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Chapter 3

Exact Anytime-valid Confidence
Intervals for Contingency Tables and
Beyond
Rosanne J. Turner1,2, Peter D. Grünwald1,3

1: CWI, Machine Learning group, Netherlands
2: University Medical Center Utrecht, Brain Center, Netherlands
3: Leiden University, Department of Mathematics, Netherlands

Abstract

E-variables are tools for retaining type-I error guarantee with optional stopping.
We extend E-variables for sequential two-sample tests to general null hypotheses
and anytime-valid confidence sequences. We provide implementations for estimat-
ing risk di↵erence, relative risk and odds-ratios in contingency tables.
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Chapter 3

3.1 Introduction

We consider a setting where we collect samples from two distinct groups, denoted
a and b. In both groups, data come in sequentially and are i.i.d. We thus have
two data streams, Y1,a, Y2,a, . . . i.i.d. ⇠ P✓a and Y1,b, Y2,b, . . . i.i.d. ⇠ P✓b where we
assume that ✓a, ✓b 2 ⇥, {P✓ : ✓ 2 ⇥} representing some parameterized underlying
family of distributions, all assumed to have a probability density or mass function
denoted by p✓ on some outcome space Y.

e-variables [Grünwald et al., 2022a, Vovk and Wang, 2021] are a tool for con-
structing tests that keep their Type-I error control under optional stopping and
continuation. Previously, Turner et al. [2021] developed e-variables for testing
equality of both data streams, i.e. with null hypothesis ~⇥0 := {(✓a, ✓b) 2 ⇥2 :
✓a = ✓b}. Here we first generalize these e-variables to more general null hypothe-
ses in which we may have ✓a 6= ✓b. We then use these generalized e-variables to
construct anytime-valid confidence sequences; these provide confidence sets that
remain valid under optional stopping [Darling and Robbins, 1967, Howard et al.,
2021].

As in [Turner et al., 2021], we first design e-variables for a single block of
data (Y na

a , Y
nb
b ), where a block is a set of data consisting of na outcomes Y

na
a =

(Ya,1, . . . , Ya,na) in group a and nb outcomes Y nb
b = (Yb,1, . . . , Yb,nb) in group b, for

some pre-specified na and nb. An e-variable is then, by definition, any nonnegative
random variable S = s

0(Y na
a , Y

nb
b ) such that

sup
(✓a,✓b)2~⇥0

EY na
a ⇠P✓a ,Y

nb
b ⇠P✓b

[s0(Y na
a , Y

nb
b )]  1. (3.1)

Turner et al. [2021] first defined such an e-variable for ~⇥0 = {()2 ⇥2 : ✓a = ✓b}

so that it would tend to have high power against a given simple alternative ~⇥1 =
{(✓⇤a, ✓

⇤
b )}. Their e-variable is of the following simple form (with n = na + nb):

s
0(Y na

a , Y
nb
b ) =

p✓⇤
a
(Y na

a )Qna

i=1(
na
n p✓⇤

a
(Ya,i) +

nb
n p✓⇤

b
(Ya,i))

·
p✓⇤

b
(Y nb

b )
Qnb

i=1(
na
n p✓⇤

a
(Yb,i) +

nb
n p✓⇤

b
(Yb,i))

. (3.2)

These e-variables can be extended to sequences of blocks Y(1), Y(2), . . . by multi-
plication, and can be extended to composite alternatives by sequentially learning
(✓⇤a, ✓

⇤
b ) from the data, for example via a Bayesian prior on ~⇥1. The na and nb

used for the j-th block Y(j) are allowed to depend on past data, but they must be
fixed before the first observation in block j occurs. For simplicity, in this note we
only consider the case with na and nb that remain fixed throughout; extension to
the general case is straightforward.

By a general property of e-variables, at each point in time, the running product
of block e-variables observed so far is itself an e-variable, and the random process
of the products is known as a test martingale [Grünwald et al., 2022a, Shafer et al.,
2021]. An e-variable-based test at level ↵ is a test which, in combination with any
stopping rule ⌧ , reports ‘reject’ if and only if the product of e-values correspond-
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ing to all blocks that were observed at the stopping time and have already been
completed, is larger than 1/↵. Such a test has a type-I error probability bounded
by ↵ irrespective of the stopping time ⌧ that was used; see the aforementioned ref-
erences for much more detailed introductions and, for example [Henzi and Ziegel,
2022], for a practical application.

In case {P✓ : ✓ 2 ⇥} is convex, the e-variable (3.2) has the so-called GRO-
(growth-rate-optimality) property: it maximizes, over all e-variables (i.e. over all
nonnegative random variables S = s

0(Y na
a , Y

nb
b ) satisfying (3.1)) the logarithmic

growth rate
EY na

a ⇠P✓⇤a ,Y
nb
b ⇠P✓⇤

b

[logS] , (3.3)

which implies that, under (✓⇤a, ✓
⇤
b ), the expected number of data points before the

null can be rejected is minimized [Grünwald et al., 2022a].

Below, in Theorem 3.1 in section 3.2, which generalizes Theorem 1 in Turner
et al. [2021], we extend (3.2) to the case of general null hypotheses, ~⇥0 ⇢ ⇥2,
allowing for the case that the elements of ~⇥0 have two di↵erent components, and
provide a condition under which it has the GRO property. From then onwards
we focus on what we call ‘the 2 ⇥ 2 contingency table setting’ in which both
streams are Bernoulli, ✓j denoting the probability of 1 in group j. For this case,
Theorem 3.2 gives a simplified expression for the e-variable and shows that the
GRO property holds if ~⇥0 ⇢ [0, 1]2 is convex. Then we will extend this e-variable to
deal with composite ~⇥1 and use this to define anytime-valid confidence sequences.
We illustrate these through simulations. All proofs are in Appendix S3.A.

3.2 General Null Hypotheses

In this section, we first construct an e-variable for general null hypotheses that
generalizes (3.2). We then instantiate the new result to the 2 ⇥ 2 case. The
following development and results require {P✓ : ✓ 2 ⇥} to be ‘nondegenerate’
in the sense that there exists ✓ 2 ⇥ such that for all ✓0 2 ⇥, D(P✓kP✓0) < 1.
This mild condition holds, for example, for exponential families; we tacitly assume
nondegeneracy from now on.

Our goal is thus to define an e-variable for a block of n = na + nb data points
with ng points in group g, g 2 {a, b}. For notational convenience we define,
for ✓a, ✓b 2 ⇥, P✓a,✓b as the joint distribution of Y

na
a ⇠ P✓a and Y

nb
b ⇠ P✓b ,

so that p✓a,✓b(y
na
a , y

nb
b ) =

Qna

i=1 p✓a(ya,i)
Qnb

i=1 p✓b(yb,i) so that we can write the

null hypothesis as H0 := {P✓a,✓b : (✓a, ✓b) 2 ~⇥0}. Our strategy will be to first
develop an e–variable for a modified setting in which there is only a single outcome,
falling with probability na/n in group a and nb/n in group b. To this end, for
~✓ = (✓a, ✓b), we define p

0
~✓
(Y |a) := p✓a(y), p

0
~✓
(Y |b) := p✓b(y), all distributions with

a 0 refering to the modified setting with just one outcome. We let W�(~⇥0) be the
set of all distributions on ~⇥0 with finite support. For W 2 W

�(~⇥0), we define

p
0
W (Y |g) =

R
p
0
~✓
(Y |g)dW (~✓). We set p

0
W (yk|g) :=

Qk
i=1 p

0
W (yi|g). We further

define, for given alternative ~⇥1 = {(✓⇤a, ✓
⇤
b )}, p

�(·|g), g 2 {a, b} to be, if it exists,
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Chapter 3

the conditional probability density satisfying

EG⇠Q0EY⇠P✓⇤
G
[� log p�(Y | G)] = inf

W2W�(~⇥0)
EG⇠Q0EY⇠P✓⇤

G
[� log p0W (Y | G)]

(3.4)
with Q

0(G) the distribution for G 2 {a, b} with Q
0(G = a) = na/n. Clearly we

can rephrase (3.4) equivalently as:

D(Q0(G, Y )kP �(G, Y )) = inf
W2W�(~⇥0)

D(Q0(G, Y )kP 0
W (G, Y )), (3.5)

where D is the KL divergence. Here we extended the conditional distributions
P

0
W (Y |G) and P

�(Y |G) (corresponding to densities p
0
W (Y |G) and p

�(Y |G)) to a
joint distribution by setting P

0
W (G, Y ) := Q

0(G)P 0
W (Y |G) (and similarly for P

�)
and we extended Q

0(G, Y ) := Q
0(G)P✓⇤

G
(Y ). We have now constructed a modified

null hypothesis H0
0 = {P

0
~✓
(G, Y ) : ~✓ 2 ~⇥0} of joint distributions for a single ‘group’

outcome G 2 {a, b} and ‘data’ outcome Y 2 Y. We let H̄
0
0 = {PW (G, Y ) : W 2

W
�(~⇥0)} be the convex hull of H0

0.

The p
� satisfying (3.5) is commonly called the reverse information projection

of Q0 onto H̄
0
0. Li [1999] shows that p

� always exists under our nondegeneracy
condition, though in some cases it may represent a sub-distribution (integrating
to strictly less than one); see [Grünwald et al., 2022a, Theorem 1] (re-stated for
convenience in the supplementary material) who, building on Li’s work, established
a general relation between reverse information projection and e–variables. Part 1
of that theorem establishes that if the minimum in (3.4) (or (3.5)) is achieved by

some W
�
2 W

� then p
�(·|·) = p

0
W�(·|·) and, with ~✓

⇤ = (✓⇤a, ✓
⇤
b ), for all

~✓ 2 ~⇥0,

EG⇠Q0EY⇠P 0
~✓
|G

"
p
0
~✓⇤(Y |G)

p�(Y |G)

#
= EG⇠Q0EY⇠P 0

~✓
|G

"
p
0
~✓⇤(G, Y )

p�(G, Y )

#
 1. (3.6)

This expresses that p0~✓⇤(Y |G)/p�(Y |G) is an e-variable for our modified problem, in
which within a single block we observe a single outcome in group g, with g chosen
with probability ng/n. If we were to interpret the e–variable of the modified
problem as in (3.6) as a likelihood ratio for a single outcome, its corresponding
likelihood ratio for a single block of data in our original problem with ng outcomes
in group g would be:

s(yna
a , y

nb
b ;na, nb, (✓

⇤
a, ✓

⇤
b ); ~⇥0) :=

p
0
(✓⇤

a,✓
⇤
b )
(yna

a |a)p0(✓⇤
a,✓

⇤
b )
(ynb

b |b)

p�(yna
a |a)p�(ynb

b |b)

=
p✓⇤

a
(yna

a )p✓⇤
b
(ynb

b )

p�(yna
a |a)p�(ynb

b |b)
. (3.7)

The following theorem expresses that this ‘extension’ of the e-variable in the mod-
ified problem gives us an e-variable in our original problem:

Theorem 3.1. S[na,nb,✓⇤
a,✓

⇤
b ;

~⇥0]
:= s(Y na

a , Y
nb
b ;na, nb, (✓⇤a, ✓

⇤
b );

~⇥0) as in (3.7) is an
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E-variable, i.e. with s
0(·) = s(·;na, nb, (✓⇤a, ✓

⇤
b );

~⇥0), we have (3.1). Moreover, if

H
0
0 = {P

0
~✓
: ~✓ 2 ~⇥0} (the null hypothesis for the modified problem) is a convex

set of distributions and Y is finite (so that H
0
0 = H̄

0
0) and furthermore H

0
0 is

compact in the weak topology, then (a) p
�(·|·) = p

0
~✓
(·|·) for some ~✓ 2 ~⇥0 and (b)

S[na,nb,✓⇤
a,✓

⇤
b ;

~⇥0]
is the (✓⇤a, ✓

⇤
b )-GRO e-variable for the original problem, maximizing

(3.3) among all e-variables.

In the case that H
0
0 is not convex and compact, we do not have a simple

expression for p� in general, and we may have to find it numerically by minimizing
(3.4). In the 2 ⇥ 2 table (Bernoulli ⇥) case though, there are interesting H0 for
which the corresponding H

0
0 is convex, and we shall now see that this leads to

major simplifications.

3.2.1 General Convex ~⇥0 for the 2⇥ 2 contingency table

In this subsection and the next, {P✓a,✓b} refers to the 2 ⇥ 2 model again, with

Y = {0, 1} and ✓ denoting the probability of 1. We now let ~⇥0 be any closed
convex subset of [0, 1]2 that contains a point in the interior of [0, 1]2. Again, note

that the corresponding H0 = {P~✓ : ~✓ 2 ~⇥0} need not be convex; still, H0
0, the

null hypothesis for the modified problem as defined above, must be convex if ~⇥0 is
convex, and this will allow us to design e-variables for such ~⇥0. Let H1 = {P✓⇤

a,✓
⇤
b
}

with (✓⇤a, ✓
⇤
b ) in the interior of [0, 1]2, and let

kl(✓a, ✓b) := D(P✓⇤
a,✓

⇤
b
(Y na

a , Y
nb
b )kP✓a,✓b(Y

na
a , Y

nb
b )) =

X

yna
a 2{0,1}na ,y

nb
b 2{0,1}nb

p✓⇤
a
(yna

a )p✓⇤
b
(ynb

b ) log
p✓⇤

a
(yna

a )p✓⇤
b
(ynb

b )

p✓a(y
na
a )p✓b(y

nb
b )

(3.8)

stand for the KL divergence between P✓⇤
a,✓

⇤
b
and P✓a,✓b restricted to a single block

(note that in the previous subsection, KL divergence was defined for a single
outcome Y ). The following result builds on Theorem 3.1:

Theorem 3.2. min(✓a,✓b)2~⇥0
kl(✓a, ✓b) is uniquely achieved by some (✓�a, ✓

�
b ). If

(✓⇤a, ✓
⇤
b ) 2 ~⇥0, then (✓�a, ✓

�
b ) = (✓⇤a, ✓

⇤
b ). Otherwise, (✓�a, ✓

�
b ) lies on the boundary

of ~⇥0, but not on the boundary of [0, 1]2. The e–variable (3.7) is given by the
distribution W that puts all its mass on (✓�a, ✓

�
b ), i.e.

s(yna
a , y

nb
b ;na, nb, (✓

⇤
a, ✓

⇤
b ); ~⇥0) =

p✓⇤
a
(yna

a )p✓⇤
b
(ynb

b )

p✓�
a
(yna

a )p✓�
b
(ynb

b )
(3.9)

is an e-variable. Moreover, this is the (✓⇤a, ✓
⇤
b )-GRO e-variable relative to ~⇥0.

We can extend this e-variable to the case of a composite H1 = {P✓a,✓b :

(✓a, ✓b) 2 ~⇥1} by learning the true (✓⇤a, ✓
⇤
b ) 2 ~⇥1 from the data [Turner et al.,

2021]. We thus replace, for each j = 1, 2, . . ., for the block Y(j) consisting of na

points Y(j),a,1, . . . , Y(j),a,na
in group a and nb points Y(j),b,1, . . . , Y(j),b,nb

in group
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(a) linear boundary (b) odds boundary

Figure 3.1: Examples of null hypothesis parameter spaces for two types of bound-
aries.

b, the ‘true’ ✓⇤g for g 2 {a, b} by an estimate ✓̆g | Y
(j�1) based on the previous

j� 1 data blocks. The e-variable corresponding to m blocks of data then becomes

S
(m)

[na,nb,W1;~⇥0]
=

mY

j=1

naY

i=1

p✓̆a|Y (j�1)(Y(j),a,i)

p✓̆�
a|Y (j�1)(Y(j),a,i)

nbY

i=1

p✓̆b|Y (j�1)(Y(j),b,i)

p✓̆�
b |Y (j�1)(Y(j),b,i)

(3.10)

where, for g 2 {a, b}, ✓̆g|Y
(j�1) can be an arbitrary estimator (function from

Y
(j�1) to ✓g) and (✓̆�a | Y

(j�1)
, ✓̆

�
b | Y

(j�1)) is defined to achieve
min(✓a,✓b)2~⇥0

D(P✓̆a|Y (j�1),✓̆b|Y (j�1)(Y na
a , Y

nb
b )kP✓a,✓b(Y

na
a , Y

nb
b )).

No matter what estimator we choose, (3.10) gives us an e-variable. In Section 3.3,
as in [Turner et al., 2021], we implement this estimator by fixing a prior W and us-
ing the Bayes posterior mean, ✓̆g|Y (j�1) := E✓g⇠W |Y (j�1) [✓g]. Let us now illustrate

Theorem 3.2 for two choices of ~⇥0.

~⇥0 with linear boundary First, we let ~⇥0(s, c), for s 2 R, c 2 R, stand for
any straight line through [0, 1]2 : ~⇥0(s, c) := {()2 [0, 1]2 : ✓b = s + c✓a}. This
can be extended to ~⇥0(s, c) :=

S
s0s

~⇥0(s0, c) and similarly to ~⇥0(�s, c) :=
S

s0�s
~⇥0(s0, c). For example, we could take ~⇥0 = ~⇥0(s, c) to be the solid line

in Figure 3.1(a) (which would correspond to s = 0.1, c = 1), or the whole area
underneath the line (~⇥0( s, c)) including the line itself, or the whole area above
it including the line itself (~⇥0(�s, c)). Now consider a ~⇥0(s, c) that has nonempty
intersection with the interior of [0, 1]2 and that is separated from the point alter-
native (✓⇤a, ✓

⇤
b ), i.e. min(✓a,✓b)2~⇥0

kl(✓a, ✓b) > 0. Utilizing the independence of the

observations, we can rewrite (3.8) as follows:

kl(✓a, ✓b) := naEY⇠p✓⇤a


log

p✓⇤
a
(Y )

p✓a(Y )

�
+ nbEY⇠p✓⇤

b


log

p✓⇤
b
(Y )

p✓b(Y )

�
.
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As we defined ✓b to be completely determined as ✓b = s + c✓a, substituting and
combining with simple di↵erentiation w.r.t. ✓a gives that the minimum is achieved
by the unique (✓�a, ✓

�
b ) 2

~⇥0 satisfying:

na

✓
�
✓
⇤
a

✓�a
+

1� ✓
⇤
a

1� ✓�a

◆
+ nb · c ·

✓
�
✓
⇤
b

✓�b
+

1� ✓
⇤
b

1� ✓�b

◆
= 0. (3.11)

This can now be plugged into the e-variable (3.9) if the alternative is the simple
alternative, or otherwise into its sequential form (3.10). In the basic case in which
~⇥0 = {()2 [0, 1]2 : ✓a = ✓b}, the solution to (3.11) reduces to the familiar ✓

�
a =

✓
�
b = (na✓

⇤
a + nb✓

⇤
b )/n from Turner et al. [2021].

If (✓⇤a, ✓
⇤
b ) lies above the line ~⇥0(s, c), then by Theorem 3.2,

min(✓a,✓b)2~⇥0(s,c) kl(✓a, ✓b) must lie on ~⇥0(s, c). Theorem 3.2 gives that it must

be achieved by the (✓�a, ✓
�
b ) satisfying (3.11). Similarly, if (✓⇤a, ✓

⇤
b ) lies below the

line ~⇥0(s, c), then min(✓a,✓b)2~⇥0(�s,c) kl(✓a, ✓b) is again achieved by the (✓�a, ✓
�
b )

satisfying (3.11).

~⇥0 with log odds ratio boundary Similarly, we can consider ~⇥0(�), ~⇥0( �),
~⇥0(��) that correspond to a given log odds e↵ect size �. That is, we now take

~⇥0(�) :=

⇢
(✓a, ✓b) 2 [0, 1]2 : log

✓b(1� ✓a)

(1� ✓b)✓a
= �

�

~⇥0(�) :=

⇢
(✓a, ✓b) 2 [0, 1]2 : log

✓b(1� ✓a)

(1� ✓b)✓a
 �

�

~⇥0(��) :=

⇢
(✓a, ✓b) 2 [0, 1]2 : log

✓b(1� ✓a)

(1� ✓b)✓a
� �

�
.

For example, we could now take ~⇥0 = ~⇥0(�) to be the area under the curve
(including the curve boundary itself) in Figure 3.1(b), which would correspond
to � = 2. Now let � and point alternative (✓⇤a, ✓

⇤
b ) be such that � > 0 and

~⇥0(�) is separated from (✓⇤a, ✓
⇤
b ), i.e. min(✓a,✓b)2~⇥0(�) kl(✓a, ✓b) > 0. Let

(✓�a, ✓
�
b ) := argmin(✓a,✓b)2~⇥0(�)

kl(✓a, ✓b). As Figure 3.1(b) suggests, ~⇥0(�) is

convex. Theorem 3.2 now tells us that min(✓a,✓b)2~⇥0(�) kl(✓a, ✓b) is achieved by

(✓�a, ✓
�
b ). Plugging these into (3.9) thus gives us an e-variable. (✓�a, ✓

�
b ) can easily

be determined numerically. Similarly, if � < 0, ~⇥0(��) is convex and closed and
if (✓⇤a, ✓

⇤
b ) is separated from ~⇥0(��), the (✓�a, ✓

�
b ) minimizing KL on ~⇥0(�) gives an

e-variable relative to ~⇥0(��).

3.3 Anytime-valid confidence sequences for the 2⇥ 2 case

We will now use the e-variables defined above to construct anytime-valid confidence
sequences. Let � = �(✓a, ✓b) be a notion of e↵ect size such as the log odds ratio
(see above) or absolute risk ✓b � ✓a or relative risk ✓b/✓a. A (1�↵)-anytime-valid
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(AV) confidence sequence [Darling and Robbins, 1967, Howard et al., 2021] is a
sequence of random (i.e. determined by data) subsets CS↵,(1),CS↵,(2), . . . of �,

with CS↵,(m) being a function of the first m data blocks Y
(m), such that for all

(✓a, ✓b) 2 [0, 1]2,

P✓a,✓b

�
9m 2 N : �(✓a, ✓b) 62 CS↵,(m)

�
 ↵.

We first consider the case in which for all values � 2 � that � can take, ~⇥0(�) :=
{(✓a, ✓b) 2 [0, 1]2 : �(✓a, ✓b) = �} is a convex set, as it will be for absolute and
relative risk. Fix a prior W1 on [0, 1]2. Based on (3.10) we can make an exact
(nonasymptotic) AV confidence sequence

CS↵,(m) =

⇢
� : S(m)

[na,nb,W1;~⇥0(�)]


1

↵

�
(3.12)

where S
(m)

[na,nb,W1;~⇥0(�)]
is defined as in (3.10) and is a valid e-variable by Theo-

rem 3.2. To see that (CS↵,(m))m2N really is an AV confidence sequence, note
that, by definition of the CS↵,(m), we have
P✓a,✓b

�
9m 2 N : �(✓a, ✓b) 62 CS↵,(m)

�
is given by

P✓a,✓b

✓
9m 2 N : S(m)

[na,nb,W1;~⇥0(�)]
�

1

↵

◆
 ↵,

by Ville’s inequality [Grünwald et al., 2022a, Turner et al., 2021]. Here the CS↵,(m)

are not necessarily intervals, but, potentially losing some information, we can make
a AV confidence sequence consisting of intervals by defining CI↵,(m) to be the
smallest interval containing CS↵,(m). We can also turn any confidence sequences
(CS↵,(m))m2N into an alternative AV confidence sequence with sets CS0

↵,(m) that
are always a subset of CS↵,(m) by taking the running intersection

CS0
↵,(m) :=

\

j=1..m

CS↵,(j).

In this form, the confidence sequences CS0
↵,(m) can be interpreted as the set of

�’s that have not yet been rejected in a setting in which, for each null hypothesis
~⇥0(�) we stop and reject as soon as the corresponding e-variable exceeds 1/↵.
The running intersection can also be applied to the intervals (CI↵,(m))m2N. To
simplify calculations, it is useful to take W1 a prior under which ✓a and ✓b have
independent beta distributions with parameters ↵a,�a,↵b,�b. We can, if we want,
infuse some prior knowledge or hopes by setting these parameters to certain values
— our confidence sequences will be valid irrespective of our choice [Howard et al.,
2021]. In case no such knowledge can be formulated (as in the simulations below),
we advocate the prior, which, among all priors of the simple form asymptotically
achieves the REGROW criterion (a criterion related to minimax log-loss regret, see
[Grünwald et al., 2022a]), i.e for the case na = nb = 1 we set W1 to an independent
beta prior on ✓a and ✓b with � = 0.18 as was empirically found to be the ‘best’
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value [Turner et al., 2021].

Log Odds Ratio E↵ect Size The situation is slightly trickier if we take the
log odds ratio as e↵ect size, for ~⇥0(�) is then not convex. Without convexity,
Theorem 3.2 cannot be used and hence the validity of AV confidence sequences as
constructed above breaks down. We can get nonasymptotic anytime-valid confi-
dence sequences after all as follows. First, we consider a one-sided AV confidence
sequence for the submodel of positive e↵ect sizes {(✓a, ✓b) : �(✓a, ✓b) � 0}, defining

CS+
↵,(m) = {� � 0 : S(m)

[na,nb,W1;~⇥0(�)]
 ↵

�1
, }

where we note that ~⇥0( �) is convex (since � � 0) and also contains (✓a, ✓b)
with �(✓a, ✓b) < 0. This confidence sequence can give a lower bound on �.
Analogously, we consider a one-sided AV confidence sequence for the submodel
{(✓a, ✓b) : �(✓a, ✓b)  0}, defining

CS�
↵,(m) = {�  0 : S(m)

[na,nb,W1;~⇥0(��)]
 ↵

�1
},

and derive an upper bound on �. By Theorem 3.2, both sequences
(CS+

↵,(m))m=1,2,... and (CS�
↵,(m))m=1,2,... are AV confidence sequences for the sub-

models with � � 0 and �  0 respectively. Defining CS↵,(m) = CS+
↵,(m)[CS�

↵,(m),

we find, for (✓a, ✓b) with �(✓a, ✓b) > 0,

P✓a,✓b

�
9m 2 N : �(✓a, ✓b) 62 CS↵,(m)

�
=

P✓a,✓b

⇣
9m 2 N : �(✓a, ✓b) 62 CS+

↵,(m)

⌘
 ↵,

and analogously for (✓a, ✓b) with �(✓a, ✓b) < 0. We have thus arrived at a confidence
sequence that works for all �, positive or negative.

3.3.1 Simulations

In this section some numerical examples of confidence sequences for the two types
of e↵ect sizes are given. All simulations were run with code available in our software
package [Ly et al., 2022].

Risk di↵erence Risk di↵erence is defined as the di↵erence between success prob-
abilities in the two streams: � = ✓b � ✓a. Figure 3.2 shows running intersections
of confidence sequences with � as the risk di↵erence for simulations for various
distributions and stream lengths. These sequences are constructed by testing null
hypotheses based on ~⇥0(s, c), with c = 1 and s = �. CI↵,(m) for the risk di↵erence

on ~⇥0 is an interval, corresponding to the ‘beam’ of (✓a, ✓b) 2 [0, 1]2 bounded
by the lines ✓b = ✓a + �l and ✓b = ✓a + �r with �l > �r being values such that

S
(m)

[na,nb,W1;~⇥0(�l)]
= S

(m)

[na,nb,W1;~⇥0(�r)]
= 1/↵. In Appendix S3.B we illustrate the
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(a) Risk di↵erence

(b) Relative risk

Figure 3.2: Depiction of parameter space with running intersection of confidence
sequence for data generated under various e↵ect sizes, at di↵erent time points m
in a data stream. The asterisks indicate the maximum likelihood estimator at that
time point. The significance threshold was set to 0.05. The design was balanced,
with data block sizes na = 1 and nb = 1.

58



calculations leading to Figure 3.2. Figure S3.1 in the Appendix illustrates that
the running intersection indeed improves the confidence sequence, albeit slightly.

Relative risk Relative risk is defined as the ratio between the success proba-
bilities in group b and a: � = ✓b/✓a. Hence, confidence sequences for this e↵ect
size measure can again be constructed using the linear boundary form ~⇥0(s, c)
again, but now with s = 0 and c = �. Figure 3.2 shows running intersections of
confidence sequences with � as the relative risk.

Log odds ratio boundary If the maximum likelihood estimate based on Y
(m)

lies in the upper left corner as in Figure 3.3(a), the confidence sets CS(m) we get
at time m have a one-sided shape such as the shaded region, or the shaded region
in Figure 3.3(c), if the estimate lies in the lower right corner. Again, we can
improve these confidence sequences by taking the running intersection; running
intersections over time are illustrated in Figures 3.3(b) and 3.3(d).

3.4 Conclusion

We have shown how e-variables for data streams can be extended to general null
hypotheses and non-asymptotic always-valid confidence sequences. We specifically
implemented the confidence sequences for the 2⇥2 contingency tables setting; the
resulting confidence sequences are e�ciently computed and show quick convergence
in simulations. For estimating risk di↵erences or relative risk ratios between pro-
portions in two groups, to our knowledge, such exact confidence sequences did not
yet exist. For the log odds ratio we could also have used the sequential probability
ratio (SPR) in Wald’s SPR test [Wald, 1945] test, which can be re-interpreted as a
(product of) e-variables [Grünwald et al., 2022a]. However, the SPR does not sat-
isfy the GRO property making it sub-optimal (see also [Adams, 2020]); moreover,
as should be clear from the development, our method for constructing confidence
sequences can be implemented for any e↵ect size notion with convex rejection sets
~⇥0( �) and ~⇥0(� �), not just the log odds ratio. A main goal for future work is
to use Theorem 3.2 to provide such sequences for sequential two-sample settings
that go beyond the 2⇥ 2 table.
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(a) CS+ at n = 500, true
lOR 2.5

(b) Running lower bound
CS+, true lOR 2.5

(c) CS� at n = 500, true
lOR �2.5

(d) Running upper bound
CS�, true lOR �2.5

Figure 3.3: One-sided confidence sequences for odds ratios. 500 data blocks were
generated under P✓a,✓b with ✓a = 0.2 and log of the odds ratio (lOR) 2.5 for figures
a and b, and ✓a = 0.8 and lOR �2.5 for figures c and d. The asterisks indicate
the maximum likelihood estimator at n = 500. The significance threshold was set
to 0.05. The design was balanced, with data block sizes na = 1 and nb = 1. Note
that CS

� is empty for (a) and (b) and CS
+ for (c) and (d) in these confidence

sequences.
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