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Chapter 7

Safe Sequential Testing and E↵ect
Estimation in Stratified Count Data

Rosanne J. Turner1,2, Peter D. Grünwald1,3

1: CWI, Machine Learning group, Netherlands
2: University Medical Center Utrecht, Brain Center, Netherlands
3: Leiden University, Department of Mathematics, Netherlands

Abstract

Sequential decision making significantly speeds up research and is more cost-
e↵ective compared to fixed-n methods. We present a method for sequential deci-
sion making for stratified count data that retains Type-I error guarantee or false
discovery rate under optional stopping, using e-variables. We invert the method
to construct stratified anytime-valid confidence sequences, where cross-talk be-
tween subpopulations in the data can be allowed during data collection to im-
prove power. Finally, we combine information collected in separate subpopulations
through pseudo-Bayesian averaging and switching to create e↵ective estimates for
the minimal, mean and maximal treatment e↵ects in the subpopulations.
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Chapter 7

7.1 Introduction

Fixed-n hypothesis tests and confidence intervals limit research opportunities and
quick decision making, as they rely on static research designs where data are only
evaluated at one time point. We aim to develop hypothesis tests for conditional in-
dependence and anytime-valid confidence sequences for stratified treatment e↵ects
in subpopulations that retain a guarantee on the probability of falsely rejecting
the null hypothesis and coverage of the true e↵ect under continuous monitoring
of data. To this end we use e-values, tools for constructing tests that keep the
type-I error rate (or false positive rate) controlled under sequential testing with
optional stopping. Over the last four years, e-values have become the standard
tools (essentially, the appropriate alternative for p-values) for dealing with such
settings. Below we summarize the essentials; for much more background on the
budding field of e-processes (also known as ‘testing by betting’ and ‘safe testing’)
see the recent overview [Ramdas et al., 2022] and specifically for details on e-values
refer to Grünwald et al. [2022a], Vovk and Wang [2021]. In this paper, we develop
e-processes for stratified 2 ⇥ 2 tables, enabling, in Section 7.2, anytime-valid (i.e.
valid under optional stopping) conditional independence (CI) tests for Bernoulli
streams for two groups a and b (e.g. a is control, b is treatment), where the test
is conditional on a third variable, the stratum. Based on these CI tests, we then,
in Section 7.3, develop anytime-valid confidence sequences (henceforth just called
‘confidence sequences’) for a notion of e↵ect size representing divergence from CI.
The importance of our tests is ubiquitous in e.g. medical statistics — we can
think of the CI test in Section 7.2 as an an anytime-valid sequential version of
the Cochran-Mantel-Haenzel test, a work-horse in the field of epidemiology. Our
e-processes are generalizations of those designed for 2⇥ 2 tables (same setting as
ours, but with just a single stratum) by Turner et al. [2021], Turner and Grünwald
[2023]. To achieve the generalization, we employ tools from the theoretical ma-
chine learning literature, most notably the literature on prediction with expert ad-
vice [Cesa-Bianchi and Lugosi, 2006], which extends Bayesian learning techniques
with ideas such as ‘sleeping’, ‘switching’ and the like. Moreover, inspired by these
ideas, we develop the novel notion of cross-talk between strata, which allows us to
make confidence intervals narrower if outcomes in various strata are interrelated,
while nevertheless remaining valid even if they are not. While for many statistical
models, anytime-valid tests need more data to reach a desired conclusion than
fixed n methods and anytime-valid confidence intervals are somewhat wider than
standard ones [Ramdas et al., 2022, Grünwald et al., 2022a], we find in this paper
that we can partially counteract this di↵erence by employing the cross-talk strat-
egy (which is not available for fixed-n methods), as is illustrated by comparing
our confidence sequences to fixed-n confidence intervals for Mantel-Haenszel risk
di↵erences in Section 7.3.

E-Processes Consider a random process Y1, Y2, . . . and let H0, the null hypoth-
esis, be a set of distributions for this process. An e-variable for
Yj , Yj+1, . . . , Ym conditional on Y

(j�1) = (Y1, . . . , Yj�1) for testing H0 is any non-
negative random variable S that can be written as function of Y (m) = (Y1, . . . , Ym)
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such that
8P 2 H0 : EP [S | S

(j�1)]  1; (7.1)

for j = 1 we set EP [S | S
(0)] := EP [S] and call S an unconditional e-variable; an

e-value is the value an e-variable takes on a realized sample. It is easily shown
that for any sequence S1, S2, . . . where Sj is an e-variable for Y(j) conditional on

Y
(j�1), the product E

(m) :=
Qm

j=1 Sj is an unconditional e-variable for Y
(m).

E
(1)

, E
(2)

, . . . is called a test martingale or e-process (see Ramdas et al. [2022] on
how e-processes strictly generalize test martingales). Via Ville’s inequality, it is
shown that e-processes have the remarkable property that, for any 0 < ↵ < 1, the
probability that there exists an m such that E

(m)
� 1/↵ is bounded by ↵. As a

consequence, if we look at the data at some time m and reject if E(m)
� 1/↵, the

probability under the null of falsely rejecting the null is at most ↵ no matter how
we chose m; it may be determined by external circumstances (do we have money
to experiment further?) or by aggressive stopping rules such as ‘keep sampling
until you can reject the null’, or even by peeking into the future. Tests with this
property are called safe under optional stopping and Ramdas et al. [2020] show
that, in essence, all reasonable such tests should be based on e-processes. Just like
p-values can be converted into confidence intervals, e-process can be converted
into anytime-valid confidence tests, also known as confidence sequences — we will
explore these in Section 7.3.

Setting We consider the stratified contingency table setting/model. Under the
global null hypothesis (we consider more complicated nulls later), outcomes Y 2

{0, 1} are independent of groups X 2 {a, b} (e.g. representing interventions)
given their stratum k 2 [K] := {1, ...,K}. We formalize this by measuring time
in terms of blocks: we assume that at each time j = 1, 2, . . ., we are given a
stratum indicator kj 2 [K] and we observe a block of n = na + nb outcomes,
with na outcomes in group a and nb in group b, all in the same stratum kj .
We write Y

(m) = (Y1, . . . , Ym) with Yj the data vector corresponding to the j-
th block arriving. Hence Yj = (Yj,a,1, . . . , Yj,a,na , Yj,b,1, . . . , Yj,b,nb) is a vector in
{0, 1}n denoting n = na + nb outcomes in kj . Under both null and alternative,
all blocks are assumed independent, with each outcome in group x in stratum k

independently ⇠ Bernoulli(✓x,k). Formally, the null hypothesis then expresses that

H0 : ✓a,k = ✓b,k for all k. (7.2)

We will assume na = nb = 1 for all strata in simulation examples in this paper,
but these can be chosen freely in practice and can even be adapted in between data
blocks — as long as they are set at or before the beginning of a data block, they are
allowed to depend on the past. Of course, in practice, we often deal with 2K i.i.d.
streams of data, one for each group-stratum combination, with data not necessarily
coming in at the same rate for di↵erent strata/groups. While superficially di↵erent,
we can still recast this setting in terms of blocks: for example, participant may
sequentially enter a study and are each independently randomized with probability
1/2 to receive ‘treatment’ (group b) or ‘control/placebo’ (a). We then wait until
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Chapter 7

the first time t1 that we have seen na outcomes in group a and nb outcomes in
group b in the same stratum; we call this stratum k1, denote these n outcomes
Y1, and proceed observing outcomes in the various streams until the first time t2

that there is another stratum k2 (potentially k2 = k1) so that we have seen na

outcomes in group a, nb in group b in stratum k2; we denote these n outcomes Y2,
and so on. If we want to stop at any time t, we take as data all blocks that have
been completed so far, and ignore all started-yet-unfinished blocks.

Related Work The first paper to use e-processes for conditional independence
testing is [Lindon and Malek, 2022], but their tests are very di↵erent from ours
and involve a simple null hypothesis, allowing them to use Bayes factors for their
e-processes. Further, Turner et al. [2021], Turner and Grünwald [2023] develop
independence tests and confidence sequence for 2⇥ 2 tables; our paper is a direct
extension of theirs, extending their techniques to the stratum-conditional case.
Very recently four other related papers have appeared: [Pandeva et al., 2022,
Grünwald et al., 2022b, Shaer et al., 2022, Duan et al., 2022]: these papers all
di↵er from ours in that they assume data are jointly i.i.d. (i.e. one observes a
single i.i.d. stream (X1, Y1,K1), (X2, Y2,K2), . . .). The latter three also make the
so-called Model-X assumption (the distribution of Xi | Ki is assumed known).
Our paper is complementary: we do not need the i.i.d. or Model-X assumption
and as explained above, our setting does not just capture data in blocks (such as
paired data) but also data in the form of 2K i.i.d. streams, one for each group in
each stratum, with no stochastic assumptions about what group or what stratum
arrives at what time. The price we have to pay is that we can only deal with
a small number of strata and with finite sets of outcomes and number of groups
(in this paper we focus on 2 but extension to the finite case is straightforward);
aforemetioned references can deal with arbitrary covariate and outcome random
variablesKi and Yi. Nevertheless, small-strata-count-studies are highly common in
the medical statistics world, and we show here how to construct e�cient sequential
tests for them.

The code used for experiments in this paper will initially be placed on the
repository linked to this publication [Turner, 2023], and will later be integrated in
the safestats R package [Ly et al., 2022].

7.2 E-variables for testing the global null

We first consider the case where there is only one stratum, kj = k
⇤ for each each j.

The problem is then reduced to testing whether two Bernoulli data streams come
from the same source. Turner et al. [2021] showed that in this case, for arbitrary
estimators ✓̆a|Y (j�1)

, ✓̆b|Y
(j�1), the following is an e-variable for Yj conditional on

Y
(j�1), i.e. (7.1) holds with S := Sj given by

Sj =
naY

i=1

p✓̆a|Y (j�1)(Yj,a,i)

p✓̆0|Y (j�1)(Yj,a,i)

nbY

i=1

p✓̆b|Y (j�1)(Yj,b,i)

p✓̆0|Y (j�1)(Yj,b,i)
, (7.3)
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where p✓(Y ) = ✓
Y (1� ✓)1�Y denotes the Bernoulli(✓) probability of Y 2 {0, 1}),

as long as we pick ✓̆0 2 ⇥0 = [0, 1] as follows:

✓̆0 = ✓̆0|Y
(j�1) := arg min

✓2[0,1]
D(P✓̆a,✓̆b

kP✓,✓)

(a)
=

na

n
✓̆a|Y

(j�1) +
nb

n
✓̆b|Y

(j�1)
. (7.4)

Here and in the sequel, P✓a,✓b represents the distribution on na + nb independent
binary outcomes with the first na outcomes ⇠ Bernoulli(✓a) and the subsequent
nb outcomes ⇠ Bernoulli(✓b), i.e. the distribution of outcomes in a single block
according to (✓a, ✓b), and D(P✓a,✓bkP✓0

a,✓
0
b
) abbreviates the KL divergence between

two such distributions. Equality (a) follows by simple calculus.

Importantly, in (7.3), (✓̆a, ✓̆b) 2 ⇥1 = [0, 1]2 can be chosen as a function of
past data anyway we like, not a↵ecting the Type-I error guarantee. Nevertheless,
if we were given the true probabilities ✓

⇤
a and ✓

⇤
b of the two groups in block j,

then we could set ✓̆a = ✓
⇤
a and ✓̆b = ✓

⇤
b and this choice is special: the e-variable

(7.3) then has, among all e-variables, the largest expected logarithm under the
true alternative P✓⇤

a,✓
⇤
b
. We then say it is growth-rate optimal (GRO) for collecting

evidence against the null hypothesis [Grünwald et al., 2022a]. Formally, we define

gro(✓⇤a, ✓
⇤
b ) := sup

S
EYj⇠P✓⇤a,✓⇤

b
[logS] (7.5)

where the supremum is over all random variables S that are e-variables for Yj

under H0. It directly follows from [Grünwald et al., 2022a, Theorem 1] that, if
we plug in ✓̆a = ✓

⇤
a and ✓̆b = ✓

⇤
b into (7.3), then the resulting Sj is GRO and its

growth rate is equal to the KL divergence, i.e.

EYj⇠P✓⇤a,✓⇤
b
[logSj ] = gro(✓⇤a, ✓

⇤
b ) = D(P✓⇤

a,✓
⇤
b
kP✓̃,✓̃), (7.6)

where ✓̃ = (na/n)✓⇤a + (nb/n)✓⇤b . Growth-rate optimality is the analogue of statis-

tical power in the sequential setting: if we plug in these ‘true’ ✓̆a = ✓
⇤
a, ✓̆b = ✓

⇤
b ,

we expect the product E
(m) to increase as fast as possible in m, enabling us to

reach 1/↵ and reject the null hypothesis as fast as possible, compared with all
other possible e-processes. In practice though, ✓⇤a and ✓

⇤
b are unknown, but to get

near-grow-optimal e-variables, we can estimate ✓̆a and ✓̆b based on all data seen
before data block j — then ✓̆a and ✓̆b converge to ✓

⇤
a, ✓

⇤
b and our e-variables Sj get

better and better in the GRO sense. We follow Turner et al. [2021] who success-
fully chose to place a beta prior on the parameter space and took the Bayesian
posterior mean as an estimate.

In treatment/ control test settings, there often exists prior knowledge of a
minimal clinically relevant or expected odds ratio OR(✓a, ✓b) := (✓b/(1� ✓b))((1�
✓a)/✓a), i.e. it is known that OR(✓a, ✓b) = � for some given �. In that case, one
can restrict estimating ✓̆a and ✓̆b to ⇥1(�) = {(✓a, ✓b); OR(✓a, ✓b) = �}, possibly
improving power and growth-rate of the test [Turner et al., 2021]. Both search
spaces are illustrated in Figure 7.1.
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Figure 7.1: Parameter space ✓̆a|Y (j�1) and ✓̆b|Y
(j�1) are estimated in, in 2⇥2 table

without strata; either through placing a beta prior on the entire unit square (in
light orange) and calculating the posterior mean with all data up to and including
time j�1 or through restricting the posterior estimation to a particular odds ratio
value � and placing a beta prior on all pairs (✓a, ✓b) corresponding to this odds
ratio value (for example the red curve, for � = 2).

Combining e-variables from individual strata We can use the e-variable
in (7.3) to calculate e-process values E(m),k for each stratum k separately. To be
precise, we set Sk

j to the equivalent of (7.3) if k = kj ,

S
k
j =

naY

i=1

p✓̆a,k|Y (j�1)(Yj,a,i)

p✓̆0,k|Y (j�1)(Yj,a,i)

nbY

i=1

p✓̆b,k|Y (j�1)(Yj,b,i)

p✓̆0,k|Y (j�1)(Yj,b,i)
, (7.7)

and S
k
j = 1 otherwise, i.e. if kj 6= k, and E

(m),k :=
Qm

j=1 S
k
j — note that at each

‘time j’, the product e-variable only changes for the k such that j-th block was a
block of outcomes in stratum k.

We now need to combine the e-processes-per-stratum into a single e-process
for (7.2) to measure evidence against H0 and allowing tests with type-I error
probability guarantee on (7.2), the global null hypothesis that the odds ratio of
the success probabilities equals 1 in each stratum. There are several ways to
do this. The first and most straightforward option is to multiply the individual
e-values across the strata:

E
(m) =

mY

j=1

S
kj

j =
mY

j=1

KY

k=1

S
k
j . (7.8)

To see that E(1)
, E

(2)
, . . . is an e-process, simply note that each S

kj

j is a conditional
e-variable (i.e. it satisfies (7.1) with S = S

kj

j ) since, given that Sj in (7.3) is a
conditional e-variable, S

kj

j must be an e-variable as well. When ✓a,k ⇡ ✓b,k in a
few of the strata, this might be a data-ine�cient approach, as one would need
to collect a lot of extra evidence in the strata where the success probabilities
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are substantially di↵erent to counteract the expected small e-values in the other
strata. A second option that possibly better handles these cases is to create a
convex combination, i.e. a mixture, of e-values at each time point j (any convex
combination of e-variables is also an e-variable [Vovk and Wang, 2021]). A simple
first option is to pick some prior distribution on the strata ⇡(k), and to use that
distribution for calculating the mixture after each batch comes in:

Sj :=
KX

k=1

⇡(k)Sk
j ; E

(m) =
mY

j=1

Sj so that also

E
(m) =

KY

k=1

E
(m),k with E

(m),k =
mY

j=1

S
k
j . (7.9)

Extending the simple averaging above, we could replace the prior ⇡(k) in (7.9)
with a distribution ⇡(k|y(j�1)) that depends on previous data y

(j�1), since, since
we assume the data itself in each block are independent, dependency of ⇡ on past
data will not a↵ect guarantee (7.1). Such an approach is called the method of
mixtures in the anytime-valid testing literature [Ramdas et al., 2022]. Thus, any
distribution on [K] that depends on the past is allowed here, but an intuitive
choice is a pseudo-Bayesian posterior

⇡(k|y(j�1)) :=
⇡(k)(E(j�1),k)⌘P
k0 ⇡(k0)(E(j�1),k0)⌘

, (7.10)

where by definition, E(0) = 1 and we pick ⌘ beforehand as a learning rate: if we set
it to a higher value, we will focus on strata with higher e-values more quickly; with
⌘ = 1, (7.10) becomes similar to a Bayesian posterior. Just as the beta-posterior
used to determine ✓̆x,k in (7.7) allows us to learn ✓

⇤
x,k, this new posterior allows us

to learn which strata can help us most to reject the null. However, even for ⌘ = 1
the analogy to Bayes only goes so far — for example, at each j, only the e-variable
S
kj for stratum kj changes; the other S

k ‘sleep’ [Koolen and Van Erven, 2010]
and thus E

(j�1),k behaves di↵erently from a likelihood. This more general past-
determined updating originates in the area of machine learning called prediction
with expert advice where many other such ‘posterior’-updates have been considered
[Herbster and Warmuth, 1998, Van Erven et al., 2007, Koolen and De Rooij, 2013].
These include the more extreme approach called switching. With this approach,
we calculate (7.9) with ⇡(k) replaced by any distribution we like (the choice is
again allowed to depend on Y

(j�1)) up to and including a particular batch j
⇤.

Thereafter, for j � j
⇤, we set

⇡
⇤(k|y(j)) =

(
1 if k = k

⇤ with k
⇤ = argmaxk E(j⇤),k

0 otherwise
(7.11)

creating a new E-process E(1)
[j⇤], E

(2)
[j⇤], . . . such that, for m  j

⇤, E(m)
[j⇤] = E

(m) and,
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for m > j
⇤,

E
(m)
[j⇤] = E

(j⇤)
·

mY

j=j⇤+1

E
(j),k⇤

(7.12)

j
⇤ could arbitrarily be picked prior to the study, or we could also place a prior on
the moment of switching and take a weighted average over (7.12) for various values
of j⇤ for each �, thereby obtaining yet another e-process with j

⇤ ‘integrated out’
(see Figure S7.2 in the supplementary material for a more elaborate comparison
of switch priors in a simulation experiment for confidence sequences).

In Figure 7.2, the three di↵erent methods for combining e-variables for testing
H0 are compared with respect to power : the expected probability of rejecting H0

under some fixed data generating distribution. For Figure 7.2, data were sam-
pled from a distribution where risk di↵erences and control group rates all di↵ered
between strata. It can be observed that all methods that took the stratification
into account outperformed the unstratified approach, where just one sequential
e-variable was calculated for all strata combined. The three di↵erent methods will
be re-compared for confidence sequences in Figure 7.6.

Figure 7.2: Power for rejecting the null at level ↵ = 0.05 that the odds ratio
in all strata equals 1 estimated with 1000 repeated experiments for various e-
variable combination methods. 40 batches were collected in each of three strata (so
maximum sample size was m = 120) and sampling was stopped as soon as E(m)

�
1
↵ . Real control group success rates were 0.1, 0.2, 0.8 and real risk di↵erences were
0.05, 0.4,�0.6. Pseudo-Bayesian approaches were implemented with learning rates
(LR) 1 and 2. Switch approaches were implemented for switching at point j⇤ = 10,
or with a uniform prior on switch times j = 5 until m� 5.

Cross-talk between strata To further improve power of the hypothesis test,
we will allow for cross-talk between strata while estimating ✓̆a,k and ✓̆b,k based on
data seen so far. In the current simple setting of testing the global null, ‘cross-
talk’ simply amounts to design Sj that grow faster (allowing for faster rejecting of
the null) if the alternative satisfies certain constraints. For example, if one expects
treatment e↵ects (say, measured as odds ratios) to be stable (identical) throughout
di↵erent strata, but control group recovery rates to vary, one would like cross-talk
about the odds ratios between strata. Practically, this means that to arrive at the
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estimates ✓̆x,k | Y
(j�1), we first limit the parameter space to ⇥1(�̂(j�1)), i.e. all

vectors ✓x,k with odds ratio �̂
(j�1), set to be the maximum likelihood odds ratio

based on all previous data in all strata, i.e. calculated by ignoring strata. We
then calculate ✓̆x,k | Y

(j�1) as posterior means using beta priors conditioned on

the parameters being in ⇥1(�̂(j�1)). Similarly, when one expects control group
recovery rates to be stable, but the treatment e↵ects to vary because of a possible
interaction with stratum characteristics, allowing cross-talk about control group
recovery rates might improve power. In practice, we achieve this by using as
beta prior parameters for the control group rate ✓̆a,k|Y

(j�1) the total counts of
failures and successes aggregated over all strata (summed with some initial prior
parameters to ensure stable estimates at time point j = 1; we set initial prior
values 0.18 for both the fail and success rate based on a suggestion by [Turner
et al., 2021]). In the odds-ratio cross-talk scenario, we e↵ectively constrain the
parameters of the alternative ✓̆x,k | Y

(j�1) at each j to share the same odds-ratio;
in the control-group cross-talk scenario, we constrain these parameters to share
the same ✓a, i.e. ✓̆a,k|Y

(j�1) = ✓̆a,k0 |Y
(j�1) for each k, k

0. Would one be unsure
whether cross-talk would improve power at all, and if so, whether one should cross-
talk on the odds ratios or the cross ratios, one could put prior mass 1/3 on each of

the corresponding three e-values, say E
(m)
⇢ for ⇢ 2 {none,odds,control rate},

where none stands for the standard e-variable without cross-talk. One could then,
for each block j, use a mixture e-variable, where the three e-values are mixed as in

(7.10) with ⌘ = 1, k replaced by ⇢ and ‘E(j�1),k’ replaced by ’E(j�1)
⇢ ’ giving a new

‘mix’ e-process. All four cross-talk scenarios are explored in simulations in Figure
7.3, where data were generated from strata with similar control group success
rates, but di↵erent risk di↵erences, and di↵erent control group success rates, but
similar odds ratios showing that allowing for cross-talk on control rate or odds
ratio improves power in the respective scenarios. The cross-talk mixture performs
comparably to the optimal cross-talk options in both cases. Cross-talk can be
expected to improve power even if, in truth, under the alternative, the odds-ratio
resp. control-group rate is just similar, but not exactly the same under all groups;
and the confidence sequences of the next section remain valid (but will get wider)
even if the odds-ratios resp. control-group rates happen to be completely di↵erent.
Thus, the method described here cannot really be viewed as a constraint on the
model, and we chose to call it cross-talk instead: data in one stratum informs,
‘talks to’ estimates for other strata.

A GRO-Sanity Check While the simulations above and below show encour-
aging empirical results regarding the power of our methods, it is still useful to
have some theoretical assurance that, no matter the ‘true’ alternative generating
the data, all methods we consider produce e-values that grow fast (i.e. achieve
good power) under this alternative. We now provide a simple theorem to this end.
As usual in the e-value and safe-testing literature, and for reasons explained by
Grünwald et al. [2022a], we concentrate on GRO (7.5) rather than power.

Theorem 7.2.1. Suppose that we observe m = m1 + . . . +mK blocks, with mk

blocks lying in stratum k, each such block sampled independently from P✓⇤
a,k,✓

⇤
b,k

.
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Figure 7.3: Power for rejecting the null hypothesis at level ↵ = 0.05 that the odds
ratio in all strata equals 1 estimated with 100 repeated experiments for various
types of cross-talk. 40 batches were collected in each stratum and sampling was
stopped as soon as E

(m)
�

1
↵ . On the left, real control group success rates were

0.49, 0.5 and 0.51 in each stratum; risk di↵erences were �0.09,�0.49, 0.39. On the
right, real odds ratios were 4, 4.01, 2.95.

Then, with E denoting expectation under this distribution, the e-process E
(m)

defined by multiplication as in (7.8) and the mix e-process E
(m) as above with

constituent e-processes defined multiplicatively as in (7.8) both achieve:

KX

k=1

mkgro(✓
⇤
a,k, ✓

⇤
b,k) = E

h
logE(m)

i
+O(logm). (7.13)

To interpret the result, note that, if an oracle were to supply us with ✓
⇤
a =

(✓⇤a,1, . . . , ✓
⇤
a,k), ✓

⇤
b = (✓⇤b,1, . . . , ✓

⇤
b,k) i.e. if we were told ‘if the alternative were true,

then its parameters would be P✓⇤
a,✓

⇤
b
’, then we could use the GRO (growth optimal

e-variable) which, conditional on observing a block in stratum k, would obtain the
optimal, largest possible expected growth gro(✓⇤a,k, ✓

⇤
b,k). Since we assume data to

be independent, the best growth we could obtain with such an oracle is given by
the left-hand side of (7.13). The theorem expresses that the price for learning (via
Bayes predictive distributions ✓̆x,k based on beta-priors) rather than knowing ✓⇤a, ✓

⇤
b

is modest, namely logarithmic in m whereas the growth itself is linear in m; this
is the standard situation for parametric settings, described in detail by Grünwald
et al. [2022a]. We may expect the constant hidden in the O(logm) to become
substantially smaller if the preconditions for e↵ective cross-talk hold as described
above, e.g. odds ratios or group recovery rates are identical or similar across
strata; but determining this constant precisely across cases, as well as extending
the analysis to pseudo-Bayesian and switch e-processes, is complicated and will be
left for future research. The proof of this theorem can be found in the appendix.

7.3 Extension to confidence sequences

Turner and Grünwald [2023] showed that (7.3) in the 2⇥ 2-table (single stratum)
can be generalized, to test null hypotheses H0 := {P(✓a,✓b); (✓a, ✓b) 2 ⇥0} beyond
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(a) all di↵erent (b) same control rate (c) same OR

(d) all di↵erent (e) same control rate (f) same OR

Figure 7.4: Examples of 95% stratified confidence intervals ((a), (b) and (c)) and
mean confidence interval widths estimated over 100 runs ((d), (e) and (f)) with
di↵erent types of cross-talk. In (a), (b) and (c) the true risk di↵erence of the data
generating distribution in each stratum is indicated by a dashed line. For (a) and
(d), the data were generated by distributions with di↵erent control group success
rates (0.1, 0.2 and 0.8) and risk di↵erences (0.05, 0.4 and �0.6) in each stratum.
For (b) and (e), strata sizes were unbalanced: as can be seen for stratum 1, the
red points, data collection stopped after 10 batches. Control group success rates
were all 0.5 and risk di↵erences were di↵erent (�0.49, �0.25 and 0.1). For (c) and
(f), strata sizes were unbalanced as well, and now odds ratios were the same in
each stratum (2), but control group rates di↵ered again (0.2, 0.25 and 0.85).
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‘✓a = ✓b’:

Sj,[⇥0] =
naY

i=1

p✓̆a|Y (j�1)(Yj,a,i)

p✓̆�
a|Y (j�1)(Yj,a,i)

nbY

i=1

p✓̆b|Y (j�1)(Yj,b,i)

p✓̆�
b |Y (j�1)(Yj,b,i)

(7.14)

is an e-variable, as long as ⇥0 ⇢ [0, 1]2 is convex and closed. Here (✓̆�a | Y
(j�1)

, ✓̆
�
b |

Y
(j�1)) is defined to minimize KL divergence, i.e. is the pair (✓a, ✓b) 2 ⇥0 that

minimizes, over ⇥0,
D(P✓̆a|Y (j�1),✓̆b|Y (j�1)(Y na

a , Y
nb
b )kP✓a,✓b(Y

na
a , Y

nb
b )). (7.3) is a special case since

with ⇥0 = {(✓, ✓) : ✓ 2 [0, 1]}, this KL divergence is minimized by (✓̆�0 , ✓̆
�
0) with ✓̆

�

as defined underneath (7.3). Again, ✓̆a and ✓̆b are estimated based on past data
Y

(j�1) as in (7.3). Based on (7.14) one can construct an exact (nonasymptotic)
confidence sequence (CS)

CS↵,(m) =

⇢
� : E(m)

[⇥0(�)]


1

↵

�
, (7.15)

with ⇥0(�) ⇢ [0, 1]2 a null hypothesis determined by a divergence measure. By
construction, such a confidence sequence is always-valid [Ramdas et al., 2022] in
the sense that for any �, any ✓ 2 ⇥0(�), the P✓-probability that there will ever be
an m such that � 62 CS↵,(m) is at most ↵. This means that we can take the running
intersection of the confidence sequence while retaining coverage, which will be used
throughout the simulation experiments in this paper. In this paper, we are going
to construct confidence sequences for risk di↵erences as examples, where we are
going to test hypotheses of the form ⇥0(�) :=

�
(✓a, ✓b) 2 [0, 1]2 : ✓b � ✓a = �

 
—

below we extend this to the case that di↵erentiates in terms of the strata. Still,
everything could also easily be adapted to construct confidence intervals for other
divergence measures, such as odds and risk ratios [Turner and Grünwald, 2023].

7.3.1 One CS per stratum

If we expect the e↵ect size values to di↵er between the strata, one could decide
to report a separate confidence sequence for each stratum using (7.15) above. To
reach a better estimate sooner, we could however still allow cross-talk on control
group success rates or odds ratios between subpopulations, as described in section
2 above. In this setup, we would end up with a collection of k confidence sequences:

CSk
↵,(m) =

⇢
� : E(m),k

[⇥0(�)]


1

↵

�
, (7.16)

with ✓̆a and ✓̆b in E
(m),k estimated based on data seen up to time m and E

(m),k

defined as in (7.9) with S
k
j replaced by S

k
j,[⇥0]

as in (7.14), calculated for stratum
k. Illustrations of confidence intervals over time with the three options for cross-
talk are depicted in Figure 7.4. As can be observed there, not allowing cross-talk
gives the best results when the true data generating distributions in the strata
have di↵erent control group success rates and odds ratios (see the circle-shaped
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points in Figure 7.4d, especially in the third stratum, where the e↵ect size has a
di↵erent sign). However, when control group rates or odds ratios are similar across
strata, allowing cross-talk improves results. See for example Figure 7.4e, where
interval width decreases much faster in the smaller stratum 1 while allowing cross-
talk about the control group rate. Similar experiments for comparing confidence
sequences with and without the mixture of cross-talk methods can be found in the
supplementary material, Figure S7.1.

7.3.2 CS for the minimum or maximum

In some scenarios, for example when we do not have the means to collect a large
data sample, or when data is very unbalanced in one or more strata, it could be
more informative to create one CS for the minimum or maximum e↵ect size value
over all strata. To achieve this, we introduce two new forms of null hypotheses
and corresponding e-variables that will subsequently be inverted to create two
one-sided confidence sequences, for lower and upper bounds on the minimum or
maximum.

One-sided CS: upper bound We will first illustrate how to estimate an upper
bound on some minimal e↵ect size value over strata1. To this end, we consider
a null hypothesis of the form H0,� : 8k : ✓k 2 ⇥0(� �) (i.e. for risk di↵erence
e↵ect size, ⇥0(� �) = {(✓a, ✓b) 2 [0, 1]2 : ✓b � ✓a � �}) and aim to design e-
variables to test it. E.g. in the example depicted in Figure 7.5a, we aim to design
an e-variable that will reject H0,�00 at any batch j with probability less than ↵

(i.e., that o↵ers type-I error guarantee), when the data in the strata are in reality
generated by (✓a,1, ✓b,1) and (✓a,2, ✓b,2). We do eventually want to reject H0,�0

as �((✓a,2, ✓b,2)) < �
0. As we collect more and more data, we can reject null

hypotheses corresponding to values of �0 for which �
0
� �((✓a,2, ✓b,2)) gets closer

and closer to 0.
Let us denote the e-process consisting of the e-variables for testing ✓k 2 ⇥0(� �)

in each stratum combined, using any of the methods described above in Section 2,

as E⇤(m)
� . The one-sided confidence interval for the minimum e↵ect can be defined

as:

CS+↵,(m) :=


�1,min

⇢
� : E⇤(m)

� �
1

↵

��
. (7.17)

All possible approaches for combining e-variables from separate strata, as described
in Section 2 above, to find an upper bound for the minimal e↵ect size value are
compared in the confidence intervals in the paragraph below.

One-sided CS: lower bound We now also aim to estimate a lower bound for
the minimal e↵ect size value (or, analogously, an upper bound for the maximal
e↵ect size value). To achieve this, we now consider a null hypothesis of the form
H0,� : 9k : ✓k 2 ⇥0( �). Looking at Figure 7.5b as an example, where data are

1Analogously, with this method a lower bound on some maximal e↵ect size value can be
estimated by reversing all signs.
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(a) Examples of parameter spaces
for H0,� : 8k : ✓k 2 ⇥0(� �).

(b) Examples of parameter spaces
for H0,� : 9k : ✓k 2 ⇥0( �).

Figure 7.5: Parameter space examples for hypotheses tested to construct upper
and lower bounds on minima and maxima of e↵ect size values

generated by (✓a,1, ✓b,1) and (✓a,2, ✓b,2), we aim to design an e-variable that will
reject H0,�0 at any batch j with probability less than ↵ (i.e., we again want type-I
error guarantee if H0,�0 is true), as �((✓a,2, ✓b,2)) < �

0. We do want to reject as
quickly as possible H0,�00 , as 8k, �(✓(k)) > �

00. As we collect more data, we can
reject null hypotheses with values of �00 for which �((✓a,2, ✓b,2)) � �

00 gets closer
and closer to 0.

To build our one-sided confidence interval CS�↵,(m), we again want to construct

a compound e-variable E
⇤(m)
� testing the null hypothesis corresponding to each

value of �, but now take max{� : E⇤(m)
� � 1/↵} as our lower bound. To test H0,�

we will use the minimum of E(j),k
⇥0(�) over all k, which provides an e-variable for

H0,�. To see this, let us assume H0,� is true an that for some k
⇤, ✓k⇤ 2 ⇥0( �);

the other data generating distributions might or might not come from ⇥0( �).
Then: E(mink Sk)  mink E(Sk)  E(Sk⇤

)  1.

Combining into confidence interval We now combine the lower bound and
upper bound estimation methods established above to build confidence intervals for
the minimal e↵ect size value. This can be achieved through taking the intersection
of the one-sided confidence sequences introduced above: CS↵,(m) := CS�↵,(m) \

CS+↵,(m). Results from an experiment where in one of the strata the treatment

e↵ect was substantially smaller than in the others are depicted in Figure 7.6 (with
average interval widths in the supplementary material, Figure S7.3). In early
phases of data collection, multiplication gives the quickest convergence, but as
more data is collected, the “sequential learning” methods converge quicker. When
risk di↵erences where about the same across all strata, multiplication converged
the quickest (see Figure S7.4 in the Supplementary material).
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Figure 7.6: Example of confidence sequences for the lower- (LB) and upper (UB)
bounds of the minimum e↵ect. 30 observations were made in each stratum, and
the real di↵erences were 0.5, 0.4 and 0.05. With the switch method, a uniform
prior ranging from mswitch = 5 until 30 was applied. With the pseudo-Bayesian
approach, the learning rate ⌘ was set to 1 and 2. ↵ was set to 0.05.

7.3.3 CS for the mean e↵ect

In addition to estimating the minimum or maximum e↵ect in one of the strata, one
might be interested in estimating the mean e↵ect an intervention will have on an
entire population, given the existence of subpopulations. For example, one might
want to estimate the e↵ect a vaccination will have on the probability of people
being contaminated with a disease, taking into account that a certain proportion
of the population concerns elderly or immunocompromised citizens.

Assuming we have a trustworthy estimate of the proportion of subjects belong-
ing to each stratum k in the population of interest, ⇡k, we aim to estimate the
mean risk di↵erence (mean expected e↵ect of the intervention) �⇤ :=

P
k ⇡k�k. We

can build a confidence sequence for �⇤ by constructing an e-variable for the set of
all possible success probability distributions satisfying this �⇤, H0,�⇤ : {P~✓; d(

~✓) =P
k ⇡kd((✓a,k, ✓b,k)) = �

⇤
}. It is not directly clear what an optimal e-variable could

look like; one option that o↵ers both the type-I error guarantee with potentially
good power is to combine the growth-rate optimal e-variable (7.3) for a specific
�k in each stratum with the universal inference [Wasserman et al., 2020] method
for designing e-processes. Based on this strategy, we look at the set of all vectors
~� := (�1, ..., �K) that satisfy

P
k ⇡k�k = �

⇤. For one member of the set, we can
calculate the e-variable based on all batches of data seen up to and including time
m according to (7.3):

E
(m)

[~�]
=
Y

k

E
(m),k
[⇥0(�k)]

,

where E
(m),k
[⇥0(�k)]

can be calculated using estimates for ✓̆a,k and ✓̆b,k as before, only
including data seen up to and not including batch m. The e-variable for H0,�⇤

can then be calculated as [Wasserman et al., 2020]: E
⇤(m)
�⇤ = min~� E

(m)

[~�]
, and the

corresponding confidence sequence can be constructed as before, analogously to
(7.17).
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Figure 7.7: Simulated example of 95% confidence sequences for the mean e↵ect
across subpopulations. 25 observations were made in each stratum, and the real
risk di↵erence of 0.4 was homogeneous across subpopulations. The confidence
sequence for the mean e↵ect is plotted alongside the Miettinen-Nuninen confidence
interval, a fixed-n confidence interval method, at batch number 50 (the purple
triangles). In the supplementary materials, figure S7.5, the mean e↵ect CS is
further illustrated for heterogeneous risk di↵erences in strata.

Comparison to fixed-n CI for Mantel-Haenszel risk di↵erence Much of
the research into estimating stratified risk di↵erences with coverage guarantee has
considered Mantel-Haenszel risk di↵erences, where risk di↵erences or odds ratios
are homogeneous across strata but control group rates can vary (see for example
[Qiu et al., 2019]), with fixed-n designs. This is a strong assumption, and we do
not make it ourselves; but we can use cross-talk on the risk di↵erence to tailor
our confidence sequences so that they adapt (get narrow) if the risk di↵erence is
indeed homogeneous. One recent fixed-n approach for this setting was described
and implemented by Klingenberg [2014]. In Figure 7.7, our confidence sequence for
the mean e↵ect is compared to the Miettinen-Nuninen (MN) confidence interval
from Klingenberg [2014] at fixed time 50 in a setting where risk di↵erences were
homogeneous. The MN-interval is slightly narrower, but because we are allowed
to continuously monitor the confidence interval while retaining coverage with the
confidence sequence, we can exclude 0 from the CS considerably earlier than with
the fixed-n method — which is remarkable because unlike the MN fixed-n confi-
dence interval, our anytime-valid confidence sequences are also valid if in fact risk
di↵erences are not homogeneous.

7.4 Application in psychiatry use-case

We will now illustrate the process of planning and analyzing a study with the
stratified, safe anytime-valid tests described in this paper. As a use-case we will
look at a recent exploratory study at two major mental healthcare facilities in the
Netherlands. Data from 4808 and 735 patients in their first clinical antidepressant
treatment trajectory was analyzed in an exploratory Bayesian network analysis
[Turner, 2022] (this thesis, chapter 5). This retrospectively collected data set
revealed several potential interesting associations between patient characteristics,
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treatment choices and treatment outcomes. However, because of this retrospective
setup, these patterns cannot yet be interpreted as causal relations (an overview of
potential confounders is given in this thesis, chapter 5). Therefore, before these
results can be used in clinical applications, further inferential analysis is needed to
confirm the formed hypotheses and generate robust uncertainty estimates. Each
hypothesis and uncertainty estimates could then be investigated in a randomized
controlled trial or prospective study with safe anytime-valid inference. An example
of a power analysis and simulation of an anytime-valid confidence interval for one
of these hypotheses is given below.

(a) Power estimation (b) Confidence interval example

Figure 7.8: Power for rejecting the null hypothesis at level ↵ = 0.05 that the
odds ratio in all strata equals 1 estimated with 1000 repeated experiments, and an
example of a resulting confidence interval in such a sampling scheme. 300 batches
were sampled in each stratum according to the alternative hypothesis described in
the main text and sampling in the power analysis was stopped as soon as E(m)

�
1
↵ .

The cross-talk used was of the mixture type described in section 7.2.

One association to explore was that choosing a particular type of antidepres-
sant, a tricyclic antidepressant, increases treatment success, but at a di↵erent rate
for di↵erent groups of patients. For patients without social problems and with-
out antipsychotics prescriptions the probability increased from 63 to 74 percent
(stratum 4 in figure 7.8). This e↵ect was smaller for patients with a di↵erent
combination of characteristics: the success probability increased from 68 percent
to 74.3 percent for patients with social problems and antipsychotics prescriptions
(stratum 1), for patients with only social problems the increase was from 67 to
74.4 percent (stratum 2) and for patients with only antipsychotics from 66 to 74.1
percent (stratum 3). A power analysis to plan an experiment with safe, stratified
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analysis and a balanced design was performed, of which the result is depicted in
figure 7.8. In the power analysis, we took as the alternative hypothesis one based
on the numbers above. The balanced design implies that each time a patient has
been treated with and without a tricyclic antidepressant within one of the strata,
an interim analysis is performed, and a decision to stop the study or continue
can be taken. In figure 7.8 it can be observed that with this design and analysis,
we need 194 less batches of data (388 less patients) when we use the stratified
analysis with cross-talk, compared to an unstratified safe anytime-valid analysis.
In the example of a confidence interval constructed with cross-talk on the right,
it can be observed that we can already exclude 0 from the confidence interval in
stratum 2 after observing only 140 batches of patients. Would this confidence
interval have been displayed live on a dashboard during a study, clinicians could
have decided on their recommendation to prefer tricyclic antidepressants for these
patients way before the total 1000 batches of patients were seen: they could have
decided already much earlier, after the first 280 patients of stratum 2 had been
seen.

7.5 Conclusion and future work

We have introduced a new method for global null hypothesis testing and construct-
ing exact anytime-valid confidence sequences in stratified count data. Our method
is complementary to previously proposed methods for similar settings as we need
no stochastic assumptions about the arrival times of the subgroups or strata, and
no Model-X assumptions. We have shown that our tests and estimates are e�-
cient in terms of power, and that precise e↵ect size estimations can be reached
with less strong model assumptions compared to pre-existing fixed-n methods,
while retaining coverage guarantees and allowing sequential decision making. We
have also shown that we can improve the traditional model of global null testing
in the CMH-setting through incorporating ideas from machine-learning: allow-
ing for cross-talk between strata, and incorporating pseudo-Bayesian learning and
switching between strata for learning compound e↵ect measures.

Our work extends that of Turner et al. [2021] and Turner and Grünwald [2023]
to incorporate strata for count data. Their methods, however, are generally im-
plementable for any convex null hypothesis, and future work should explore if
they also can feasibly be extended to stratified sequential e↵ect estimation for
continuous outcome variables.
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