvulsive therapy e�cacy in depression. The journal of ECT,
19(3):139–147, 2003.

O. J. Kirtley, K. van Mens, M. Hoogendoorn, N. Kapur, and D. de Beurs. Trans-
lating promise into practice: a review of machine learning in suicide research and
prevention. Lancet Psychiatry, 9(3):243–252, 2022. doi: 10.1016/s2215-0366(21)
00254-6.

B. Klingenberg. A new and improved confidence interval for the mantel–haenszel
risk di↵erence. Statistics in Medicine, 33(17):2968–2983, 2014.

147
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de Habilitation.

149



T. Manole and A. Ramdas. Martingale methods for sequential estimation of convex
functionals and divergences. IEEE Transactions on Information Theory, 2023.

N. Mantel and W. Haenszel. Statistical aspects of the analysis of data from ret-
rospective studies of disease. Journal of the national cancer institute, 22(4):
719–748, 1959.

M. L. McHugh. The chi-square test of independence. Biochemia medica, 23(2):
143–149, 2013.

S. McLachlan, K. Dube, G. A. Hitman, N. E. Fenton, and E. Kyrimi. Bayesian
networks in healthcare: Distribution by medical condition. Artificial intelligence
in medicine, 107:101912, 2020.

R. McNally, P. Mair, B. Mugno, and B. Riemann. Co-morbid obsessive–compulsive
disorder and depression: A bayesian network approach. Psychological medicine,
47(7):1204–1214, 2017.

J. Meiseberg and S. Moritz. Biases in diagnostic terminology: Clinicians choose
di↵erent symptom labels depending on whether the same case is framed as
depression or schizophrenia. Schizophr Res, 222:444–449, 2020. doi: 10.1016/j.
schres.2020.03.050.

V. Menger. Psynlp, 2020. URL https://github.com/vmenger/psynlp.

V. Menger, F. Scheepers, and M. Spruit. Comparing deep learning and classical
machine learning approaches for predicting inpatient violence incidents from
clinical text. Applied Sciences, 8(6):981, 2018a.

V. Menger, F. Scheepers, L. M. van Wijk, and M. Spruit. DEDUCE: A pat-
tern matching method for automatic de-identification of Dutch medical text.
Telematics and Informatics, 35(4):727–736, 2018b.

V. J. Menger. Knowledge Discovery in Clinical Psychiatry. PhD thesis, Utrecht
University, 2019.
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Appendix with Supplementary
Material

Supplementary material for chapter 2

Appendix S2.A contains detailed proofs. Appendix S2.B contains a detailed de-
scription of the numerical approach to calculating e-variables for restricted H1.
Appendix S2.C contains a detailed description of Gunel-Dickey Bayes factors. Ap-
pendix S2.D contains optional stopping experiments. Appendix S2.E explains how
to adapt the block group sizes na and nb based on past data.

S2.A Proofs

The proofs below repeatedly use Theorem 1 of Grünwald et al. [2022a] and a direct
corollary (called Corollary 2 by Grünwald et al. [2022a]), which we restate here for
convenience, combined as a single statement. We use the notation adopted later
in the paper: for H0 = {P✓ : ✓ 2 ⇥0} and, for W a distribution on ⇥0, we write
PW =

R
P✓dW (✓).

Theorem (Theorem 1 of Grünwald et al. [2022a]) Let Y be a random
variable taking values in a set Y. Suppose Q is a probability distribution for Y

with density q that is strictly positive on all of Y and let H0 = {P✓ : ✓ 2 ⇥0} be
a set of distributions for Y where each P✓ has density p✓. Let W0 be the set all
distributions on ⇥0. Assume infW02W0(⇥0) D(QkPW0) < 1. Then (a) there exists
a (potentially sub-) distribution P

⇤
0 with density p

⇤
0 such that

S
⇤ :=

q(Y )

p⇤0(Y )

is an e-variable (p⇤0 is called the Reverse Information Projection (RIPr) of q onto
{pW : W 2 W0} [Li, 1999, Li and Barron, 2000, Grünwald et al., 2022a]). More-
over, (b), S⇤ satisfies

sup
S2E(⇥0)

EY⇠Q[logS] = EY⇠Q[logS
⇤] = inf

W02W0(⇥0)
D(QkPW0) = D(QkP

⇤
0 ).

(A.1)
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and is thus the Q-GRO e-variable for Y . If the minimum is achieved by some W ⇤
0 ,

i.e. D(QkP
⇤
0 ) = D(QkPW⇤

0
), then P

⇤
0 = PW⇤

0
. Moreover, (c), if there exists an

e-variable S of the form q(Y )/pW0(Y ) for some W0 2 W0 then W0 must achieve
the infimum in (A.1) and S must be essentially equal to S

⇤ in the sense that
for all P 2 H0 [ {Q}, P (S⇤ = q(Y )/pW0(Y )) = 1. Similarly (d), if there exists
a W

⇤
0 2 W0 that achieves the infimum in (A.1) then S = q(Y )/pW⇤

0
(Y ) is an

e-variable and S is again essentially equal to S
⇤.

S2.A.1 Proof of Propositions

Proof of Proposition 1 Below we state and prove a slight generalization of
Proposition 1.

Proposition 4 (generalization). Let H1 = {Q} be a singleton and let H0 =
{P✓ : ✓ 2 ⇥0} be such that for some distribution W on ⇥0, D(QkPW ) < 1. For
general ✓ 2 ⇥0 and distributions W on ⇥0, define S✓,(j) := q(Y(j))/p✓(Y(j)) and
SW,(j) = q(Y(j))/pW (Y(j)). We have:

1. Suppose there exists a distributionW on ⇥0 such that SW,(1) is an e-variable.
Then SW,(1) is the Q-GRO e-variable for Y(1). In particular, if W puts mass
1 on a particular ✓� 2 ⇥0, then SW,(1) = S✓�,(1) is the Q-GRO e-variable.

2. If⇥0 = {✓0} is simple then, with the priorW0 putting mass 1 on ✓0, SW0,(1) =
S✓0,(1) is an e-variable and hence, by the above, also the Q-GRO e-variable.

3. If, for some ✓
�
2 ⇥0, S✓�,(1) is an e-variable and we further assume that

Y(1), Y(2), . . . are i.i.d. according to all distributions inH0[H1, then S
(m)
gro(Q) =Qm

j=1 S✓�,(j); that is, the Q-GRO optimal (unconditional) e-variable for Y (m)

is the product of the individual Q-GRO optimal e-variables.

Proof. Part 1 The theorem above, part (b), implies, with Y = Y(1), that some
Q-GRO e-variable S

⇤ for Y(1) exists. Part (c) then implies that we can take S
⇤ to

be equal to SW,(1). This implies the statement.
Part 2 is immediate.
Part 3 We assume that S✓�,(1) is an e–variable. Then the i.i.d. assumption

implies that S(m)
✓� :=

Qm
j=1 S✓�,(j) =

Q
q(Y(j))/p✓�(Y(j)) is also an e-variable. But

[Grünwald et al., 2022a, Theorem 1], part (c) as stated above implies (by taking a
distribution W putting mass 1 on ✓) that for H0 for which data are i.i.d., for each

m � 1, that if a ✓ 2 ⇥0 exists such that S(m)
✓ is an e-variable, then S

(m)
✓ must be

the Q-GRO e-variable for Y (m). This proves the statement.

Proof of Proposition 2 The formulae for ✓̆a|Y (j�1) and ✓̆b|Y
(j�1) are standard

expressions for the Bayes predictive distribution based on the given beta priors;
we omit further details. As to the expression for ✓̆0|Y (j�1) in terms of  = nb/na:
Straightforward rewriting gives, for general ↵a,↵b,�a,�b:

✓̆0|Y
(j�1) =

1

1 + 
✓̆a|Y

(j�1) +


1 + 
✓̆b|Y

(j�1)
. (A.2)

158



If we plug in the expressions for ✓̆a|Y
(j�1)

, ✓̆b|Y
(j�1) and we instantiate to ↵b =

↵a, and �b = �a, this becomes

✓̆0|Y
(j�1) =

1

1 + 

Ua + ↵a

na(j � 1) + ↵a + �a
+



1 + 

Ub + ↵b

(na(j � 1) + ↵a + �a)

=
1

1 + 

Ua + Ub + (1 + )↵a

na(j � 1) + ↵a + �a
=

U + (1 + )↵a

n(j � 1) + (1 + )↵a + (1 + )�a
,

which is what we had to prove.

S2.A.2 Proof of Theorem 1

We first restate Theorem 1 in its extended version that holds for k � 2 data
streams. Let ~n = (n1, . . . , nk), n =

Pk
g=1 ng,

~✓ = (✓a, . . . , ✓k) 2 ⇥k and ~y
n be

as defined in the main text (3.3). We use ‘~Y n
⇠ P✓⇤ ’ as an abbreviation for ‘

Y
n1
1 ⇠ P✓⇤

1
; . . . ;Y nk

k ⇠ P✓⇤
k
’.

Theorem .1 (extended). Let

s(~yn;~n, ~✓⇤) :=
kY

g=1

p✓⇤
g
(y

ng
g )

Qng

i=1

⇣Pk
g0=1

ng0

n p✓⇤
g0
(yi,g)

⌘ .

The random variable S[~n,~✓⇤] := s(~Y n;~n, ~✓⇤) is an e-variable, i.e. we have:

sup
✓2⇥

EV n⇠P✓

h
s(V n;~n, ~✓⇤)

i
 1.

Moreover, if {P✓ : ✓ 2 ⇥} is a convex set of distributions, then S[~n,~✓⇤] is the (~✓⇤)-

GRO e-variable: for any non-negative function s
0 on Y

n satisfying
sup✓2⇥ EV n⇠P✓ [s

0(V n)]  1, we have:

E~Y n⇠P✓⇤
[log s(~Y n;~n, ~✓⇤)] � E~Y n⇠P✓⇤

[log s0(~Y n)].

Proof of Theorem .1 The following fact plays a central role in the proof:

Fact For g 2 (1, ..., k), let ng 2 N, n :=
Pk

g=1 ng and let ug 2 R+. Suppose that
Pk

g=1 ngug  n. Then
Qk

g=1 u
ng
g  1.

This result follows from the following standard generalization of Young’s inequality
to k numbers: for any k numbers u1, . . . , uk 2 R+

0 and any k nonnegative numbers

p1, . . . , pk with
Pk

g=1 pg = 1, we have
Qk

g=1 u
pg
g 

Pk
g=1 pgug. Applying this with

pg = ng/n to ug and ng as above, we get
Qk

g=1 u
ng/n
g 

Pk
g=1(ngug)/n  1, and

the result follows by exponentiating to the power n.
Part 1 For y 2 Y, set set p�(y) :=

Pk
g=1(ng/n)p✓⇤

g
(y) and p

�(ym) =
Qm

i=1 p
�(yi).
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For all ✓ 2 ⇥ we have:

EV n⇠P✓

h
s(V n;~n, ~✓⇤)

i
=

kY

g=1

EY
ng
g ⇠P✓

"
p✓⇤

g
(Y

ng
g )

p�(Y
ng
g )

#
=

kY

g=1

 
EY⇠P✓

"
p✓⇤

g
(Y )

p�(Y )

#!ng

.

(A.3)

We also have

kX

g=1

ng

n
EY⇠P✓

"
p✓⇤

g
(Y )

p�(Y )

#
= EY⇠P✓

2

4
kX

g=1

ng

n
·

p✓⇤
g
(Y )

Pk
g0=1

ng0

n p✓⇤
g0
(Y )

3

5 = 1. (A.4)

The result now follows by combining (A.3) with (A.4) using the Fact further
above.
Part 2 By convexity of {P✓ : ✓ 2 ⇥}, there exists ✓

�
2 ⇥ such that p✓� =Pk

g=1(ng/n)p✓⇤
g
and then the numerator in (A.4) can we rewritten as p✓�(~y). The

GRO-property is now an immediate consequence of Proposition 4, Part 1.

S2.B Numerical approach to calculating e-variables for re-
stricted H1

In this subsection we describe how we propose to approximate the beta prior and
posterior on the restricted H1 with parameter space ⇥(�), as defined in (5.1). Note
that we limit ourselves to � > 0 in this detailed description; for � < 0 one can apply
an entirely equivalent approach, with an extra term in the reparameterization. We
define

⇣ =

(
� if d((✓a, ✓b)) = ✓b � ✓a,

0 if d((✓a, ✓b)) = log-odds-ratio(✓a, ✓b),

such that we have ✓a 2 (0, 1 � ⇣) and in both cases, ✓b is completely determined
by ✓a: ✓b = d

�1(�; ✓a). Hence, our density estimation problem now becomes one-
dimensional, which enables us to put a discretized prior on the restricted parameter
space.

First, we discretize the parameter space ⇥a to a grid (a vector) with precision
K,K 2 (0, 1 � ⇣) and 1/K 2 N+: ✓̄a = (K, 2K, 3K, . . . , 1� ⇣). Then, we repa-
rameterize ✓a = (1� ⇣)⇢, with ⇢ 2 (0, 1). Then, we have
⇢̄ = (K/(1� ⇣), 2K/(1� ⇣), . . . , 1) . For the discretized grid ⇢̄, we compute the
prior W = Beta(↵,�) densities and normalize them, which also gives us the dis-
cretized densities for each ✓

i
a 2 ✓̄a (with i 2 (1, 2, . . . , 1/K)):

⇡↵,�,⇣(✓
i
a) =

Beta( ✓i
a

1�⇣ ;↵,�)
P 1

K
k=1 Beta(

✓k
a

1�⇣ ;↵,�)
.

For all elements of ✓̄a, the corresponding ✓b is retrieved and the likelihood of in-
coming data points p✓a,✓b(Y

(j�1)) is calculated. We can then estimate the posterior
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density of ✓ia 2 ✓̄a:

p(✓ia|Y
(j�1)) =

⇡↵,�,⇣(✓ia)p✓i
a,✓

i
b
(Y (j�1))

P 1
K
k=1 ⇡↵,�,⇣(✓ka)p✓k

a ,✓
k
b
(Y (j�1))

.

We can then estimate ✓̆a|Y
(j�1) = E✓a⇠W |Y (j�1) [✓a] as

P 1
K
i=1 p(✓

i
a|Y

(j�1))✓ia, and

✓̆b|Y
(j�1) = d

�1(�; ✓a|Y (j�1)).

S2.C The Gunel-Dickey Bayes Factors do not give rise to
e–variables

Sampling Fixed Bayes factor (10) for 2x2 table

Poisson none 8(n+1)(n1+1)
(n+4)(n+2)

h
na1!nb1!na0!nb0!n!
(n1+1)!n0!na!nb!

i

Joint multinomial n 6(n+1)(n1+1)
(n+3)(n+2)

h
na1!nb1!na0!nb0!n!
(n1+1)!n0!na!nb!

i

Independent multinomial na, nb

� n
n1

�
/(
� na

na1

�� nb

nb1

�
) (n+1)
(na+1)(nb+1)

Hypergeometric na, nb, n1
na1!nb1!na0!nb0!n!Q

i2{a,b,0,1}(ni+Ini=min(na,nb,n0,n1))!

Table S2.1: Overview of (objective) Bayes factors for contingency table testing
provided by Gunel and Dickey [1974] and Jamil et al. [2017].

We will not consider the hypergeometric and joint multinomial scenarios for
this paper, where the number of successes n1 is fixed, as they do not match the
block-wise data design in this paper. The Bayes factor for the Poisson sampling
scheme is not an e-variable, as the expectation under the null hypothesis with
Poisson distributions on individual cell counts exceeds 1 for rates � � 1:

Enrc⇠Poisson(�rc) [BF10(Na1, Nb1, Na0, Nb0)] =
1X

na1=0

. . .

1X

nb0=0

⇡�a1(na1) . . .⇡�b0(nb0)BF10(na1, nb1, na0, nb0) =

8

exp(�a1 + . . .+ �b0)

1X

na1=0

. . .

1X

nb0=0

�
na1
a1 . . .�

nb0
b0

(n+ 1)(n1 + 1)

(n+ 4)(n+ 2)

n!

(n1 + 1)!n0!na!nb!
,

as illustrated numerically in Figure S2.1 for increasing limits for the sums
Pmaxnrc

nrc=1 .

For the independent multinomial sampling scheme, let, without loss of gener-
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(a) The Gunel-Dickey Bayes fac-
tor for the Poisson sampling
scheme is not an e-variable:Pmaxnrc

na1=0 . . .
Pmaxnrc

nb0=0 ⇡�a1(na1) . . .⇡�b0(nb0)
BF10(na1, nb1, na0, nb0) for various
maxnrc and �rc.

(b) The Gunel-Dickey Bayes factor for
the independent multinominal sam-
pling scheme is not an e-variable:
ENa1,Nb1⇠Binomial(✓) [BF10(Na1, Nb1|na, nb)]
for various choices of ✓ and ng.

Figure S2.1: GD
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ality, na < nb. We get, with n0 = n� n1,

ENa1,Nb1⇠Binomial(✓) [BF10(Na1, Nb1|na, nb)] =
naX

na1=0

nbX

nb1=0

✓
na

na1

◆✓
nb

nb1

◆
✓
n1(1� ✓)n0

� n
n1

�
� na

na1

�� nb

nb1

� (n+ 1)

(na + 1)(nb + 1)
=

(n+ 1)

(na + 1)(nb + 1)

naX

na1=0

nbX

nb1=0

✓
n

n1

◆
✓
n1(1� ✓)n0

Numerical simulations show that, for a range of choices for n, na and ✓ this exceeds
1; see Figure S2.1.
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S2.D Type-I error guarantee under optional stopping

Type-I Error In Figure S2.2 type-I error rates of several e-variables and Fisher’s
exact test estimated through a simulation experiment are depicted. 2000 samples
of length 1000 were drawn according to a Bernoulli(0.1) distribution to represent
1000 data streams in two groups. After each complete block m 2 {1, . . . , 1000}
an e-value or p-value was calculated and the proportion of rejected experiments
up until m with each test type was recorded. As the stream lengths increase, the
type-I error rate under (incorrectly applied) optional stopping with Fisher’s exact
test increases quickly. The type-I error rate of the e-variables remains bounded.

Figure S2.2: Type-I error rates for various e-variables and Fisher’s exact test
under optional stopping estimated with 1000 simulations of two Bernoulli(0.1)
data streams of length 1000, with na = nb = 1. Significance level ↵ = 0.05 was
used (grey dashed line). For the safe tests, beta prior parameter values used were
� = ↵a = �a = ↵b = �b = 1/2 (� = 0.18 gave comparable results). For the
e-variables with restrictions on H1, we used � = 0.05 and ✓a = 0.1.

S2.E Adjusting na and nb based on past data

To see how to choose na and nb for subsequent blocks based on past data, we first
need to formalize the fact that data in di↵erent streams may arrive asynchronously.
Thus, let t = 1, 2, . . . represent global (‘calendar’) time, and introduce correspond-
ing random variables Vt and Gt: at each t, we obtain an outcome Vt in Y in group
Gt 2 {a, b}. We make no assumptions about the relative ordering of outcomes from
the two groups. At time t, we have that ta, the number of a’s that are observed
so far, and tb, the number of b’s observed so far, satisfy ta + tb = t, but subject to
this constraint we allow them coming in any order. We now introduce a function
f :
S

t�0 Y
t
⇥ {0, 1}t ! {stop-block,continue} that, at each point in time t,
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decides whether the current block should end (f(V t
, G

t) = stop-block) or not
(f(V t

, G
t) = continue). As long as the value of this function does not depend

on the actual outcomes Vt observed after the last block that was completed, all re-
quirements for having a test martingale and thus for safe optional stopping are met.
For example, suppose that on data V1, G1, V2, G2, . . . , Vt, Gt observed so-far, f has
output stop-block atm occasions, the last time at t0 = t�k for some k > 0. Then
f(t) is allowed to depend on Y

(m) and G
t, but for any fixed Y

(m) = y
(m)

, G
t = g

t,
for all yk, y0k 2 Y

k, we must have f((y(m)
, y

k), gt) = f((y(m)
, y

0k), gt).
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Supplementary material for chapter 3

Appendix section S3.A contains proofs and section S3.B contains extended simu-
lation results.

S3.A Proofs

Both proofs below use Theorem 1 of Grünwald et al. [2022a] and a direct corol-
lary (called Corollary 2 by Grünwald et al. [2022a]), which we re-state here,
for convenience, combined as a single statement. Recall that we use notation
PW :=

R
P~✓dW (~✓).

Theorem (Theorem 1 of Grünwald et al. [2022a]) Let Y be a random
variable taking values in a set Y. Suppose Q is a probability distribution for Y

with density q that is strictly positive on all of Y and let H0 = {P~✓ : ~✓ 2 ~⇥0} be a
set of distributions for Y where each P~✓ has density p~✓. Let W0 be the set of all

distributions on ~⇥0. Assume infW02W0(~⇥0)
D(QkPW0) < 1. Then (a) there exists

a (potentially sub-) distribution P
⇤
0 with density p

⇤
0 such that

S
⇤ :=

q(Y )

p⇤0(Y )

is an e-variable (p⇤0 is called the Reverse Information Projection (RIPr) of q onto
{pW : W 2 W0}). Moreover, (b), S⇤ satisfies

sup
S2E(~⇥0)

EY⇠Q[logS] = EY⇠Q[logS
⇤] = inf

W02W0(~⇥0)
D(QkPW0) = D(QkP

⇤
0 ).

(A.5)

(where E(~⇥0) is the set of all e-variables relative to null hypothesis H0) and S
⇤

is thus the Q-GRO e-variable for Y . If the minimum is achieved by some W
⇤
0 ,

i.e. D(QkP
⇤
0 ) = D(QkPW⇤

0
), then P

⇤
0 = PW⇤

0
. Moreover, (c), if there exists an

e-variable S of the form q(Y )/pW0(Y ) for some W0 2 W0 then W0 must achieve
the infimum in (A.5) and S must be essentially equal to S

⇤ in the sense that
for all P 2 H0 [ {Q}, P (S⇤ = q(Y )/pW0(Y )) = 1. Similarly (d), if there exists
a W

⇤
0 2 W0 that achieves the infimum in (A.5) then S = q(Y )/pW⇤

0
(Y ) is an

e-variable and S is again essentially equal to S
⇤.

Proof of Theorem 3.1 Part 1 The real idea behind the proof is the formula-
tion of the modified testing problem in which only a single outcome per block is
observed. This we already did in the main text. Linking the two is simply the last,
very simple step, with analogies to the proof of Part 1 of Theorem 1 in Turner
et al. [2021].

Let na, nb 2 N, n := na + nb and let u, v 2 R+. Suppose that nau+ nbv  n.
Then u

nav
nb  1, which follows immediately from applying Young’s inequality to
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u
na/n, vnb/n but can also be derived directly by writing v as function of u and

di↵erentiating log(unav
nb) to u.

Further, by independence, for (✓a, ✓b) 2 ~⇥0,

EY na
a ⇠P✓a ,Y

nb
b ⇠P✓b

[s0(Y na
a , Y

nb
b )] =

EY na
a ⇠P✓a


p✓⇤

a
(Y na

a )

p�(Y na
a |a)

�
·EY

nb
b ⇠P✓b


p✓⇤

b
(Y nb

b )

p�(Y nb
b |b)

�
=

✓
EY⇠P✓a


p✓⇤

a
(Y )

p�(Y |a)

�◆na

·

✓
EY⇠P✓b


p✓⇤

b
(Y )

p�(Y |b)

�◆nb

=

✓
EY⇠P 0

✓|a


p
0
✓⇤(Y |a)

p�(Y |a)

�◆na

·

✓
EY⇠P 0

✓|b


p
0
✓⇤(Y |b)

p�(Y |b)

�◆nb

. (A.6)

Combining the two facts stated above, (3.6) implies that the latter quantity is
bounded by 1.

Part 2 By lower-semicontinuity of the KL divergence in its second argument
(Posner’s theorem, used as in Grünwald et al. [2022a]) the infimum in (3.4) is
achieved by some prior distribution W

� so that by Theorem 1 of Grünwald et al.
[2022a] (part (b) in the formulation above), p�(· | ·) = p

0
W�(· | ·) and hence also

P
�(G, Y ) = P

0
W�(G, Y ). By convexity of H

0
0 and finiteness of the support of

P
0
~✓
(G, Y ), there must be some ~✓ such that P 0

W�(G, Y ) = P~✓(G, Y ) and hence also

p
0
W�(· | ·) = p

0
~✓
(· | ·), which shows (a). This means that we have now created an

e-variable for the original problem which can be written as p✓⇤
a,✓

⇤
b
/pW0 with pW0

a prior distribution on ~✓0 (namely, the one that puts mass 1 on ~✓). (b) is then
an immediate consequence of Theorem 1 of Grünwald et al. [2022a] (part (c) in
the formulation above). (note that we cannot draw this conclusion if H0

0 is not
convex; for then the distribution p

0
W� may not correspond to the distribution pW�

in the original problem — this correspondence is only guaranteed if p0W� coincides
with some p

0
~✓
.

Proof of Theorem 3.2 Recall that we assume that ~⇥0 is convex and compact.
We set kl0(✓a, ✓b) := D(P 0

✓⇤
a,✓

⇤
b
kP

0
✓a,✓b

) where D is the KL divergence as in (3.5),

i.e. for the modified setting in which P
0
✓a,✓b

is a distribution on a single outcome,
as discussed before Theorem 3.1. For the 2 ⇥ 2 model this KL divergence can be
written explicitly as

D(P 0
✓⇤
a,✓

⇤
b
kP

0
✓a,✓b) = EG⇠Q0EY⇠P 0

~✓⇤
|G

"
log

p
0
~✓⇤(Y |G)

p0~✓
(Y |G)

#
(A.7)

=
na

n
EY⇠P 0

✓⇤a


log

p✓⇤
a
(Y )

p✓a(Y )

�
+

nb

n
EY⇠P 0

✓⇤
b


log

p✓⇤
b
(Y )

p✓b(Y )

�

=
na

n

X

ya2{0,1}

p✓⇤
a
(ya) log

p✓⇤
a
(ya)

p✓a(ya)
+

nb

n

X

yb2{0,1}

p✓⇤
b
(yb) log

p✓⇤
b
(yb)

p✓b(yb)
.
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From (3.8) we now see that nkl0(✓a, ✓b) = kl(✓a, ✓b). We will prove the theorem
with kl replaced by kl0 and H0 by H

0
0; since the two KL’s agree up to a constant

factor of n, all results transfer to the kl mentioned in the theorem statement.
Since ~⇥0 is compact in the Euclidean topology and all distributions in H

0
0 can

be represented as 2-dimensional vectors, i.e. they have common and finite support,
we must have that H0 is compact in the weak topology so we can use the lower-
semicontinuity of KL divergence in its second argument (Posner’s theorem) as in
[Grünwald et al., 2022a] to give us that the minimum KL divergence minkl0(✓a, ✓b)
is achieved by some (✓�a, ✓

�
b ). Since KL divergence is strictly convex in its second

argument and H
0
0 is convex (this is the place where we need to use kl0 rather than

kl: H0 may not be convex!), the minimum must be achieved uniquely. Since KL
divergence kl0(✓a, ✓b) is nonnegative and 0 only if (✓a, ✓b) = (✓⇤a, ✓

⇤
b ), it follows

that (✓�a, ✓
�
b ) = (✓⇤a, ✓

⇤
b ) if minkl(✓a, ✓b) = 0. Otherwise, since we assume (✓⇤a, ✓

⇤
b )

to be in the interior of [0, 1]2, kl(✓a, ✓b) = 1 i↵ (✓a, ✓b) lies on the boundary of
[0, 1]2. Thus, (✓�a, ✓

�
b ) must lie in the interior of [0, 1]2 as well. (✓�a, ✓

�
b ) cannot lie

in the interior of ~⇥0 though: for any point (✓a, ✓b) in the interior of ~⇥0 we can
draw a line segment between this point and (✓⇤a, ✓

⇤
b ). Di↵erentiation along that

line gives that kl0(✓a, ✓b) monotonically decreases as we move towards (✓⇤a, ✓
⇤
b ), so

the minimum within the closed set ~⇥0 must lie on its boundary.
It remains to show that (3.9) is the (✓⇤a, ✓

⇤
b )-GRO e-variable relative to H0. To

see this, note that, by convexity of H0
0, from Theorem 3.1, we must have that the

GRO e-variable for this original problem is of the form

p✓⇤
a
(yna

a )p✓⇤
b
(ynb

b )

p✓+
a
(yna

a )p✓+
b
(ynb

b )

for some (✓+a , ✓
+
b ). The result then follows again by Theorem 1 of Grünwald

et al. [2022a] (part (c) in the formulation above): this shows that the distribution
W0 that puts mass 1 on (✓+a , ✓

+
b ) minimizes, among all distributions W on ~⇥0,

D(P✓⇤
a,✓

⇤
b
kPW ). Since the set of such distributions includes all distributions that

put mass 1 on some (✓a, ✓b) 2 ~⇥0, we must have that (✓+a , ✓
+
b ) = (✓�a, ✓

�
b ).
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S3.B Extended simulation results

Numerical example We here give a small numerical example to illustrate the
construction of our confidence sequences. For this example, we will look in detail
at the data used to generate the second row of Figure 3.2a, the second panel,
where we have observed 500 data blocks, with 27 “successes” (y = 1) in group

a, and 136 “successes” in group b. To estimate �l and �r, S
(m)

[na,nb,W1;~⇥0]
as in

(7.14) was calculated for that specific data stream, for a grid of possible �, each
defining one ~⇥0; here, a grid with size 100 and a precision of 0.02 on [�1, 1] was
applied. The prior W1 for the posterior mean was chosen as a Beta prior with
↵ = � = 0.18 according to Turner et al. [2021]. The area corresponding to values

of � for which S
(m)

[na,nb,W1;~⇥0]
<

1
0.05 after block m = 500 represents the confidence

interval. For example, for the lower bound, �l, the smallest value of � that did
not lead to rejection was 0.15, with a corresponding e-value of 2.23. The e-value
corresponding to � = 0.13 was 24.17, hence this risk di↵erence was excluded from
the confidence interval.

Running intersection In Figure S3.1, confidence sequence width is compared
with and without applying the running intersection.

Figure S3.1: Confidence sequence with and without running intersection, for data
generated under P✓a,✓a+� with ✓a = 0.05, for a data stream of length 100. The
significance threshold was set to 0.05. The design was balanced, with data block
sizes na = 1 and nb = 1.
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Supplementary material for chapter 4

The following contains Section 1, examples of theme and change phrases used for
filtering sentences in the NLP pipeline, of the supplementary material for Chapter
4 in this thesis. The other sections of the supplementary material can be found
online in the publication corresponding to this chapter in BMC Psychiatry [Turner
et al., 2022].

Table S4.1: Examples from the lists used for rule-based filtering of the four themes
and change phrases

Category Dutch Translation to
English

Sentiment
score

Symptom reduction Angstiger More anxious -1

Angstigheid Anxiety -1

Agressie Aggression -1

Agresie Aggression
(misspelled)

-1

Somber Sad -1

Somer Sad (misspelled) -1

Rotgevoel Bad feeling -1

Doelloosheid Aimlessness -1

Social functioning Zelfstandig Independent 1

Zelfstandige Independent
(conjugation)

1

Zelfstandigheid Independence 1

Resocialiseren Resocialize 1

Participeert Participates 1

Vriendinnen Girlfriends 1

Vriendschappen Friendships 1

Verantwoordelijkheid Responsibility 1

General well-being Welbevinden Well-being 1

Welzijn Well-being
(synonym)

1

Hoop Hope 1

Zingeving Meaning 1

Zinvol Meaningful 1

Zelfwaardering Self-esteem 1

Eigenwaarde Self-esteem
(synonym)

1

Zelfvertrouwen Self-confidence 1

Zelfvetouwen Self-confidence
(misspelled)

1

Patient experience Voelde Felt 1

Nez In their own words
(abbreviated)

1

Voelt Feels 1
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Table with examples, continued
Category Dutch Translation to

English
Sentiment
score

Uitte Expressed 1

Verwoorde Articulated 1

Constateert Noted 1

Merkt Notes 1

Mekrt Notes (misspelled) 1

Change indicator Afnam Decreased -1

Afname Decrease -1

Afgenomen Decreased
(conjugation)

-1

Toenemende Increasing 1

Toenemde Increasing
(misspelled)

1

Verbeter Improve 1

Verminder Reduce -1

Vermindern Reduce (misspelled) -1
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Supplementary material for chapter 5

Table S5.1: Overview of antidepressant prescription groups and specific antide-
pressants present in the data

Group Antidepressant
MAOI Tranylcypromine

Moclobemide

Phenelzine

nSSRI Trazodone

Duloxetine

Venlafaxine

Other Bupropion

Vortioxetine

Agomelatine

Hyperici herba

SSRI Sertraline

Citalopram

Escitalopram

Fluoxetine

Paroxetine

Fluvoxamine

TetraCA Mirtazapine

Mianserine

TriCA Nortriptyline

Amitriptyline

Clomipramine

Imipramine

Doxepine

Maprotiline

Dosulepine

Table S5.2: Overview of therapeutic dose range for selection of antidepressant
treatment trajectories

antidepressant Minimal dose Maximal dose
tranylcypromine 10 60

phenelzine 8 120

moclobemide 100 600

clomipramine 10 250

nortriptyline 20 250

amitriptyline 10 150

imipramine 10 300
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Table with dose ranges, continued
antidepressant Minimal dose Maximal dose
dosulepin 50 225

doxepin 25 300

trimipramine NA NA

venlafaxine 75 375

mirtazapine 15 45

trazodone 100 400

bupropion 150 300

duloxetine 60 120

agomelatine 25 50

vortioxetine 5 20

hyperici herba NA NA

sertraline 50 200

citalopram 10 40

fluoxetine 20 60

escitalopram 5 20

paroxetine 20 50

fluvoxamine 50 300
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Supplementary material for chapter 6

The supplementary material for Chapter 6 can be found online in the publica-
tion corresponding to this chapter in Psychiatry Research as: Yuri van der Does,
Rosanne J. Turner, Miel J.H. Bartels, Karin Hagoort, Aaron Metselaar, Floortje
E. Scheepers, Peter D. Grünwald, Metten Somers and Edwin van Dellen. Out-
come prediction of electroconvulsive therapy for depression. Psychiatry Res. 2023
Aug;326:115328. doi: 10.1016/j.psychres.2023.115328

175



Supplementary material for chapter 7

Appendix section S7.A contains detailed proofs and section S7.B additional ex-
periments and figures.

S7.A Proofs

Proof. (of theorem 7.2.1). First consider the basic case with E
(m) as in (7.8). As

we show below, we have, with E ⌘ EP✓⇤ ,

E
h
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i
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logSj
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log (nxmk)
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mk ·D(P✓⇤
a,k,✓

⇤
b,k

kP✓̃0,k,✓̃0,k
)) +O(logm) (A.8)

where we use notation D(P✓⇤
a,✓

⇤
b
kP✓0,✓0) as in (7.4); and ✓̃0,k is defined as

argmin✓2[0,1] D(P✓⇤
a,k,✓

⇤
b,k

kP✓,✓) which by the same calculation as the one leading

up to (7.4, is given by ✓̃0,k = (na/n)✓⇤a,k +(nb/n)✓⇤b,k, and mk denotes the number
of times that an instance of block k was observed in the first m blocks, and we
remind the reader that +O(logm) may also indicate a negative di↵erence of order
logm. (A.8) immediately implies the result, using (7.6).

The first two equalities in (A.8) are immediate. The first inequality follows
because P✓̃0,kj

,✓̃0,kj
minimizes KL divergence to P✓⇤

a,kj
,✓⇤

b,kj
among all ✓ 2 [0, 1],

within each block j. The final equality follows by independence and basic calculus.
It remains to show the second inequality. This one follows because we use a prior
W (✓a,k, ✓b,k under which ✓a and ✓b are independently beta distributed with strictly
positive densities on (0, 1). We can then use a standard Laplace approximation of
the Bayesian marginal likelihood to obtain, for each fixed k 2 {1, . . . ,K}, where
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the expectation E is over Y 0
(1), . . . , Y

0
(m0) ⇠ P✓⇤

a,k,✓
⇤
b,k

:
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5+ log(na + nb)m
0 +O(1).

Here the equality is standard telescoping of the Bayesian marginal likelihood, and
the inequality is the Laplace approximation, i.e. the same calculation as the one
leading up to the (d/2) log n BIC approximation of Bayesian marginal likelihood
for a d-parameter exponential family; here d = 2 since we have two free parameters,
✓
⇤
a,k and ✓

⇤
b,k; see [Grünwald, 2007, Chapter 8] for proof and detailed explanation).

This shows the result for the basic case that E(m) is arrived at by multiplica-

tion, (7.8). The case for E
(m)
mix follows similarly by noting that, by construction,

E
(m)
mix � E

(m)
none/3, where E

(m)
none denotes the standard e-process with multiplication

and without cross-talk, for which we have already (just) shown the result.
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S7.B Additional experiments

(a) all di↵erent
(b) same control group
rate (c) same OR

(d) all di↵erent
(e) same control group
rate (f) same OR

Figure S7.1: Examples of 95% stratified confidence intervals ((a), (b) and (c))
and mean confidence interval widths estimated over 100 runs ((d), (e) and (f))
with di↵erent types of cross-talk, including mixing di↵erent types of cross-talk. In
(a), (b) and (c) the true risk di↵erence of the data generating distribution in each
stratum is indicated by a dashed line. For (a) and (d), the data were generated by
distributions with di↵erent control group success rates (0.1, 0.2 and 0.8) and risk
di↵erences (0.05, 0.4 and �0.6) in each stratum. For (b) and (e), strata sizes were
unbalanced: as can be seen for stratum 1, the red points, data collection stopped
after 10 batches. Control group success rates were all 0.5 and risk di↵erences were
di↵erent (�0.49, �0.25 and 0.1). For (c) and (f), strata sizes were unbalanced as
well, and now odds ratios were the same in each stratum (2), but control group
rates di↵ered again (0.2, 0.25 and 0.85).
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(a) Upper bound sequence
example (b) Average di↵erence with true minimum

Figure S7.2: Example of a confidence sequence and average di↵erence from upper
bound to true minimal e↵ect size value through 100 simulations, for di↵erent switch
priors on j

⇤. 30 observations were made in each stratum, and the real di↵erences
were 0.5, 0.4 and 0.05. For the priors on early switch times, all prior mass was
distributed between batch numbers 5 up to 10.↵ was set to 0.05.

Figure S7.3: Average interval width (upper bound for the respective methods
minus lower bound estimated with the minimum method) of confidence sequences
for the lower- (LB) and upper (UB) bounds of the minimum e↵ect and estimated
through 100 simulations. 30 observations were made in each stratum, and the
real di↵erences were 0.5, 0.4 and 0.05. With the switch method, a uniform prior
ranging from j

⇤ = 5 until 30 was applied. With the pseudo-Bayesian approach,
the learning rate ⌘ was set to 1 and 2. ↵ was set to 0.05.
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(a) Confidence sequence example

(b) Average width

Figure S7.4: Example of confidence sequences for the lower- (LB) and upper (UB)
bounds of the minimum e↵ect, and average interval width (upper bound for the
respective methods minus lower bound estimated with the minimum method). 30
observations were made in each stratum, and the real di↵erences were 0.4, 0.4 and
0.5. With the switch method, a uniform prior ranging from mswitch = 5 until 30
was applied. With the pseudo-Bayesian approach, the learning rate ⌘ was set to
1 and 2. ↵ was set to 0.05.

Figure S7.5: Simulated example of a confidence sequence for the mean e↵ect across
subpopulations. 25 observations were made in each stratum, and the real risk
di↵erences were 0.2 and 0.5. The confidence sequence for the mean di↵erence
is plotted alongside the confidence sequence for the minimum of the di↵erences,
estimated with pseudo-Bayesian averaging and a uniform switch prior. ↵ was set
to 0.05.
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