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Abstract

We developed and tested a Bayesian network(BN) model to predict ECT remission
for depression, with non-response as a secondary outcome.

We performed a systematic literature search on clinically available predictors.
We combined these predictors with variables from a dataset of clinical ECT trajec-
tories (performed in the University Medical Center Utrecht) to create priors and
train the BN. Temporal validation was performed in an independent sample.

The systematic literature search yielded three meta-analyses, which provided
prior knowledge on outcome predictors. The clinical dataset consisted of 248 treat-
ment trajectories in the training set and 49 trajectories in the test set at the same
medical center. The AUC for the primary outcome remission was 0.783(95%CI
0.647-0.921), accuracy 0.78, sensitivity 0.67, specificity 0.81, after temporal valida-
tion in the independent sample. Prior literature information marginally increased
AUC and reduced CI width.

A BN model comprised of prior knowledge and clinical data can predict re-
mission of depression after ECT with reasonable performance. This approach can
be used to make outcome predictions in psychiatry, and o↵ers a methodological
framework to weigh additional information, such as patient characteristics, symp-
toms and biomarkers. In time, it may be used to improve shared decision-making
in clinical practice.
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Chapter 6

6.1 Introduction

Depression is a leading cause of disability according to the World Health Organi-
zation, a↵ecting one in six people during their lifetime [Kessler et al., 2005, World
Health Organization, 2022]. Electroconvulsive therapy (ECT) is the most e↵ec-
tive available treatment for severe depression [Lisanby, 2007]. In practice, ECT
is usually reserved for patients who show insu�cient response to antidepressant
medications and psychotherapy, in part because of stigma and anticipated cogni-
tive side e↵ects [Leiknes et al., 2012]. Although highly e↵ective on a group level,
a substantial number of patients show no or insu�cient response to ECT. There
are several factors associated with response to ECT, including age and presence
of psychotic symptoms [Van Diermen et al., 2018]. However, in current psychi-
atric practice, neither systematic assessment of these independent predictors, nor
assessment of cumulative predictive value of multiple predictors are routinely used
in the decision to initiate ECT for individual patients. As a result, treatment
outcome on the individual level remains largely unpredictable.

Clinical decision support systems (CDSSs) are computerized tools which pro-
vide clinicians individualized information based on various sources of information,
for instance demographic characteristics and information from electronic health
records (EHRs). CDSSs make use of prediction models or algorithms for system-
atic assessment of information. CDSSs are used in several clinical specialties, such
as in cardiovascular medicine [ESC Cardiovasc Risk Collaboration et al., 2021,
Hageman et al., 2022]. In psychiatry, the availability of CDSSs is modest at best,
as was illustrated by Koposov and colleagues [Koposov et al., 2017]. Bright and
colleagues give an overview of clinically implemented CDSSs across all medical
specialties in a systematic review and meta-analysis of randomized controlled tri-
als. They found that clinicians more likely to appoint the appropriate treatment
when informed by CDSSs compared to clinicians who did not use these systems,
based on 46 studies across diverse venues and systems (OR 1.57, 95%CI 1.35 –
1.82) [Bright et al., 2012]. A recent Cochrane review by Stacey and colleagues,
which assessed the e↵ect of decision aids, reported that patients who used CDSSs
were better informed on treatment options, felt more knowledgeable, and were
likely to have more accurate risk perceptions [Stacey et al., 2017]. A CDSS which
can predict the e↵ect of ECT for individual patients could be useful to inform
patients and facilitate shared decision making before treatment is initiated. In
order to realize this, a prediction model for ECT outcome is required.

In this study, we developed a personalized e↵ect prediction model for the
prediction of remission after ECT, and, secondary, ECT non-response, using a
Bayesian network (BN) model. BNs are a combination of intuitive graphical
representations of causal or predictive dependencies between variables, and the
corresponding underlying quantitative model (for an insightful tutorial aimed at
psychopathology researchers see Briganti et al. [2022]). The presence and under-
lying quantitative model of these dependencies can be derived from data, can be
obtained from expert opinion, or both [Arora et al., 2019]. The aim was to pre-
dict e↵ect of an ECT trajectory using data which was clinically available before
ECT was initiated. We used a systematic review to identify predictors of ECT

94



outcome to inform a BN with prior knowledge from literature. Subsequently, we
used expert knowledge to further design the BN, and tested its performance in
clinical data. Finally, we validated the performance of this prediction model in a
validation dataset.

6.2 Methods

We used a stepwise approach to create the BN model for ECT outcome predic-
tion: 1) acquiring prior knowledge by performing a literature search for clinically
obtainable predictors; 2) Creation and training of a BN using prior knowledge
from literature and a clinical dataset; and 3) validation of the trained model in a
validation cohort.

6.2.1 Acquiring prior knowledge

Systematic review To acquire high quality prior knowledge from literature, we
performed a systematic review on predictors of ECT outcome, in which we only
searched for high quality meta-analyses. We performed a literature search in the
online libraries MEDLINE and EMBASE according to the PRISMA guidelines
for systematic reviews [Page et al., 2021]. The protocol of this review was not
registered in advance and is not available for review as such. The question this
systematic review addressed was formulated as: “for adult patients undergoing
ECT, what are clinical predictors for outcome (response or remission) of ECT”.
Search terms used were: (ect OR electroconv*) AND predict* AND (remission OR
respons* OR outcome*); all published articles available before 16-11-2022 were re-
viewed. Articles were excluded in screening of title and abstract if they were:
non-human, non-English language, when treatment was not ECT and if study de-
sign was not a meta-analysis. Systematic reviews without meta-analysis were ex-
cluded. When the full-text studies were not available, the authors were contacted.
Eligibility criteria for inclusion were studies on predictors of ECT outcomes of
which data were readily available at baseline in most patients. These were defined
as demographic predictors, clinical assessment predictors, comorbidity predictors,
pharmacological or technical ECT aspects predictors. The definition did not in-
clude MRI findings predictors, because MRI scans are not performed as standard
practice at the start of ECT.

The screening and quality assessment of articles were performed by two in-
dependent reviewers (YD and AM), without automation tools. Discrepancies in
results were resolved by consensus, or by a third reviewer in case of disagreement
(ED). We performed a ROBIS quality assessment to assess the risk of bias in the
identified meta-analyses [Whiting et al., 2016]. Only studies with an overall low
risk of bias were included in model development.

Data were collected from each individual predictor for both remission and re-
sponse. Standardized mean di↵erences with 95% confidence intervals (95%CI) were
collected for continuous predictors, odds ratios (ORs) with 95%CI were collected
for dichotomous predictors. Outcome was defined as “remission” or “response”,
without further specification, in order to include all relevant studies. When two or
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more meta-analyses provided data for a single predictor and outcome, the authors
would, after consensus, only extract data from the most relevant meta-analysis
available, based on date of publication and quality assessment. Results of the
data extraction were used as priors for the BN model.

6.2.2 Bayesian network model development

Study population For the BN model, we used individual patient data from
patients who were treated with ECT in the University Medical Center Utrecht
(UMCU) in the Netherlands between 1 January 2008 and 27 September 2019. We
included all patients receiving ECT for a depressive episode, including patients
with bipolar and schizoa↵ective disorders, who had a discharge letter with conclu-
sion of ECT trajectory available When patients had multiple ECT trajectories, a
subsequent trajectory was only included after a time interval of at least 90 days. As
many clinical patient characteristics structurally collected in routine clinical care
were acquired retrospectively and were used as predictors of outcome. These were
age, sex, somatic comorbidity, age of onset of symptoms, duration of depressive
episode, ECT naivety, co-morbid personality disorder, severity of depression, psy-
chotic features, catatonic features, and diagnostic context of ECT indication (e.g.
depressive disorder, bipolar disorder, or schizoa↵ective disorder). Clinical patient
characteristics were extracted from Electronic Health Records (EHRs). Patient
data were anonymized using DEDUCE and therefore the institutional medical
ethics review board waived informed consent [Menger et al., 2018b]. Validation
of the model was performed in a cohort which consisted of patients who received
ECT in the UMCU between 17 July 2018 and 22 October 2021.

Outcomes The primary outcome was remission after ECT. Remission outcome
was assessed by deriving the conclusion from the psychiatrist’s discharge letter ,
stating “remission”, indicating an absence of depressive symptoms. This dichoto-
mous outcome has been used in meta-analytic research and has clinical useful-
ness, because it is informative and understandable for both clinicians and patients
[Pagnin et al., 2004]. Non-response was assessed as secondary outcome, and was
defined as absence of any amelioration of symptoms of depression. This was also
assessed by deriving the conclusion from the discharge letter.

Statistical analysis To explore the data used for training the model, group
means or proportions for the predictor variables were compared between remis-
sion and non-remission using the appropriate hypothesis tests, where we used
Bonferroni correction to correct for multiple testing. In case of missing data we
used multiple imputation, using IterativeImputer (Python) for the training set and
MICE for the validation set (R). To gain insight into the associations and/or causal
relations between predictors on multiple levels, a BN was fitted on the UMCU data
with the “bnlearn” package in R [Scutari, 2010]. Prior to learning the structure
of the network, black- and whitelists were created based on the data derived from
the meta-analyses combined with expert knowledge from authors YD, MS and ED.
Associations on these lists were either by default included (for the whitelist)) in, or
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excluded (for the blacklist) from the network. Adding this sort of prior knowledge
can vastly improve the stability of overparameterized networks [Briganti et al.,
2022]. On the blacklist, response or remission was excluded as a predictor of other
variables in the network, and age and gender were excluded as being dependent
on other variables in the network. Somatic comorbidity and cognitive disorder
were also excluded as possible direct predictors of non-response or remission. On
the whitelist, all predictors except catatonic symptoms, forced care and first ECT
trajectory were included as direct predictors of response or remission. Personality
disorder was included as a direct predictor of somatic comorbidity, age of onset,
relapse, episode duration and psychotic and catatonic symptoms. The structure
of the BN was determined through applying the score-based (i.e., aimed at opti-
mizing the predictive performance of the network) “Hill-Climbing” algorithm on
the data 100 times through bootstrapping: to improve stability, only dependencies
occurring in at least 85% of the bootstrapped networks were included in the final
structure [Briganti et al., 2022].

Based on the dependencies found in the BN a hierarchical Bayesian logistical
regression model was fitted specifically for predicting response to ECT with the
“arm” package in R, as the bnlearn package did not o↵er fitting such models
with prior information. As predictors, all variables found to be associated with
response to ECT from the meta-analyses and all variables included as predictors of
the outcome variable in the BN were included. Priors on coe�cients were chosen to
be normal, with mean and standard deviation either estimated through the meta-
analysis, or set to 0 and 1 in the absence of prior information; all prior settings
can be found in table 6.2.

To generate insights into model performance, 5-fold cross-validation was per-
formed and mean accuracy, ROC-AUC (receiver operator characteristics area un-
der the curve) and corresponding 95% confidence intervals were calculated. ROC-
AUC can be interpreted as the ability of the predictor to distinguish between true
positive and negative cases (or probability that it will do so correctly). The model
was subsequently validated in the independent dataset, where ROC-AUC curves,
sensitivity, specificity and calibration curves were calculated to assess the external
validity of the model. The model creation and validation were in accordance with
the TRIPOD statement [Collins et al., 2015].

6.3 Results

6.3.1 Acquiring prior knowledge

Systematic review We found a total of 1638 articles after removing duplicates.
Of these, 1614 were excluded after screening of title and abstract. A total of 24 ar-
ticles were sought for retrieval, of which six were eventually not available. Full text
screening for eligibility was performed in 18 articles, of which five were included
[Van Diermen et al., 2018, Oxlad and Baldwin, 1996, Haq et al., 2015, Havaki-
Kontaxaki et al., 2006, Kho et al., 2003]. One additional article was found while
screening manually for relevant references in the included articles [Heijnen et al.,
2010]. Flowchart and quality assessment summary are reported in the supplemen-
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tary material. We included three meta-analyses with an overall low risk of bias
[Van Diermen et al., 2018, Haq et al., 2015, Heijnen et al., 2010]. All meta-analyses
showed overlap of included studies. For the predictors psychotic symptoms, age,
melancholic symptoms and depression severity, two studies reported data on re-
sponse outcome [Van Diermen et al., 2018, Haq et al., 2015]. For these predictors,
we only extracted data from the meta-analysis of Van Diermen and colleagues,
because this meta-analysis was more recent and was assessed as having an overall
lower risk of bias in the ROBIS quality assessment [Van Diermen et al., 2018].
For the predictor medication failure, data for remission outcome from Heijnen
and others and data for response outcome was extracted from the meta-analysis
from Haq and others [Heijnen et al., 2010, Haq et al., 2015]. Extracted data of
predictors of ECT outcomes were reported in supplementary material.

6.3.2 Bayesian network model development

Training and validation datasets We included a total of 248 treatment tra-
jectories of patients receiving ECT at the UMCU between 2009 and 2019 in the
training dataset, of which 90 (36%) were classified as remission and 63 (25%) as
non-response. The validation set consisted of 49 independent treatment trajecto-
ries, of which 12 (24%) were classified as remission and 6 (12%) as non-response.
Summary statistics (mean values or proportions for patients with and without
remission) of both datasets can be found in table 6.1. In the training data, nine
treatment trajectories had an unknown episode duration. In the independent val-
idation cohort, 28 cases had missing data, for the relapse, episode duration, cata-
tonic symptoms and age of onset predictors. All missing variables were imputed.
Age was the only predictor with statistically significant di↵erences after Bonfer-
roni correction between non-responders and patients with response/remission, with
higher age being associated with higher remission rate, in both the training set
and in the test set (p = 0.0005 and p = 0.0016 respectively).
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A total of five patients with were included in both the training set and the
validation set, because they had multiple ECT trajectories. For completeness,
we also ran the analyses without these trajectories in the validation set (n=44)
(summary table is available in supplementary data).

Bayesian network model and hierarchical model for predicting remission
The Bayesian network found with the Hill-Climbing algorithms revealed no new
direct dependencies between predictor variables and outcome variable remission
that were not already present on the whitelist provided by the experts and meta-
analysis (supplementary figure 1.)

The model containing solely priors from literature had an AUC of 0.63 (95%
CI 0.56 – 0.70) and an accuracy of 0.63 for predicting remission of UMCU pa-
tients in the training set. After updating the model coe�cients using the data
of UMCU patients, the AUC was 0.629 (values 0.505 – 0.763 observed in 5-fold
cross-validation) and the classification accuracy estimated through 5-fold cross-
validation was 0.637. The trained hierarchical Bayesian logistic regression model
and an overview of priors can be found in table 6.2. For completeness, a model con-
taining only patient derived data with no prior information, showed a mean AUC
of 0.59 (values 0.53 – 0.82 observed in 5-fold cross-validation) and a mean accuracy
for remission of 0.66 (values 0.60 – 0.81 observed in 5-fold cross-validation).

Table 6.2: The final logistic regression model for predicting remission, and the
priors used for fitting the model. NA indicates “not available”: prior estimates
of mean and sd were available for four out of 18 predictors. 13 predictors were
selected to be included in the final model through the Bayesian network analysis.

Predictor Mean es-
timate

Sd esti-
mate

Coe�cient Coe�cient
SE

Medication failure -0,65393 0,143841 -0,55991 0,13831

Severe depressive

Episode -0,097 0,05 -0,08764 0,049603

Age 0,258 0,063 0,052953 0,013273

Psychotic symptoms 0,383901 0,116449 0,388671 0,109663

Personality disorder NA NA -0,50342 0,34052

Bipolar disorder NA NA -0,46309 0,657538

Relapse NA NA -0,37544 0,41086

ECT trajectory number NA NA -0,2943 0,270555

Major depressive disorder NA NA -0,18883 0,618723

Schizoa↵ective disorder NA NA -0,10911 0,700235

Age of onset NA NA -0,02874 0,013801

Episode duration NA NA -0,01756 0,007355

Female NA NA 0,489148 0,295852

First ECT NA NA NA NA

Catatonic symptoms NA NA NA NA

Forced care NA NA NA NA

Somatic comorbidity NA NA NA NA
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Table 6.2, continued
Predictor Mean es-

timate
Sd esti-
mate

Coe�cient Coe�cient
SE

Cognitive impairment NA NA NA NA

Validation of the updated model on the 49 patients in the validation set re-
sulted in an AUC of 0.783 (95%CI 0.647-0.921), with an accuracy of 0.78, with
for predicting remission. Remission occurred in 12 patients: there were 30 true
negatives (61.2% of the validation set), 8 true positives (16.3% of the validation
set), 4 false negatives (8.2% of the validation set) and 7 false positives (14.3%
of the validation set). The corresponding sensitivity of the model assessed on the
validation set was 0.67 and the specificity 0.81. A model without prior information
resulted in an AUC of 0.773 (95%CI 0.623-0.922) and an accuracy of 0.75. For
completeness, validation of the model excluding five patients who also had a ECT
trajectory in the training set resulted in an AUC of 0.686 (95%CI 0.513-0.859).
Summary data are reported in the supplementary material.

An overview of data of misclassified cases of remission is given below in Table
6.3. False negative cases (patients predicted as not achieving remission after ECT
while in reality they did), were generally younger, without psychotic symptoms.
False positive cases were generally older, with psychotic symptoms, and did not
have personality disorders, which were strong predictors in the final model for re-
mission (see Table 6.2). These false positives could possibly explain the decreasing
trend in the calibration plot in the bins with the highest predicted probabilities
of remission, where the model overestimates the success probabilities (see Figure
6.1).

Table 6.3: Group means (for continuous data) or proportions with the correspond-
ing property (for dichotomous data) for misclassified cases in the validation set,
split based on false negative or false positive misclassification.

False negative False positive

(n = 4) (n = 7)

Relapse 1 1

Episode duration 24 10

Age 53.3 76.7

First ECT 0.667 0.714

Psychotic symptoms 0 0.571

Catatonic features 0 0.143

Severe depressive episode 0.500 0.143

Forced care 0 0.286

ECT trajectory number 1.00 1.14

Somatic comorbidity 0.500 0.429

Female 0.500 1.0

Age of onset 33.7 65.6

Medication failure 0 0

Personality disorder 0.750 0.143
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Table 6.3, continued
False negative False positive

Bipolar disorder 0.25 0.00

Cognitive impairment 0 0.143

Major depressive disorder 0.750 1.00

Schizoa↵ective disorder 0 0

Figure 6.1: Calibration plots of the model for prediction remission (left) and non-
response (right) on the validation set. Patients in the validation set were divided
into 5 or 4 equal bins, depending on the probability of remission or non-response
as predicted by the model. For those bins, the observed probability of remission
or non-response and corresponding upper- and lower confidence bounds were esti-
mated based on the patient data, resulting in the figures depicted above.

Bayesian network model and hierarchical model for predicting sec-
ondary outcome non-response In the training set, 63 (25%) of trajectories
was classified as non-response, in the . The AUC for the model for predicting the
secondary outcome, ECT non-response, was 0.644 (values 0.603-0.675 observed
in 5-fold cross-validation), with a classification accuracy estimated through 5-fold
cross-validation of 0.746. In the validation set, non-response occurred in 6 out of
49 patients. Validation of the updated model resulted in an AUC of 0.624 (95%CI
0.377-0.871) for predicting (non-)response, with an accuracy of 0.78, a sensitivity of
0.33 and a specificity of 0.84. The trained hierarchical Bayesian logistic regression
model and an overview of priors for non-response can be found in supplementary
files.
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6.4 Discussion

In this study, we created and temporally validated BN model to predict outcome
after ECT for depression, using prior knowledge from literature combined with
single center clinical patient data. We found a mean AUC of 0.629 (values 0.505
– 0.763 observed in 5-fold cross-validation) for the training set and an AUC for
the validation set of 0.783 (95%CI 0.647-0.921) for predicting remission to ECT.
These findings suggest that probability of remission of a depressive episode using
ECT can be reasonably well estimated with readily available clinical predictors
for individual patients. For non-response, we found a mean AUC of 0.644 and an
AUC for the validation set of 0.624 (95%CI 0.377-0.871).

High-quality meta-analyses are considered as the highest level of evidence in
evidence-based medicine. However, one of the downsides of meta-analyses is that
the aggregated data have no direct clinical value to individual patients [Berlin
and Golub, 2014]. In this study we used the knowledge from the best meta-
analyses available in a BN model to create a clinical decision support system which
calculates personalized outcome predictions for ECT. Although these methods
have been studied before, this study is, to our knowledge, the first to investigate
the outcome of ECT using a BN. Previous studies of BNs in psychiatry focused on
dementia and cognitive impairment [Jin et al., 2016, Gross et al., 2018, Moreira
and Namen, 2018]. BNs are mostly used in the fields of cardiology and oncology,
but have not yet been adopted as a standard technique in medical decision making.
One explanation is that previous publications on BNs mostly emphasized technical
aspects instead of clinical usefulness [McLachlan et al., 2020, Kyrimi et al., 2021].
We found that the addition of prior information to our model increased the AUC
for remission marginally and marginally reduced CI width, from an AUC of 0.773
(95%CI 0.623 – 0.922) in the no priors model, to an AUC of 0.783 (95%CI 0.647
– 0.921) in the final model. Based on these findings, including prior information
hypothetically decreases the sampling variability in a model, by increasing the
number of samples of which data is derived. An additional value of priors is that
they can be used as an extra validation of findings in a study cohort. If significant
discrepancies are observed, further investigation on bias is warranted.

Our findings showed that the presence of psychotic symptoms was a strong
predictor for remission, as well as the absence of a personality disorder and the
absence of medication failure. These findings were expected because previous
studies which identified these variables were used as prior knowledge in our study
[Van Diermen et al., 2018, Heijnen et al., 2010]. Several studies found reduced
e↵ectiveness of ECT in patients with personality disorders [Yip et al., 2021, Prudic
et al., 2004]. Interestingly, higher age was no statistically significant predictor for
remission in our study, which is contrary to previous research [Van Diermen et al.,
2018]. In our analysis of misclassification, younger patients did not have psychotic
symptoms, and many elderly patients did. However, our findings were based on
a single sample, and selection bias may have had an e↵ect here. The secondary
outcome of non-response did not yield significant results.

In the misclassification analyses and calibration plots for both remission and
non-response, we found a decreasing trend in the plots in the higher predicted prob-
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abilities, resulting in an overestimation of success observed probabilities (figure 1).
Specificity was relatively high, but several cases were falsely positive, resulting in
low sensitivity. We infer that the dataset may be confounded. However, because
of the small sample size of the validation cohort, we cannot assess to what extent.
Exploratory analyses of potential confounders, preferably in a larger validation
cohort, may yield additional clinical predictors. Next to clinical and demograph-
ical parameters, several previous studies reported on biomarkers as predictors of
ECT outcome, including MRI, EEG and genetic findings [Luykx et al., 2022, Levy
et al., 2019, Simon et al., 2021]. Hypothetically, the accuracy of our model could
be increased by including these predictors. However, the problem with these data
is that these are not routinely obtained in clinical practice, and therefore often
unavailable for the treatment decision about ECT. Therefore, although we were
unable to include biomarkers in the model due to unavailability in our data, the
clinical model presented here may be easier to implement in clinical practice than
a model based on biomarker data.

A hypothetical “real-life” CDSS for ECT outcome prediction would be avail-
able for all patients who were eligible for ECT, including patients who were treated
previously. Therefore, such a model would include patient data of all previously
performed ECT trajectories. As an illustration, we performed the additional anal-
ysis of remission for the validation set with the exclusion of 5 patient trajectories
of patients who already were included in the training set with a previous ECT
trajectory. This resulted in an AUC of 0.686 (95%CI 0.513-0.859) without these
trajectories, compared to 0.783 (95%CI 0.647-0.921). The increase in AUC may be
attributable to the fact that ECT treatment was repeated in these specific patients
(resulting in a new validation set trajectory) because they responded successfully
to ECT before (in the training set). Prospective replication of these findings is
necessary to investigate the e↵ect of selection bias in these findings.

Although outcome prediction of ECT may benefit shared decision-making,
prospective studies are necessary before this model can be implemented as CDSS
in standard practice. For example, the subjective experience and needs of indi-
vidual patients are essential for treatment decisions but were not included here.
Moreover, in our sample, the decision to initiate ECT was already made. This
resulted in a selected population of patients who were willing to undergo ECT. To
assess clinical usefulness, it is necessary to also analyze the patients who decide not
to start ECT, and why this decision is made. Misclassification bias may arise after
implementation if treatment decisions are made di↵erently because they are in-
formed by a CDSS, and this adaptive change in decision making is not accounted
for. One solution for this potential bias is a stepped-wedge cluster randomized
controlled trial, in which the CDSS intervention (and its impact on outcomes)
is gradually introduced and evaluated at sites [Hemming et al., 2018]. Another
factor is the unknown generalizability of findings from our single center study at a
university hospital to other treatment settings. We speculate that this could have
resulted in an increased severity of depression in our sample, and maybe in other
unknown selection biases. An (inter)national, multicenter trial could increase gen-
eralizability of our current findings.

Our model did not include adverse e↵ects of ECT. This was due to the fact
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that adverse e↵ects were not recorded systematically, which may have led to a re-
porting bias. Adverse e↵ects of ECT consist of amnesia, headache and nausea and
occur in most patients during treatment [Andrade et al., 2016]. Adverse events
may be mild, but can also be a reason to halt ECT prematurely, for example in the
case of severe amnesia or delirium. Halting treatment may consequently influence
the outcome. We hypothesize that there may also be dependencies between these
predictors, and that these could be incorporated to the BN model. Additionally,
the inclusion of data generated during each session of ECT, such as seizure du-
ration could be used to predict outcomes more accurately during the treatment.
However, this would require a model with repeated measurements, with updated
probabilities after each session. This approach could guide psychiatrists and pa-
tients in their decision to continue, stop or alter frequency of ECT. We aim to
expand our model to include these factors and to further test for generalizability
in future work.

We used a systematic review of meta-analyses for the collection of prior knowl-
edge. A downside of this method is missing data of recent studies which are not
yet included in a meta-analysis. Another problem is that a single study is included
in more than one meta-analysis, and that meta-analyses on the same subject re-
ported di↵erent outcomes. We considered risk of bias smallest if we analyzed the
searches of multiple research groups and selected the one meta-analysis with the
highest quality, with the potential risk of sacrificing some recency of data. We
used clinical discharge letters with the final outcome of ECT to define the out-
comes remission and response. Quantitative assessment of depression, for instance
using the Hamilton Rating Scale for depression (HRSD) or Montgomery–Asberg
Depression Rating Scale (MADRS), is often used in clinical trials [Van Diermen
et al., 2018, Hamilton, 1967, Montgomery and Åsberg, 1979]. Outcomes remission
and (partial) response are defined using a reduction of the score by a certain per-
centage, or below an arbitrary threshold. The potential upside of this approach is
that, in theory, treatment can be evaluated objectively. However, there is an on-
going debate about the use of the reliability and validity of depression instruments
[Fried et al., 2022]. One of the hypothetical downsides of depression instruments
is that the score is comprised of several symptom clusters. An equal reduction in
scores of two patients after ECT may not resemble the same e↵ect. Additionally,
in clinical practice, standardized application of quantitative assessments requires
additional time and training of sta↵. Therefore, we chose to use the most clinically
relevant outcome assessment, the conclusion of the discharge letter. This outcome
included both clinician assessment and subjective patient experience. In 23 cases,
we had missing data on clinical variables. We used multiple imputation to make
optimal use of data. Although multiple imputation is superior to complete case
analysis regarding potential bias, it may influence model performance [Steyerberg,
2009].

Conclusion In this study, we found that a BN model comprised of prior knowl-
edge and clinical data can predict remission of depression after ECT with rea-
sonable performance. This approach can be used to make outcome predictions in
psychiatry, and o↵ers a methodological framework to weigh additional informa-
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tion, such as patient characteristics, symptoms and biomarkers. In time, it may
be used improve shared decision-making in clinical practice.
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